KR20200080912A - Analysis method of dispersion stability using asymmetrical flow field-flow fractionation - Google Patents

Analysis method of dispersion stability using asymmetrical flow field-flow fractionation Download PDF

Info

Publication number
KR20200080912A
KR20200080912A KR1020180170884A KR20180170884A KR20200080912A KR 20200080912 A KR20200080912 A KR 20200080912A KR 1020180170884 A KR1020180170884 A KR 1020180170884A KR 20180170884 A KR20180170884 A KR 20180170884A KR 20200080912 A KR20200080912 A KR 20200080912A
Authority
KR
South Korea
Prior art keywords
dispersion
particle size
detector
carbon black
analysis method
Prior art date
Application number
KR1020180170884A
Other languages
Korean (ko)
Inventor
김운중
이승호
배지현
Original Assignee
한남대학교 산학협력단
(주)켐트리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단, (주)켐트리 filed Critical 한남대학교 산학협력단
Priority to KR1020180170884A priority Critical patent/KR20200080912A/en
Priority to PCT/KR2018/016975 priority patent/WO2020138577A1/en
Publication of KR20200080912A publication Critical patent/KR20200080912A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/0005Field flow fractionation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0023Investigating dispersion of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0288Sorting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/0005Field flow fractionation
    • G01N2030/0015Field flow fractionation characterised by driving force
    • G01N2030/0025Field flow fractionation characterised by driving force cross flow FFF
    • G01N2030/003Asymmetrical flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The present invention relates to a method for analyzing dispersibility of a dispersion by using asymmetrical flow field-flow fractionation. More specifically, the present invention relates to a method for analyzing dispersibility of a dispersion, which is capable of accurately analyzing a particle size by separating particles by a particle diffusion coefficient of the dispersion and the intensity of an external field, and analyzes the dispersibility of the dispersion by determining the uniformity of particle size distribution.

Description

비대칭 흐름 장-흐름 분획을 이용한 분산성 분석방법 {Analysis method of dispersion stability using asymmetrical flow field-flow fractionation}{Analysis method of dispersion stability using asymmetrical flow field-flow fractionation}

본 발명은 비대칭 흐름 장-흐름 분획을 이용한 분산성 분석방법에 관한 것이다.The present invention relates to a dispersibility analysis method using an asymmetric flow field-flow fraction.

카본블랙은 흑색도가 높은 안료로서 착색성, 전기전도성, 내후성, 내화학성 등에서 뛰어나, 플라스틱 및 탄성 중합체의 강화제 및 충전제, 블랙 매트릭스 (black matrix, BM)의 차광재료로서 광범위하게 사용되며, 고점도 카본블랙 분산액은 색조화장품, 타이어, 고무, 칼라필터 잉크, 페인트 및 플라스틱 산업분야 등 다양한 분야에 이용된다.Carbon black is a pigment with high blackness, and is excellent in coloring, electric conductivity, weather resistance, chemical resistance, etc., and is widely used as a reinforcement and filler for plastics and elastomers, as a light blocking material for black matrix (BM), and high viscosity carbon black Dispersions are used in various fields such as color cosmetics, tires, rubber, color filter inks, paint and plastic industries.

그러나 카본블랙은 1차 입자 직경이 미세하고 다공질이며, 비표면적이 크고, 상호간의 강한 친화력 및 낮은 열안정성으로 인해 입자가 응집되는 경향이 있어 분산안정성이 낮은 점이 문제이다. 카본블랙 입자의 크기와 형상은 제품의 색상과 물성에 큰 영향을 미치며, 안료로 사용되는 카본블랙의 응집은 색 변화와 제품의 결함을 유발한다. 또한 카본블랙은 높은 점도 및 소수성 특성으로 인해 물에 대한 습윤성이 낮아 수중에 고농도로 분산시키는 것이 매우 어렵다. 분산조건은 입자의 안정성에 영향을 주기 때문에 분산제와 분산시간의 선정이 매우 중요한데, 카본블랙은 공정시 안정한 분산제 및 분산시간의 선택이 어려워 산업에서의 적용이 제한되는 문제가 있다.However, carbon black has a problem that the primary particle diameter is fine and porous, the specific surface area is large, and the dispersion stability is low because the particles tend to aggregate due to strong affinity and low thermal stability. The size and shape of the carbon black particles greatly affect the color and physical properties of the product, and the aggregation of carbon black used as a pigment causes color changes and product defects. In addition, carbon black is very difficult to disperse in high concentration in water due to low wettability due to high viscosity and hydrophobic properties. Since the dispersing conditions affect the stability of the particles, it is very important to select a dispersing agent and a dispersing time. Carbon black has a problem in that it is difficult to select a stable dispersing agent and dispersing time in the process, and thus the application in the industry is limited.

안료의 분산이 안정하게 이루어지기 위해서는 분산의 3성분인 안료, 용매, 분산제의 균형이 중요하며, 3개의 성분 중 입자의 안정화를 위해서는 카본블랙과 분산제의 친화도가 매우 중요하다. 이는 밀도 분석을 통해 확인할 수 있으며, 밀도 분석에는 일반적으로 SEM이나 DLS가 사용된다. SEM은 입자의 모양을 시각적으로 볼 수 있다는 장점이 있지만 시료를 건조시켜 측정하는 분석 특성상 수용액에서의 입자 크기를 확인하기 어렵다는 단점이 있으며, DLS는 수용액 상에서의 입도 분석이 가능하지만, 큰 입자의 분포가 작을 때 측정이 거의 되지 않아 확인에 어려움이 있다. 일예로, 대한민국 등록특허 제10-1529178호에는 카본블랙 분산 유기용액 내부의 카본블랙 분산성 평가방법이 개시되어 있으나, 상기 방법은 카본블랙의 분산성을 육안으로 확인이 가능하나, 입자 크기 및 분포 확인에는 어려움이 있다. 따라서 카본블랙 분산액 제조에 있어 안정한 분산제와 분산시간의 최적화가 필요하다.In order to achieve stable dispersion of the pigment, the balance of the three components of the pigment, the solvent and the dispersant is important, and for the stabilization of the particles among the three components, the affinity of the carbon black and the dispersant is very important. This can be confirmed by density analysis, and SEM or DLS is generally used for density analysis. SEM has the advantage of being able to visually see the shape of the particles, but it has the disadvantage that it is difficult to confirm the particle size in the aqueous solution due to the analytical characteristics measured by drying the sample, while DLS can analyze the particle size in the aqueous solution, but the distribution of large particles When is small, it is difficult to check because the measurement is rare. As an example, Korean Patent Registration No. 10-1529178 discloses a method for evaluating the dispersibility of carbon black inside a carbon black dispersed organic solution, but the method can visually confirm the dispersibility of carbon black, but the particle size and distribution There are difficulties in confirmation. Therefore, it is necessary to optimize the dispersion time and stable dispersant in the production of the carbon black dispersion.

한편, 비대칭 흐름 장-흐름 분획 (asymmetrical flow field-flow fractionation)은 분리되는 속도차이를 이용하여 나노 입자를 분리하는 기술로, 다양한 분석 대상 물질을 분리하는데 용이하고, 다양한 검출기를 통해 크기나 분자량 등의 정보를 획득할 수 있어, 최근 나노 입자의 분리에 많이 사용되고 있다. 이에 본 발명자는 비대칭 흐름 장-흐름 분획을 이용하여 입자 분포의 균일도 분석을 통해 분산액의 분산성을 분석하는 방법을 완성하였다.On the other hand, asymmetrical flow field-flow fractionation (asymmetrical flow field-flow fractionation) is a technology for separating nanoparticles using a separation velocity difference, which is easy to separate various analytes, and various detectors such as size or molecular weight. Since it is possible to obtain information of, it has been recently used for separation of nanoparticles. Accordingly, the present inventor has completed a method of analyzing the dispersibility of a dispersion liquid by analyzing the uniformity of particle distribution using an asymmetric flow field-flow fraction.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 비대칭 흐름 장-흐름 분획 (asymmetrical flow field-flow fractionation)을 이용하여 분산액의 입자 분포 측정의 정확도를 개선하고, 이를 이용한 분산액의 분산성 분석방법을 제공하는데 목적이 있다.The present invention has been devised to solve the problems of the prior art as described above, and improves the accuracy of measuring the particle distribution of a dispersion using an asymmetrical flow field-flow fractionation. The purpose is to provide a method for dispersibility analysis.

상기 목적을 달성하기 위하여 본 발명은The present invention to achieve the above object

1) 분산액을 비대칭 흐름 장-흐름 분획 (asymmetrical flow field-flow fractionation; AF4) 채널에 주입하는 단계;1) injecting the dispersion into an asymmetrical flow field-flow fractionation (AF4) channel;

2) 상기 분산액을 입자 크기별로 분획하여 시간에 따라 분리하는 단계;2) separating the dispersion according to particle size and separating over time;

3) 상기 분리된 입자를 검출기로 검출하는 단계;3) detecting the separated particles with a detector;

4) 상기 검출기로부터 입자 분석 정보를 수집 및 입력하는 단계;4) collecting and inputting particle analysis information from the detector;

5) 상기 입력된 정보로부터 입도 분포의 균일도를 표시하는 단계;를 포함하는 분산액의 분산성 분석방법을 제공한다.5) displaying the uniformity of the particle size distribution from the input information.

상기 검출기는 자외선 검출기 (UV-Vis), 시차 굴절계 (differential refractometer; dRI), 다중각 광산란 (Multi Angle Light Scattering; MALS), 동적 광산란 (Dynamic light scattering; DLS), 형광검출기 (Fluorescence; FL), 레이저 유도 파단 검출기 (Laser-Induced Breakdown Detection; LIBD), 유도결합플라즈마 질량분석기 (ICP-MS) 및 X-선 산란 (X-ray scattering) 중에서 선택되는 것을 특징으로 한다.The detector includes an ultraviolet detector (UV-Vis), a differential refractometer (dRI), a multi angle light scattering (MALS), a dynamic light scattering (DLS), a fluorescence detector (FL), It is selected from Laser-Induced Breakdown Detection (LIBD), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and X-ray scattering.

상기 분산액은 카본블랙 분산액을 포함하는 것을 특징으로 한다.The dispersion is characterized in that it comprises a carbon black dispersion.

상기 균일도는 입도 분포도를 나타내는 그래프에서 피크 수를 나타내는 값(a)과 피크 너비를 나타내는 값(b)의 합을 산출하는 단계;를 포함하고, 상기 균일도 값이 높을수록 분산성이 높다는 것을 표시하는 것을 특징으로 한다.The uniformity includes the step of calculating a sum of a value (a) representing a number of peaks and a value (b) representing a peak width in a graph showing the particle size distribution, and indicating that the higher the uniformity value is, the higher the dispersibility is. It is characterized by.

본 발명에서 상기 분산액은 스틸렌과 말레인산이 2:1 이상 혼합된 것을 사용하는 것이 바람직하다.In the present invention, it is preferable to use a mixture of styrene and maleic acid in a ratio of 2:1 or more.

본 발명에 따른 분산액의 분산성 분석방법은 입자 크기에 대한 정확한 분석이 가능하고, 입도 분포의 균일도를 판단하여 분산액의 분산성을 분석함으로써 분산액 제조를 위한 조건의 최적화에 유용하게 이용할 수 있다.The dispersibility analysis method of the dispersion according to the present invention can accurately analyze the particle size, and can be usefully used to optimize the conditions for preparing the dispersion by analyzing the dispersion of the dispersion by determining the uniformity of the particle size distribution.

도 1은 milling 시간에 따른 실시예 1 내지 3의 pH 측정 결과를 나타낸다.
도 2는 milling 시간에 따른 실시예 1 내지 3의 전기전도도 측정 결과를 나타낸다.
도 3은 milling 시간에 따른 실시예 1 내지 3의 점도 측정 결과를 나타낸다.
도 4는 milling 시간에 따른 실시예 1 내지 3의 입도 측정 결과를 나타낸다.
도 5는 milling 시간에 따른 실시예 1 내지 3의 SEM 이미지 측정 결과를 나타낸다.
도 6은 DLS를 이용한 milling 시간에 따른 입도 분석 결과를 나타낸다.
도 7은 AF4를 이용한 milling 시간에 따른 입도 분석 결과를 나타낸다.
Figure 1 shows the pH measurement results of Examples 1 to 3 according to the milling time.
Figure 2 shows the electrical conductivity measurement results of Examples 1 to 3 according to the milling time.
Figure 3 shows the viscosity measurement results of Examples 1 to 3 according to the milling time.
Figure 4 shows the particle size measurement results of Examples 1 to 3 according to the milling time.
Figure 5 shows the SEM image measurement results of Examples 1 to 3 according to the milling time.
6 shows the results of particle size analysis according to milling time using DLS.
7 shows the results of particle size analysis according to the milling time using AF4.

이하, 본 발명에 따른 비대칭 흐름 장-흐름 분획을 이용한 분산성 분석방법에 대해 구체적으로 설명한다.Hereinafter, a method for analyzing dispersibility using an asymmetric flow field-flow fraction according to the present invention will be described in detail.

본 발명에 따른 분산액의 분산성 분석방법은 1) 분산액을 비대칭 흐름 장-흐름 분획 (asymmetrical flow field-flow fractionation; AF4) 채널에 주입하는 단계; 2) 상기 분산액을 입자 크기별로 분획하여 시간에 따라 분리하는 단계; 3) 상기 분리된 입자를 검출기로 검출하는 단계; 4) 상기 검출기로부터 입자 분석 정보를 수집 및 입력하는 단계; 5) 상기 입력된 정보로부터 입도 분포의 균일도를 표시하는 단계;를 포함한다.The method for analyzing the dispersibility of a dispersion according to the present invention includes: 1) injecting a dispersion into an asymmetrical flow field-flow fractionation (AF4) channel; 2) separating the dispersion according to particle size and separating over time; 3) detecting the separated particles with a detector; 4) collecting and inputting particle analysis information from the detector; 5) displaying the uniformity of the particle size distribution from the input information.

상기 비대칭 흐름 장-흐름 분획 (asymmetrical flow field-flow fractionation; AF4)은 흐름을 통해 입자의 확산계수와 외부장의 세기에 의해 입자가 분리되는 기법으로, 상기 비대칭 흐름 장-흐름 분획 채널은 분산액이 이동되는 빈 공간을 의미한다. 비대칭 흐름 -흐름 분획은 채널 내부에 유체가 흐르는 동안 형성되는 마찰력에 의해 채널 양쪽의 유속은 느리고 채널 중심으로 갈수록 유속이 빨라지는 포물선 형태의 층류인 채널흐름를 형성한다. 또 다른 하나의 흐름 형태로는 외부장에 의해 작용하는 채널에 수직으로 흐르는 교차흐름이 있으며, 교차흐름 세기와 입자의 크기 및 확산계수에 따라 입자가 채널 내에서 수직적으로 층을 이루며 확산이 이루어진다. 이렇게 층을 이룬 입자들은 포물선 형태의 층류인 채널흐름에 의한 이동속도의 차이에 따라 분리가 이루어진다.The asymmetrical flow field-flow fractionation (AF4) is a technique in which particles are separated by the diffusion coefficient of the particles and the intensity of the external field through the flow, and the asymmetric flow field-flow fractionation channel moves the dispersion liquid. Means empty space. The asymmetric flow-flow fraction forms a channel flow, a parabolic laminar flow, in which the flow velocity on both sides of the channel is slow and the flow velocity increases toward the center of the channel due to the frictional force formed while the fluid flows inside the channel. Another type of flow is a cross flow that flows vertically to a channel acted by an external field, and the particles are layered vertically in the channel according to the cross flow intensity, particle size, and diffusion coefficient, and diffusion occurs. The layered particles are separated according to the difference in the movement speed due to the parabolic laminar channel flow.

상기 검출기는 입자의 크기 등의 정보를 획득하기 위한 것으로, 자외선 검출기 (UV-Vis), 시차 굴절계 (differential refractometer; dRI), 다중각 광산란 (Multi Angle Light Scattering; MALS), 동적 광산란 (Dynamic light scattering; DLS), 형광검출기 (Fluorescence; FL), 레이저 유도 파단 검출기 (Laser-Induced Breakdown Detection; LIBD), 유도결합플라즈마 질량분석기 (ICP-MS) 및 X-선 산란 (X-ray scattering) 중에서 선택되는 것이 바람직하다.The detector is for obtaining information such as particle size, an ultraviolet detector (UV-Vis), a differential refractometer (dRI), a multi angle light scattering (MALS), and a dynamic light scattering ; DLS), Fluorescence (FL), Laser-Induced Breakdown Detection (LIBD), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray scattering It is preferred.

상기 분산액은 스틸렌과 말레인산이 혼합된 것이 바람직하고, 1:1 내지 4:1 중량비로 혼합되어 있는 것이 바람직하다. 본 발명에서는 1:1로 혼합된 것으로서 상용화되어 있는 SMA-1000, 2:1로 혼합된 SMA-2000, 3:1로 혼합된 SMA-3000을 사용하였다. 보다 바람직하게는 2:1 및 3:1로 혼합된 것을 사용한다. The dispersion is preferably a mixture of styrene and maleic acid, and is preferably mixed in a 1:1 to 4:1 weight ratio. In the present invention, commercially available SMA-1000 mixed with 1:1, SMA-2000 mixed with 2:1, and SMA-3000 mixed with 3:1 were used. More preferably, a mixture of 2:1 and 3:1 is used.

또한 본 발명에서 분산액은 카본블랙 분산액을 포함하는 것이 바람직하나, 이에 한정되는 것은 아니다. 카본블랙은 열 안정성이 약해 쉽게 응집되는 경향이 있으므로, 본 발명에 따른 분산성 분석방법으로 카본블랙 분산액의 분산성을 분석하여 분산제 및 분산시간 등 분산조건의 최적화에 이용할 수 있다.In addition, the dispersion in the present invention preferably includes a carbon black dispersion, but is not limited thereto. Since carbon black has a weak thermal stability and tends to easily aggregate, the dispersibility of the carbon black dispersion may be analyzed by the dispersibility analysis method according to the present invention to optimize dispersion conditions such as dispersant and dispersion time.

상기 균일도는 입도 분포의 피크 수가 적고 피크 너비가 좁을수록 균일도가 높으며, 균일도가 높을수록 분산성이 우수하다. 분산성이 낮을수록 입자의 응집이 일어나고 다양한 입자 크기를 가져 입도 분포가 고르지 못하므로, 입도 분포의 균일도가 떨어진다. 입도 분포의 피크 수가 적을수록 입자 크기가 단일성을 띄며, 피크 너비가 좁을수록 입자 크기가 고르게 나타나 균일도가 높음을 의미하므로 분산성이 우수함을 뜻한다.The uniformity is higher in uniformity as the number of peaks in the particle size distribution is smaller and the width of the peak is narrower. The lower the dispersibility, the more the particle size distribution is uneven and the particle size distribution is uneven because it has various particle sizes. The smaller the number of peaks in the particle size distribution, the more uniform the particle size, and the narrower the peak width, the more uniform the particle size.

이하, 본 발명을 실시예를 참조하여 더욱 상세히 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.

실시예Example 1 One

1) 분산제 합성1) Dispersant synthesis

먼저 3 neck flask에 SMA-1000 (Styrene maleic anhydride 1000, SARTOMER Co., Ltd., USA) 42 g과 정제수 42 g을 넣어 교반하면서 용액의 온도를 80℃까지 올렸다. 용액의 온도가 80℃가 되면 ammonia water (25-28%, DUKSAN, Korea) 24 g을 첨가하고 2시간 동안 교반하여 분산제를 제조하였다.First, 42 g of SMA-1000 (Styrene maleic anhydride 1000, SARTOMER Co., Ltd., USA) and 42 g of purified water were added to a 3 neck flask, and the temperature of the solution was raised to 80°C while stirring. When the temperature of the solution was 80°C, 24 g of ammonia water (25-28%, DUKSAN, Korea) was added and stirred for 2 hours to prepare a dispersant.

2) 카본블랙 분산액 제조2) Preparation of carbon black dispersion

카본블랙 (S.A., Bulk density, Alfa Aesar, USA) 5 g에 상기 분산제 75 g, 증류수 420 g을 첨가한 후 0.8 ㎜ beads 350 g으로 Basket mill (HSX0502251, HYOSUNG, Korea)을 이용하여 1500 rpm에서 milling 시간을 1시간, 2시간, 3시간으로 각각 달리하여 카본블랙 분산액을 제조하였다.After adding 75 g of the dispersant and 420 g of distilled water to 5 g of carbon black (SA, Bulk density, Alfa Aesar, USA), milling at 1500 rpm using a basket mill (HSX0502251, HYOSUNG, Korea) with 350 g of 0.8 mm beads. Carbon black dispersions were prepared by varying the time to 1 hour, 2 hours, and 3 hours, respectively.

실시예Example 2 2

분산제로서 SMA-2000 (Styrene maleic anhydride 2000, SARTOMER Co., Ltd., USA)을 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 카본블랙 분산액을 제조하였다.A carbon black dispersion was prepared in the same manner as in Example 1, except that SMA-2000 (Styrene maleic anhydride 2000, SARTOMER Co., Ltd., USA) was used as the dispersant.

실시예Example 3 3

분산제로서 SMA-3000 (Styrene maleic anhydride 3000, SARTOMER Co., Ltd., USA)을 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 카본블랙 분산액을 제조하였다.A carbon black dispersion was prepared in the same manner as in Example 1, except that SMA-3000 (Styrene maleic anhydride 3000, SARTOMER Co., Ltd., USA) was used as a dispersant.

상기 실시예 1 내지 3에서 합성한 SMA 분산제의 구조는 하기와 같다.The structures of the SMA dispersants synthesized in Examples 1 to 3 are as follows.

Figure pat00001
Figure pat00001

실험예Experimental Example 1. 경시안정성 평가 1. Evaluation of aging stability

분산제의 종류와 milling 시간에 따른 카본블랙 분산액의 물성 및 안정성 평가를 위해 실시예에 대하여 60℃에서 11일 동안 pH, 전기전도도, 점도 및 입자 크기를 분석하였으며, 모든 분석은 결과의 재현성을 확인하기 위해 세 번씩 측정하였다. pH는 pH meter (OHAUS STARTER 2100, OHAUS Corp., USA), 전기전도도는 Conductivity meter (OHAUS STARTER 3100C, OHAUS Corp., USA), 점도는 Viscosity meter (LVDVE 230, Brookfield, USA), 입자 크기 및 분포는 Dynamic Light Scattering (DLS; ELSZ-2000, Otsuka, Japan)을 이용하여 측정하였다.In order to evaluate the physical properties and stability of the carbon black dispersion according to the type of dispersant and milling time, pH, electrical conductivity, viscosity and particle size were analyzed for 11 days at 60°C for all examples, and all analyzes confirmed the reproducibility of the results. It was measured three times in order. pH is pH meter (OHAUS STARTER 2100, OHAUS Corp., USA), electrical conductivity is Conductivity meter (OHAUS STARTER 3100C, OHAUS Corp., USA), viscosity is Viscosity meter (LVDVE 230, Brookfield, USA), particle size and distribution Was measured using Dynamic Light Scattering (DLS; ELSZ-2000, Otsuka, Japan).

도 1은 milling 시간에 따른 (a) 실시예 1, (b) 실시예 2, (c) 실시예 3의 pH를 나타낸 것이고, 도 2는 milling 시간에 따른 (a) 실시예 1, (b) 실시예 2, (c) 실시예 3의 전기전도도를, 도 3은 milling 시간에 따른 (a) 실시예 1, (b) 실시예 2, (c) 실시예 3의 점도를, 도 4는 milling 시간에 따른 (a) 실시예 1, (b) 실시예 2, (c) 실시예 3의 입도 분석을 나타낸 것이다.Figure 1 shows the pH of (a) Example 1, (b) Example 2, (c) Example 3 according to the milling time, Figure 2 (a) Example 1, (b) according to the milling time Example 2, (c) the electrical conductivity of Example 3, Figure 3 according to the milling time (a) Example 1, (b) Example 2, (c) Example 3 viscosity, Figure 4 milling It shows the particle size analysis of (a) Example 1, (b) Example 2, (c) Example 3 with time.

도 1 내지 4 및 하기 표 1을 참고하면, 카본블랙 분산액의 경시안정성 평가 결과, 실시예 1 내지 3의 pH와 점도는 큰 변화없이 일정하게 나타났다. 반면, 실시예 1은 11일 경과 후의 전기전도도 값이 초기 전기전도도 값의 77.39%로 나타나, 전기전도도가 가장 크게 감소하는 경향을 보임에 따라 카본블랙과 SMA 1000 분산제는 안정한 분산이 어려운 것을 확인하였다.1 to 4 and Table 1 below, as a result of evaluating the elongation stability of the carbon black dispersion, the pHs and viscosities of Examples 1 to 3 were constant without significant changes. On the other hand, in Example 1, after 11 days, the electric conductivity value was 77.39% of the initial electric conductivity value, and as the electric conductivity tended to decrease the most, the carbon black and SMA 1000 dispersants confirmed that stable dispersion was difficult. .

milling
time
milling
time
60℃, 11일차60℃, Day 11
pHpH Conductivity (㎲/㎝)Conductivity (㎲/㎝) Viscosity (cP)Viscosity (cP) DLS (㎚)DLS (nm) 실시예 1Example 1 1시간1 hours 8.46±0.398.46±0.39 572.50±117.85572.50±117.85 1518.50±199.101518.50±199.10 237.60±21.73237.60±21.73 2시간2 hours 8.43±0.428.43±0.42 592.50±127.92592.50±127.92 1510.00±200.201510.00±200.20 214.57±34.75214.57±34.75 3시간3 hours 8.45±0.398.45±0.39 577.00±111.87577.00±111.87 1657.50±231.701657.50±231.70 274.03±91.58274.03±91.58 실시예 2Example 2 1시간1 hours 9.14±0.159.14±0.15 413.25±68.15413.25±68.15 1617.50±357.901617.50±357.90 204.47±51.85204.47±51.85 2시간2 hours 9.08±0.199.08±0.19 462.00±159.42462.00±159.42 1445.00±214.201445.00±214.20 177.53±6.56177.53±6.56 3시간3 hours 9.12±0.159.12±0.15 382.75±110.89382.75±110.89 1492.50±241.001492.50±241.00 204.30±42.35204.30±42.35 실시예 3Example 3 1시간1 hours 9.14±0.159.14±0.15 304.25±66.64304.25±66.64 1447.50±259.201447.50±259.20 206.97±43.75206.97±43.75 2시간2 hours 9.08±0.199.08±0.19 294.25±74.79294.25±74.79 1470.00±280.201470.00±280.20 242.53±22.59242.53±22.59 3시간3 hours 9.12±0.159.12±0.15 288.75±84.48288.75±84.48 1455.00±258.001455.00±258.00 190.13±61.50190.13±61.50

실험예Experimental Example 2. 입자 형상 분석 2. Particle shape analysis

카본블랙 분산액에서 카본블랙의 모양 및 크기를 확인하기 위해 전계방출형 주사전자현미경 (Field emission scanning electron microscope (FE-SEM); JEOL-7800F, JEOL Ltd., Japan)을 이용하여 이미지를 분석하였다. 도 5는 milling 시간에 따른 (a) 실시예 1, (b) 실시예 2, (c) 실시예 3의 SEM 이미지를 나타낸 것으로, 실시예 1 내지 3의 카본블랙 1차 입자 직경은 30-40 ㎚였으며, 완전한 구형의 응집체가 아닌 불규칙한 형태의 응집체로 존재하는 것을 확인하였다.The image was analyzed using a field emission scanning electron microscope (FE-SEM; JEOL-7800F, JEOL Ltd., Japan) to confirm the shape and size of the carbon black in the carbon black dispersion. Figure 5 shows the SEM image of (a) Example 1, (b) Example 2, (c) Example 3 according to the milling time, the carbon black primary particle diameter of Examples 1 to 3 is 30-40 It was found to be ㎚, and existed as an irregularly shaped aggregate rather than a completely spherical aggregate.

실험예Experimental Example 3. DLS 및 AF4를 이용한 입도 분석 3. Particle size analysis using DLS and AF4

카본블랙 분산액에 대해 Dynamic Light Scattering (DLS; ELSZ-2000, Otsuka, Japan)과 AF4를 이용하여 입도분석을 진행하였다. AF4는 AF4 short channel (Wyatt Tech., Europe GmbH, Dernbach, Germany), 10 kDa의 cut-off 분자량을 갖는 cellulose membrane (Millipore, Bedford, USA), 250 ㎛ 두께의 Mylar spacer를 사용하였으며, AF4를 이용한 분리를 위해 이동상은 0.1% FL-70 (fisher Chemical, USA)과 0.02% sodium azide (NaN3, Sigma-Aldrich, USA)를 사용하였다. 이동상의 주입을 위해 HPLC pump (P-6000, FURECS Co., Ltd., Korea)를 사용하였으며, 유속 측정을 위해 Optiflow 1000 Liquid Flowmeter (Agilent Technologies, Palo Alto, CA, USA)를 사용하였다. 또한 크기별로 분리되어 용리하는 시료의 검출을 위해 UV 검출기 (Spectra SERIES UV 150, THERMO SEPARATION PRODUCTS, USA)를 이용하였다. 이때 channel flow는 0.8 ㎖/min, cross flow는 0.3 ㎖/min로 하였으며, 시료 주입은 syringe pump (Legato 110, KD Scientific Inc., Mendon, USA)를 이용하여 0.2 ㎖/min으로 50 ㎕를 주입하였다. 모든 분석은 결과의 재현성을 확인하기 위해 세 번씩 측정하였으며. 시료는 60℃에서 11일 동안 보관한 카본블랙 분산액을 대상으로 하였다.The particle size analysis was performed on the carbon black dispersion using Dynamic Light Scattering (DLS; ELSZ-2000, Otsuka, Japan) and AF4. For AF4, AF4 short channel (Wyatt Tech., Europe GmbH, Dernbach, Germany), cellulose membrane (Millipore, Bedford, USA) having a cut-off molecular weight of 10 kDa, 250 μm thick Mylar spacer was used, and AF4 was used. For separation, 0.1% FL-70 (fisher Chemical, USA) and 0.02% sodium azide (NaN 3 , Sigma-Aldrich, USA) were used as the mobile phase. An HPLC pump (P-6000, FURECS Co., Ltd., Korea) was used for the injection of the mobile phase, and an Optiflow 1000 Liquid Flowmeter (Agilent Technologies, Palo Alto, CA, USA) was used for the flow rate measurement. In addition, a UV detector (Spectra SERIES UV 150, THERMO SEPARATION PRODUCTS, USA) was used to detect samples eluted by size. At this time, the channel flow was 0.8 ml/min, the cross flow was 0.3 ml/min, and the sample injection was 50 µl at 0.2 ml/min using a syringe pump (Legato 110, KD Scientific Inc., Mendon, USA). . All analyzes were measured three times to confirm the reproducibility of the results. The sample was subjected to a carbon black dispersion stored at 60°C for 11 days.

도 6은 DLS를 이용한 milling 시간에 따른 (a) 실시예 1, (b) 실시예 2, (c) 실시예 3의 입도 분석을 나타낸 것이고, 도 7은 milling 시간에 따른 실시예 1 내지 3의 UV 검출기 측정 결과 ((a), (c), (e)) 및 AF4를 이용한 입도 분석 ((b), (d), (f))을 나타낸 것이다.Figure 6 shows the particle size analysis of (a) Example 1, (b) Example 2, (c) Example 3 according to the milling time using DLS, Figure 7 of Examples 1 to 3 according to the milling time UV detector measurement results ((a), (c), (e)) and particle size analysis using AF4 ((b), (d), (f)) are shown.

도 6 및 하기 표 2를 참고하면, 실시예 1은 milling 시간이 3시간일 때 과분산에 의한 응집이 진행되었으며, 이를 통해 카본블랙과 SMA 1000 분산제는 안정한 분산이 어려운 것을 확인하였다. 한편, 실시예 2는 milling 시간이 증가함에 따라 입자 크기가 증가하였으며, 실시예 3은 milling 시간이 증가함에 따라 입자 크기가 감소하였으나, 분산제의 종류와 분산 시간에 있어 뚜렷한 경향성은 나타나지 않았다.Referring to FIG. 6 and Table 2, in Example 1, when the milling time was 3 hours, agglomeration proceeded by overdispersion, and through this, it was confirmed that the carbon black and the SMA 1000 dispersant were difficult to stably disperse. On the other hand, in Example 2, the particle size increased as the milling time increased, and in Example 3, the particle size decreased as the milling time increased, but there was no clear tendency in the type and dispersion time of the dispersant.

DLS를 이용한 입도 (60℃, 11일차)(nm)Particle size using DLS (60℃, Day 11) (nm) 1시간1 hours 2시간2 hours 3시간3 hours 실시예 1Example 1 472.4±292.1472.4±292.1 340.2±167.6340.2±167.6 103.6±17.2
359.0±108.5
103.6±17.2
359.0±108.5
실시예 2Example 2 256.8±66.1
1069.0±334.8
256.8±66.1
1069.0±334.8
252.1±61.6252.1±61.6 307.4±146.1307.4±146.1
실시예 3Example 3 110.2±17.2
390.2±111.4
110.2±17.2
390.2±111.4
291.1±121.0291.1±121.0 239.9±58.2239.9±58.2

도 7 및 하기 표 3을 참고하면, AF4 측정결과는 DLS 측정결과와는 다르게, 실시예 1 및 실시예 2는 milling 시간이 증가함에 따라 입자 크기가 감소하는 경향을 보였고, 실시예 3은 milling 시간이 증가함에 따라 크기가 증가하는 경향을 보였다.Referring to Figure 7 and Table 3, AF4 measurement results, unlike DLS measurement results, Example 1 and Example 2 showed a tendency to decrease the particle size as the milling time increases, Example 3 the milling time As this increase, the size tended to increase.

AF4를 이용한 입도 (60℃, 11일차)(nm)Particle size using AF4 (60℃, day 11) (nm) 1시간1 hours 2시간2 hours 3시간3 hours 실시예 1Example 1 290.90±7.91290.90±7.91 295.17±7.71295.17±7.71 286.44±8.54286.44±8.54 실시예 2Example 2 314.20±90.03314.20±90.03 278.90±87.23278.90±87.23 267.20±46.0267.20±46.0 실시예 3Example 3 273.80±22.93273.80±22.93 275.10±25.27275.10±25.27 294.53±7.03294.53±7.03

실험예Experimental Example 4. 색상 분석 4. Color analysis

카본블랙 분산액의 입도에 대한 추가 분석을 위해 Color meter (CR-400 Chroma meter, Konica Minolta, USA)를 사용하여 카본블랙 분산액의 색상을 분석하였다. Color meter는 L*(밝기), a*(적색도), b*(황색도)를 수치화하여 정보를 나타내며, 이를 하기 표 4에 나타내었다.To further analyze the particle size of the carbon black dispersion, the color of the carbon black dispersion was analyzed using a color meter (CR-400 Chroma meter, Konica Minolta, USA). The color meter indicates information by digitizing L * (brightness), a * (redness), and b * (yellowness), which are shown in Table 4 below.

L* 값은 밝기, 명도를 의미하며, L* 값이 작을수록 검정색에 가깝고, 이는 입자의 크기가 가장 작은 것을 뜻한다. 색차계 측정 결과, 실시예 2는 milling 시간이 3시간일 때 L* 값이 가장 작았으며, 실시예 3은 milling 시간이 1시간일 때 L* 값이 가장 작게 나타났다. 이는 AF4 측정 결과와 크기 분석의 경향성이 같음을 확인할 수 있다.The L * value means brightness and brightness, and the smaller L * value is closer to black, which means the smallest particle size. As a result of the colorimeter measurement, Example 2 showed the smallest L * value when the milling time was 3 hours, and Example 3 showed the smallest L * value when the milling time was 1 hour. This confirms that the tendency of AF4 measurement result and size analysis are the same.

milling
time
milling
time
Color meter 측정 데이터 (60℃, 11일차)Color meter measurement data (60℃, day 11)
L* L * a* a * b* b * 실시예 2Example 2 1시간1 hours 24.33±0.0024.33±0.00 0.34±0.030.34±0.03 0.08±0.020.08±0.02 2시간2 hours 24.28±0.0024.28±0.00 0.34±0.020.34±0.02 0.23±0.010.23±0.01 3시간3 hours 23.89±0.0023.89±0.00 0.33±0.040.33±0.04 0.28±0.020.28±0.02 실시예 3Example 3 1시간1 hours 23.26±0.0123.26±0.01 0.38±0.060.38±0.06 0.23±0.020.23±0.02 2시간2 hours 24.58±0.0124.58±0.01 0.29±0.140.29±0.14 0.12±0.020.12±0.02 3시간3 hours 24.11±0.0124.11±0.01 0.31±0.030.31±0.03 0.25±0.020.25±0.02

종합해 볼 때, SMA 1000 분산제는 카본블랙 분산에 있어 최적화가 더 진행되어야 할 것으로 사료되며, SMA 2000 분산제는 3시간, SMA 3000 분산제는 1시간의 milling 시간으로 안정한 카본블랙 분산액의 제조가 가능함을 확인하였다. 이와 같이, DLS는 고점도 카본블랙 분산액에 대한 입도 측정시 재현성이 떨어지는 반면, AF4는 color meter 측정 결과와 비교했을 때 분산제의 종류와 분산시간에 있어 측정 결과가 같은 경향성을 보임에 따라 AF4의 분산성 분석방법이 우수함을 알 수 있다.Overall, SMA 1000 dispersant is considered to be further optimized for carbon black dispersion, SMA 2000 dispersant is 3 hours, SMA 3000 dispersant is 1 hour milling time, stable carbon black dispersion can be produced. Confirmed. As described above, while DLS has poor reproducibility when measuring the particle size of a high-viscosity carbon black dispersion, AF4 dispersibility of AF4 as the measurement results show the same tendency in the type and dispersion time of the dispersant as compared with the color meter measurement results. It can be seen that the analysis method is excellent.

이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명에 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위내에 있는 모든 기술은 본 발명의 권리버무이에 포함하는 것으로 해석되어야 한다.The above description is merely illustrative of the present invention, and those skilled in the art to which the present invention pertains will be capable of various modifications without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed herein are not intended to limit the present invention, but to explain the present invention, and the spirit and scope of the present invention are not limited by these embodiments. The scope of protection of the present invention should be interpreted by the following claims, and all technologies within the equivalent range should be interpreted as being included in the rights of the present invention.

Claims (6)

1) 분산액을 비대칭 흐름 장-흐름 분획 (asymmetrical flow field-flow fractionation; AF4) 채널에 주입하는 단계;
2) 상기 분산액을 입자 크기별로 분획하여 시간에 따라 분리하는 단계;
3) 상기 분리된 입자를 검출기로 검출하는 단계;
4) 상기 검출기로부터 입자 분석 정보를 수집 및 입력하는 단계;
5) 상기 입력된 정보로부터 입도 분포의 균일도를 표시하는 단계;를 포함하는 것을 특징으로 하는 분산액의 분산성 분석방법
1) injecting the dispersion into an asymmetrical flow field-flow fractionation (AF4) channel;
2) separating the dispersion according to particle size and separating over time;
3) detecting the separated particles with a detector;
4) collecting and inputting particle analysis information from the detector;
5) displaying the uniformity of the particle size distribution from the input information; method for analyzing the dispersibility of the dispersion comprising the
제 1항에 있어서, 상기 검출기는 자외선 검출기 (UV-Vis), 시차 굴절계 (differential refractometer; dRI), 다중각 광산란 (Multi Angle Light Scattering; MALS), 동적 광산란 (Dynamic light scattering; DLS), 형광검출기 (Fluorescence; FL), 레이저 유도 파단 검출기 (Laser-Induced Breakdown Detection; LIBD), 유도결합플라즈마 질량분석기 (ICP-MS) 및 X-선 산란 (X-ray scattering)로 이루어진 군에서 어느 하나 이상 선택되는 것을 특징으로 하는 분석방법
The method of claim 1, wherein the detector is an ultraviolet detector (UV-Vis), a differential refractometer (dRI), multi-angle light scattering (MALS), dynamic light scattering (DLS), fluorescence detector (Fluorescence; FL), Laser-Induced Breakdown Detection (LIBD), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray scattering. Analysis method characterized by
제 1항에 있어서, 상기 분산액은 카본블랙 분산액을 포함하는 것을 특징으로 하는 분석방법
The analysis method according to claim 1, wherein the dispersion comprises a carbon black dispersion.
제 1항에 있어서, 상기 균일도는 입도 분포도를 나타내는 그래프에서 피크 수를 나타내는 값(a)과 피크 너비를 나타내는 값(b)의 합을 산출하는 단계;를 포함하여 상기 합이 높을 수록 균일도 값을 높게 표시하는 것을 특징으로 하는 분석방법
The method of claim 1, wherein the uniformity comprises: calculating a sum of a value (a) representing a number of peaks and a value (b) representing a peak width in a graph representing a particle size distribution; the higher the sum, the higher the uniformity value. Analysis method characterized by displaying high
제 4항에 있어서, 상기 균일도 값이 높을수록 분산성이 높다는 것을 표시하는 것을 특징으로 하는 분석방법
The analysis method according to claim 4, wherein the higher the uniformity value is, the higher the dispersibility is.
제 1항에 있어서, 상기 분산액은 스틸렌과 말레인산이 2:1 이상 혼합된 것을 사용하는 것을 특징으로 하는 분석방법
The method according to claim 1, wherein the dispersion is a mixture of styrene and maleic acid in a ratio of 2:1 or more.
KR1020180170884A 2018-12-27 2018-12-27 Analysis method of dispersion stability using asymmetrical flow field-flow fractionation KR20200080912A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180170884A KR20200080912A (en) 2018-12-27 2018-12-27 Analysis method of dispersion stability using asymmetrical flow field-flow fractionation
PCT/KR2018/016975 WO2020138577A1 (en) 2018-12-27 2018-12-31 Method for analyzing dispersibility by using asymmetrical flow field-flow fractionation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180170884A KR20200080912A (en) 2018-12-27 2018-12-27 Analysis method of dispersion stability using asymmetrical flow field-flow fractionation

Publications (1)

Publication Number Publication Date
KR20200080912A true KR20200080912A (en) 2020-07-07

Family

ID=71125817

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180170884A KR20200080912A (en) 2018-12-27 2018-12-27 Analysis method of dispersion stability using asymmetrical flow field-flow fractionation

Country Status (2)

Country Link
KR (1) KR20200080912A (en)
WO (1) WO2020138577A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264577A (en) * 2021-12-30 2022-04-01 攀钢集团攀枝花钢铁研究院有限公司 Method for rapidly detecting dispersion stability of nano titanium dioxide in oil phase

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811199B1 (en) * 2006-11-13 2008-03-07 광주과학기술원 A method for prediction/evaluation of membrane fouling, using flow-field flow fractionation technique
KR100932614B1 (en) * 2008-01-17 2009-12-17 한남대학교 산학협력단 Large capacity fractionation device and fractionation method
US8360244B2 (en) * 2008-06-09 2013-01-29 Wyatt Technology Corporation Method and apparatus for optimizing the separation of small particles using the asymmetric flow field flow fractionation method

Also Published As

Publication number Publication date
WO2020138577A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
López-Sanz et al. Analytical metrology for nanomaterials: Present achievements and future challenges
Hinterwirth et al. Comparative method evaluation for size and size‐distribution analysis of gold nanoparticles
Bantz et al. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions
Von der Kammer et al. Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation
Cascio et al. Critical experimental evaluation of key methods to detect, size and quantify nanoparticulate silver
Knappe et al. Characterization of poly (N-vinyl-2-pyrrolidone) s with broad size distributions
Janovák et al. Optical properties and electric conductivity of gold nanoparticle-containing, hydrogel-based thin layer composite films obtained by photopolymerization
Aureli et al. Quantitative characterization of silica nanoparticles by asymmetric flow field flow fractionation coupled with online multiangle light scattering and ICP-MS/MS detection
Qu et al. Surface coating and matrix effect on the electrophoretic mobility of gold nanoparticles: a capillary electrophoresis-inductively coupled plasma mass spectrometry study
Jang et al. Characterization of silver nanoparticles under environmentally relevant conditions using asymmetrical flow field-flow fractionation (AF4)
Khan et al. Thioglycolic acid-CdTe quantum dots sensing and molecularly imprinted polymer based solid phase extraction for the determination of kanamycin in milk, vaccine and stream water samples
CN105548153B (en) Gold nanoparticle Visual retrieval glucose sensor and its preparation method and application
Korpanty et al. Thermoresponsive polymer assemblies via variable temperature liquid-phase transmission electron microscopy and small angle X-ray scattering
KR20200080912A (en) Analysis method of dispersion stability using asymmetrical flow field-flow fractionation
Till et al. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques
Paul Rapid and sensitive colorimetric sensing of the insecticide pymetrozine using melamine-modified gold nanoparticles
Mudalige et al. An improved methodology of asymmetric flow field flow fractionation hyphenated with inductively coupled mass spectrometry for the determination of size distribution of gold nanoparticles in dietary supplements
CN105651749B (en) A kind of method that carbon nano-particles detect moisture in tetrahydrofuran
Wagner et al. Solution self-assembly of poly (ethylene oxide)-block-poly (furfuryl glycidyl ether)-block-poly (allyl glycidyl ether) based triblock terpolymers: A field-flow fractionation study
Pasch et al. Analysis of complex polymers by multidetector field-flow fractionation
Zhang et al. Preparation of gold nanorod–incorporated monolith for solid phase extraction of polycyclic aromatic hydrocarbons
Wu et al. Interaction and dispersion stability of alumina suspension with PAA in N, N′-dimethylformamide
Ciriello et al. Improved separation and size characterization of gold nanoparticles through a novel capillary zone electrophoresis method using poly (sodium4‐styrenesulfonate) as stabiliser and a stepwise field strength gradient
Liu Using micellar electrokinetic chromatography for the highly efficient preconcentration and separation of gold nanoparticles
Gigault et al. Measurement bias on nanoparticle size characterization by asymmetric flow field-flow fractionation using dynamic light-scattering detection

Legal Events

Date Code Title Description
E601 Decision to refuse application