KR20200080106A - D-xylonate-responsive promoter, artificial genetic circuits comprising d-xylonate-responsive promoter and method for detection of d-xylonate using artificial genetic circuit - Google Patents
D-xylonate-responsive promoter, artificial genetic circuits comprising d-xylonate-responsive promoter and method for detection of d-xylonate using artificial genetic circuit Download PDFInfo
- Publication number
- KR20200080106A KR20200080106A KR1020190071339A KR20190071339A KR20200080106A KR 20200080106 A KR20200080106 A KR 20200080106A KR 1020190071339 A KR1020190071339 A KR 1020190071339A KR 20190071339 A KR20190071339 A KR 20190071339A KR 20200080106 A KR20200080106 A KR 20200080106A
- Authority
- KR
- South Korea
- Prior art keywords
- xylonic acid
- gene
- promoter
- expression
- laci
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/24—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
- C07K14/245—Escherichia (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/18—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/42—Hydroxy-carboxylic acids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
본 발명은 D-자일론산 반응성 프로모터, 이를 포함하는 D-자일론산 감지용 재설계 유전자 회로 및 이를 이용한 D-자일론산의 감지방법에 관한 것이다.The present invention relates to a D-xylonic acid reactive promoter, a redesigned genetic circuit for detecting D-xylonic acid containing the same, and a method for detecting D-xylonic acid using the same.
미생물에서 D-자일로오스(D-xylose)의 대사를 위한 세 가지 경로가 있다. 먼저, 자일로오스 이성질화효소 경로(Xylose isomerase pathway; XIP)는 D-자일루로스(D-xylulose)를 유리시키는 이성 질화 단계에서 시작된다. 이 중간체는 오탄당 인산 경로(pentose phosphate pathway; PPP)를 통해 더 대사된다. 다음으로, 옥소-환원 경로(oxo-reductive pathway; ORP)는 D-자일루로스를 중간체로 생산하지만 D-자일로오스를 줄이고 자일리톨을 산화시키는 경로로 시작한다. 자일로오스 산화 경로(XOP)라고 불리는 세번째 경로는 D-자일론산(D-xylonic acid)을 형성하는 D-자일로오스의 산화에 의해 시작된다. 이 중간체는 탈수되어 두 가지 경로로 나뉘는 2-케토 3-데옥시 D-펜토네이트(2-keto 3-deoxy D-pentonate)를 형성하며, 이는 피루베이트(pyruvate) 및 글리콜 알데히드(glycolaldehyde)를 형성하는 알돌라아제(aldolase) 반응 또는 2-케토글루타이트 세미알데하이드(2-ketoglutarate semialdehyde)를 형성하는 또 다른 탈수 반응이다. 전자는 Dahms 경로라고 불리며, 후자는 Weimberg 경로라고 한다.There are three pathways for the metabolism of D-xylose in microorganisms. First, the xylose isomerase pathway (XIP) begins in the isomerization step, releasing D-xylulose. This intermediate is further metabolized through the pentose phosphate pathway (PPP). Next, the oxo-reductive pathway (ORP) produces D-xylulose as an intermediate, but begins with a pathway that reduces D-xylose and oxidizes xylitol. The third pathway, called the Xylose Oxidation Path (XOP), is initiated by the oxidation of D-xylose to form D-xylonic acid. This intermediate is dehydrated to form 2-keto 3-deoxy D-pentonate, which is divided into two pathways, which form pyruvate and glycolaldehyde. It is another dehydration reaction to form an aldolase reaction or 2-ketoglutarate semialdehyde. The former is called the Dahms pathway, and the latter is called the Weimberg pathway.
자일로오스 산화 경로(XOP)는 1,2,4-부탄트리올(1,2,4-butanetriol), 자일론산(xylonic acid), 에틸렌 글리콜(ethylene glycol), 글리콜산(glycolic acid), 감마-아미노부티르산(gama-aminobutyric acid) 및 3,4-디하이드록시부티르산(dihydroxybutyric acid)과 같은 다양한 가치있는 화합물을 생산할 수 있는 재조합 균주의 개발에 사용되었다(Liu et al. 2012; Liu et al. 2013; Valdehuesa et al. 2014; Cabulong et al. 2017; Wang et al. 2017; Zhao et al. 2017; Cabulong et al. 2018). 그러나, 이러한 균주에서 XOP를 사용하는 것은 두 가지 단점을 나타낸다. 첫 번째로, Dahms 경로가 이용될 때 알돌(aldol) 절단 단계로 인해 모든 표적 생성물에 대한 탄소 수율이 낮으며, 두 번째로, 중간체인 D-자일론산이 배지에 축적되어 pH가 감소한다는 것이다. 이전의 연구는 경로에 대한 최적의 유전자 및 각각의 발현 강도를 확인함으로써 이러한 문제를 해결하기위한 시도를 해왔다(Cabulong et al. 2017; Cabulong et al. 2018).Xylose oxidation pathway (XOP) is 1,2,4-butanetriol (1,2,4-butanetriol), xylonic acid (xylonic acid), ethylene glycol (ethylene glycol), glycolic acid (glycolic acid), gamma It has been used in the development of recombinant strains capable of producing various valuable compounds such as amino-butyric acid and 3,4-dihydroxybutyric acid (Liu et al. 2012; Liu et al. 2013; Valdehuesa et al. 2014; Cabulong et al. 2017; Wang et al. 2017; Zhao et al. 2017; Cabulong et al. 2018). However, the use of XOP in these strains presents two drawbacks. First, when the Dahms pathway is used, the aldol cleavage step results in low carbon yields for all target products, and secondly, the intermediate chain D-xylonic acid accumulates in the medium, resulting in a decrease in pH. Previous studies have attempted to address this problem by identifying the optimal genes for the pathway and the respective expression intensity (Cabulong et al. 2017; Cabulong et al. 2018).
재조합 균주 개발의 현재 추세는 합성 생물학 도구의 통합을 포함하는 것이다. 이는 변이 형질에 대한 어느 정도의 예측 가능성을 허용하는 합성 회로 또는 네트워크를 구축하기 위해 유전 요소 또는 부품을 사용한다. 이러한 합성 유전 회로를 만드는데 사용되는 부분은 프로모터(promoter), 오퍼레이터(operator), 조절자(regulator) 또는 유도 분자 및 리포터 단백질이다. 기본적인 목표는 유도 분자 또는 외력의 존재가 숙주 미생물에 의한 반응을 일으키는 조건을 생성하는 것이다. 이 반응은 간단한 바이오 센싱에서 보다 복잡한 유전자 조절에 이르기까지 다양하다. XOP, 특히 대장균(Escherichia coli)의 Dahms 경로의 경우에는 현재 합성 유전 도구에 대한 연구가 제한적이다.The current trend in the development of recombinant strains involves the integration of synthetic biological tools. It uses genetic elements or components to build synthetic circuits or networks that allow some degree of predictability for mutant traits. The parts used to make these synthetic genetic circuits are promoters, operators, regulators or inducing molecules and reporter proteins. The basic goal is to create conditions in which the presence of an inducing molecule or external force causes a reaction by the host microorganism. These reactions range from simple biosensing to more complex gene regulation. XOP, especially the Dahms pathway of Escherichia coli, currently has limited research on synthetic genetic tools.
이에, 본 발명자들은 상기 종래기술들의 문제점들을 극복하고, D-자일론산 반응에 관여하는 새로운 프로모터 요소를 확인한 결과, 본 발명에 따른 서열번호 1의 염기서열로 표시되는 프로모터는 D-자일론산에 대한 반응성이 높아 대장균에서 D-자일론산을 감지하기 위한 합성 회로에 적용할 경우, D-자일론산 축적을 조절함으로써 pH 조절을 통해 최종 산물의 생산 수율을 증가시킬 수 있음을 확인하고, 본 발명을 완성하게 되었다.Thus, the present inventors have overcome the problems of the prior art, and as a result of confirming a new promoter element involved in the D-xylonic acid reaction, the promoter represented by the nucleotide sequence of SEQ ID NO: 1 according to the present invention is for D-xylonic acid When it is applied to a synthetic circuit for detecting D-xylonic acid in E. coli because of its high reactivity, it is confirmed that the production yield of the final product can be increased through pH adjustment by controlling the accumulation of D-xylonic acid, and the present invention is completed. Was done.
본 발명의 주된 목적은 D-자일론산에 대한 반응성을 갖는 D-자일론산 반응성 프로모터를 제공하는데 있다.The main object of the present invention is to provide a D-xylonic acid reactive promoter having reactivity to D-xylonic acid.
본 발명의 다른 목적은 상기 D-자일론산 반응성 프로모터를 포함하는 발현 벡터, 상기 발현 벡터로 형질전환된 숙주세포 및 상기 숙주세포를 함유하는 D-자일론산을 감지하기 위한 바이오 센서를 제공하는데 있다. Another object of the present invention is to provide an expression vector comprising the D-xylonic acid reactive promoter, a host cell transformed with the expression vector, and a biosensor for detecting D-xylonic acid containing the host cell.
본 발명의 다른 목적은 상기 D-자일론산 반응성 프로모터를 포함하는 D-자일론산 감지용 재설계 유전자 회로 및 상기 유전자 회로를 함유하는 D-자일론산 감지용 재조합 미생물을 제공하는데 있다.Another object of the present invention is to provide a redesigned genetic circuit for detecting D-xylonic acid containing the D-xylonic acid reactive promoter and a recombinant microorganism for detecting D-xylonic acid containing the genetic circuit.
본 발명의 한 양태에 따르면, 본 발명은 서열번호 1의 염기서열로 표시되는 D-자일론산 반응성 프로모터를 제공한다.According to one aspect of the present invention, the present invention provides a D-xylonic acid reactive promoter represented by the nucleotide sequence of SEQ ID NO: 1.
본 발명에서 용어 "프로모터"는 폴리머라아제(polymerase)에 대한 결합 부위를 포함하고 프로모터 하위 유전자의 mRNA로의 전사 개시활성을 가지는, 암호화 영역의 상류(upstream)의 비해독된 핵산 서열을 의미한다. 본 발명과 관련한 프로모터는 대장균의 게놈정보를 토대로 RNA 중합 효소 및 전사 시작 부위의 결합에 가능한 하나의 사이트(site)를 확인하고, P yjhI 의 필수 부분 및 P yjhI 의 염기를 다르게 줄인 형태에서의 mCherry 발현을 확인함으로써 D-자일론산 반응성 프로모터의 염기서열을 확인하였다.In the present invention, the term "promoter" refers to a non-toxic nucleic acid sequence upstream of the coding region, which includes a binding site for a polymerase and has transcription initiation activity of a promoter subgene into mRNA. Promoter with respect to the present invention is mCherry in check for one site (site) as possible to the binding of RNA polymerase and transcription start site, based on the genomic information of E. coli, and reduced otherwise the required portion and the base of the P yjhI of P yjhI form The base sequence of the D-xylonic acid-reactive promoter was confirmed by confirming the expression.
본 발명의 프로모터를 코딩하는 서열은 일정 정도 변형이 가능하다. 본 기술 분야의 당업자라면 이러한 인위적인 변형에 의해 70% 이상의 상동성이 유지되는 염기서열이 본 발명에서 목적하는 유전자 발현을 위한 프로모터 활성을 보유하는 한, 본 발명의 염기서열로부터 유래된 것과 균등한 것임을 쉽게 이해할 것이다.The sequence encoding the promoter of the present invention can be modified to a certain extent. Those skilled in the art that the nucleotide sequence that maintains 70% or more homology by such artificial modification is equivalent to that derived from the nucleotide sequence of the present invention, as long as it retains the promoter activity for gene expression desired in the present invention. Will be easy to understand.
발명에서 용어, "상동성"이란 천연형(wild type)의 핵산 서열과의 동일한 정도를 나타내는 것으로, 상동성의 비교는 육안으로나 구입이 용이한 비교 프로그램을 이용하여 2개 이상의 서열간의 상동성을 백분율(%)로 계산할 수 있다. 본 발명의 서열번호 1의 프로모터 영역을 코딩하는 핵산 서열과 바람직하게는 70% 이상, 보다 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상 동일한 핵산 서열을 포함한다.In the present invention, the term "homology" refers to the same degree as the wild type nucleic acid sequence, and the comparison of homology is the percentage of homology between two or more sequences using a comparison program that is easy to purchase with the naked eye. It can be calculated as (%). The nucleic acid sequence encoding the promoter region of SEQ ID NO: 1 of the present invention preferably comprises at least 70%, more preferably at least 80%, more preferably at least 90%, most preferably at least 95% identical nucleic acid sequence do.
또한, 본 발명의 프로모터는 프로모터 활성을 보유하는 한, 하나 이상의 핵산 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이된 프로모터 핵산 서열을 갖는 변이체를 포함한다. 프로모터 핵산 서열은 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도할 수 있다. 이러한 서열 변이를 통하여 천연 프로모터와 동일한 활성을 나타낼 수도 있으나, 바람직하게는 활성이 증가된 프로모터, 유도제에 대한 특이성이 증가된 프로모터 등 목적에 적합하게 프로모터의 기능을 개선시킬 수 있다.In addition, the promoter of the present invention includes a variant having a promoter nucleic acid sequence modified by substitution, deletion, insertion or a combination of one or more nucleic acid bases as long as it retains promoter activity. Promoter nucleic acid sequences can induce sequence variations by deletion, insertion, non-conservative or conservative substitutions, or combinations thereof. Through the sequence variation, the same activity as the natural promoter may be exhibited, but preferably, the function of the promoter can be improved to suit the purpose, such as a promoter having increased activity and a promoter having increased specificity for an inducer.
상기 모든 범주의 프로모터를 코딩하는 핵산 분자는 목적 유전자의 발현을 유도하는 발현 벡터의 프로모터 성분으로 제공되고, 상기 프로모터를 이용한 다양한 벡터의 변형은 본 발명의 범주에 포함된다.Nucleic acid molecules encoding all the categories of promoters are provided as promoter components of expression vectors that induce expression of target genes, and modifications of various vectors using the promoters are included in the scope of the present invention.
본 발명의 다른 한 양태에 따르면, 본 발명은 서열번호 1의 염기서열로 표시되는 D-자일론산 반응성 프로모터를 포함하는 발현 벡터를 제공한다.According to another aspect of the present invention, the present invention provides an expression vector comprising a D-xylonic acid reactive promoter represented by the nucleotide sequence of SEQ ID NO: 1.
본 발명에서 용어 "발현 벡터"란 적당한 숙주세포에서 목적 유전자가 발현할 수 있도록 프로모터 등의 필수적인 조절 요소를 포함하는 유전자 작제물을 의미한다. 본 발명과 관련된 발현 벡터는 프로모터가 D-자일론산 반응성 프로모터인 벡터로서, 프로모터는 목적 유전자의 발현을 유도하도록 작동가능하게 연결되어 있으며 벡터는 숙주세포의 게놈내로 통합되어 있는 형태일 수도 있다.In the present invention, the term "expression vector" means a gene construct containing essential regulatory elements such as a promoter so that a target gene can be expressed in a suitable host cell. The expression vector related to the present invention is a vector in which the promoter is a D-xylonic acid-reactive promoter, and the promoter is operably linked to induce expression of a target gene, and the vector may be a form integrated into the genome of a host cell.
본 발명에서 "작동가능하게 연결된(operably linked)"는 일반적 기능을 수행하도록 D-자일론산 반응성 발현조절 서열과 목적하는 유전자를 코딩하는 뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 말한다. 재조합 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술분야에서 일반적으로 알려진 효소 등을 사용한다.In the present invention, "operably linked (operably linked)" refers to a functional link between the nucleotide sequence encoding the gene of interest and the D-xylonic acid reactive expression control sequence to perform a general function. Operational linkage with recombinant vectors can be made using genetic recombination techniques well known in the art, and site-specific DNA cleavage and linkage uses enzymes, etc., generally known in the art.
본 발명의 발현벡터는 조절 요소로 D-자일론산 반응성 프로모터를 필수적으로 포함하고, 단백질의 발현에 영향을 미칠 수 있는 발현 조절 서열, 예를 들어, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서, 막 표적화 또는 분비를 위한 신호서열 등을 포함할 수 있다.The expression vector of the present invention essentially contains a D-xylonic acid reactive promoter as a regulatory element, and an expression control sequence capable of affecting the expression of a protein, for example, an initiation codon, a termination codon, a polyadenylation signal, and an enhancer , Signal sequence for membrane targeting or secretion.
본 발명의 다른 한 양태에 따르면, 본 발명은 서열번호 1의 염기서열로 표시되는 D-자일론산 반응성 프로모터를 포함하는 발현 벡터로 형질전환된 숙주세포를 제공한다.According to another aspect of the present invention, the present invention provides a host cell transformed with an expression vector comprising a D-xylonic acid reactive promoter represented by the nucleotide sequence of SEQ ID NO: 1.
본 발명의 발현 벡터로 형질전환된 숙주세포에 있어서, 벡터로 형질전환 가능한 숙주세포는 재조합 단백질을 생산하는 숙주세포로서 공지된 것이라면 어떠한 것이든 이용가능하다. 숙주세포로는 박테리아, 효모, 곰팡이 등이 가능하나, 이에 제한되는 것은 아니며, 바람직하게는 대장균(Escherichia coli)인 것을 특징으로 한다.In the host cell transformed with the expression vector of the present invention, any host cell transformable with the vector can be used as long as it is known as a host cell producing a recombinant protein. As a host cell, bacteria, yeast, fungi, and the like are possible, but are not limited thereto, and are preferably characterized by Escherichia coli .
본 발명의 다른 한 양태에 따르면, 본 발명은 서열번호 1의 염기서열로 표시되는 D-자일론산 반응성 프로모터를 포함하는 발현 벡터로 형질전환된 숙주세포를 함유하는 자일론산을 감지하기 위한 바이오 센서를 제공한다.According to another aspect of the present invention, the present invention provides a biosensor for detecting xylonic acid containing a host cell transformed with an expression vector comprising a D-xylonic acid reactive promoter represented by the nucleotide sequence of SEQ ID NO: 1. to provide.
본 발명의 다른 한 양태에 따르면, 본 발명은 상기 바이오센서를 D-자일론산에 노출시킨 후, 자일론산 반응성 프로모터의 작동에 의한 형광 단백질의 광학적, 전기화학적 또는 생화학적 발현정도를 측정하여 D-자일론산을 감지하는 방법을 제공한다.According to another aspect of the present invention, the present invention exposes the biosensor to D-xylonic acid, and then measures the degree of optical, electrochemical or biochemical expression of the fluorescent protein by the operation of the xylonic acid reactive promoter to determine D- It provides a method for detecting xylonic acid.
본 발명에 따른 바이오센서를 이용하여 D-자일론산을 감지하는 방법은 당해 기술분야에서 통상의 지식을 가진 자가 적절히 선택하여 수행할 수 있다. 예를 들어, 서열번호 1의 핵산분자 서열을 가진 프로모터로 형질전환된 대장균을 사용하는 경우에는, 바이오센서 세포와 접촉시키는 장치 및 세포의 광출력을 측정하는 장치를 사용하여 D-자일론산을 감지할 수 있다.The method for detecting D-xylonic acid using the biosensor according to the present invention can be appropriately selected and carried out by a person skilled in the art. For example, when E. coli transformed with a promoter having the nucleic acid molecule sequence of SEQ ID NO: 1 is used, D-xylonic acid is detected using a device that contacts a biosensor cell and a device that measures the light output of the cell. can do.
본 발명의 다른 한 양태에 따르면, 본 발명은 i) 적색 형광 단백질을 코팅하는 리포터 유전자; ii) 하류의 적색 형광 단백질의 발현을 조절하는 프로모터; iii) 락토오스 단백질을 코팅하는 lacI 유전자; iv) 녹색 형광 단백질을 코팅하는 리포터 유전자; 및 iv) D-자일론산을 감지하여 하류의 lacI 유전자 및 하류의 녹색 형광 단백질을 코팅하는 리포터 유전자의 발현을 유도하는 서열번호 1의 염기서열로 표시되는 프로모터를 포함하는 D-자일론산 감지용 재설계 유전자 회로를 제공한다.According to another aspect of the invention, the invention is i) a reporter gene coating a red fluorescent protein; ii) a promoter that regulates the expression of downstream red fluorescent protein; iii) lacI gene coating lactose protein; iv) reporter gene coating green fluorescent protein; And iv) a promoter represented by the nucleotide sequence of SEQ ID NO: 1 that detects D-xylonic acid and induces expression of a downstream lacI gene and a reporter gene coating the downstream green fluorescent protein. Design genetic circuits are provided.
본 발명의 D-자일론산 감지용 재설계 유전자 회로는 락토오스 단백질을 코팅하는 lacI 유전자와 녹색 형광 단백질을 코팅하는 리포터 유전자 및 D-자일론산을 감지하여 상기 lacI 유전자 및 녹색 형광 단백질을 코팅하는 리포터 유전자의 발현을 유도하는 서열번호 1의 염기서열로 표시되는 프로모터로 구성되며, D-자일론산의 농도에 비례하여 이와 반응한 프로모터가 lacI 유전자의 발현 및 녹색 형광 단백질을 코딩하는 유전자의 발현을 유도함으로써, D-자일론산 축적의 조절이 가능한 재설계 유전자 회로라고 할 수 있다. 도 9a 내지 도 9c에 나타낸 바와 같이, D-자일론산을 본 발명에서 제작한 D-자일론산 감지용 유전자 회로에 의해 정량적인 형광 분석을 할 수 있다. 이는 본 발명의 유전자 회로가 특정 농도 이상으로 존재하는 D-자일론산을 감지하여 D-자일론산의 축적을 조절함으로써 pH 조절을 통해 최종 산물의 생산 수율을 증가시킬 수 있음을 시사한다(실시예 3 및, 도 9a 내지 도 9c 참조).The redesigned gene circuit for D-xylonic acid detection of the present invention includes a lacI gene coating lactose protein and a reporter gene coating green fluorescent protein and a reporter gene detecting D-xylonic acid coating the lacI gene and green fluorescent protein It consists of a promoter represented by the nucleotide sequence of SEQ ID NO: 1 that induces the expression, and the promoter reacted with this in proportion to the concentration of D-xylonic acid induces the expression of the lacI gene and the gene encoding the green fluorescent protein. , It can be said to be a redesigned genetic circuit capable of regulating D-xylonic acid accumulation. As shown in Figs. 9A to 9C, quantitative fluorescence analysis can be performed by the D-xylonic acid detection genetic circuit prepared in the present invention. This suggests that the genetic circuit of the present invention can increase the production yield of the final product through pH control by detecting the D-xylonic acid present in a certain concentration or more and controlling the accumulation of D-xylonic acid (Example 3) And, FIGS. 9A to 9C).
본 발명의 D-자일론산 감지용 재설계 유전자 회로에 있어서, 상기 적색 형광 단백질은 mCheery이고, 녹색 형광 단백질은 sfGFP인 것을 특징으로 한다.In the redesigned genetic circuit for detecting D-xylonic acid of the present invention, the red fluorescent protein is mCheery, and the green fluorescent protein is sfGFP.
본 발명의 D-자일론산 감지용 재설계 유전자 회로에 있어서, 상기 유전자 회로는 D-자일론산이 감지되지 않을 경우 sfGFP 및 lacI는 억제되고 mCherry는 지속적으로 발현되어 적색 형광을 생성하고, D-자일론산이 감지되는 경우 sfGFP 및 lacI가 발현되어 녹색 형광을 생성하는 것을 특징으로 한다. 즉, 본 발명에 따른 유전자 회로는 D-자일론산의 생성을 녹색 형광 단백질의 발현 정도에 따라 확인할 수 있다.In the redesigned genetic circuit for detecting D-xylonic acid of the present invention, the genetic circuit suppresses sfGFP and lacI when D-xylonic acid is not detected and mCherry is continuously expressed to generate red fluorescence, and D-xyl When ronic acid is detected, sfGFP and lacI are expressed to produce green fluorescence. That is, the genetic circuit according to the present invention can confirm the production of D-xylonic acid according to the expression level of the green fluorescent protein.
본 발명의 다른 한 양태에 따르면, 본 발명은 i) 자일로오스 탈수소효소 단백질을 코딩하는 xdh 유전자; ii) 락토오스 단백질의 발현에 따라 하류의 xdh 유전자의 발현을 조절하는 프로모터; iii) 락토오스 단백질을 코팅하는 lacI 유전자; 및 iv) D-자일론산을 감지하여 하류의 lacI 유전자의 발현을 유도하는 서열번호 1의 염기서열로 표시되는 프로모터를 포함하는 D-자일론산 감지용 재설계 유전자 회로를 제공한다.According to another aspect of the present invention, the present invention comprises: i) an xdh gene encoding a xylose dehydrogenase protein; ii) a promoter that regulates the expression of downstream xdh gene according to the expression of lactose protein; iii) lacI gene coating lactose protein; And iv) a promoter represented by the nucleotide sequence of SEQ ID NO: 1 that detects D-xylonic acid and induces the expression of the downstream lacI gene.
본 발명의 D-자일론산 감지용 재설계 유전자 회로는 락토오스 단백질을 코팅하는 lacI 유전자와 D-자일론산을 감지하여 하류의 lacI 유전자의 발현을 유도하는 서열번호 1의 염기서열로 표시되는 프로모터로 구성되며, D-자일론산의 농도에 비례하여 이와 반응한 프로모터가 lacI 유전자의 발현을 유도하여 D-자일로오스를 D-자일론산으로 형성시키는 자일로오스 탈수소효소(xdh)의 생성을 억제함으로써, D-자일론산 축적의 조절이 가능한 재설계 유전자 회로라고 할 수 있다. 도 10에 나타낸 바와 같이, 자일로오스 탈수소효소(xylose dehydrogenase; xdh)는 LacI가 억제 할 수 있는 프로모터인 P T7-locO 하류(downstream)에 위치한다. xdh는 D-자일로오스에서 D-자일론산을 생산하며, 축적된 D-자일론산의 특정 농도에서 LacI가 발현되어 Xdh 생산을 효과적으로 억제함으로써 D-자일론산 축적을 일시적으로 중단시킴과 동시에 D-자일론산을 이용하는 하류(downstream) 유전자가 활성화된다. 이는, 본 발명의 유전자 회로가 특정 농도 이상으로 존재하는 D-자일론산을 감지하여 D-자일론산의 축적을 조절함으로써 pH 조절을 통해 최종 산물의 생산 수율을 증가시킬 수 있음을 시사한다(실시예 4 및, 도 10 참조).The redesigned gene circuit for D-xylonic acid detection of the present invention consists of a lacI gene coating lactose protein and a promoter represented by the nucleotide sequence of SEQ ID NO: 1 that detects D-xylonic acid and induces the expression of downstream lacI gene. Produced in response to the concentration of D-xylonic acid, the promoter reacted with this induces the expression of the lacI gene, thereby inhibiting the production of xylose dehydrogenase (xdh), which forms D-xylose into D-xylonic acid. It can be said to be a redesigned genetic circuit capable of regulating D-xylonic acid accumulation. As shown in FIG. 10, xylose dehydrogenase (xdh) is located downstream of P T7-locO , a promoter that LacI can inhibit. xdh produces D-xylonic acid in D-xylose, LacI is expressed at a specific concentration of accumulated D-xylonic acid, effectively inhibiting Xdh production, temporarily stopping D-xylonic acid accumulation, and simultaneously D- The downstream gene using xylonic acid is activated. This suggests that the genetic circuit of the present invention can increase the production yield of the final product through pH adjustment by detecting the D-xylonic acid present in a certain concentration or more and controlling the accumulation of D-xylonic acid (Example 4 and, see FIG. 10).
본 발명의 D-자일론산 감지용 재설계 유전자 회로에 있어서, 상기 iv)의 프로모터는 자일론산의 농도가 최소 5mM일 때, lacI 유전자의 발현을 유도할 수 있으며, 상기 이상의 농도 범위에서도 감지 가능한 것을 특징으로 한다.In the redesigned genetic circuit for detecting D-xylonic acid of the present invention, the promoter of iv) can induce the expression of the lacI gene when the concentration of xylon acid is at least 5 mM, and is detectable even in the above concentration range It is characterized by.
본 발명의 D-자일론산 감지용 재설계 유전자 회로에 있어서, 상기 lacI 유전자의 발현은 xdh 유전자의 발현을 억제하여 자일로오스 탈수소효소의 생성을 중단함으로써 D-자일론산 축적을 일시적으로 중단시키는 것을 특징으로 한다.In the redesigned gene circuit for detecting D- xylonic acid of the present invention, the expression of the lacI gene inhibits the expression of the xdh gene to stop the production of xylose dehydrogenase, thereby temporarily stopping the accumulation of D- xylonic acid. It is characterized by.
본 발명의 다른 한 양태에 따르면, 본 발명은 상기 유전자 회로를 함유하는 D-자일론산 감지용 재조합 미생물을 제공한다.According to another aspect of the present invention, the present invention provides a recombinant microorganism for detecting D-xylonic acid containing the genetic circuit.
본 발명의 D-자일론산 감지용 재조합 미생물에 있어서, 상기 미생물은 재조합 단백질을 생산하는 미생물로서 공지된 것이라면 어떠한 것이든 이용가능하다. 미생물로서는 박테리아, 효모, 곰팡이 등이 가능하나, 이에 제한되는 것은 아니며, 바람직하게는 대장균인 것을 특징으로 한다.In the recombinant microorganism for detecting D-xylonic acid of the present invention, the microorganism can be used as long as it is known as a microorganism that produces a recombinant protein. As a microorganism, bacteria, yeast, fungi, and the like are possible, but are not limited thereto, and are preferably E. coli.
전술한 바와 같이, 본 발명에 따른 서열번호 1의 염기서열로 표시되는 프로모터는 D-자일론산에 대한 반응성이 높아 대장균에서 D-자일론산을 감지하기 위한 합성 회로에 적용할 경우, D-자일론산 축적을 조절함으로써 pH 조절을 통해 결론적으로는 최종 산물의 생산 수율을 증가시킬 수 있다.As described above, the promoter represented by the nucleotide sequence of SEQ ID NO: 1 according to the present invention has high reactivity to D-xylonic acid, and when applied to a synthetic circuit for detecting D-xylonic acid in E. coli, D-xylonic acid By controlling the accumulation, pH adjustment can ultimately increase the production yield of the final product.
도 1은 대장균 W3110에서 D-자일론산 축적 대사 과장을 나타내는 모식도이다.
도 2는 대장균 W3110에서 yag 및 yjh 유전자의 상대적인 유전자 발현을 확인한 결과이다((2a)M9 배지, (2b)D-자일로오스가 있는 M9 배지).
도 3은 대장균 W3110의 yag 및 yjh 유전자의 정량적 PCR 분석 결과이다.
도 4는 D-자일론선 반응성 프로모터를 유전 요소로 포함하는 플라스미드 맵이다.
도 5는 D-자일론산(도 5a), D-자일로오스(도 5b) 및 D-글루코오스(도 5c)에 대한 프로모터 반응을 보여주는 결과이다.
도 6은 박테리아 프로모터를 예측하기 위하여 BPROM를 이용하여 프로모터를 분석한 결과이다.
도 7은 NNPP를 이용하여 프로모터를 분석한 결과이다.
도 8은 P yjhI 의 특성 분석 결과이다((8a)2 개의 crp 결합 부위 예측결과, (8b)P yjhI 의 염기를 다르게 줄인 형태에서 mCherry발현을 확인한 결과, (8c) D-자일론산에 대한 P yjhI 의 용량 반응 결과).
도 9는 프로모터 유전 요소로서 P yjhI 를 사용하여 D-자일론산-반응성 유전자 회로(9a) 및 상기 유전자 회로의 D-자일론산 반응 결과((9b)D-자일론산을 포함하지 않는 배지, (9c)D-자일론산을 포함하는 배지)를 나타낸다.
도 10은 자일로오스 산화 경로 (XOP)를 통한 D-자일로오스 대사의 자율적 조절에서 D-자일론산 반응 프로모터인 P yjhI 를 응용한 유전자 회로를 나타낸다.1 is a schematic diagram showing a metabolic exaggeration of D-xylonic acid accumulation in E. coli W3110.
2 is a result of confirming the relative gene expression of yag and yjh genes in E. coli W3110 ((2a)M9 medium, (2b)D-xylose M9 medium).
Figure 3 is a quantitative PCR analysis of the yag and yjh genes of E. coli W3110.
4 is a plasmid map including a D-xylogen-reactive promoter as a genetic element.
FIG. 5 is a result showing promoter responses to D-xylonic acid (FIG. 5A), D-xylose (FIG. 5B) and D-glucose (FIG. 5C).
6 is a result of analyzing the promoter using BPROM to predict the bacterial promoter.
7 is a result of analyzing the promoter using NNPP.
8 is a result of analyzing the properties of P yjhI ((8a) as a result of predicting two crp binding sites, (8b) as a result of confirming mCherry expression in a form of differently reducing the base of yjhI , (8c) P for D- xylonic acid dose response of yjhI ).
FIG. 9 shows a D- xylonic acid-reactive gene circuit (9a) using P yjhI as a promoter genetic element, and a result of the D- xylonic acid reaction result ((9b) D-xylonic acid medium, (9c) ) D-xylonic acid).
Figure 10 shows the genetic circuit using the D- xylonic acid response promoter P yjhI in the autonomous regulation of D- xylose metabolism through the xylose oxidation pathway (XOP).
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail through examples. Since these examples are only for illustrating the present invention, it should not be construed that the scope of the present invention is limited by these examples.
본 발명은 D-자일론산을 감지하기 위한 재설계 유전자 회로를 구축하기 위하여 D-자일론산에 반응하는 구조 유전자 및 프로모터를 확인하고, D-자일론산을 감지하기 위한 새로운 유전자 회로를 구축하였다. 구체적인 실험방법 및 설계방법은 아래와 같다.In order to construct a redesigned genetic circuit for detecting D-xylonic acid, the present invention identifies structural genes and promoters that respond to D-xylonic acid, and constructs a new genetic circuit for detecting D-xylonic acid. The detailed experimental method and design method are as follows.
[실험방법][Experiment method]
DNA의 조작(manipulation)DNA manipulation
표준 기술은 모든 유전자 조작 실험에 사용되었으며(Green and Sambrook 2012), 깁슨(Gibson) 등온 조립 전략은 DNA 조립에 사용되었다(Gibson et al. 2009). 본 발명에서 사용된 재조합 플라스미드 및 대장균 균주 목록은 표 1에 나타내었다. 플라스미드 sfGFP-pBAD는 Michael Davidson 및 Geoffrey Waldo(Addgene plasmid # 54519) (Pdelacq et al. 2006)로부터 기증받았으며, sfGFP 유전자를 위한 재료로 이용하였다. 플라스미드 pETmCherryLIC은 Scott Gradia(Addgene plasmid # 29769)로부터 기증받아, mCherry 유전자의 공급원으로 사용되었다. 모든 PCR 반응은 표 2에 기재된 적절한 올리고 뉴클레오타이드를 사용하여 Phusion High-fidelity DNA 중합 효소를 사용하여 수행되었다. 본 발명에서 사용된 유전자 요소와 유전자의 전체 목록은 표 3에 나타내었다. 1 단계 TSS(형질 전환 및 저장 용액) 프로토콜을 사용하여 플라스미드 형질 전환을 수행 하였다.Standard techniques were used for all genetic manipulation experiments (Green and Sambrook 2012), and Gibson isothermal assembly strategies were used for DNA assembly (Gibson et al. 2009). The list of recombinant plasmid and E. coli strains used in the present invention are shown in Table 1. The plasmid sfGFP-pBAD is Michael Davidson and Geoffrey Waldo (Addgene plasmid # 54519) (P delacq et al. 2006), and was used as a material for the sfGFP gene. The plasmid pETmCherryLIC was donated by Scott Gradia (Addgene plasmid # 29769) and used as a source of mCherry gene. All PCR reactions were performed using Phusion High-fidelity DNA polymerase using the appropriate oligonucleotides listed in Table 2. The entire list of gene elements and genes used in the present invention is shown in Table 3. Plasmid transformation was performed using a one step TSS (transformation and stock solution) protocol.
* 플라스미드 sfGFP-pBAD는 Michael Davidson 및 Geoffrey Waldo (Addgene plasmid # 54519) 로부터 기증받음.* Plasmid sfGFP-pBAD was donated by Michael Davidson and Geoffrey Waldo (Addgene plasmid # 54519).
** pET mCherry LIC cloning vector (u-mCherry)는 Scott Gradia (Addgene plasmid # 29769)로부터 기증받음.** pET mCherry LIC cloning vector (u-mCherry) was donated by Scott Gradia (Addgene plasmid # 29769).
번호number
번호number
P yjhI
P yjhI
P yagE
P yagE
mCherry
mCherry
sfGFP
sfGFP
P yjhI -sfGFP-TT7
P yjhI -sfGFP-T T7
lacI
lacI
플라스미드의 배양Culture of plasmid
플라스미드 증식 및 유지는 LB 배지 또는 적절한 항생제(50μg/mL 카나마이신(kanamycin) 또는 100μg/mL 암피실린(ampicillin))가 보충된 한천 배지에서 성장한 대장균 DH5α를 사용하여 수행 하였다. 33.7mM Na2HPO4, 22.0mM KH2PO4, 8.55mM NaCl, 9.35mM NH4Cl, 1.0mM MgSO4, 0.5g/L 효모 추출물 및 1.0g/L 펩톤을 함유하는 변형된 M9(MM9) 배지를 실험 전반에 걸쳐 사용 하였다. M9 배지는 시험 조건에서 요구되는대로 선택된 기질을 적절한 농도로 변형시켜 사용 하였다. Real-Time PCR 연구를 위해 10mM의 D-자일로오스(D-xylose), D-글루코오스(D-glucose), D-자일론산(D-xylonic acid) 또는 이들의 조합을 사용하였다. 용량 반응 시험을 위해 0 내지 100mM 범위의 D-자일론산을 사용하여 mCherry 발현을 유도하였고, 최적 반응을 유도하기 위해 20mM D-자일론산을 최적 농도로 사용하였다. 유전자 스위치 실험을 위해, 20mM D-자일론산을 유도제 농도로 사용 하였다.Plasmid propagation and maintenance was performed using E. coli DH5α grown in LB medium or agar medium supplemented with appropriate antibiotics (50 μg/mL kanamycin or 100 μg/mL ampicillin). Modified M9 (MM9) containing 33.7 mM Na 2 HPO 4 , 22.0 mM KH 2 PO 4 , 8.55 mM NaCl, 9.35 mM NH 4 Cl, 1.0 mM MgSO 4 , 0.5 g/L yeast extract and 1.0 g/L peptone Medium was used throughout the experiment. M9 medium was used by modifying the selected substrate to an appropriate concentration as required by the test conditions. For real-time PCR studies, 10 mM D-xylose, D-glucose, D-xylonic acid, or a combination thereof was used. For the dose response test, mCherry expression was induced using D-xylonic acid in the range of 0 to 100 mM, and 20 mM D-xylonic acid was used at the optimum concentration to induce an optimal response. For the gene switch experiment, 20 mM D-xylonic acid was used as the inducer concentration.
실시간 정량 PCR(Quantitative real-time PCR)Quantitative real-time PCR
야생형 대장균 W3110 균주를 qRT-PCR 분석을 위해 선택 하였다. 배양은 적절한 기질(들)로 5mL MM9를 포함한 50mL 튜브에서 수행하고, 37 ℃에서 3시간 동안 배양하였다. MM9 배지에서만 자란 균주를 대조군으로 선택 하였다. 시험 조건은 D-자일로오스(X), D-글루코오스(G), D-자일론산(XA) 또는 이들 기질의 임의의 조합에서 성장하는 균주를 포함한다. 성장 세포의 총 mRNA는 RNeasy Mini Kit (Qiagen, Germany)을 사용하여 제조사가 제공한 프로토콜을 수정하여 정제하였다. 구체적으로, 배양 시료로부터의 세포를 수거하고 라이소자임(lysozyme)을 함유하는 Tris-EDTA 완충액에 재현탁시켰다. RLT 완충액(키트에 포함됨) 및 에탄올을 첨가하기 전에 혼합물을 실온에서 5분 동안 인큐베이션 시켰다. RNA 정제를 위한 나머지 단계는 제조업체가 제공한 프로토콜(퀵-스타트 프로토콜 RNeasy Mini Kit, 파트 1의 3 단계부터 시작)에 따라 수행하였다. Thermo Scientific(Waltham, MA, USA)의 NanoDrop 1000 분광 광도계와 아가로즈겔 전기 영동을 사용하여 분리된 RNA를 확인하였다. 게놈 DNA를 제거하는 단계를 포함하는 프로토콜에 따라 QuantiTect Reverse Transcription kit(Qiagen, Germany)를 사용하여 RNA를 cDNA로 전환시켰다. qPCR 반응은 QuantiFast® SYBR® Green PCR Kit (Qiagen, Germany)를 사용하여 수행하였다. 각 반응은 1μM의 최종 농도를 갖는 적절한 qPCR 프라이머(표 4)를 포함한다. 참조 유전자 rrsB, mdoG 및 cysG를 사용하여 표적 유전자의 발현 수준을 적절하게 정상화시켰다. qPCR 반응은 Rotor-Gene Q (Qiagen, Germany)를 사용하여 95 ℃에서 변성을 40 사이클, 62 ℃에서 10 초 동안 어닐링 및 신장(extension)시켰다. qPCR 로우(raw) 데이터는 REST 2009 소프트웨어의 RG 모드를 통해 처리하였다.Wild-type E. coli W3110 strain was selected for qRT-PCR analysis. Incubation was performed in a 50 mL tube containing 5 mL MM9 with appropriate substrate(s) and incubated at 37° C. for 3 hours. Strains grown only in MM9 medium were selected as controls. Test conditions include strains growing on D-xylose (X), D-glucose (G), D-xylonic acid (XA) or any combination of these substrates. Total mRNA of growth cells was purified by modifying the protocol provided by the manufacturer using the RNeasy Mini Kit (Qiagen, Germany). Specifically, cells from the culture sample were harvested and resuspended in Tris-EDTA buffer containing lysozyme. The mixture was incubated at room temperature for 5 minutes before adding RLT buffer (included in kit) and ethanol. The remaining steps for RNA purification were performed according to the protocol provided by the manufacturer (Quick-Start Protocol RNeasy Mini Kit, starting from
형광 분석(fluorescence analysis)Fluorescence analysis
세포를 LB 배지에서 밤새 배양하고 각 샘플 1ml를 21206xg에서 2 분간 원심 분리하고 상등액을 버렸다. 펠릿을 500μl의 M9 최소 배지로 재현탁시킨 다음 이들을 1gL-1 펩톤 및 0.5gL-1 효모 추출물을 갖는 M9 배지로 옮겨 100 ml 용량 플라스크에 넣었다. 샘플을 37 ℃에서 격렬하게 흔들어 주면서 0.3 ~ 0.4 흡광도에 도달할 때까지 배양했다. 당(sugar) 기질을 보충하기 전에 각 배지에서 시료를 채취하였다. 각 샘플에서 수집된 양은 OD600 흡광도에 따라 달라진다. 수집 후, 각 배지에 20 mM의 당 기질, 즉 제1 배지에 대한 포도당, 제2 배지에 대한 자일로오스 및 최종 배지에 대한 자일론산을 보충하였다. 양성 대조군의 경우, 0.1mM의 IPTG를 첨가 하였다. 수집된 샘플을 21206xg에서 2 분간 원심 분리하고 상등액을 버리고 물 1ml를 각 샘플에 첨가 하였다. 세포를 OD600에서의 흡광도에 기초하여 표준화 하였다. 형광 분광계 FluoroMate FS-2 (Scinco, Korea)를 사용하여 세포를 형광 분석 하였다. 형광 분광기는 sfGFP의 경우, 587nm excitation, 610nm emission, mCherry는의 경우 485 excitation, 507 emission으로 설정하였다.Cells were incubated overnight in LB medium, 1 ml of each sample was centrifuged at 21206xg for 2 minutes and the supernatant was discarded. The pellets were resuspended in 500 μl of M9 minimal medium and then transferred to M9 medium with 1 gL- 1 peptone and 0.5 gL- 1 yeast extract and placed in a 100 ml volumetric flask. The samples were incubated at 37° C. vigorously, until 0.3 to 0.4 absorbance was reached. Samples were taken from each medium before replenishing the sugar substrate. The amount collected in each sample depends on the OD600 absorbance. After collection, each medium was supplemented with 20 mM sugar substrate, i.e. glucose for the first medium, xylose for the second medium, and xylonic acid for the final medium. For the positive control, 0.1 mM IPTG was added. The collected samples were centrifuged for 2 minutes at 21206xg, the supernatant was discarded and 1 ml of water was added to each sample. Cells were normalized based on absorbance at OD600. Cells were subjected to fluorescence analysis using a fluorescence spectrometer FluoroMate FS-2 (Scinco, Korea). The fluorescence spectrometer was set to 587 nm excitation, 610 nm emission for sfGFP, and 485 excitation, 507 emission for mCherry.
바이오인포메틱스(bioinformatics) 분석Bioinformatics analysis
대장균의 yag 및 yjh 오페론에 관련된 효소의 유전자 및 단백질 서열을 Clustal O online databas를 사용하여 분석 하였다(Sievers et al. 2011). Blastp 분석은 UNIPROT의 blast 기능을 사용하여 수행하였고, phylogram은 CLC Sequence Viewer (Qiagen)를 사용하여 생성 하였다. 프로모터 서열은 세균 프로모터(Solovyev and Salamov 2011; Umarov and Solovyev 2017) 및 NNPP(Neural Network Promoter Prediction) (Reese 2001)의 온라인 툴 BPROM 예측을 사용하여 분석 하였다.Gene and protein sequences of enzymes related to E. coli yag and yjh operons were analyzed using Clustal O online databas (Sievers et al. 2011). Blastp analysis was performed using the blast function of UNIPROT, and the phylogram was generated using the CLC Sequence Viewer (Qiagen). Promoter sequences were analyzed using the online tool BPROM prediction of bacterial promoters (Solovyev and Salamov 2011; Umarov and Solovyev 2017) and NNPP (Neural Network Promoter Prediction) (Reese 2001).
실시예 1: D-자일론산-반응성 유전자 요소의 스크리닝Example 1: Screening of D-xylonic-reactive gene elements
실시간 PCR을 통해 유전자 발현 분석을 수행하여 구조 유전자 및 조절 유전자의 발현 프로파일에 대한 정보를 수득하였다. 트랜스포터-코딩 유전자는 분석에서 제외하였다. 실시간 PCR은 기질이 없는 MM9 배지(대조군) 및 하나 이상의 기질이 있는 MM9(실시예) 조건 하에서 8 개의 유전자(yagA, yagE, yagF, yagI, yjhG, yjhH, yjhI, yjhU)에 대해 수행하였으며, 그 결과를 도 2 및 도 3에 나타내었다. Gene expression analysis was performed through real-time PCR to obtain information on the expression profiles of structural genes and regulatory genes. Transporter-coding genes were excluded from the analysis. Real-time PCR was performed on 8 genes (yagA, yagE, yagF, yagI, yjhG, yjhH, yjhI, yjhU) under MM9 medium without a substrate (control) and MM9 with at least one substrate (example) conditions. The results are shown in FIGS. 2 and 3.
도 2는 대장균 W3110에서 yag 및 yjh 유전자의 상대적인 유전자 발현을 확인한 결과로서, 세포가 M9 배지에서만(도 2a) 또는 D-자일로오스가 있는 M9 배지에서(도 2b) 성장한 세포와 비교하여 D-자일론산이 첨가되었을 때 배수변환 값을 측정하였다. 배수변환 값은 비교 CT를 사용하여 계산하였다.Figure 2 is a result of confirming the relative gene expression of the yag and yjh genes in E. coli W3110, D- compared to cells grown in M9 medium only (Figure 2a) or in M9 medium with D-xylose (Figure 2b) When xylonic acid was added, the fold conversion value was measured. Multiple conversion values were calculated using comparative CT.
그 결과, 도 2에서 확인할 수 있듯이, 구조 유전자 yjhG와 yjhH는 대조군에 비해 D-자일론산으로 처리했을 때 발현이 2배 이상 증가했으며(도 2a), D-자일로오스에서 성장한 균주와 비교했을 때도 동일하게 나타났다(도 2b). As a result, as can be seen in Figure 2, the structural genes yjhG and yjhH increased more than 2 times when treated with D-xylonic acid compared to the control group (Fig. 2a), compared to the strain grown in D-xylose The same time appeared (Fig. 2b).
또한, 도 3은 D-자일론산, D-자일로오스, D-글루코오스(도 3a 및 도 3c) 또는 조합 (도 3b 및 도 3d)으로 보충된 대장균 W3110의 yag(도 3a 및 도 3b) 및 yjh(도 3c 및 도 3d) 유전자의 정량적 PCR 분석 결과로서, 개질된 M9 배지(1g/L 펩톤 및 0.5g/L 효모 추출물을 갖는 M9 염) 상에서 성장한 균주를 대조군으로 사용하였다. 도 3에서 D-자일로오스, D-자일론산 및 D-글루코오스는 각각 X, XA 및 G로 표시하였다. 양측 T-검사 통계 분석은 대조군과 비교하여 유의한 차이가 있는 값을 *로 표기 하였다(p <0.05, n≥3).In addition, FIG. 3 is a yag (FIGS. 3A and 3B) of E. coli W3110 supplemented with D-xylonic acid, D-xylose, D-glucose (FIGS. 3A and 3C) or a combination (FIGS. 3B and 3D ), and As a result of quantitative PCR analysis of the yjh (FIGS. 3C and 3D) gene, strains grown on modified M9 medium (M9 salt with 1 g/L peptone and 0.5 g/L yeast extract) were used as a control. In Figure 3, D-xylose, D-xylonic acid and D-glucose are denoted by X, XA and G, respectively. Statistical analysis of two-sided T-tests is marked with a value with a significant difference compared to the control group (p <0.05, n≥3).
그 결과, 도 3에서 확인할 수 있듯이, 정량적으로 yjh 오페론과 yagE 및 yagF 유전자의 유전자는 D-자일론산에 노출되었을 때만 발현 수준이 증가하는데 반해 D-자일로오스 또는 D-글루코오스로 처리했을 때 mRNA 수준에 유의 한차이는 관찰되지 않았다(도 3a 내지 도 도 3d 참조).As a result, as can be seen in Figure 3, quantitatively, the gene of the yjh operon and yagE and yagF genes increases only when exposed to D-xylonic acid, whereas mRNA when treated with D-xylose or D-glucose No significant difference in level was observed (see FIGS. 3A-3D ).
상기 RT-PCR 결과를 통해 구조 유전자 yagE, yagF, yjhH 및 yjhG 및 조절 유전자 yjhI가 D-자일론산에 노출될 때 발현 수준이 증가한다는 것을 확인하였다. 또한, 표 3 및 도 1b에서 확인할 수 있듯이 yagE 및 yagF 유전자는 공통 프로모터터로서 PyagE를 가지고, yjhH, yjhG 및 yjhI는 공통 프로모터로서 PyjhI를 갖는 것을 확인할 수 있다. Through the RT-PCR results, it was confirmed that the expression levels of the structural genes yagE, yagF, yjhH and yjhG and the regulatory genes yjhI were increased when exposed to D-xylonic acid. In addition, as can be seen in Table 3 and Figure 1b, it can be confirmed that the yagE and yagF genes have P yagE as a common promoter and yjhH, yjhG and yjhI have P yjhI as a common promoter.
따라서, 이러한 공통 프로모터(유전 요소)가 D-자일론산에 대한 반응을 이끌어 낼 수 있는지를 확인하기 위해 도 4와 같이 리포터 유전자 mCherry를 상류에 클로닝하여 적색 형광으로 표시하였다. 그 다음 상기 제작한 플라스미드를 숙주 E.coli W3110에 도입하고 D-자일로오스, D-글루코오스 및 D-자일론산의 3 가지 상이한 당류로 처리 하였으며, 그 결과를 도 5에 나타내었다.Therefore, in order to confirm whether this common promoter (genetic element) can elicit a response to D-xylonic acid, the reporter gene mCherry was cloned upstream as shown in FIG. 4 and marked with red fluorescence. Then, the prepared plasmid was introduced into host E.coli W3110 and treated with three different saccharides, D-xylose, D-glucose, and D-xylonic acid, and the results are shown in FIG. 5.
도 5는 D-자일론산(도 5a), D-자일로오스(도 5b) 및 D-글루코오스(도 5c)에 대한 프로모터 반응을 보여주는 결과이다. OD600이 0.4 흡광도 단위에 도달 할 때 20mM의 유도 분자(또는 당 기질)를 배양물에 첨가 하였다.FIG. 5 is a result showing promoter responses to D-xylonic acid (FIG. 5A), D-xylose (FIG. 5B) and D-glucose (FIG. 5C). When OD600 reached 0.4 absorbance units, 20 mM of the inducing molecule (or sugar substrate) was added to the culture.
그 결과, 도 5에서 확인할 수 있듯이, P yagE 는 D-자일로오스, D-글루코오스 및 D-자일론산을 처리하였을 때, mCherry에 대한 높은 발현 수준을 나타내었다. 이에 반해, P yjh 에서 D-자일론산 처리는 IPTG 유도성 T7 프로모터를 사용하는 대조균주와 유사하게 mCherry 생산을 증가시켰다. 반면에 D-자일로오스 및 D-글루코오스에 노출될 때 어떠한 반응도 보이지 않았다. 이러한 결과는, P yjhI 는 기저 발현이 낮고 D-자일론산에 대한 반응이 우수하다고 할 수 있다. 이러한 결과를 토대로 다음과 같은 특성 분석을 추가적으로 진행하였다. As a result, as can be seen in Figure 5, P yagE showed a high expression level for mCherry when treated with D-xylose, D-glucose and D- xylonic acid. In contrast, treatment with D- xylonic acid in P yjh increased mCherry production similar to control strains using the IPTG inducible T7 promoter. On the other hand, no reaction was seen when exposed to D-xylose and D-glucose. These results indicate that P yjhI has low basal expression and excellent response to D- xylonic acid. Based on these results, the following characteristic analysis was further conducted.
실시예 2: 프로모터 요소의 특성 분석Example 2: Characterization of promoter elements
P yjhI 의 DNA 서열의 부분 특성 분석은 BPROM과 NNPP 온라인 데이터베이스를 사용하여 수행하였다(도 6, 도 7). 도 6은 박테리아 프로모터를 예측하기 위하여 BPROM를 이용하여 프로모터를 분석한 결과이고, 도 7은 NNPP를 이용하여 프로모터를 분석한 결과이다.Partial characterization of the DNA sequence of P yjhI was performed using the BPROM and NNPP online databases (FIGS. 6 and 7 ). 6 is a result of analyzing a promoter using BPROM to predict a bacterial promoter, and FIG. 7 is a result of analyzing a promoter using NNPP.
그 결과, 도 6 및 도 7에서 확인할 수 있듯이, BPROM 분석을 통해 RNA 중합 효소 및 전사 시작 부위의 결합에 5 개의 가능한 필수 사이트(site)를 확인하였으며(컷오프는 0.80으로 설정 됨)(도 6), NNPP를 통한 두 번째 분석을 통해 BPROM에 의해 예측된 한 사이트와 일치하는 -10 및 -35에 대한 하나의 가능한 사이트(site)를 확인하였다(도 7). As a result, as can be seen in FIGS. 6 and 7, five possible essential sites were identified for binding of RNA polymerase and transcription start site through BPROM analysis (cutoff is set to 0.80) (FIG. 6 ). , Through a second analysis through NNPP, one possible site for -10 and -35 that matches one site predicted by BPROM was identified (FIG. 7).
또한, 생물 정보학 연구 및 데이터베이스에 기초하여 2 개의 crp 결합 부위를 예측하였다(도 8a). 도 8을 참조하면, 도 8a는 생물 정보학 연구 및 데이터베이스에 기초하여 P yjhI 의 필수 부분을 표시한 것이고, 도 8b는 P yjhI 의 염기를 다르게 줄인 형태에서 mCherry발현을 확인한 것이다. T7 프로모터의 조절하에 mCherry를 양성 대조군(T7 + IPTG)으로 사용하였다. 전체 및 전체(+XA)는 mCherry의 P yjhI 업스트림의 전체 길이를 나타낸다. 도 8b에서 (+XA)는 20 mM D-자일론산에 의해 유도되었음을 보여준다. P yjhI 의 염기를 다르게 줄인 형태(Δ 기호 및 제거 된 염기의 수)의 제어하에 mCherry를 발현은 20mM D-자일론산에 의해 유도되었음을 보여준다. 도 8c는 D-자일론산에 대한 P yjhI 의 용량 반응 결과로서, 샘플은 24 시간의 배양 후 채취 하였다.In addition, two crp binding sites were predicted based on bioinformatics research and database (FIG. 8A). Referring to FIG. 8, FIG. 8A shows essential parts of P yjhI based on bioinformatics research and databases, and FIG. 8B shows mCherry expression in a form of differently reducing the base of P yjhI . MCherry was used as a positive control (T7 + IPTG) under the control of the T7 promoter. Total and total (+XA) represent the total length of mCherry's P yjhI upstream. 8B shows that (+XA) was induced by 20 mM D-xylonic acid. The expression of mCherry under the control of a differently reduced form of P yjhI (Δ symbol and number of bases removed) shows that it was induced by 20 mM D-xylonic acid. Figure 8c is a result of the dose response of P yjhI to D- xylonic acid, the sample was collected after 24 hours of culture.
구체적으로, 생물 정보학 분석 예측(도 8a)에 기초하여, 염기가 줄어든 형태의 프로모터 서열을 mCherry ORF의 상류에 위치시켰다. 약 50 bp를 단계적으로 제거하고 D-자일론산에 의해 유도되는 mCherry 생산을 모니터링 하였다(도 8b). 그 결과, 200bp의 염기서열이 프로모터 서열로부터 제거되었을 때, 형광이 매우 감소되는 것을 확인하였다. 이 절단된 버전의 프로모터는 예측된 -10 및 -35 서열을 효과적으로 제거함으로써, 이 영역이 필수적이고 RNA 폴리머라아제의 잠재적 결합 부위임을 나타낸다. 또한, P yjhI 의 전체 302bp 염기 서열을 사용하여 D-자일론산 염의 농도가 증가함에 따른 용량 반응을 시험한 결과(도 8c), D-자일론산 염 농도가 낮은 농도(0 내지 20 mM) 일 때 형광 증가 정도가 급격히 증가하는 것을 확인하였다. 반면에 30 mM 이상의 농도에서 형광의 증가 정도는 낮았다. 이는 P yjhI 가 D-자일론산에 민감하므로 D-자일론산 염의 농도가 낮을 때에도 양호한 검출 반응을 보일 수 있음을 시사한다.Specifically, based on the bioinformatics analysis prediction (FIG. 8A), a promoter sequence with reduced base was located upstream of the mCherry ORF. About 50 bp was removed step by step and mCherry production induced by D-xylonic acid was monitored (FIG. 8B). As a result, when the nucleotide sequence of 200bp was removed from the promoter sequence, it was confirmed that the fluorescence was very reduced. This truncated version of the promoter effectively removes the predicted -10 and -35 sequences, indicating that this region is essential and a potential binding site for RNA polymerase. In addition, when the dose response was tested as the concentration of the D-xylonic acid salt was increased using the entire 302 bp base sequence of P yjhI (FIG. 8C), when the D-xylonic acid salt concentration was low (0 to 20 mM) It was confirmed that the degree of fluorescence increase rapidly. On the other hand, the increase in fluorescence was low at a concentration of 30 mM or more. This suggests that P yjhI is sensitive to D- xylonic acid, so it can exhibit a good detection reaction even when the concentration of the D- xylonic acid salt is low.
실시예 3: 새로운 D-자일론산 반응성 합성 유전 회로 설계Example 3: Design of a new D-xylonic reactive synthetic dielectric circuit
프로모터 유전 요소로서 P yjhI 를 사용하여 D-자일론산-반응성 유전자 회로를 도 9a와 같이 설계하였다. 구체적으로, 적색 형광 단백질인 mCherry는 P T7-lacO (숙주 균주는 LacI 유전자가 결핍되어 있음) 하류(downstream)에서 구성적으로 발현되는 반면에 sfGFP 및 lacI는 P yjhI 하류(downstream)에 위치한다. D-자일론산이 없으면 sfGFP와 lacI가 억제되는 동안 mCherry가 지속적으로 발현된다. 일단 D-자일론산이 도입되면, lacI 및 sfGFP가 생성되어 녹색 형광을 생성한다. LacI 단백질은 mCherry 단백질의 생성을 멈추고 적색 형광을 감소시키는 lacO에 결합한다. 상기 합성 회로의 유전 요소는 pRSET-A 벡터에서 만들어져 플라스미드 pRSET-XAS를 만든다(도 4). 그 다음, 상기 플라스미드 pRESET-XAS를 표적 숙주에 도입하고, 두 개의 다른 조건의 배지에 배양한다; (1)성장을 지지하기 위한 글루코오스를 포함하는 MM9 배지(도 9b) 및 (2)성장을 지지하는 글루코스 및 sfGFP 발현을 유도할 D-자일론산을 포함하는 MM9 배지(도 9c). 그 결과, D-자일론산 염을 첨가하기 전에 적색 형광이 두 조건에서 모두 관련되었다. 12 시간 후, 도 9c와 같은 조건에서는 증가된 녹색 형광이 관찰되었고 적색 형광은 현저하게 감소했다. 반면 sfGFP는 증가하지 않았지만 적색 형광은 도 9b와 같은 조건에서 더 증가했다. 이것은 D-자일론산의 존재에 대한 합성 유전자 회로가 잘 작동함을 시사한다. The D- xylonic acid-responsive gene circuit was designed as shown in FIG. 9A using P yjhI as a promoter genetic element. Specifically, the red fluorescent protein mCherry is constitutively expressed downstream of P T7-lacO (host strain lacks the LacI gene) while sfGFP and lacI are located downstream of P yjhI . Without D-xylonic acid, mCherry is continuously expressed while sfGFP and lacI are inhibited. Once D-xylonic acid is introduced, lacI and sfGFP are generated to produce green fluorescence. The LacI protein binds lacO, which stops the production of mCherry protein and reduces red fluorescence. The genetic elements of the synthetic circuit are made from the pRSET-A vector to make the plasmid pRSET-XAS (Figure 4). The plasmid pRESET-XAS is then introduced into the target host and cultured in two different conditions of medium; (1) MM9 medium containing glucose to support growth (Figure 9b) and (2) MM9 medium containing D-xylonic acid to induce glucose and sfGFP expression to support growth (Figure 9c). As a result, red fluorescence was related in both conditions before adding the D-xylonic acid salt. After 12 hours, increased green fluorescence was observed and red fluorescence was significantly reduced under the conditions shown in FIG. 9C. On the other hand, although sfGFP did not increase, red fluorescence increased further under the conditions shown in FIG. 9B. This suggests that the synthetic genetic circuit for the presence of D-xylonic acid works well.
실시예 4: 자일로오스 산화 경로의 조절을 위한 합성 회로의 응용Example 4: Application of a synthetic circuit to control the xylose oxidation pathway
프로모터 P yjhI 를 재조합 박테리아에서 자일로오스 산화 경로의 자율적 조절에 통합시킨다(도 10). 경로의 첫 번째 효소인 자일로오스 탈수소효소(xylose dehydrogenase; xdh)는 LacI가 억제 할 수 있는 프로모터인 P T7-lacO 의 하류(downstream)에 위치시킨다. xdh는 D-자일로오스에서 D-자일론산을 생산하며, 축적된 D-자일론산 염의 특정 농도에서 LacI가 발현되어 Xdh 생산을 효과적으로 억제함으로써 D-자일론산 축적을 일시적으로 중단시킴과 동시에 D-자일론산을 이용하는 하류(downstream) 유전자가 활성화된다. The promoter P yjhI is integrated into the autonomic regulation of the xylose oxidation pathway in recombinant bacteria (FIG. 10 ). The first enzyme in the pathway, xylose dehydrogenase (xdh), is located downstream of P T7-lacO , a promoter that LacI can inhibit. xdh produces D-xylonic acid in D-xylose, and LacI is expressed at a specific concentration of accumulated D-xylonic acid salt, effectively inhibiting Xdh production, temporarily stopping D-xylonic acid accumulation, and simultaneously D- The downstream gene using xylonic acid is activated.
P yjhI 를 적용한 또다른 응용은 호스트 재조합 균주가 D-자일로오스에서 성장하도록 하는 구성적 발현하에 모든 XOP 유전자를 놓는 것이다. 축적된 D-자일론산 염의 특정 농도에서 LacI의 활성화는 전체 XOP를 억제하고 에틸렌글리콜, 글리콜산, 1,2,4-부탄트리올 또는 1,4-부탄디올과 같은 표적 화합물의 생산으로 전환을 활성화시킬 수 있다.Another application of P yjhI is to place all XOP genes under constitutive expression that allows the host recombinant strain to grow in D-xylose. Activation of LacI at certain concentrations of accumulated D-xylonic acid salt inhibits total XOP and activates conversion to production of target compounds such as ethylene glycol, glycolic acid, 1,2,4-butanetriol or 1,4-butanediol I can do it.
<110> MYONGJI UNIVERSITY INDUSTRY AND ACADEMIA COOPERATION FOUNDATION <120> D-XYLONATE-RESPONSIVE PROMOTER, ARTIFICIAL GENETIC CIRCUITS COMPRISING D-XYLONATE-RESPONSIVE PROMOTER AND METHOD FOR DETECTION OF D-XYLONATE USING ARTIFICIAL GENETIC CIRCUIT <130> P19-0013/MJU <150> KR 2018/0169381 <151> 2018-12-26 <160> 59 <170> KoPatentIn 3.0 <210> 1 <211> 302 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of Promoter yjhI <400> 1 taagtaagtt cattcgagag ggatttcaag caaaaataat caatggcacc caatagaaaa 60 tattggcgat gcgctcgaac gaataaagaa gctctaggcg caatccacac actacgatgt 120 tgcaacaaca cgccatctac tttttattct cattcactaa atgtggctgt tctggattca 180 ttattcaaag tgtgtacaag atcacattta atcacatcat tacggttcag catgctgaac 240 aaagcatatt ttccactatg taatgccgat accatttatt ccatgagcaa ggaggagcca 300 tt 302 <210> 2 <211> 294 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of Promoter yagE <400> 2 aaacgggttc ttatgcctta gttgtaagtg tctaccatgt ccccgaacaa gtgttcacta 60 tgtccccgga ccgtacaccc caaaggggag aggggactgc accgagccat cttttccccc 120 tcgccccttt ggggagaggg ccggggtgag gggcaatatg tgatccagct taaatttccc 180 gcactccctc ttcccttccg atttacctct ccttgttctg cgtcatagta tgatcgttaa 240 ataaacgaac gctgttctat aatgtagaac aaaatgattc agcaaggaga tctc 294 <210> 3 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of reporter gene mCherry <400> 3 atggccatca tcaaggagtt catgcgcttc aaggtgcaca tggagggctc cgtgaacggc 60 cacgagttcg agatcgaggg cgagggcgag ggccgcccct acgagggcac ccagaccgcc 120 aagctgaagg tgaccaaggg tggccccctg cccttcgcct gggacatcct gtcccctcag 180 ttcatgtacg gctccaaggc ctacgtgaag caccccgccg acatccccga ctacttgaag 240 ctgtccttcc ccgagggctt caagtgggag cgcgtgatga acttcgagga cggcggcgtg 300 gtgaccgtga cccaggactc ctccctccag gacggcgagt tcatctacaa ggtgaagctg 360 cgcggcacca acttcccctc cgacggcccc gtaatgcaga agaagaccat gggctgggag 420 gcctcctccg agcggatgta ccccgaggac ggcgccctga agggcgagat caagcagagg 480 ctgaagctga aggacggcgg ccactacgac gctgaggtca agaccaccta caaggccaag 540 aagcccgtgc agctgcccgg cgcctacaac gtcaacatca agttggacat cacctcccac 600 aacgaggact acaccatcgt ggaacagtac gaacgcgccg agggccgcca ctccaccggc 660 ggcatggacg agctgtacaa g 681 <210> 4 <211> 717 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of reporter gene sfGFP <400> 4 atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60 ggcgacgtaa acggccacaa gttcagcgtg cgcggcgagg gcgagggcga tgccaccaac 120 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180 ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240 cgccacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcagc 300 ttcaaggacg acggcaccta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360 gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420 aagctggagt acaacttcaa cagccacaac gtctatatca ccgccgacaa gcagaagaac 480 ggcatcaagg ccaacttcaa gatccgccac aacgtggagg acggcagcgt gcagctcgcc 540 gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600 tacctgagca cccagtccgt gctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660 ctgctggagt tcgtgaccgc cgccgggatc actcacggca tggacgagct gtacaag 717 <210> 5 <211> 1181 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of promoter yjhI, reporter gene sfGFP and TT7 <400> 5 taagtaagtt cattcgagag ggatttcaag caaaaataat caatggcacc caatagaaaa 60 tattggcgat gcgctcgaac gaataaagaa gctctaggcg caatccacac actacgatgt 120 tgcaacaaca cgccatctac tttttattct cattcactaa atgtggctgt tctggattca 180 ttattcaaag tgtgtacaag atcacattta atcacatcat tacggttcag catgctgaac 240 aaagcatatt ttccactatg taatgccgat accatttatt ccatgagcaa ggaggagcca 300 ttatggtgag caagggcgag gagctgttca ccggggtggt gcccatcctg gtcgagctgg 360 acggcgacgt aaacggccac aagttcagcg tgcgcggcga gggcgagggc gatgccacca 420 acggcaagct gaccctgaag ttcatctgca ccaccggcaa gctgcccgtg ccctggccca 480 ccctcgtgac caccctgacc tacggcgtgc agtgcttcag ccgctacccc gaccacatga 540 agcgccacga cttcttcaag tccgccatgc ccgaaggcta cgtccaggag cgcaccatca 600 gcttcaagga cgacggcacc tacaagaccc gcgccgaggt gaagttcgag ggcgacaccc 660 tggtgaaccg catcgagctg aagggcatcg acttcaagga ggacggcaac atcctggggc 720 acaagctgga gtacaacttc aacagccaca acgtctatat caccgccgac aagcagaaga 780 acggcatcaa ggccaacttc aagatccgcc acaacgtgga ggacggcagc gtgcagctcg 840 ccgaccacta ccagcagaac acccccatcg gcgacggccc cgtgctgctg cccgacaacc 900 actacctgag cacccagtcc gtgctgagca aagaccccaa cgagaagcgc gatcacatgg 960 tcctgctgga gttcgtgacc gccgccggga tcactcacgg catggacgag ctgtacaagt 1020 cgagcaccac caccaccacc actgagatcc ggctgctaac aaagcccgaa aggaagctga 1080 gttggctgct gccaccgctg agcaataact agcataaccc cttggggcct ctaaacgggt 1140 cttgaggggt tttttgctga aaggaggaac tatatccgga t 1181 <210> 6 <211> 913 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of promoter T7-lacOI, reporter gene mCherry and TT7 <400> 6 ggaattgtga gcggataaca attcccctct agaaataatt ttgtttaact ttaagaagga 60 gatatacatg gccatcatca aggagttcat gcgcttcaag gtgcacatgg agggctccgt 120 gaacggccac gagttcgaga tcgagggcga gggcgagggc cgcccctacg agggcaccca 180 gaccgccaag ctgaaggtga ccaagggtgg ccccctgccc ttcgcctggg acatcctgtc 240 ccctcagttc atgtacggct ccaaggccta cgtgaagcac cccgccgaca tccccgacta 300 cttgaagctg tccttccccg agggcttcaa gtgggagcgc gtgatgaact tcgaggacgg 360 cggcgtggtg accgtgaccc aggactcctc cctccaggac ggcgagttca tctacaaggt 420 gaagctgcgc ggcaccaact tcccctccga cggccccgta atgcagaaga agaccatggg 480 ctgggaggcc tcctccgagc ggatgtaccc cgaggacggc gccctgaagg gcgagatcaa 540 gcagaggctg aagctgaagg acggcggcca ctacgacgct gaggtcaaga ccacctacaa 600 ggccaagaag cccgtgcagc tgcccggcgc ctacaacgtc aacatcaagt tggacatcac 660 ctcccacaac gaggactaca ccatcgtgga acagtacgaa cgcgccgagg gccgccactc 720 caccggcggc atggacgagc tgtacaagta gtcgagcacc accaccacca ccactgagat 780 ccggctgcta acaaagcccg aaaggaagct gagttggctg ctgccaccgc tgagcaataa 840 ctagcataac cccttggggc ctctaaacgg gtcttgaggg gttttttgct gaaaggagga 900 actatatccg gat 913 <210> 7 <211> 1275 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of lacI <400> 7 gtgaaaccag taacgttata cgatgtcgca gagtatgccg gtgtctctta tcagaccgtt 60 tcccgcgtgg tgaaccaggc cagccacgtt tctgcgaaaa cgcgggaaaa agtggaagcg 120 gcgatggcgg agctgaatta cattcccaac cgcgtggcac aacaactggc gggcaaacag 180 tcgttgctga ttggcgttgc cacctccagt ctggccctgc acgcgccgtc gcaaattgtc 240 gcggcgatta aatctcgcgc cgatcaactg ggtgccagcg tggtggtgtc gatggtagaa 300 cgaagcggcg tcgaagcctg taaagcggcg gtgcacaatc ttctcgcgca acgcgtcagt 360 gggctgatca ttaactatcc gctggatgac caggatgcca ttgctgtgga agctgcctgc 420 actaatgttc cggcgttatt tcttgatgtc tctgaccaga cacccatcaa cagtattatt 480 ttctcccatg aagacggtac gcgactgggc gtggagcatc tggtcgcatt gggtcaccag 540 caaatcgcgc tgttagcggg cccattaagt tctgtctcgg cgcgtctgcg tctggctggc 600 tggcataaat atctcactcg caatcaaatt cagccgatag cggaacggga aggcgactgg 660 agtgccatgt ccggttttca acaaaccatg caaatgctga atgagggcat cgttcccact 720 gcgatgctgg ttgccaacga tcagatggcg ctgggcgcaa tgcgcgccat taccgagtcc 780 gggctgcgcg ttggtgcgga catctcggta gtgggatacg acgataccga agacagctca 840 tgttatatcc cgccgttaac caccatcaaa caggattttc gcctgctggg gcaaaccagc 900 gtggaccgct tgctgcaact ctctcagggc caggcggtga agggcaatca gctgttgccc 960 gtctcactgg tgaaaagaaa aaccaccctg gcgcccaata cgcaaaccgc ctctccccgc 1020 gcgttggccg attcattaat gcagctggca cgacaggttt cccgactgga aagcgggcag 1080 tgagcgcaac gcaattaatg taagttagct cactcattag gcaccgggat ctcgaccgat 1140 gcccttgaga gccttcaacc cagtcagctc cttccggtgg gcgcggggca tgactaacat 1200 gagaattaca acttatatcg tatggggctg acttcaggtg ctacatttga agagataaat 1260 tgcactgaaa tctag 1275 <210> 8 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> T7MC(forward primer) <400> 8 ctttaagaag gagatataca tggccatcat caaggagttc 40 <210> 9 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> T7MC(reverse primer) <400> 9 cagtggtggt ggtggtggtg cctacttgta cagctcgtcc atg 43 <210> 10 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PyagEMC1(forward primer) <400> 10 cgtccggcgt agaggatcga aaacgggttc ttatgcctta gttg 44 <210> 11 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> PyagEMC1(reverse primer) <400> 11 tgatggccat gagatctcct tgctgaatca ttttgttc 38 <210> 12 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PyagEMC2(forward primer) <400> 12 aggagatctc atggccatca tcaaggagtt c 31 <210> 13 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PyagEMC2(reverse primer) <400> 13 agtggtggtg gtggtggtgc ctacttgtac agctcgtcca tg 42 <210> 14 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> PyjhIMC1(forward primer) <400> 14 cgtccggcgt agaggatcga taagtaagtt cattcgagag ggatttcaag 50 <210> 15 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PyjhIMC1(reverse primer) <400> 15 tgatggccat aatggctcct ccttgctcat g 31 <210> 16 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PyjhIMC2(forward primer) <400> 16 aggagccatt atggccatca tcaaggagtt c 31 <210> 17 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PyjhIMC2(reverse primer) <400> 17 agtggtggtg gtggtggtgc ctacttgtac agctcgtcca tg 42 <210> 18 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> T7SF(forward primer) <400> 18 actttaagaa ggagatatac atggtgagca agggcgagga g 41 <210> 19 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> T7SF(reverse primer) <400> 19 agtggtggtg gtggtggtgc cttgtacagc tcgtccatgc c 41 <210> 20 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PyagESF1(forward primer) <400> 20 cgtccggcgt agaggatcga aaacgggttc ttatgcctta gttg 44 <210> 21 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> PyagESF1(reverse primer) <400> 21 tgctcaccat gagatctcct tgctgaatca ttttgttc 38 <210> 22 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PyagESF2(forward primer) <400> 22 aggagatctc atggtgagca agggcgagga g 31 <210> 23 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PyagESF2(reverse primer) <400> 23 agtggtggtg gtggtggtgc cttgtacagc tcgtccatgc c 41 <210> 24 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> PyjhISF1(forward primer) <400> 24 gtccggcgta gaggatcgat aagtaagttc attcgagagg gatttcaag 49 <210> 25 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PyjhISF1(reverse primer) <400> 25 tgctcaccat aatggctcct ccttgctcat g 31 <210> 26 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PyjhISF2(forward primer) <400> 26 aggagccatt atggtgagca agggcgagga g 31 <210> 27 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PyjhISF2(reverse primer) <400> 27 agtggtggtg gtggtggtgc cttgtacagc tcgtccatgc c 41 <210> 28 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRSETXAS(forward primer) <400> 28 ccctatagtg agtcgtatta atttcgcggg atcgagatcc 40 <210> 29 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> pRSETXAS(reverse primer) <400> 29 agaccacaac ggtttccctc tagaaataat tttgtttaac tttaagaagg agatatacat 60 atgcggg 67 <210> 30 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> lacO-mCherry-T7T(forward primer) <400> 30 taatacgact cactataggg ggaattgtga gcggataaca attcccctct agaaataatt 60 ttg 63 <210> 31 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> lacO-mCherry-T7T(reverse primer) <400> 31 gaacccgttt atccggatat agttcctcct ttcagcaaaa aacccctcaa g 51 <210> 32 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> XAS yjhIp(forward primer) <400> 32 atatccggat aaacgggttc ttatgcctta gttgtaagtg tctaccatgt c 51 <210> 33 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> XAS yjhIp(reverse primer) <400> 33 ctggtttcac gagatctcct tgctgaatca ttttgttcta cattatagaa cag 53 <210> 34 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> lacI(forward primer) <400> 34 aggagatctc gtgaaaccag taacgttata cgatgtcgca gagtatgccg 50 <210> 35 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> lacI(reverse primer) <400> 35 aacttactta ctagatttca gtgcaattta tctcttcaaa tgtagcacct gaag 54 <210> 36 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> yjhIp-sfGFP-T7T(forward primer) <400> 36 tgaaatctag taagtaagtt cattcgagag ggatttcaag caaaaataat caatgg 56 <210> 37 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> yjhIp-sfGFP-T7T(reverse primer) <400> 37 gagggaaacc gttgtggtct atccggatat agttcctcct ttcagcaaaa aacccctcaa 60 g 61 <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> RTyagA(forward primer) <400> 38 gtcgcttcgg catttcac 18 <210> 39 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyagA(reverse primer) <400> 39 caggttatgg acggtgctg 19 <210> 40 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> RTyagE(forward primer) <400> 40 aagtgtcgga agcgaacc 18 <210> 41 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyagE(reverse primer) <400> 41 cgatggtgtc tttgatgcc 19 <210> 42 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> RTyagF(forward primer) <400> 42 gacctgcgat aaagggct 18 <210> 43 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyagF(reverse primer) <400> 43 agggagagtt cgtggttgg 19 <210> 44 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> RTyagI(forward primer) <400> 44 tcgcctattc acgcatcg 18 <210> 45 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyagI(reverse primer) <400> 45 ctcgttctct tcgctgtcc 19 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RTyjhU(forward primer) <400> 46 tgagaatggt gatgtgctgg 20 <210> 47 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyjhU(reverse primer) <400> 47 taggcgattt gcgatgagg 19 <210> 48 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyjhG(forward primer) <400> 48 ccttattcgc tctctgccc 19 <210> 49 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyjhG(reverse primer) <400> 49 gccgttgtct tctccatcc 19 <210> 50 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RTyjhH(forward primer) <400> 50 ctactactgg aaagtcgcac c 21 <210> 51 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> RTyjhH(reverse primer) <400> 51 tacgcaagtg accaacgc 18 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RTyjhI(forward primer) <400> 52 ggaagacacg agaagaactg 20 <210> 53 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyjhI(reverse primer) <400> 53 tcgccagaaa gtgagattg 19 <210> 54 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTrrsB(forward primer) <400> 54 tacccgcaga agaagcacc 19 <210> 55 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTrrsB(reverse primer) <400> 55 cgcatttcac cgctacacc 19 <210> 56 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RTcysG(forward primer) <400> 56 gcgtttattc cacagttcac c 21 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RTcysG(reverse primer) <400> 57 gttacagaag atgcgacgag 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdoG(forward primer) <400> 58 atacaccatc accttcagcc 20 <210> 59 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mdoG(reverse primer) <400> 59 cgtgctttca actatctcac c 21 <110> MYONGJI UNIVERSITY INDUSTRY AND ACADEMIA COOPERATION FOUNDATION <120> D-XYLONATE-RESPONSIVE PROMOTER, ARTIFICIAL GENETIC CIRCUITS COMPRISING D-XYLONATE-RESPONSIVE PROMOTER AND METHOD FOR DETECTION OF D-XYLONATE USING ARTIFICIAL GENETIC CIRCUIT <130> P19-0013/MJU <150> KR 2018/0169381 <151> 2018-12-26 <160> 59 <170> KoPatentIn 3.0 <210> 1 <211> 302 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of Promoter yjhI <400> 1 taagtaagtt cattcgagag ggatttcaag caaaaataat caatggcacc caatagaaaa 60 tattggcgat gcgctcgaac gaataaagaa gctctaggcg caatccacac actacgatgt 120 tgcaacaaca cgccatctac tttttattct cattcactaa atgtggctgt tctggattca 180 ttattcaaag tgtgtacaag atcacattta atcacatcat tacggttcag catgctgaac 240 aaagcatatt ttccactatg taatgccgat accatttatt ccatgagcaa ggaggagcca 300 tt 302 <210> 2 <211> 294 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of Promoter yagE <400> 2 aaacgggttc ttatgcctta gttgtaagtg tctaccatgt ccccgaacaa gtgttcacta 60 tgtccccgga ccgtacaccc caaaggggag aggggactgc accgagccat cttttccccc 120 tcgccccttt ggggagaggg ccggggtgag gggcaatatg tgatccagct taaatttccc 180 gcactccctc ttcccttccg atttacctct ccttgttctg cgtcatagta tgatcgttaa 240 ataaacgaac gctgttctat aatgtagaac aaaatgattc agcaaggaga tctc 294 <210> 3 <211> 681 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of reporter gene mCherry <400> 3 atggccatca tcaaggagtt catgcgcttc aaggtgcaca tggagggctc cgtgaacggc 60 cacgagttcg agatcgaggg cgagggcgag ggccgcccct acgagggcac ccagaccgcc 120 aagctgaagg tgaccaaggg tggccccctg cccttcgcct gggacatcct gtcccctcag 180 ttcatgtacg gctccaaggc ctacgtgaag caccccgccg acatccccga ctacttgaag 240 ctgtccttcc ccgagggctt caagtgggag cgcgtgatga acttcgagga cggcggcgtg 300 gtgaccgtga cccaggactc ctccctccag gacggcgagt tcatctacaa ggtgaagctg 360 cgcggcacca acttcccctc cgacggcccc gtaatgcaga agaagaccat gggctgggag 420 gcctcctccg agcggatgta ccccgaggac ggcgccctga agggcgagat caagcagagg 480 ctgaagctga aggacggcgg ccactacgac gctgaggtca agaccaccta caaggccaag 540 aagcccgtgc agctgcccgg cgcctacaac gtcaacatca agttggacat cacctcccac 600 aacgaggact acaccatcgt ggaacagtac gaacgcgccg agggccgcca ctccaccggc 660 ggcatggacg agctgtacaa g 681 <210> 4 <211> 717 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of reporter gene sfGFP <400> 4 atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60 ggcgacgtaa acggccacaa gttcagcgtg cgcggcgagg gcgagggcga tgccaccaac 120 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180 ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240 cgccacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcagc 300 ttcaaggacg acggcaccta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360 gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420 aagctggagt acaacttcaa cagccacaac gtctatatca ccgccgacaa gcagaagaac 480 ggcatcaagg ccaacttcaa gatccgccac aacgtggagg acggcagcgt gcagctcgcc 540 gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600 tacctgagca cccagtccgt gctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660 ctgctggagt tcgtgaccgc cgccgggatc actcacggca tggacgagct gtacaag 717 <210> 5 <211> 1181 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of promoter yjhI, reporter gene sfGFP and TT7 <400> 5 taagtaagtt cattcgagag ggatttcaag caaaaataat caatggcacc caatagaaaa 60 tattggcgat gcgctcgaac gaataaagaa gctctaggcg caatccacac actacgatgt 120 tgcaacaaca cgccatctac tttttattct cattcactaa atgtggctgt tctggattca 180 ttattcaaag tgtgtacaag atcacattta atcacatcat tacggttcag catgctgaac 240 aaagcatatt ttccactatg taatgccgat accatttatt ccatgagcaa ggaggagcca 300 ttatggtgag caagggcgag gagctgttca ccggggtggt gcccatcctg gtcgagctgg 360 acggcgacgt aaacggccac aagttcagcg tgcgcggcga gggcgagggc gatgccacca 420 acggcaagct gaccctgaag ttcatctgca ccaccggcaa gctgcccgtg ccctggccca 480 ccctcgtgac caccctgacc tacggcgtgc agtgcttcag ccgctacccc gaccacatga 540 agcgccacga cttcttcaag tccgccatgc ccgaaggcta cgtccaggag cgcaccatca 600 gcttcaagga cgacggcacc tacaagaccc gcgccgaggt gaagttcgag ggcgacaccc 660 tggtgaaccg catcgagctg aagggcatcg acttcaagga ggacggcaac atcctggggc 720 acaagctgga gtacaacttc aacagccaca acgtctatat caccgccgac aagcagaaga 780 acggcatcaa ggccaacttc aagatccgcc acaacgtgga ggacggcagc gtgcagctcg 840 ccgaccacta ccagcagaac acccccatcg gcgacggccc cgtgctgctg cccgacaacc 900 actacctgag cacccagtcc gtgctgagca aagaccccaa cgagaagcgc gatcacatgg 960 tcctgctgga gttcgtgacc gccgccggga tcactcacgg catggacgag ctgtacaagt 1020 cgagcaccac caccaccacc actgagatcc ggctgctaac aaagcccgaa aggaagctga 1080 gttggctgct gccaccgctg agcaataact agcataaccc cttggggcct ctaaacgggt 1140 cttgaggggt tttttgctga aaggaggaac tatatccgga t 1181 <210> 6 <211> 913 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of promoter T7-lacOI, reporter gene mCherry and TT7 <400> 6 ggaattgtga gcggataaca attcccctct agaaataatt ttgtttaact ttaagaagga 60 gatatacatg gccatcatca aggagttcat gcgcttcaag gtgcacatgg agggctccgt 120 gaacggccac gagttcgaga tcgagggcga gggcgagggc cgcccctacg agggcaccca 180 gaccgccaag ctgaaggtga ccaagggtgg ccccctgccc ttcgcctggg acatcctgtc 240 ccctcagttc atgtacggct ccaaggccta cgtgaagcac cccgccgaca tccccgacta 300 cttgaagctg tccttccccg agggcttcaa gtgggagcgc gtgatgaact tcgaggacgg 360 cggcgtggtg accgtgaccc aggactcctc cctccaggac ggcgagttca tctacaaggt 420 gaagctgcgc ggcaccaact tcccctccga cggccccgta atgcagaaga agaccatggg 480 ctgggaggcc tcctccgagc ggatgtaccc cgaggacggc gccctgaagg gcgagatcaa 540 gcagaggctg aagctgaagg acggcggcca ctacgacgct gaggtcaaga ccacctacaa 600 ggccaagaag cccgtgcagc tgcccggcgc ctacaacgtc aacatcaagt tggacatcac 660 ctcccacaac gaggactaca ccatcgtgga acagtacgaa cgcgccgagg gccgccactc 720 caccggcggc atggacgagc tgtacaagta gtcgagcacc accaccacca ccactgagat 780 ccggctgcta acaaagcccg aaaggaagct gagttggctg ctgccaccgc tgagcaataa 840 ctagcataac cccttggggc ctctaaacgg gtcttgaggg gttttttgct gaaaggagga 900 actatatccg gat 913 <210> 7 <211> 1275 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence of lacI <400> 7 gtgaaaccag taacgttata cgatgtcgca gagtatgccg gtgtctctta tcagaccgtt 60 tcccgcgtgg tgaaccaggc cagccacgtt tctgcgaaaa cgcgggaaaa agtggaagcg 120 gcgatggcgg agctgaatta cattcccaac cgcgtggcac aacaactggc gggcaaacag 180 tcgttgctga ttggcgttgc cacctccagt ctggccctgc acgcgccgtc gcaaattgtc 240 gcggcgatta aatctcgcgc cgatcaactg ggtgccagcg tggtggtgtc gatggtagaa 300 cgaagcggcg tcgaagcctg taaagcggcg gtgcacaatc ttctcgcgca acgcgtcagt 360 gggctgatca ttaactatcc gctggatgac caggatgcca ttgctgtgga agctgcctgc 420 actaatgttc cggcgttatt tcttgatgtc tctgaccaga cacccatcaa cagtattatt 480 ttctcccatg aagacggtac gcgactgggc gtggagcatc tggtcgcatt gggtcaccag 540 caaatcgcgc tgttagcggg cccattaagt tctgtctcgg cgcgtctgcg tctggctggc 600 tggcataaat atctcactcg caatcaaatt cagccgatag cggaacggga aggcgactgg 660 agtgccatgt ccggttttca acaaaccatg caaatgctga atgagggcat cgttcccact 720 gcgatgctgg ttgccaacga tcagatggcg ctgggcgcaa tgcgcgccat taccgagtcc 780 gggctgcgcg ttggtgcgga catctcggta gtgggatacg acgataccga agacagctca 840 tgttatatcc cgccgttaac caccatcaaa caggattttc gcctgctggg gcaaaccagc 900 gtggaccgct tgctgcaact ctctcagggc caggcggtga agggcaatca gctgttgccc 960 gtctcactgg tgaaaagaaa aaccaccctg gcgcccaata cgcaaaccgc ctctccccgc 1020 gcgttggccg attcattaat gcagctggca cgacaggttt cccgactgga aagcgggcag 1080 tgagcgcaac gcaattaatg taagttagct cactcattag gcaccgggat ctcgaccgat 1140 gcccttgaga gccttcaacc cagtcagctc cttccggtgg gcgcggggca tgactaacat 1200 gagaattaca acttatatcg tatggggctg acttcaggtg ctacatttga agagataaat 1260 tgcactgaaa tctag 1275 <210> 8 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> T7MC (forward primer) <400> 8 ctttaagaag gagatataca tggccatcat caaggagttc 40 <210> 9 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> T7MC (reverse primer) <400> 9 cagtggtggt ggtggtggtg cctacttgta cagctcgtcc atg 43 <210> 10 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PyagEMC1 (forward primer) <400> 10 cgtccggcgt agaggatcga aaacgggttc ttatgcctta gttg 44 <210> 11 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> PyagEMC1 (reverse primer) <400> 11 tgatggccat gagatctcct tgctgaatca ttttgttc 38 <210> 12 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PyagEMC2 (forward primer) <400> 12 aggagatctc atggccatca tcaaggagtt c 31 <210> 13 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PyagEMC2 (reverse primer) <400> 13 agtggtggtg gtggtggtgc ctacttgtac agctcgtcca tg 42 <210> 14 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> PyjhIMC1 (forward primer) <400> 14 cgtccggcgt agaggatcga taagtaagtt cattcgagag ggatttcaag 50 <210> 15 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PyjhIMC1 (reverse primer) <400> 15 tgatggccat aatggctcct ccttgctcat g 31 <210> 16 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PyjhIMC2 (forward primer) <400> 16 aggagccatt atggccatca tcaaggagtt c 31 <210> 17 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> PyjhIMC2 (reverse primer) <400> 17 agtggtggtg gtggtggtgc ctacttgtac agctcgtcca tg 42 <210> 18 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> T7SF (forward primer) <400> 18 actttaagaa ggagatatac atggtgagca agggcgagga g 41 <210> 19 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> T7SF (reverse primer) <400> 19 agtggtggtg gtggtggtgc cttgtacagc tcgtccatgc c 41 <210> 20 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> PyagESF1 (forward primer) <400> 20 cgtccggcgt agaggatcga aaacgggttc ttatgcctta gttg 44 <210> 21 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> PyagESF1 (reverse primer) <400> 21 tgctcaccat gagatctcct tgctgaatca ttttgttc 38 <210> 22 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PyagESF2 (forward primer) <400> 22 aggagatctc atggtgagca agggcgagga g 31 <210> 23 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PyagESF2 (reverse primer) <400> 23 agtggtggtg gtggtggtgc cttgtacagc tcgtccatgc c 41 <210> 24 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> PyjhISF1 (forward primer) <400> 24 gtccggcgta gaggatcgat aagtaagttc attcgagagg gatttcaag 49 <210> 25 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PyjhISF1 (reverse primer) <400> 25 tgctcaccat aatggctcct ccttgctcat g 31 <210> 26 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PyjhISF2 (forward primer) <400> 26 aggagccatt atggtgagca agggcgagga g 31 <210> 27 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> PyjhISF2 (reverse primer) <400> 27 agtggtggtg gtggtggtgc cttgtacagc tcgtccatgc c 41 <210> 28 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> pRSETXAS (forward primer) <400> 28 ccctatagtg agtcgtatta atttcgcggg atcgagatcc 40 <210> 29 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> pRSETXAS (reverse primer) <400> 29 agaccacaac ggtttccctc tagaaataat tttgtttaac tttaagaagg agatatacat 60 atgcggg 67 <210> 30 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> lacO-mCherry-T7T (forward primer) <400> 30 taatacgact cactataggg ggaattgtga gcggataaca attcccctct agaaataatt 60 ttg 63 <210> 31 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> lacO-mCherry-T7T (reverse primer) <400> 31 gaacccgttt atccggatat agttcctcct ttcagcaaaa aacccctcaa g 51 <210> 32 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> XAS yjhIp (forward primer) <400> 32 atatccggat aaacgggttc ttatgcctta gttgtaagtg tctaccatgt c 51 <210> 33 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> XAS yjhIp (reverse primer) <400> 33 ctggtttcac gagatctcct tgctgaatca ttttgttcta cattatagaa cag 53 <210> 34 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> lacI (forward primer) <400> 34 aggagatctc gtgaaaccag taacgttata cgatgtcgca gagtatgccg 50 <210> 35 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> lacI (reverse primer) <400> 35 aacttactta ctagatttca gtgcaattta tctcttcaaa tgtagcacct gaag 54 <210> 36 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> yjhIp-sfGFP-T7T (forward primer) <400> 36 tgaaatctag taagtaagtt cattcgagag ggatttcaag caaaaataat caatgg 56 <210> 37 <211> 61 <212> DNA <213> Artificial Sequence <220> <223> yjhIp-sfGFP-T7T (reverse primer) <400> 37 gagggaaacc gttgtggtct atccggatat agttcctcct ttcagcaaaa aacccctcaa 60 g 61 <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> RTyagA (forward primer) <400> 38 gtcgcttcgg catttcac 18 <210> 39 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyagA (reverse primer) <400> 39 caggttatgg acggtgctg 19 <210> 40 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> RTyagE (forward primer) <400> 40 aagtgtcgga agcgaacc 18 <210> 41 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyagE (reverse primer) <400> 41 cgatggtgtc tttgatgcc 19 <210> 42 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> RTyagF (forward primer) <400> 42 gacctgcgat aaagggct 18 <210> 43 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyagF (reverse primer) <400> 43 agggagagtt cgtggttgg 19 <210> 44 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> RTyagI (forward primer) <400> 44 tcgcctattc acgcatcg 18 <210> 45 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyagI (reverse primer) <400> 45 ctcgttctct tcgctgtcc 19 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RTyjhU (forward primer) <400> 46 tgagaatggt gatgtgctgg 20 <210> 47 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyjhU (reverse primer) <400> 47 taggcgattt gcgatgagg 19 <210> 48 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyjhG (forward primer) <400> 48 ccttattcgc tctctgccc 19 <210> 49 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyjhG (reverse primer) <400> 49 gccgttgtct tctccatcc 19 <210> 50 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RTyjhH (forward primer) <400> 50 ctactactgg aaagtcgcac c 21 <210> 51 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> RTyjhH (reverse primer) <400> 51 tacgcaagtg accaacgc 18 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RTyjhI (forward primer) <400> 52 ggaagacacg agaagaactg 20 <210> 53 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTyjhI (reverse primer) <400> 53 tcgccagaaa gtgagattg 19 <210> 54 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTrrsB (forward primer) <400> 54 tacccgcaga agaagcacc 19 <210> 55 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RTrrsB (reverse primer) <400> 55 cgcatttcac cgctacacc 19 <210> 56 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> RTcysG (forward primer) <400> 56 gcgtttattc cacagttcac c 21 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RTcysG (reverse primer) <400> 57 gttacagaag atgcgacgag 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mdoG (forward primer) <400> 58 atacaccatc accttcagcc 20 <210> 59 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mdoG (reverse primer) <400> 59 cgtgctttca actatctcac c 21
Claims (14)
D-xylonic acid reactive promoter represented by the nucleotide sequence of SEQ ID NO: 1.
An expression vector comprising a D-xylonic acid reactive promoter represented by the nucleotide sequence of SEQ ID NO: 1.
A host cell transformed with an expression vector comprising a D-xylonic acid reactive promoter represented by the nucleotide sequence of SEQ ID NO: 1.
상기 숙주세포는 대장균(Escherichia coli)인 것을 특징으로 하는 숙주세포.
According to claim 3,
The host cell is Escherichia coli , characterized in that the host cell.
Biosensor for detecting D-xylonic acid containing a host cell transformed with an expression vector comprising a D-xylonic acid reactive promoter represented by the nucleotide sequence of SEQ ID NO: 1.
A method of detecting D-xylonic acid by exposing the biosensor according to claim 5 to D-xylonic acid, and then measuring the degree of optical, electrochemical or biochemical expression of the protein by the action of a xylonic acid reactive promoter.
i) 적색 형광 단백질을 코팅하는 리포터 유전자;
ii) 하류의 적색 형광 단백질의 발현을 조절하는 프로모터;
iii) 락토오스 단백질을 코팅하는 lacI 유전자;
iv) 녹색 형광 단백질을 코팅하는 리포터 유전자; 및
iv) D-자일론산을 감지하여 하류의 lacI 유전자 및 하류의 녹색 형광 단백질을 코팅하는 리포터 유전자의 발현을 유도하는 서열번호 1의 염기서열로 표시되는 프로모터.
Redesigned genetic circuit for D-xylonic acid detection, including:
i) a reporter gene coating a red fluorescent protein;
ii) a promoter that regulates the expression of downstream red fluorescent protein;
iii) lacI gene coating lactose protein;
iv) reporter gene coating green fluorescent protein; And
iv) A promoter represented by the nucleotide sequence of SEQ ID NO: 1 that detects D-xylonic acid and induces the expression of the downstream lacI gene and the reporter gene that coats the downstream green fluorescent protein.
상기 적색 형광 단백질은 mCheery이고, 녹색 형광 단백질은 sfGFP인 것을 특징으로 하는 D-자일론산 감지용 재설계 유전자 회로.
The method of claim 7,
The red fluorescent protein is mCheery, the green fluorescent protein is redesigned genetic circuit for D-xylonic acid detection, characterized in that sfGFP.
상기 유전자회로는 D-자일론산이 감지되지 않을 경우 sfGFP 및 lacI는 억제되고 mCherry는 지속적으로 발현되어 적색 형광을 생성하고, D-자일론산이 감지되는 경우 sfGFP 및 lacI가 발현되어 녹색 형광을 생성하는 것을 특징으로 하는 D-자일론산 감지용 재설계 유전자 회로.
The method of claim 7,
In the gene circuit, when D-xylonic acid is not detected, sfGFP and lacI are suppressed and mCherry is continuously expressed to generate red fluorescence, and when D-xylonic acid is detected, sfGFP and lacI are expressed to generate green fluorescence. Redesigned genetic circuit for D-xylonic acid detection, characterized in that.
i) 자일로오스 탈수소효소 단백질을 코딩하는 xdh 유전자; 및
ii) 락토오스 단백질의 발현에 따라 하류의 xdh 유전자의 발현을 조절하는 프로모터;
iii) 락토오스 단백질을 코팅하는 lacI 유전자; 및
iv) D-자일론산을 감지하여 하류의 lacI 유전자의 발현을 유도하는 서열번호 1의 염기서열로 표시되는 프로모터.
Redesigned genetic circuit for D-xylonic acid detection, including:
i) xdh gene encoding xylose dehydrogenase protein; And
ii) a promoter that regulates the expression of downstream xdh gene according to the expression of lactose protein;
iii) lacI gene coating lactose protein; And
iv) A promoter represented by the nucleotide sequence of SEQ ID NO: 1 that detects D-xylonic acid and induces the expression of downstream lacI gene.
상기 iv)의 프로모터는 자일론산의 농도가 최소 5mM일 때, lacI 유전자의 발현을 유도하는 것을 특징으로 하는 D-자일론산 감지용 재설계 유전자 회로.
The method of claim 10,
The promoter of iv) is a redesigned gene circuit for D-xylonic acid detection, characterized in that inducing the expression of the lacI gene when the concentration of xylon acid is at least 5 mM.
lacI 유전자의 발현은 xdh 유전자의 발현을 억제하여 자일로오스 탈수소효소의 생성을 중단함으로써 D-자일론산 축적을 일시적으로 중단시키는 것을 특징으로 하는 D-자일론산 감지용 재설계 유전자 회로.
The method of claim 10,
The redesign gene circuit for D-xylonic acid detection is characterized in that the expression of the lacI gene temporarily stops the accumulation of xylose dehydrogenase by inhibiting the expression of the xdh gene, thereby temporarily stopping the accumulation of D-xylonic acid.
A recombinant microorganism for detecting D-xylonic acid containing the genetic circuit of claim 10.
상기 미생물은 대장균인 것을 특징으로 하는 D-자일론산 감지용 재조합 미생물.The method of claim 13,
The microorganism is a recombinant microorganism for detecting D-xylonic acid, characterized in that it is E. coli.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180169381 | 2018-12-26 | ||
KR20180169381 | 2018-12-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200080106A true KR20200080106A (en) | 2020-07-06 |
KR102241682B1 KR102241682B1 (en) | 2021-04-19 |
Family
ID=71571638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190071339A KR102241682B1 (en) | 2018-12-26 | 2019-06-17 | D-xylonate-responsive promoter, artificial genetic circuits comprising d-xylonate-responsive promoter and method for detection of d-xylonate using artificial genetic circuit |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102241682B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110076730A1 (en) * | 2006-07-19 | 2011-03-31 | Board Of Trustees Of Michigan State University | Microbial synthesis of d-1,2,4-butanetriol |
KR20150075967A (en) * | 2013-12-26 | 2015-07-06 | 한국생명공학연구원 | Method for Detecting and Quantitating Cellulase Using Artificial Genetic Circuit |
KR20180035297A (en) * | 2016-09-29 | 2018-04-06 | 전남대학교산학협력단 | Biosensor for detecting glutamate and preparation method thereof |
-
2019
- 2019-06-17 KR KR1020190071339A patent/KR102241682B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110076730A1 (en) * | 2006-07-19 | 2011-03-31 | Board Of Trustees Of Michigan State University | Microbial synthesis of d-1,2,4-butanetriol |
KR20150075967A (en) * | 2013-12-26 | 2015-07-06 | 한국생명공학연구원 | Method for Detecting and Quantitating Cellulase Using Artificial Genetic Circuit |
KR20180035297A (en) * | 2016-09-29 | 2018-04-06 | 전남대학교산학협력단 | Biosensor for detecting glutamate and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
GenBank: CP34426.1(2018. 12. 14.)* * |
Also Published As
Publication number | Publication date |
---|---|
KR102241682B1 (en) | 2021-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6196016B2 (en) | Production of glucanic acid in cells | |
EP1897951B1 (en) | Composition and methods for producing steviol and steviol glycosides | |
EP1350842B1 (en) | Production and use of an improved terminal deoxynucleotidyl transferase | |
JPH10507368A (en) | Methods and compositions for secreting heterologous polypeptides | |
JP2010524440A (en) | Expression system | |
US20210115446A1 (en) | Regulation of Translation of Expressed Genes | |
Wang et al. | Systematic evolution and study of UAGN decoding tRNAs in a genomically recoded bacteria | |
EP3759223A1 (en) | Method for enhancing continuous production of a natural compound during exponential growth phase and stationary phase of a microorganism | |
JP2017518741A (en) | Dreamenol synthase and method for producing dreammenol | |
US20130149699A1 (en) | Translation Kinetic Mapping, Modification and Harmonization | |
KR102241682B1 (en) | D-xylonate-responsive promoter, artificial genetic circuits comprising d-xylonate-responsive promoter and method for detection of d-xylonate using artificial genetic circuit | |
MXPA04005717A (en) | Expression system. | |
JP2015149978A (en) | Method for producing 2, 3-butanediol and acetoin | |
Jeon et al. | Production of tagatose by whole-cell bioconversion from fructose using Corynebacterium glutamicum | |
EP1945772B1 (en) | Novel selection system | |
WO2005012498A2 (en) | Production of porphyrins | |
US20130017608A1 (en) | Methods of increasing yields of pleuromutilins | |
KR102194697B1 (en) | Gene Circuit for Selecting 3-Hydroxypropionic Acid Using Responding 3-Hydroxypropionic Acid Transcription Factor and Method for Screening of 3-Hydroxypropionic Acid Producing Strain | |
KR101718508B1 (en) | Recombinat Bacillus subtilis Having Metabolic Engineered Biosynthesis Pathway of 2-Deoxy-scyllo-inosose and Method for Preparing 2-Deoxy-scyllo-inosose Using Thereof | |
JP2005034025A (en) | Plasmid vector for promoting expression of foreign gene in escherichia coli, recombinant escherichia coli, method for producing chemical substance with recombinant escherichia coli, and method for producing recombinant protein | |
KR101785150B1 (en) | Method for producing gamma aminobutyric acid by using modular scaffolds | |
EP1758933B1 (en) | Chimeric human growth hormone derived from the placenta and pituitary isoform and processes for obtaining said chimera | |
CN116751799B (en) | Multi-site double-base editor and application thereof | |
JP2005296010A (en) | New heat-resistant protein having 2-isopropylmalate synthase activity | |
KR20190114176A (en) | Gene Circuit for Selecting 3-Hydroxypropionic Acid Using Responding 3-Hydroxypropionic Acid Transcription Factor and Method for Screening of 3-Hydroxypropionic Acid Producing Strain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |