KR20200079535A - 하향링크 제어 정보 통신 및 해석을 위한 방법과 장치 - Google Patents

하향링크 제어 정보 통신 및 해석을 위한 방법과 장치 Download PDF

Info

Publication number
KR20200079535A
KR20200079535A KR1020207016165A KR20207016165A KR20200079535A KR 20200079535 A KR20200079535 A KR 20200079535A KR 1020207016165 A KR1020207016165 A KR 1020207016165A KR 20207016165 A KR20207016165 A KR 20207016165A KR 20200079535 A KR20200079535 A KR 20200079535A
Authority
KR
South Korea
Prior art keywords
dci
coreset
physical
bundle
data transmission
Prior art date
Application number
KR1020207016165A
Other languages
English (en)
Other versions
KR102432629B1 (ko
Inventor
자바드 애브돌리
전페이 탕
Original Assignee
후아웨이 테크놀러지 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후아웨이 테크놀러지 컴퍼니 리미티드 filed Critical 후아웨이 테크놀러지 컴퍼니 리미티드
Publication of KR20200079535A publication Critical patent/KR20200079535A/ko
Application granted granted Critical
Publication of KR102432629B1 publication Critical patent/KR102432629B1/ko

Links

Images

Classifications

    • H04W72/1289
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • H04W72/042
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

하향링크 제어 정보(DCI)가 제1 대역폭 부분(BWP)에서 물리 하향링크 제어 채널(PDCCH)로 전송되는 무선 통신 방법 및 장치가 제공된다. UE가 DCI 내의 주파수 영역 자원 할당 필드의 값, 참조 RB, 및 제2 BWP의 참조 크기에 기초하여 DCI에 의해 할당된 데이터 전송을 위한 시작 자원 블록(RB)을 결정하는 것을 담당한다. 그런 다음, 데이터 전송이 예를 들어 PUSCH의 경우 UE에 의해 전송되거나, 또는 예를 들어 PDSCH의 경우 수신될 수 있다.

Description

하향링크 제어 정보 통신 및 해석을 위한 방법과 장치
본 출원은 2018년 4월 4일에 출원된 US 임시 특허 출원 번호 제62/652,490호("Method and Apparatus for Downlink Control Information Communication and Interpretation")와 2018년 12월 11일에 출원된 US 정규출원 번호 제16/216,191호("METHOD AND APPARATUS FOR DOWNLINK CONTROL INFORMATION COMMUNICATION AND INTERPRETATION")에 대해 우선권을 주장하는 바이며, 그 전체 내용이 본 명세서에 원용되어 포함된다.
본 발명은 일반적으로 무선 통신을 위한 시스템 및 방법에 관한 것으로, 상세하게는 하향링크 제어 정보(DCI)에 할당된 전송 자원의 위치를 결정하기 위한 시스템 및 방법에 관한 것이다.
무선 인터페이스는 무선 액세스 네트워크 장치(예를 들어, 기지국, NodeB, 진화된 NodeB, 전송점) 및 전자 장치(electronic device, ED)와 같은 2개 이상의 통신 장치(예를 들어, 사용자 장비(user equipment, UE), 모바일 폰, 센서, 카메라) 사이의 무선 통신 링크이다. 일반적으로, 두 통신 장치는 전송을 성공적으로 송수신하기 위해 무선 인터페이스의 특정 파라미터를 알고 있어야 한다.
동일한 무선 인터페이스 파라미터로 통신 장치를 구성하면 통신 장치가 시간, 주파수, 또는 시간 및 주파수 자원과 같은 물리적 자원을 안정적으로 식별하고, 구성하며, 사용할 수 있다. 따라서, 현재의 무선 통신 시스템에서, 전송은 일반적으로 무선 인터페이스에 대한 하나의 사전 정의된 구성에 따라 전달된다.
하지만, 현대의 무선 네트워크는 다양한 트래픽 유형의 통신을 지원하기 위해 점점 더 사용되고 있으며, 지연(latency), 처리량(throughput), 및 동시 연결과 같은 다양한 특성 및 서비스 품질(quality of service, QoS) 요구사항을 가질 수 있다. 결과적으로, 현대의 무선 네트워크의 상이한 트래픽 유형은 널리 적용되는 무선 인터페이스 구성에 적합하지 않다.
엔알(New Radio, NR)과 같은 셀룰러 통신에서, 하향링크 제어 정보(downlink control information, DCI)가 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)을 통해 무선 하향링크 네트워크 장치에서 ED로 전송되어 ED에 특정 물리 계층 파라미터에 관한 정보, 예컨대 하향링크 또는 상향링크 데이터의 스케줄링 및 다른 구성 파라미터를 제공한다.
ED가 반송파 대역폭 내에서 하나 이상의 대역폭 부분(bandwidth part, BWP)으로 구성된다. 각각의 BWP는 반송파 내에서 복수의 인접한 자원 블록(resource block, RB)으로 구성된다. 특정한 시나리오에서, 구성된 BWP 중 하나만이 지정된 시간 순간에 ED에 대해 활성 상태이다. 다른 시나리오에서, 구성된 BWP 중 하나 이상의 BWP가 ED에 대해 동시에 활성 상태이다.
ED는 ED의 구성된 BWP 각각에서 다수의 제어 자원 세트(control resource set, CORESET)로 구성되며, 각각의 CORESET은 PDCCH의 가능한 전송을 위한 물리적 시간 및 주파수 자원 세트이다. 다수의 검색 공간이 구성되고 각각의 CORESET과 연관된다. CORESET과 연관된 각각의 검색 공간은 CORESET 내의 자원의 다수의 서브세트에 대응하고, 각각의 서브세트는 PDCCH 후보에 대응한다.
ED는 "블라인드 디코딩"으로 알려진 프로세스를 통해 DCI 내의 정보를 판독한다. 물리적 시간 및 주파수 전송 자원에서 DCI를 포함하는 PDCCH의 위치가 미리 ED에 알려져 있지 않다. 따라서, ED는 검색 공간에서 PDCCH 후보를 디코딩하기 위해 반복적으로 시도함으로써 물리적 시간 및 주파수 자원의 지정된 영역(검색 공간 내의 전술한 자원 서브세트)에서 PDCCH를 "맹목적으로" 검색해야 한다.
각각의 PDCCH 후보에 대해, ED는 DCI를 디코딩하기 위해 상이한 디코딩 파라미터를 시도할 필요가 있을 수 있다. 예를 들어, DCI는 상이한 페이로드 크기로 전송될 수 있다. 주어진 PDCCH 후보에 대해, 상이한 DCI 페이로드 크기가 상이한 인코딩/디코딩 코드 레이트를 초래할 수 있다. ED가 올바른 페이로드 크기를 사용하는 경우, ED는 후보 DCI를 디코딩할 수 있을 뿐이다. 실제로, ED는 시간 및 처리 제약으로 인해 블라인드 디코딩 중에 DCI 페이로드 크기의 무한한 수의 다른 조합을 실제로 시도할 수 없다. 예를 들어, 엔알(New Radio, NR)와 같은 셀룰러 통신에서, ED는 블라인드 디코딩 중에 단지 몇 개의(예를 들어, 슬롯당 총 4개의) 상이한 DCI 페이로드 크기를 시도하도록 제한될 수 있다.
특정한 시나리오에서, ED는 반송파 대역폭의 활성 대역폭 부분에 구성됨으로써, 페이로드 크기가 반송파 대역폭의 활성 BWP에 기초하는 DCI를 디코딩하려고 시도할 수 있다. 하지만, 이 경우, 크기가 (size1의) BWP에 기초하는 DCI 필드가 (size2의) 다른 BWP에서 데이터를 스케줄링하도록 해석되어야 하기 때문에(size2≠size1), DCI의 내용이 ED에 명확하지 않거나 또는 잘못 해석될 수 있다.
일반적으로 하향링크 제어 정보(Downlink Control Information, DCI)에 할당된 전송 자원의 위치를 결정하기 위한 시스템 및 방법을 설명하는 본 개시의 실시예에 의해 기술적 이점이 달성된다. UE의 그룹이 동일한 DCI 전송으로 동일한 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH) 또는 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH) 위치에 액세스할 수 있기 때문에, 기술적 이점의 예는 공통 DCI와 공통 데이터에 대한 효율적인 자원 활용을 포함할 수 있다.
본 개시의 일 양태에 따르면, 무선 통신을 위한 방법이 제공된다. 상기 무선 통신을 위한 방법이, 사용자 장비(user equipment, UE)가 활성 하향링크(downlink, DL) 대역폭 부분(bandwidth part, BWP)에서 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 내의 하향링크 제어 정보(downlink control information, DCI)를 수신하는 단계 - 상기 DCI는 데이터 전송을 스케줄링하기 위한 것이고, 상기 DCI는 주파수 영역 자원 할당 필드를 포함하고 있음 -; 및 상기 UE가 시작 자원 블록(resource block, RB) 및 인접하게 할당된 RB의 길이에 의해 정의되는 시간-주파수 자원에서 상기 데이터 전송을 수신하고, 상기 DCI 내의 상기 주파수 영역 자원 할당 필드의 값, 참조 RB, 및 제1 제어 자원 세트(control resource set, CORESET)의 RB의 개수에 기초하여 상기 시작 RB를 수신하며, 상기 DCI 내의 상기 주파수 영역 자원 할당 필드의 값 및 상기 제1 CORESET의 RB의 개수에 기초하여 상기 인접하게 할당된 RB의 길이를 수신하는 단계를 포함한다.
일부 실시예에서, 상기 참조 RB는 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(physical resource block, PRB)이고, 상기 제2 CORESET은 상기 DCI가 상기 UE에 의해 디코딩된 CORESET이다.
일부 실시예에서, 상기 무선 통신을 위한 방법은, 상기 UE가, 상기 DCI는 인터리빙되지 않은 VRB-PRB 매핑에 기반한 상기 데이터 전송을 위한 폴백 DCI이고, 상기 폴백 DCI는 공통 검색 공간에서 디코딩되며, 상기 데이터 전송을 위해, 가상 RB n이
Figure pct00001
에 매핑된다고 결정하는 단계를 더 포함한다. 여기서,
Figure pct00002
는 상기 폴백 DCI가 상기 UE에 의해 디코딩된 상기 CORESET 내의 가장 낮은 번호의 PRB이다.
일부 실시예에서, 상기 활성 DL BWP는 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 상기 데이터 전송을 위한 RB의 분포를 포함한다. 여기서, 상기 시작 RB는 가상 시작 RB이고, 상기 인접하게 할당된 RB의 길이는 인접하게 할당된 가상 RB의 길이이며, 상기 가상 시작 RB는 상기 인접하게 할당된 가상 RB의 길이의 시작을 정의한다.
일부 실시예에서, 상기 데이터 전송을 수신하는 단계는, 상기 물리 RB의 인터리빙된 번들에 의해 정의되는 시간-주파수 자원에서 상기 데이터 전송을 수신하고, 상기 가상 시작 RB, 상기 인접하게 할당된 가상 RB의 길이, 상기 인터리브 매핑, 및 물리 RB의 참조 번들에 기초하여 상기 물리 RB의 인터리빙된 번들을 수신하는 단계를 포함한다.
일부 실시예에서, 상기 물리 RB의 참조 번들은, 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(PRB)을 포함하는 물리 RB의 번들이고, 상기 제2 CORESET는 상기 DCI가 상기 UE에 의해 디코딩된 CORESET이다.
일부 실시예에서, 상기 DCI는 폴백 DCI이다.
일부 실시예에서, 제1 CORESET는 "0"의 CORESET 식별자와 연관된다.
일부 실시예에서, 상기 DCI는 UE의 그룹과 연관되고, 상기 DCI에 의해 스케줄링된 상기 데이터 전송은 상기 UE의 그룹 내의 모든 UE에 대해 동일한 시간-주파수 자원에 할당된 하향링크 데이터 전송이다.
본 개시의 다른 양태에 따르면, 프로세서 및 컴퓨터 실행가능 명령이 저장되어 있는 컴퓨터 판독가능 매체를 포함하는 사용자 장비(user equipment, UE)가 제공된다. 상기 컴퓨터 실행가능 명령이 상기 프로세서에 의해 실행될 때, 상기 컴퓨터 실행가능 명령은 상기 UE로 하여금: 상기 UE가 활성 하향링크(DL) 대역폭 부분(BWP)에서 물리 하향링크 제어 채널(PDCCH) 내의 하향링크 제어 정보(DCI)를 수신하게 하고 - 여기서, 상기 DCI는 데이터 전송을 스케줄링하기 위한 것이고, 상기 DCI는 주파수 영역 자원 할당 필드를 포함하고 있음 -; 상기 UE가, 시작 자원 블록(RB) 및 인접하게 할당된 RB의 길이에 의해 정의되는 시간-주파수 자원에서 상기 데이터 전송을 수신하고, 상기 DCI 내의 상기 주파수 영역 자원 할당 필드의 값, 참조 RB, 및 제1 제어 자원 세트(CORESET)의 RB의 개수에 기초하여 상기 시작 RB를 수신하게 하며, 상기 DCI 내의 상기 주파수 영역 자원 할당 필드의 값 및 상기 제1 CORESET의 RB의 개수에 기초하여 상기 인접하게 할당된 RB의 길이를 수신하게 한다.
일부 실시예에서, 상기 참조 RB는 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(PRB)이고, 상기 제2 CORESET는 상기 DCI가 상기 UE에 의해 디코딩된 CORESET이다.
일부 실시예에서, 상기 컴퓨터 실행가능 명령은, 상기 프로세서에 의해 실행될 때, 추가적으로 상기 UE로 하여금: 상기 DCI가 인터리빙되지 않은 VRB-PRB 매핑에 기반한 상기 데이터 전송을 위한 폴백 DCI이고; 상기 폴백 DCI가 공통 검색 공간에서 디코딩되며, 상기 데이터 전송을 위해, 가상 RB n이
Figure pct00003
에 매핑되고,
Figure pct00004
은 상기 폴백 DCI가 상기 UE에 의해 디코딩된 상기 CORESET 내의 가장 낮은 번호의 PRB이라고 결정하게 한다.
일부 실시예에서, 상기 활성 DL BWP는 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 상기 데이터 전송을 위한 RB의 분포를 포함한다. 여기서, 상기 시작 RB는 가상 시작 RB이고, 상기 인접하게 할당된 RB의 길이는 인접하게 할당된 가상 RB의 길이이며, 상기 가상 시작 RB는 상기 인접하게 할당된 가상 RB의 길이의 시작을 정의한다.
일부 실시예에서, 상기 UE로 하여금 상기 데이터 전송을 수신하게 하는 상기 컴퓨터 실행가능 명령은, 상기 UE로 하여금 상기 물리 RB의 인터리빙된 번들에 의해 정의되는 시간-주파수 자원에서 상기 전송을 수신하게 하고, 상기 가상 시작 RB, 상기 인접하게 할당된 가상 RB의 길이, 상기 인터리브 매핑, 및 물리 RB의 참조 번들에 기초하여 상기 물리 RB의 인터리빙된 번들을 수신하게 한다.
일부 실시예에서, 상기 물리 RB의 참조 번들은, 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(PRB)을 포함하는 물리 RB의 번들이고, 상기 제2 CORESET는 상기 DCI가 상기 UE에 의해 디코딩된 CORESET이다.
일부 실시예에서, 상기 DCI는 폴백 DCI이다.
일부 실시예에서, 상기 제1 CORESET는 "0"의 CORESET 식별자와 연관된다.
일부 실시예에서, 상기 DCI는 UE의 그룹과 연관되고, 상기 DCI에 의해 스케줄링된 상기 데이터 전송은 상기 UE의 그룹 내의 모든 UE에 대해 동일한 시간-주파수 자원에 할당된 하향링크 데이터 전송이다.
본 개시의 다른 양태에 따르면, 무선 통신을 위한 방법이 제공된다. 상기 무선 통신을 위한 방법은, 기지국이 활성 하향링크(DL) 대역폭 부분(BWP)에서 물리 하향링크 제어 채널(PDCCH) 내의 하향링크 제어 정보(DCI)를 전송하는 단계 - 상기 DCI는 데이터 전송을 스케줄링하기 위한 것이고, 상기 DCI는 주파수 영역 자원 할당 필드를 포함하고 있음 -; 및 상기 기지국이 시작 자원 블록(RB) 및 인접하게 할당된 RB의 길이에 의해 정의되는 시간-주파수 자원에서 상기 데이터 전송을 전송하고, 상기 DCI 내의 상기 주파수 영역 자원 할당 필드의 값, 참조 RB, 및 제1 제어 자원 세트(CORESET)의 RB의 개수에 기초하여 상기 시작 RB, 및 상기 DCI 내의 상기 주파수 영역 자원 할당 필드의 값 및 상기 제1 CORESET의 RB의 개수에 기초하여 상기 인접하게 할당된 RB의 길이를 사용자 장비(user equipment, UE)에 전송하는 단계를 포함한다.
일부 실시예에서, 상기 참조 RB는 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(PRB)이고, 상기 제2 CORESET는 상기 DCI가 상기 UE에 의해 디코딩된 CORESET이다.
일부 실시예에서, 상기 활성 DL BWP는 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 상기 데이터 전송을 위한 RB의 분포를 포함한다. 여기서, 상기 시작 RB는 가상 시작 RB이고, 상기 인접하게 할당된 RB의 길이는 인접하게 할당된 가상 RB의 길이이며, 상기 가상 시작 RB는 상기 인접하게 할당된 가상 RB의 길이의 시작을 정의한다.
일부 실시예에서, 상기 데이터 전송을 전송하는 단계는, 상기 물리 RB의 인터리빙된 번들에 의해 정의되는 시간-주파수 자원에서 상기 데이터 전송을 전송하고, 상기 가상 시작 RB, 상기 인접하게 할당된 가상 RB의 길이, 상기 인터리브 매핑, 및 물리 RB의 참조 번들에 기초하여 상기 물리 RB의 인터리빙된 번들을 전송하는 단계를 포함한다.
일부 실시예에서, 상기 물리 RB의 참조 번들은, 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(PRB)을 포함하는 물리 RB의 번들이고, 상기 제2 CORESET는 상기 DCI가 상기 UE에 의해 디코딩된 CORESET이다.
일부 실시예에서, 상기 DCI는 폴백 DCI이다.
일부 실시예에서, 제1 CORESET는 "0"의 CORESET 식별자와 연관된다.
일부 실시예에서, 상기 DCI는 UE의 그룹과 연관되고, 상기 DCI에 의해 스케줄링된 상기 데이터 전송은 상기 UE의 그룹 내의 모든 UE에 대해 동일한 시간-주파수 자원에 할당된 하향링크 데이터 전송이다.
본 개시의 또 다른 양태에 따르면, 프로세서 및 컴퓨터 실행가능 명령이 저장되어 있는 컴퓨터 판독가능 매체를 포함하는 장치가 제공된다. 상기 프로세서에 의해 실행될 때, 상기 컴퓨터 실행가능 명령은 상기 장치로 하여금: 활성 하향링크(DL) 대역폭 부분(BWP)에서 물리 하향링크 제어 채널(PDCCH) 내의 하향링크 제어 정보(DCI)를 전송하게 하고 - 여기서, 상기 DCI는 데이터 전송을 스케줄링하기 위한 것이고, 상기 DCI는 주파수 영역 자원 할당 필드를 포함하고 있음 -; 시작 자원 블록(RB) 및 인접하게 할당된 RB의 길이에 의해 정의되는 시간-주파수 자원에서 상기 데이터 전송을 사용자 장비(user equipment, UE)에 전송하게 하며, 상기 DCI 내의 상기 주파수 영역 자원 할당 필드의 값, 참조 RB, 및 제1 제어 자원 세트(CORESET)의 RB의 개수에 기초하여 상기 시작 RB를 전송하게 하고, 상기 DCI 내의 상기 주파수 영역 자원 할당 필드의 값 및 상기 제1 CORESET의 RB의 개수에 기초하여 상기 인접하게 할당된 RB의 길이를 전송하게 한다.
일부 실시예에서, 상기 참조 RB는 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(PRB)이고, 상기 제2 CORESET는 상기 DCI가 상기 UE에 의해 디코딩된 CORESET이다.
일부 실시예에서, 상기 활성 DL BWP는 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 상기 데이터 전송을 위한 RB의 분포를 포함한다. 여기서, 상기 시작 RB는 가상 시작 RB이고, 상기 인접하게 할당된 RB의 길이는 인접하게 할당된 가상 RB의 길이이며, 상기 가상 시작 RB는 상기 인접하게 할당된 가상 RB의 길이의 시작을 정의한다.
일부 실시예에서, 상기 데이터 전송을 전송하는 단계는, 상기 물리 RB의 인터리빙된 번들에 의해 정의되는 시간-주파수 자원에서 상기 데이터 전송, 상기 가상 시작 RB, 상기 인접하게 할당된 가상 RB의 길이, 상기 인터리브 매핑, 및 물리 RB의 참조 번들에 기초하여 상기 물리 RB의 인터리빙된 번들을 전송하는 단계를 포함한다.
일부 실시예에서, 상기 물리 RB의 참조 번들은, 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(PRB)을 포함하는 물리 RB의 번들이고, 상기 제2 CORESET는 상기 DCI가 상기 UE에 의해 디코딩된 CORESET이다.
일부 실시예에서, 상기 DCI는 폴백 DCI이다.
일부 실시예에서, 제1 CORESET는 "0"의 CORESET 식별자와 연관된다.
일부 실시예에서, 상기 DCI는 UE의 그룹과 연관되고, 상기 DCI에 의해 스케줄링된 상기 데이터 전송은 상기 UE의 그룹 내의 모든 UE에 대해 동일한 시간-주파수 자원에 할당된 하향링크 데이터 전송이다.
본 발명 및 본 발명의 이점을 더 완전하게 이해하기 위해, 이제 첨부 도면과 관련하여 채택된 다음의 설명을 참조한다.
도 1은 통신 시스템의 네트워크 다이어그램이다.
도 2는 소프트웨어 구성가능 무선 인터페이스를 구성하기 위한 무선 인터페이스 매니저의 블록도이다.
도 3a는 예시적인 클라이언트측 전자 장치의 블록도이다.
도 3b는 예시적인 네트워크측 전자 장치의 블록도이다.
도 4a는 특정 유형의 전송을 위해 스케줄링된 VRB의 서브세트를 포함하는 가상 자원 블록(virtual resource block, VRB) 세트의 예이다.
도 4b는 도 4a의 VRB의 서브세트를 포함하는 VRB의 세트를 물리 자원 블록(physical resource block, PRB)의 세트에 인터리브 매핑한 것을 나타낸 예이다.
도 5는 VRB의 서브세트를 포함하는 VRB 세트를 상이한 활성 대역폭 부분(bandwidth part, BWP)을 가진 서로 다른 3개의 사용자 장비(user equipment, UE)에 대한 PRB 세트에 비인터리브 매핑한 것을 나타낸 예이다.
도 6은 VRB의 서브세트를 포함하는 VRB의 세트를 VRB와는 다른 활성 BWP 및 다른 부반송파 간격 구성을 가진 서로 다른 3개의 UE에 대한 PRB 세트에 비인터리브 매핑한 것을 나타낸 예이다.
도 7은 VRB의 서브세트를 포함하는 VRB의 세트를 상이한 활성 BWP를 가진 서로 다른 3개의 UE에 대한 PRB 세트에 인터리브 매핑한 것을 나타낸 예이다.
도 8은 VRB의 서브 세트를 포함하는 VRB의 세트를 VRB와는 다른 활성 BWP 및 다른 부반송파 간격 구성을 가진 서로 다른 3개의 UE에 대한 PRB의 세트에 인터리브 매핑한 것을 나타낸 예이다.
도 9는 하향링크 제어 정보(Downlink Control Information, DCI)에 할당된 전송 자원을 찾는 데 있어서 UE에 의해 사용되는 방법을 설명하는 흐름도이다.
도 10은 전송 자원 할당하는 데 있어서 네트워크측 장치에 의해 사용되는 방법을 설명하는 흐름도이다.
도 11은 하향링크 제어 정보(DCI)에 할당된 전송 자원을 찾는 데 있어서 UE에 의해 사용되는 다른 방법을 설명하는 흐름도이다.
도 12는 전송 자원을 할당하는 데 있어서 네트워크측 장치에 의해 사용되는 다른 방법을 설명하는 흐름도이다.
다른 도면에 있는 대응하는 숫자와 기호가 달리 지시되지 않는 한 일반적으로 대응하는 부분을 지칭한다. 이러한 도면은 실시예의 관련 양태를 명확하게 설명하기 위해 도시된 것으로 반드시 축척대로 도시되어 있지 않다.
이하에서는 현재 바람직한 실시예의 구조, 제조, 및 사용에 대해 상세하게 논의한다. 하지만, 본 발명은 매우 다양한 특정 상황에서 구현될 수 있는 다수의 적용 가능한 발명의 개념을 제공한다는 것을 이해해야 한다. 논의된 특정 실시예는 본 발명을 제조하고 사용하기 위한 특정 방법을 예시하는 것에 불과하며, 본 발명의 범위를 제한하지 않는다.
도 1은 본 개시의 실시예가 구현될 수 있는 예시적인 통신 시스템(100)을 도시한다. 일반적으로, 통신 시스템(100)은 복수의 무선 또는 유선 엘리먼트가 데이터 및 다른 콘텐츠를 통신할 수 있게 한다. 통신 시스템(100)의 목적은 브로드캐스트, 내로캐스트(narrowcast), 및 사용자 장치-사용자 장치 등을 통해 콘텐츠(음성, 데이터, 비디오, 텍스트)를 제공하는 것일 수 있다. 통신 시스템(100)은 대역폭과 같은 자원을 공유하여 작동할 수 있다.
이 예에서, 통신 시스템(100)은 전자 장치(electronic device, ED)(110a-110c), 무선 액세스 네트워크(radio access network, RAN)(120a-120b), 코어 네트워크(130), 공중 전화 교환 네트워크(public switched telephone network, PSTN)(140), 인터넷(150), 및 다른 네트워크(160)를 포함한다. 이러한 구성 요소 또는 엘리먼트의 특정한 개수가 도 1에 도시되어 있지만, 어떠한 합리적인 개수의 이러한 구성 요소 또는 엘리먼트도 통신 시스템(100)에 포함될 수 있다.
ED(110a-110c)는 통신 시스템(100) 내에서 작동하거나, 또는 통신하거나, 또는 둘 다를 수행하도록 구성된다. 예를 들어, ED(110a-110c)는 무선 또는 유선 통신 채널을 통해 송신되거나, 또는 수신되거나, 또는 둘 다를 수행하도록 구성된다. 각각의 ED(110a-110c)는 무선 작동을 위한 임의의 적합한 최종 사용자 장치를 나타내고, 이러한 장치를 사용자 장비/장치(user equipment, UE), 무선 송수신 유닛(wireless transmit/receive unit, WTRU), 모바일 스테이션, 고정형 또는 이동형 가입자 유닛, 셀룰러 폰, 스테이션(station, STA), 기계 유형 통신(machine type communication, MTC) 장치, 개인 휴대 정보 단말기(personal digital assistant, PDA), 스마트폰, 랩탑, 컴퓨터, 태블릿, 무선 센서, 또는 가전 제품이라 한다.
도 1에서, RAN(120a-120b)은 각각 기지국(170a-170b)을 포함한다. 각각의 기지국(170a-170b)은 하나 이상의 ED(110a-110c)와 무선으로 인터페이스하도록 구성되어 임의의 다른 기지국(170a-170b), 코어 네트워크(130), PSTN(140), 인터넷(150), 및/또는 다른 네트워크(160)로의 접속을 가능하게 한다. 예를 들어, 기지국(170a-170b)은 베이스 트랜시버 스테이션(base transceiver station, BTS), Node-B(NodeB), 진화된 NodeB(eNodeB), 홈 eNodeB, gNodeB, 전송점(transmission point, TP), 사이트 컨트롤러, 액세스 포인트(access point, AP), 또는 무선 라우터와 같은 잘 알려진 몇몇 장치들 중 하나 이상을 포함할 수 있다. 임의의 ED(110a-110c)는 대안적으로 또는 추가적으로, 임의의 다른 기지국(170a-170b), 인터넷(150), 코어 네트워크(130), PSTN(140), 다른 네트워크(160), 또는 이들의 임의의 조합과 인터페이스하거나, 또는 접속하거나 또는 통신하도록 구성될 수 있다. 통신 시스템(100)은 RAN, 예컨대 RAN(120b)을 포함할 수 있고, 대응하는 기지국(170b)은 도시된 바와 같이 인터넷(150)을 통해 코어 네트워크(130)에 접속한다.
ED(110a-110c)와 기지국(170a-170b)은 본 명세서에서 설명된 기능 및/또는 실시예 중 일부 또는 전부를 구현하도록 구성될 수 있는 통신 장비의 예이다. 도 1에 도시된 실시예에서, 기지국(170a)은 다른 기지국, 기지국 제어기(base station controller, BSC), 무선 네트워크 제어기(radio network controller, RNC), 릴레이 노드, 엘리먼트, 및/또는 장치를 포함할 수 있는 RAN(120a)의 일부를 구성한다. 임의의 기지국(170a, 170b)은 도시된 바와 같이 단일 엘리먼트이거나, 또는 대응하는 RAN에 분산되는 복수의 엘리먼트이거나, 또는 그 외의 것일 수 있다. 또한, 기지국(170b)은 다른 기지국, 엘리먼트, 및/또는 장치를 포함할 수 있는 RAN(120b)의 일부를 구성한다. 각각의 기지국(170a-170b)은 때때로 "셀" 또는 "커버리지 영역"으로 불리는 특정 지리적 지역이나 영역 내에서 무선 신호를 송신하거나 및/또는 수신한다. 셀은 셀 섹터로 더 분할될 수 있고, 기지국(170a-170b)은 예를 들어, 복수의 송수신기를 이용하여 복수의 섹터에 서비스를 제공할 수 있다. 일부 실시예에서, 무선 액세스 기술이 이를 지원하는 구축된 피코셀 또는 펨토셀이 있을 수 있다. 일부 실시예에서, 예를 들어 다중입력 다중출력(multiple-input multiple-output, MIMO) 기술을 이용하여, 각각의 셀에는 복수의 송수신기가 사용될 수 있다. 도시된 RAN(120a-120b)의 개수는 예시적인 것에 불과하다. 통신 시스템(100)을 고안할 때 임의의 수의 RAN을 고려할 수 있다.
기지국(170a-170b)은 무선 통신 링크, 예를 들어 무선 주파수(radio frequency, RF), 마이크로파, 적외선(infrared, IR) 등을 이용하여 하나 이상의 무선 인터페이스(190)를 통해 하나 이상의 ED(110a-110c)와 통신한다. 무선 인터페이스(190)는 임의의 적절한 무선 접속 기술을 사용할 수 있다. 예를 들어, 통신 시스템(100)은 코드분할 다중접속(code division multiple access, CDMA), 시분할 다중접속(time division multiple access, TDMA), 주파수 분할 다중접속(frequency division multiple access, FDMA), 직교 FDMA(frequency division multiple access, OFDMA) 또는 무선 인터페이스(190)에서의 단일 반송파 FDMA(single-carrier FDMA, SC-FDMA)와 같은 하나 이상의 채널 접속 방법을 구현할 수 있다.
기지국(170a-170b)은 광대역 CDMA(wideband CDMA, WCDMA)를 이용하여 무선 인터페이스(190)를 구축하기 위해 범용 이동 통신 시스템(Universal Mobile Telecommunication System, UMTS) 지상 무선 접속(Terrestrial Radio Access)을 구현할 수 있다. 그렇게 함으로써, 기지국(170a-170b)은 고속 패킷 접속(High Speed Packet Access, HSPA), 선택적으로 고속 하향링크 패킷 접속(High Speed Packet Access, HSDPA)를 포함하는 진화된 HPSA(HSPA+), 고속 패킷 상향링크 접속(High Speed Packet Uplink Access, HSUPA), 또는 둘 다와 같은 프로토콜을 구현할 수 있다. 대안적으로, 기지국(170a-170b)은 LTE(Long-Term Evolution), LTE-A, 및/또는 LTE-B를 이용하여 진화된 UMTS 지상 무선 접속(Evolved UTMS Terrestrial Radio Access, E-UTRA)과의 무선 인터페이스(190)를 구축할 수 있다. 통신 시스템(100)이 전술한 바와 같은 방식을 포함하여 다중 채널 접속 기능을 사용할 수 있는 것으로 간주된다. 무선 인터페이스를 구현하기위한 다른 무선 기술은 IEEE 802.11, 802.15, 802.16, CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, IS-2000, IS-95, IS-856, GSM, EDGE, 및 GERAN을 포함한다. 물론, 다른 다중 접속 방식과 무선 프로토콜이 사용될 수 있다.
RAN(120a-120b)은 코어 네트워크(130)와 통신하여 ED(110a-110c)에 다양한 서비스, 예컨대 음성, 데이터, 및 기타 서비스를 제공한다. RAN(120a-120b) 및/또는 코어 네트워크(130)는 코어 네트워크(130)에 의해 직접 제공되거나 또는 제공되지 않을 수 있는 하나 이상의 다른 RAN(도시되지 않음)과 직접적으로 또는 간접적으로 통신할 수 있고, RAN(120a), RAN(120b), 또는 양쪽 모두와 동일한 무선 접속 기술을 채택하거나 또는 채택하지 않을 수 있다. 코어 네트워크(130)도 (i) RAN(120a-120b) 또는 ED(110a-110c) 또는 양쪽 모두와, (ii) 다른 네트워크(예컨대, PSTN 140, 인터넷(150), 및 다른 네트워크 160) 사이의 게이트웨이 액세스의 역할을 할 수 있다. 또한, ED(110a-110c) 중 일부 또는 전부는 서로 다른 무선 기술 및/또는 프로토콜을 사용하여 서로 다른 무선 링크를 통해 서로 다른 무선 네트워크와 통신하기 위한 기능을 포함할 수 있다. 무선 통신 대신에(또는 그에 추가하여), ED는 유선 통신 채널을 통해 서비스 제공자 또는 스위치(도시되지 않음), 및 인터넷(150)과 통신할 수 있다. PSTN(140)은 기존 전화 서비스(plain old telephone service, POTS)를 제공하기 위한 회선 교환 전화 네트워크를 포함할 수 있다. 인터넷(150)은 컴퓨터와 서브넷(인트라넷) 또는 양쪽의 네트워크를 포함할 수 있고, 인터넷 프로토콜(internet protocol, IP), 전송 제어 프로토콜(transmission control protocol, TCP), 사용자 데이터그램 프로토콜(user datagram protocol, UDP)과 같은 프로토콜을 통합한다. ED(110a-110c)는 복수의 무선 접속 기술에 따라 동작할 수 있는 멀티모드 장치일 수 있고, 이를 지원하는 데 필요한 복수의 송수신기를 포함한다.
본 발명의 실시예에서, 통신 시스템(100)은 서로 다른 전송 소스 유형 및/또는 서로 다른 전송 목적지 유형을 가진 이종 통신 시스템이다. 서로 다른 전송 소스 유형은 서로 다른 전송 기능을 가지고 있을 수 있다. 서로 다른 송신 목적지 유형은 서로 다른 수신 능력을 가지고 있을 수 있다.
이종 통신 시스템에서, 도 1의 ED(110a-110c)는 다른 기능과 요구사항을 가진 다른 유형의 장치를 포함한다. 더 구체적으로, 각각의 ED(110a-110c)는 서비스 품질(Quality of Service, QoS), 지연(latency), 처리율(throughput), 동시 연결 등에 대한 특정한 요구사항을 갖는 서로 다른 트래픽 유형과 연관되어 있을 수 있다. 서로 다른 트래픽 유형과 관련된 예시적인 ED(110a-110c)가 스마트폰, 컴퓨터, 텔레비전, 보안 카메라, 센서, 온도 조절 장치, 심박수 모니터 등을 포함할 수 있다. 특정한 예에서, ED(110a)는 컴퓨터이고, ED(110b)는 센서이며, ED(110c)는 심박수 모니터이다. ED(110a-110c) 각각은 서로 다른 무선 통신 능력과 요구사항을 가지고 있을 수 있다.
또한, 이종 통신 시스템에서, 기지국(170a-170b)은 무선 통신 링크를 이용하여 하나 이상의 소프트웨어 구성가능 무선 인터페이스(190)를 통해 하나 이상의 ED(110a-110c)와 통신할 수 있다. 서로 다른 무선 액세스 네트워크 장치(예를 들어, 기지국(170a-170b))과 전자 장치(예를 들어, ED (110a-110c))는 서로 다른 전송 능력 및/또는 요구사항을 가지고 있을 수 있다. 일 예로서, eNB는 복수의 송신 안테나를 가질 수 있다. 피코 셀이 하나의 송신 안테나 또는 비교적 적은 수의 송신 안테나를 가질 수 있다. 또한, 피코셀은 eNB와 비교하여 더 낮은 최대 전력 레벨로 전송할 수 있다. 유사하게, 컴퓨터는 센서보다 훨씬 높은 데이터 대역폭 요구사항과 신호 처리 능력을 가질 수 있다. 다른 예에서, 심박수 모니터는 텔레비전보다 훨씬 더 엄격한 지연 및 신뢰도 요구사항을 가질 수 있다.
따라서, 이종 통신 시스템, 예컨대 이종 통신 시스템(100)에서, 서로 다른 쌍의 통신 장치(즉, 네트워크 장치와 전자 장치; 또는 네트워크 장치 및 다른 네트워크 장치; 또는 전자 장치 및 다른 전자 장치)는 다른 전송 기능 및/또는 전송 요구 사항을 가지고 있다. 서로 다른 전송 능력 및/또는 전송 요구사항이 서로 다른 장치, 통신, 또는 요구사항에 대해 서로 다른 무선 인터페이스 구성을 선택할 수 있는 이용 가능성에 의해 충족될 수 있다.
도 2는 소프트웨어 구성가능 무선 인터페이스(190)를 구성하기 위한 무선 인터페이스 매니저(200)를 개략적으로 나타낸 도면이다. 무선 인터페이스 매니저(200)는, 예를 들어, 무선 인터페이스(190)의 파라미터를 정의하고 무선 인터페이스(190)에 의해 전송이 어떻게 이루어지거나 및/또는 수신되는지를 집합적으로 지정하는 다수의 컴포넌트 또는 빌딩 블록을 포함하는 모듈일 수 있다.
무선 인터페이스 매니저(200)의 컴포넌트는 파형 컴포넌트(205), 프레임 구조 컴포넌트(210), 다중 접속 방식 컴포넌트(215), 프로토콜 컴포넌트(220), 및 코딩 및 변조 컴포넌트(225) 중 적어도 하나를 포함한다.
파형 컴포넌트(205)는 전송되는 신호의 모양과 형태를 지정할 수 있다. 파형 옵션은 직교 다중 접속 파형과 비직교 다중 접속 파형을 포함할 수 있다. 이러한 파형 옵션의 비제한적인 예가 직교 주파수 분할 다중화(Orthogonal Frequency Division Multiplexing, OFDM), 필터링된 OFDM(Filtered OFDM, f-OFDM), 시간 윈도윙 OFDM(Time windowing OFDM), 필터 뱅크 멀티캐리어(Filter Bank Multicarrier, FBMC), 범용 필터링된 멀티캐리어(Universal Filtered Multicarrier, UFMC), 일반화된 주파수 분할 다중화(Generalized Frequency Division Multiplexing, GFDM), 웨이블릿 패킷 변조(Wavelet Packet Modulation, WPM), FTN(Nyquist Than Faster) 파형, 및 낮은 피크-대-평균 전력비 파형(low Peak to Average Power Ratio Waveform, PAPR WF)을 포함한다.
프레임 구조 컴포넌트(210)는 프레임 또는 프레임의 그룹의 구성을 지정할 수 있다. 프레임 구조 컴포넌트(210)는 시간, 주파수, 파일럿 서명, 코드, 또는 프레임이나 프레임의 그룹의 다른 파라미터 중 하나 이상을 나타낼 수 있다.
프레임 구조 옵션의 비제한적인 예가 타임슬롯의 심볼의 개수, 프레임의 타임슬롯의 개수, 및 각각의 타임슬롯의 지속시간(때로는 전송 시간 간격, TTI, 또는 전송 시간 단위(TTU)로 알려져 있음)을 포함한다. 프레임 구조 컴포넌트는 타임슬롯이 구성 가능한 멀티-레벨 TTI, 또는 고정된 TTI, 또는 구성 가능한 단일 레벨 TTI인지 여부를 지정할 수도 있다. 프레임 구조 컴포넌트는 서로 다른 프레임 구조 구성을 위한 공존 메커니즘을 추가로 지정할 수 있다.
소정의 OFDM 기반의 파형과 같은 일부 파형의 경우, 프레임 구조 컴포넌트는 하나 이상의 연관된 파형 파라미터, 예컨대 부반송파 간격 폭, 심볼 지속시간, 사이클릭 프리픽스(cyclic prefix, CP) 길이, 채널 대역폭, 보호 대역(guard band)/부반송파, 및 샘플링 크기와 주파수를 지정할 수도 있다.
추가적으로, 프레임 구조 컴포넌트(210)는 프레임 구조가 시분할 듀플렉스 통신 또는 주파수 분할 듀플렉스 통신에 사용되는지 여부를 추가로 지정할 수 있다.
파형 컴포넌트와 프레임 구조 컴포넌트의 규격이 함께 "뉴머롤러지(numerology)"로 알려져 있다. 따라서, 무선 인터페이스(190)는 다수의 무선 인터페이스 구성 파라미터, 예컨대 부반송파 간격, CP 길이, 심볼 길이, 슬롯 길이, 및 슬롯당 심볼을 정의하는 뉴머롤러지 컴포넌트(230)를 포함할 수 있다.
부반송파 간격 구성으로도 알려져 있는 이러한 뉴머롤러지는, 서로 다른 뉴머롤러지의 부반송파 간격이 서로 배수이고, 서로 다른 뉴머롤러지의 타임슬롯 길이가 서로의 배수라는 의미에서 확장 가능할 수 있다. 다수의 뉴머롤러지에 걸친 이러한 확장 가능한 설계는 구현 이점, 예를 들어 시분할 듀플렉스(time division duplex, TDD) 컨텍스트에서 확장 가능한 총 OFDM 심볼 지속시간을 제공한다.
프레임은 확장 가능한 뉴머롤러지 중 하나 또는 이들의 조합을 이용하여 구성될 수 있다. 예를 들어, 60kHz 부반송파 간격을 갖는 뉴머롤러지는 상대적으로 짧은 OFDM 심볼 지속시간을 가지고 있고(OFDM 심볼 지속시간은 부반송파 간격과 반비례하기 때문에), 이로 인해 60kHz 뉴머롤러지는 특히 V2X(Vehicle-to-Any) 통신과 같은 초저지연 통신에 적합하다. 저지연 통신에 적합한 비교적 짧은 OFDM 심볼 지속시간을 가진 뉴머롤러지의 추가적인 예가 30kHz 부반송파 간격을 가진 뉴머롤러지이다. 15kHz 부반송파 간격을 가진 뉴머롤러지는 LTE와 호환 가능하거나, 또는 장치가 네트워크에 처음 접속하기 위한 디폴트 뉴머롤러지의 역할을 할 수 있다. 이 15kHz 뉴머롤러지는 또한 광대역 서비스에 적합할 수 있다. 7.5 kHz 간격을 가진 뉴머롤러지(비교적 긴 OFDM 심볼 지속시간을 가진 뉴머롤러지)는 커버리지 향상 및 브로드캐스팅에 특히 유용할 수 있다. 이러한 뉴머롤러지에 대한 추가적인 사용이 당업자에게 명백하거나 또는 명백해질 것이다. 나열된 4개의 뉴머롤러지 중에서, 30kHz 부반송파 간격과 60kHz 부반송파 간격을 가진 뉴머롤러지는 더 넓은 부반송파 간격으로 인해 도플러 확산(빠른 이동 조건)에 더 강건하다. 서로 다른 뉴머롤러지가 다른 물리 계층 파라미터, 예컨대 동일한 부반송파 간격 및 서로 다른 사이클릭 프리픽스 길이에 대해 서로 다른 값을 사용할 수 있다는 것이 추가로 고려된다.
다른 부반송파 간격, 예컨대 더 높거나 더 낮은 부반송파 간격이 사용될 수 있다는 것이 추가로 고려된다. 예를 들어, 2n배 만큼 변하는 다른 부반송파 간격이 120 kHz와 3.75 kHz를 포함한다.
다른 예에서, 2개 이상의 뉴머롤러지가 모두 2n배로 반드시 관련되어 있지 않고 가장 작은 부반송파 간격의 정수배인 부반송파 간격을 가진 더 제한된 확장성이 구현될 수 있다. 그 예가 15 kHz, 30 kHz, 45 kHz, 60 kHz 부반송파 간격을 포함한다.
다른 예에서, 15 kHz, 20 kHz, 30 kHz, 60 kHz와 같은 가장 작은 부반송파 간격의 정수배가 아닌 확장 가능하지 않은 부반송파 간격이 사용될 수 있다.
OFDM 기반 신호가 다수의 뉴머롤러지가 동시에 공존하는 신호를 전송하는 데 사용될 수 있다. 더 구체적으로, 복수의 부대역 OFDM 신호가 각각 다른 부대역 내에서 병렬로 생성될 수 있고, 각각의 부대역이 서로 다른 부반송파 간격을 가지고 있다(그리고 더 일반적으로 다른 뉴머롤러지를 가지고 있다). 복수의 부대역 신호는 전송을 위해, 예를 들어 하향링크 전송을 위해 단일 신호로 결합된다. 대안적으로, 복수의 부대역 신호는 예를 들어 사용자 장비(user equipment, UE)일 수 있는 복수의 전자 장치(electronic device, ED)로부터의 상향링크 전송을 위해 별도의 송신기로부터 전송될 수 있다.
서로 다른 뉴머롤러지의 사용은 무선 인터페이스(190)가 광범위한 서비스 품질(quality of service, QoS) 요구사항을 가진 다양한 세트의 사용 사례의 공존, 서로 다른 대역폭 또는 시그널링 오버헤드 요구사항뿐만 아니라 서로 다른 수준의 지연 또는 신뢰성 공차를 지원할 수 있게 한다. 일 예에서, 기지국은 선택된 뉴머롤러지 또는 선택된 뉴머롤러지의 단일 파라미터(예를 들어, 부반송파 간격)를 나타내는 인덱스를 ED에 시그널링할 수 있다. 이 시그널링에 기초하여, ED는 다른 정보, 예컨대 메모리에 저장된 후보 뉴머롤러지의 룩업 테이블로부터 선택된 뉴머롤러지의 파라미터를 결정할 수 있다.
무선 인터페이스(190)의 컴포넌트에 계속하여, 다중 접속 방식 컴포넌트(215)는 하나 이상의 ED에 대해 채널에 대한 접속이 어떻게 부여되는지를 지정할 수 있다. 다중 접속 기술 옵션의 비제한적인 예가, ED가 공통 물리 채널을 공유하는 방법, 예컨대 시분할 다중접속(Time Division Multiple Access, TDMA), 주파수 분할 다중 접속(FDMA), 코드분할 다중접속(Code Division Multiple Access, CDMA), 단일 캐리어 주파수 분할 다중 접속(Single Carrier Frequency Division Multiple Access, SC-FDMA), 저밀도 서명 멀티캐리어 코드분할 다중접속(Low Density Signature Multicarrier Code Division Multiple Access, LDS-MC-CDMA), 비직교 다중 접속(Orthogonal Multiple Access, NOMA), 패턴 분할 다중 접속(Pattern Division Multiple Access, PDMA), 래티스 파티션 다중 접속(Lattice Partition Multiple Access), 자원 스프레드 다중 접속(Resource Spread Multiple Access, RSMA), 및 스파스 코드 다중 접속(Sparse Code Multiple Access, SCMA)을 정의하는 기술을 포함한다. 또한, 다중 접속 기술 옵션이 예를 들어, 전용 채널 자원(즉, 복수의 ED 사이에는 공유가 없음), 경쟁 기반의 공유된 채널 자원, 비경쟁 기반의 공유된 채널 자원을 통한 스케줄링된 접속, 그랜트-프리 접속으로도 알려진 스케줄링되지 않은 접속, 직교 다중 접속, 및 인식 무선 기반의 접속을 포함할 수 있다.
프로토콜 컴포넌트(220)는 전송 및/또는 재전송이 어떻게 이루어질지를 지정할 수 있다. 전송 및/또는 재전송 메커니즘 옵션의 비제한적인 예가, 스케줄링된 데이터 파이프 크기, 전송을 위한 시그널링 메커니즘, 및/또는 재전송을 위한 시그널링 메커니즘을 지정하는 것을 포함한다.
코딩 및 변조 컴포넌트(225)는 전송/수신 목적을 위해 전송되는 정보가 어떻게 인코딩/디코딩되고 변조/복조될 수 있는지를 지정할 수 있다. 코딩은 에러 검출 및 순방향 에러 정정 방법을 지칭할 수 있다. 코딩 옵션의 비제한적인 예가 터보 트렐리스 코드(turbo trellis code), 터보 곱 코드(turbo product code), 파운틴 코드(fountain code), 저밀도 패리티 검사 코드, 및 폴라 코드를 포함한다. 변조는 간단히, 성상도(예를 들어, 변조 기술 및 순서를 포함)를 지칭하거나, 또는 더 구체적으로 다양한 유형의 고급 변조 방법, 예컨대 계층적 변조 및 저 PAPR 변조(low PAPR modulation)를 지칭할 수 있다.
무선 인터페이스가 복수의 컴포넌트 또는 빌딩 블록을 포함하고, 각각의 구성 요소가 복수의 후보 기술(본 명세서에서, 무선 인터페이스 능력 옵션이라고도 함)을 가지고 있을 수 있으므로, 무선 인터페이스 매니저(200)는 다수의 서로 다른 무선 인터페이스 프로파일을 구성하고 저장할 수 있다. 여기서, 각각의 무선 인터페이스 프로파일은 무선 인터페이스 능력 옵션의 각각의 세트를 정의한다.
예를 들어, 각각의 무선 인터페이스 능력 옵션 세트를 정의하는 각각의 무선 인터페이스 프로파일에서, 무선 인터페이스 능력 옵션이 무선 인터페이스의 컴포넌트 빌딩 블록 각각에 대해 선택된다. 서로 다른 무선 인터페이스 프로파일 각각은 전송 내용, 송신 조건, 및 수신 조건을 포함하는 서로 다른 송신 요구사항의 세트를 만족하도록 목표화될 수 있다.
한 쌍의 통신하는 송신-수신 장치의 전송 요구사항에 따라, 송신 요구사항을 가장 잘 만족하는 서로 다른 무선 인터페이스 프로파일 중 하나가 무선 인터페이스 매너저(200)로부터 선택될 수 있고, 한 쌍의 통신하는 송신-수신 장치 사이의 통신에 사용될 수 있다. .
추가적인 실시예에서, 무선 인터페이스 매니저(200)는 그 구성 요소, 프로파일, 또는 능력 옵션을 수정하거나 또는 갱신할 수 있다. 예를 들어, 무선 인터페이스 관리자(200)는 파형 및 프레임 구조 컴포넌트(205, 210)를 단일 뉴머롤러지 컴포넌트(230)로 대체할 수 있다. 반대로, 무선 인터페이스 매니저(200)는 코딩 및 변조 컴포넌트(225)를 개별 코딩 컴포넌트와 개별 변조 컴포넌트로 분리할 수 있다. 또한, 무선 인터페이스 매니저(200)는 미래에 결정될 새로운 소프트 무선 인터페이스 구성 컴포넌트를 추가할 수 있다.
무선 인터페이스 매니저(200)는 또한 임의의 주어진 컴포넌트의 능력 옵션을 수정하기 위해 특정한 구성 요소를 갱신할 수도 있다. 예를 들어, 무선 인터페이스 매니저(200)는 고차 변조 방식을 포함하도록 변조 및 코딩 컴포넌트(225)를 갱신할 수 있다.
저장된 컴포넌트, 프로파일, 및 후보 옵션을 갱신함으로써, 무선 인터페이스 매니저(200)는 다양한 무선 트래픽 유형과 서비스를 더 잘 수용하도록 유연하게 적응할 수 있다. 컴포넌트, 프로파일, 및 후보 옵션의 수정하거나 또는 갱신하는 것은 무선 인터페이스 매니저(200)가 초저지연 통신(Ultra-Reliable Low Latency Communication, URLLC), 향상된 모바일 브로드밴드(Enhanced Mobile Broadband, eMBB), 대규모 기계 유형 통신(massive machine-type communication, mMTC)에 대해 이미 고려한 것 이외의 트래픽 유형이나 서비스에 적합한 무선 인터페이스 프로파일을 제공할 수 있게 한다.
도 3a와 도 3b는 본 개시에 따른 방법 및 교시를 구현할 수 있는 예시적인 장치를 도시한다. 특히, 도 3a는 예시적인 ED(110)를 도시하고, 도 3b는 예시적인 기지국(170)을 도시한다. 이러한 구성 요소는 통신 시스템(100) 또는 임의의 다른 적절한 시스템에 사용될 수 있다.
도 3a에 도시된 바와 같이, ED(110)는 적어도 하나의 처리 유닛(300)을 포함한다. 처리 유닛(300)는 ED(110)의 다양한 처리 연산을 구현한다. 예를 들어, 처리 유닛(300)은 신호 코딩, 데이터 처리, 전력 제어, 입력/출력 처리, 또는 ED(110)가 통신 시스템(100)에서 작동할 수 있게 하는 임의의 다른 기능을 수행할 수 있다. 처리 유닛(300)은 앞에서 상세하게 설명한 기능 및/또는 실시예 중 일부 또는 전부를 구현하도록 구성될 수도 있다. 각각의 처리 유닛(300)은 하나 이상의 연산을 수행하도록 구성된 임의의 적절한 처리 장치 또는 컴퓨팅 장치를 포함한다. 각각의 처리 유닛(300)은, 예를 들어 마이크로프로세서, 마이크로컨트롤러, 디지털 신호 처리 장치(digital signal processor), 필드 프로그래머블 게이트 어레이(field programmable gate array), 또는 주문형 반도체(application specific integrated circuit)를 포함할 수 있다.
ED(110)는 또한 적어도 하나의 송수신기(302)를 포함한다. 송수신기(302)는 적어도 하나의 안테나(304) 또는 네트워크 인터페이스 컨트롤러(Network Interface Controller, NIC)에 의한 전송을 위해 데이터 또는 다른 콘텐츠를 변조하도록 구성된다. 송수신기(302)는 또한 적어도 하나의 안테나(304)에 의해 수신된 데이터 또는 다른 콘텐츠를 복조하도록 구성된다. 각각의 송수신기(302)는 무선 전송 또는 유선 전송을 위한 신호를 생성하거나 및/또는 무선으로 또는 유선으로 수신된 신호를 처리하기 위한 임의의 적절한 구조를 포함한다. 각각의 안테나(304)는 무선 신호 또는 유선 신호를 송신하거나 및/또는 수신하기 위한 임의의 적절한 구조를 포함한다. 하나 또는 복수의 송수신기(302)는 ED(110)에 사용될 수 있다. 하나 이상의 안테나(304)가 ED(110)에 사용될 수 있다. 단일 기능 유닛으로 도시되어 있지만, 송수신기(302)는 적어도 하나의 송신기와 적어도 하나의 별도의 수신기를 이용하여 구현될 수 있다.
ED(110)는 하나 이상의 입력/출력 장치(306) 또는 인터페이스(인터넷(150)에 대한 유선 인터페이스 등)를 더 포함한다. 입력/출력 장치(306)는 네트워크에서 사용자 또는 다른 장치와의 상호 작용을 허용한다. 각각의 입력/출력 장치(306)는, 네트워크 인터페이스 통신을 포함하여 사용자에게 정보를 제공하거나 또는 사용자로부터 정보를 수신하기 위한 임의의 적절한 구조, 예컨대 스피커, 마이크, 키패드, 키보드, 디스플레이, 또는 터치 스크린을 포함한다.
또한, ED(110)는 적어도 하나의 메모리(308)를 포함한다. 메모리(308)는 ED(110)에 의해 사용되거나, 또는 생성되거나, 또는 수집된 명령 및 데이터를 저장한다. 예를 들어, 메모리(308)는 전술한 기능 및/또는 실시예 중 일부 또는 전부를 구현하고 또한 처리 유닛(300)에 의해 실행되는 소프트웨어 명령이나 모듈을 저장할 수 있다. 각각의 메모리(308)는 임의의 적합한 휘발성 및/또는 비휘발성 저장 및 검색 장치를 포함한다. 랜덤 액세스 메모리(random access memory, RAM), 읽기 전용 메모리(read only memory, ROM), 하드 디스크, 광 디스크, 가입자 식별 모듈(subscriber identity module, SIM) 카드, 메모리 스틱, 및 SD(Secure Digital) 메모리 카드 등에 사용될 수 있다.
도 3에 도시된 바와 같이, 기지국(170)은 적어도 하나의 처리 유닛(350), 적어도 하나의 송신기(TX)(352), 적어도 하나의 수신기(RX)(354), 하나 이상의 안테나(356), 하나 이상의 메모리(358), 및 하나 이상의 입력/출력 장치 또는 인터페이스(366)를 포함한다. 송신기(352)와 수신기(354) 대신에 도시되지 않은 송수신기가 사용될 수 있다. 스케줄러(353)가 처리 유닛(350)에 연결될 수 있다. 스케줄러(353)는 기지국(170)에 포함되거나 또는 기지국(170)과는 개별적으로 작동될 수 있다. 처리 유닛(350)은 기지국(170)의 다양한 처리 연산, 예컨대 신호 코딩, 데이터 처리, 전력 제어, 입력/ 출력 처리, 또는 임의의 다른 기능을 구현한다. 처리 유닛(350)은 앞에서 상세히 설명한 기능 및/또는 실시예 중 일부 또는 전부를 구현하도록 구성될 수 있다. 각각의 처리 유닛(350)은 하나 이상의 연산을 수행하도록 구성된 임의의 적절한 처리 장치 또는 컴퓨팅 장치를 포함한다. 각각의 처리 유닛(350)은 예를 들어 마이크로프로세서, 마이크로컨트롤러, 디지털 신호 프로세서, 필드 프로그래머블 게이트 어레이, 또는 주문형 반도체를 포함할 수 있다.
각각의 송신기(352)는 하나 이상의 ED 또는 다른 장치로의 무선 또는 유선 전송을 위한 신호를 생성하기 위한 임의의 적절한 구조를 포함한다. 각각의 수신기(354)는 하나 이상의 ED 또는 다른 장치로부터 무선 또는 유선으로 수신된 신호를 처리하기 위한 임의의 적절한 구조를 포함한다. 별도의 컴포넌트로서 도시되어 있지만, 적어도 하나의 송신기(352)와 적어도 하나의 수신기(354)는 송수신기로 결합될 수 있다. 각각의 안테나(356)는 무선 신호 또는 유선 신호를 송신하거나 및/또는 수신하기 위한 임의의 적절한 구조를 포함한다. 여기서는 공통 안테나(356)가 송신기(352)와 수신기(354) 모두에 결합된 것으로 도시되어 있지만, 하나 이상의 안테나(356)가 송신기(352)에 결합될 수 있고, 하나 이상의 별도의 안테나(356)가 수신기(354)에 결합될 수 있다. 각각의 메모리(358)는 ED(110)와 관련하여 전술한 것과 같은 임의의 적합한 휘발성 및/또는 비휘발성 저장 및 검색 장치를 포함한다. 메모리(358)는 기지국(170)에 의해 사용되거나, 생성되거나, 또는 수집된 명령 및 데이터를 저장한다. 예를 들어, 메모리(358)는 전술한 기능 및/또는 실시예 중 일부 또는 전부를 구현하도록 구성되고 처리 유닛(350)에 의해 실행되는 소프트웨어 명령 또는 모듈을 저장할 수 있다.
각각의 입력/출력 장치(366)는 네트워크에서 사용자 또는 다른 장치와의 상호 작용을 허용한다. 각각의 입력/출력 장치(366)는 네트워크 인터페이스 통신을 포함하여 사용자에게 정보를 제공하거나 또는 사용자로부터 정보를 수신하거나/사용자에게 정보를 제공하는 임의의 적절한 구조를 포함한다.
전술한 바와 같이, 하향링크 제어 정보(downlink control information, DCI)는 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)을 통해 기지국과 같은 네트워크측 장치로부터 ED에 전송됨으로써, 하향링크 또는 상향링크 데이터 및 다른 구성 파라미터의 스케줄링과 같은 특정 물리 계층 파라미터에 관한 정보를 ED에 제공한다. DCI는 서로 다른 목적을 위해 설계된 서로 다른 DCI 포맷을 이용하여 전송될 수 있다. 아래의 표 1은 8개의 다른 목적에 사용되는 8개의 DCI 형식의 예를 나타낸다.
표 1: DCI 포맷
Figure pct00005
DCI 포맷 0_0과 DCI 포맷 1_0은 각각 상향링크 데이터와 하향링크 데이터의 스케줄링을 위한 "폴백(fallback)" DCI 포맷으로 알려져 있다. 폴백 DCI 포맷은 형식은 기본 무선 링크 셋업 또는 시스템 정보의 재구성이나 전송을 수행하는 데 사용되기 위한 것이다. 이러한 포맷은 다른 DCI 포맷보다 적은 정보(즉, 기본 무선 링크 셋업 또는 재구성을 허용하는 최소 정보량)를 포함할 수 있다.
DCI 포맷 0_1과 DCI 포맷 1_1은 각각 상향링크 데이터와 하향링크 데이터의 스케줄링을 위한 "비폴백(non-fallback)" DCI 포맷으로 알려져 있다. DCI 포맷 2_0과 DCI 포맷 2_1은 각각 슬롯 포맷 정보와 정보의 선점에 관해 ED에 통지하기 위한 DCI 포맷이다. DCI 포맷 2_2와 DCI 포맷 2_3은 송신 전력 제어 정보에 관해 ED에 통지하기 위한 DCI 포맷이다. 폴백 DCI를 구체적으로 참조하여 본 출원의 실시예가 아래에서 설명될 수 있지만, 더 일반적으로, 본 개시의 양태가 다수의 서로 다른 유형의 DCI와 함께 사용될 수 있다는 것을 이해해야 한다.
폴백 DCI 포맷의 페이로드 크기가 활성 하향링크 BWP가 아닌 초기 하향링크 BWP에 기초하여 결정될 수 있다. 초기 하향링크 BWP는, UE가 처음 네트워크에 접속할 때 UE에 할당되는 시간-주파수 자원의 주파수-영역 크기이다. 초기 BWP는 초기 네트워크 접속 후에 사용될 수 있지만, UE는 종종 네트워크를 추가로 이용하는 경우 활성 BWP로 구성될 것이다. 활성 BWP는 적절하게 재구성될 수 있다. 초기 하향링크 BWP 크기는 (자원 블록의 개수의 관점에서) 활성 하향링크 BWP와 다를 수 있다. DCI 내의 주파수 영역 자원 할당 필드의 크기가 초기 하향링크 BWP에서의 자원 블록의 개수에 의해 결정되면, 이로 인해 활성 BWP가 초기 하향링크 BWP와는 다른 크기를 가지고 있으면, DCI가 활성 BWP 내의 자원 할당에 사용될 때 폴백 DCI의 콘텐츠의 불확실성 또는 오해를 야기할 수 있다. 본 개시의 실시예는 이러한 불확실성을 해결하고자 한다.
폴백 DCI 포맷으로 주파수 영역 자원 할당을 통신하는 것 외에, 본 개시의 실시예는 폴백 DCI가 복수의 UE에 사용될 때 더 큰 스펙트럼 효율을 제공할 수 있다.
엔알(New Radio, NR)에서의 DCI 포맷에 포함된 주파수 영역 자원 할당 필드에 대한 자원 지시 값(indication value, RIV)을 사용하는 것에 기초하여 자원 할당이 수행될 수 있다. 자원 할당은 가상 자원 블록(virtual resource block, VRB)으로의 물리 자원 블록(physical resource block, PRB) 인터리브 매핑의 유무와 무관하게 수행될 수 있다. RIV 기반의 자원 할당의 형태가 LTE에 사용된다. 하지만, LTE RIV에서, 자원 할당은 반송파 크기의 일부, 즉 BWP가 아닌 전체 반송파 크기에 기초한다. 이 자원 할당의 예가 자원 할당 유형 1을 이용하여 수행될 수 있다.
도 4a는 VRB의 서브세트가 데이터 전송을 위해 할당되는 가상 자원 블록(virtual resource block, VRB)의 세트를 도시하며, 이 세트는 예를 들어 하나 이상의 UE에 전송하는 데 사용될 PDSCH 또는 UE가 기지국에 전송하는 데 사용될 PUSCH를 포함할 수 있다. VRB(410)의 전체 세트의 길이는 0에서
Figure pct00006
- 1까지 번호가 매겨진
Figure pct00007
개의 자원 블록이다. 데이터 전송을 위해 할당된 자원은 자원 블록
Figure pct00008
에서 시작하도록 지시된 VRB(412)의 서브세트이며 그 길이가
Figure pct00009
개의 RB이다.
RIV 기반의 자원 할당으로, 단일 값, RIV는 2개의 값, 즉 시작 자원 블록(
Figure pct00010
) 값과 RB의 개수가 할당된
Figure pct00011
를 나타낸다. 본 개시의 양태에서, RIV 값은, 참조 시작 가상 자원 블록과 함께 사용되는 경우, 즉 VRB=0 및 주파수 대역
Figure pct00012
의 전체 크기(RB의 개수에서 정의된)가 사용되어
Figure pct00013
값과
Figure pct00014
를 결정할 수 있다.
VRB와 PRB 사이에 인터리브 매핑이 없는 예에서, VRB n이 PRB n에 매핑된다.
도 4b는 도 4a로부터의 VRB(410)의 세트가 VRB의 세트와 동일한 개수의 RB를 가진 PRB(420)로서 VRB와 PRB 사이에 인터리브 매핑이 존재하는 PRB(420)의 세트에 매핑될 수 있는 방법의 예를 도시한다. PRB의 세트(420)에서, VRB(412)의 서브세트가 2개의 RB(422, 424, 426, 428)의 RB 번들로 확산된다. 본 명세서에서는 이러한 번들이 확산되는 구체적인 방식에 대해 상세하게 설명하지 않는다. 이 예에서, VRB는 동일한 개수의 PRB에 매핑된다. 하지만, 도 5, 도 6, 도 7, 및 도 8과 관련하여 이하의 실시예에서 알 수 있는 바와 같이, VRB의 세트는 PRB의 다른 세트의 일부, 즉 활성 BWP인 PRB의 세트에 매핑될 수 있다. 이러한 경우, 도 4b의 표현은 예를 들어, 도 7과 도 8에 도시된 바와 같이, VRB를 PRB에 매핑하는 데 있어서 중간 단계로 간주될 수 있다.
일부 실시예에서, DCI는 공통 검색 공간에서 전송되고, DCI는 하나 이상의 UE를 위한 것일 수 있다. DCI가 UE의 그룹에 의해 디코딩되려고 의도된 경우, UE의 그룹은 DCI 콘텐츠에 관한 동일한 이해를 갖고 있어야 한다. 그룹 내의 UE 전부에 의해 수신된 DCI는 페이로드 크기를 가진 단일 DCI이다. 따라서, 모든 UE에 알려질 공통 페이로드 크기를 가지는 것이 유리할 것이다. 이는 DCI 포맷 0_0/1_0(폴백 DCI)의 페이로드 크기가 네트워크에 접속하는 초기 하향링크 대역폭 부분(초기 DL BWP)에 기초하여 결정될 수 있는 하나의 이유이고, 모든 UE에 대해서도 동일하다. 이것은 예를 들어,
Figure pct00015
의 크기가 초기 DL BWP 내의 자원 블록의 개수라고 가정할 수 있다는 것을 의미한다. 일부 실시예에서, 동일한 스케줄링된 PDSCH는 UE 그룹에 할당되어 효율적인 스펙트럼 사용을 제공한다. 이는 UE의 그룹이 각각 PDSCH에 대해 동일한 자원 엘리먼트(RE)에 접속한다는 것을 의미한다. 다시 말해, 그룹 내의 모든 UE는 특정한 UE의 활성 DL BWP와 무관하게 DCI 필드, 특히 RIV를 포함하는 주파수 영역 자원 할당 필드를 동일하게 해석해야 한다. DCI 크기가 모든 UE에 공통적이지 않은 값, 예를 들어 초기 BWP 이외의 어떤 것에 의해 결정된다면, 서로 다른 활성 BWP를 가진 UE가 DCI 내의 주파수 영역 자원 할당 필드를 해석하는 것이 어려울 것이다. 그 결과는, PDSCH의 해석된 주파수 위치가 UE 그룹 내의 각각의 UE의 활성 BWP의 주파수 범위 내에 있을 것이고; UE의 그룹 내의 모든 UE가 PDSCH의 동일한 주파수 위치를 획득할 수 있도록 DCI를 해석할 것이라는 것과 동일할 수 있다.
주파수 영역 자원 할당의 경우, 공통 검색 공간에서 폴백 DCI(DCI 포맷 1_0 또는 DCI 포맷 0_0)가 디코딩될 때, 참조 RB(인터리브 매핑이 사용되지 않는 경우) 또는 참조 RB 번들(인터리브 매핑이 사용되는 경우)가 사용됨으로써, 데이터 전송을 위해 스케줄링된 자원의 시작 물리 자원 블록을 결정한다. 예를 들어, 인터리빙되지 않은 VRB-PRB 매핑의 경우, 가상 자원 블록 n이 물리 자원 블록 n+n_reference_RB에 매핑된다. 인터리빙된 VRB-PRB 매핑의 경우, 가상 자원 블록 번들 j가 물리 자원 블록 번들 f(j)+j_reference_RB_bundle에 매핑된다. 인터리빙에 사용되는 BWP 크기는 본 명세서에서 X로 정의된 참조 PRB 대역 크기이다. RB 번들 크기가 고정되어 있다. RB 번들 크기의 2개의 비제한적인 예가 2개의 RB 또는 4개의 RB이다.
복수의 UE에 대한 공통 스케줄링된 자원의 경우, 참조 RB 또는 참조 RB 번들은 UE에 대한 그룹을 위한 동일한 물리적 주파수 위치를 가지고 있다. 하지만, 참조 RB, 또는 참조 RB 번들은, 다양한 UE가 서로 다른 시작 RB에서 발생하는 서로 다른 크기의 활성 BWP를 가지고 있을 수 있으므로, UE의 그룹 내의 각각의 UE의 활성 BWP에서 서로 다른 PRB 인덱스 또는 PRB 번들 인덱스를 가지고 있을 수 있다. 이는 예를 들어 UE1, UE2, 및 UE3의 활성 BWP에서 도 5의 예에서 알 수 있을 것이다. UE는 공통 스케줄 자원의 크기와 동등한 물리적 주파수 위치의 적어도 중첩을 가지고 있어야 한다.
본 개시의 다양한 양태는 각각 VRB-PRB 매핑에 사용될 참조 RB에 대한 대안적인 선택을 제공한다. 제1 실시예에서, 참조 RB는 폴백 DCI(DCI 포맷 0_0 또는 DCI 포맷 1_0)가 UE에 의해 디코딩된 PDCCH의 가장 낮은 자원 엘리먼트 그룹(resource element group, REG)이도록 선택된다. 제2 실시예에서, 참조 RB는 폴백 DCI(DCI 포맷 0_0 또는 DCI 포맷 1_0)가 UE에 의해 디코딩된 CORESET의 가장 낮은 번호의 PRB이도록 선택된다. 제3 실시예에서, 참조 RB는 활성 BWP에서 가장 작은 CORESET ID를 가진 구성된 CORESET의 가장 낮은 번호의 PRB이도록 선택된다. 제4 실시예에서, 참조 RB는 초기 DL BWP(또는 CORESET #0)의 가장 낮은 번호의 PRB이도록 선택된다. 제5 실시예에서, 참조 RB는 가장 작은 BWP ID를 가진 구성된 BWP의 가장 낮은 번호의 PRB이도록 선택된다. 제6 실시예에서, 참조 RB는 디폴트 BWP의 가장 낮은 번호의 PRB이도록 선택된다. 제7 실시예에서, 참조 RB는 상위 계층 시그널링에 의해 구성된 PRB이다.
이하에서는 가상 자원에서 물리 자원 블록으로 매핑하기 위해 사용될 참조 RB를 선택하는 것과 관련된 전술한 제1 실시예 내지 제7 실시예를 더 상세하게 설명한다.
(제1 실시예)
인터리빙되지 않은 VRB-PRB 매핑의 경우, 실제 검색 공간에서 폴백 DCI가 디코딩되는 경우를 제외하고 가상 자원 블록 n이 물리 자원 블록 n에 매핑된다. 이 경우, 가상 자원 블록 n이 물리 자원 블록 n+nREG에 매핑되고, 물리 자원 블록 nREG는 폴백 DCI가 UE에 의해 디코딩된 PDCCH의 가장 낮은 REG에 대응한다.
(제2 실시예)
인터리빙되지 않은 VRB-PRB 매핑의 경우, 가상 자원 블록 n은, 폴백 DCI가 공통 검색 공간에서 디코딩되는 경우를 제외하고 물리 자원 블록 n에 매핑된다. 이 경우, 가상 자원 블록 n은 물리 자원 블록
Figure pct00016
에 매핑되고, 물리 자원 블록
Figure pct00017
은 폴백 DCI가 UE에 의해 디코딩된 제어 자원 세트 내의 가장 낮은 번호의 물리 자원 블록이다.
(제3 실시예)
인터리빙되지 않은 VRB-PRB 매핑의 경우, 가상 자원 블록 n은 공통 검색 공간에서 폴백 DCI가 디코딩되는 경우를 제외하고 물리 자원 블록 n에 매핑된다. 이 경우, 가상 자원 블록 n은 물리 자원 블록
Figure pct00018
에 매핑되고, 물리 자원 블록
Figure pct00019
는 활성 대역폭 부분에 구성된 가장 낮은 ID를 가진 제어 자원 세트 내의 가장 낮은 번호의 물리 자원 블록이다.
(제4 실시예)
인터리빙되지 않은 VRB-PRB 매핑의 경우, 가상 자원 블록 n은, 공통 검색 공간에서 폴백 DCI가 디코딩되는 경우를 제외하고 물리적 자원 블록 n에 매핑된다. 이 경우, 가상 자원 블록 n은 물리 자원 블록
Figure pct00020
에 매핑되고, 물리 자원 블록
Figure pct00021
은 초기 DL 대역폭 부분의 물리 자원 블록 0과 동일한 공통 자원 블록에 대응한다.
(제5 실시예)
인터리빙되지 않은 VRB-PRB 매핑의 경우, 가상 자원 블록 n이 폴백 DCI가 공통 검색 공간에서 디코딩되는 경우를 제외하고 물리 자원 블록 n에 매핑된다. 이 경우, 가상 자원 블록 n 이 물리 자원 블록
Figure pct00022
에 매핑되고, 물리 자원 블록
Figure pct00023
은 가장 작은 BWP ID로 구성된 대역폭 부분의 물리 자원 블록과 동일한 공통 자원 블록에 대응한다.
(제6 실시예)
인터리빙되지 않은 VRB-PRB 매핑의 경우, 가상 자원 블록 n은 폴백 DCI가 공통 검색 공간에서 디코딩되는 경우를 제외하고 물리 자원 블록 n에 매핑된다. 이 경우, 가상 자원 블록 n은 물리 자원 블록
Figure pct00024
에 매핑되고, 물리 자원 블록
Figure pct00025
은 디폴트 DL 대역폭 부분의 물리 자원 블록 0과 동일한 공통 자원 블록에 대응한다.
(제7 실시예)
PRB가 상위 계층 시그널링에 의해 UE에 구성된다. 인터리빙되지 않은 VRB-PRB 매핑의 경우, 가상 자원 블록 n은 폴백 DCI가 공통 검색 공간에서 디코딩되는 경우를 제외하고 물리 자원 블록 n에 매핑된다. 이 경우, 가상 자원 블록 n은 물리 자원 블록
Figure pct00026
에 매핑되고,
Figure pct00027
은 상위 계층 시그널링에 의해 구성된다.
다양한 본 개시의 양태는 인터리빙된 VRB-PRB 매핑에 사용될 참조 RB 번들에 대한 다른 선택을 각각 제공한다. 제8 실시예에서, 참조 RB 번들은 전술한 제1 실시예 내지 제7 실시예 중 어느 하나의 참조 RB를 포함하는 RB 번들이도록 선택된다. 제9 실시예에서, 참조 RB 번들은 폴백 DCI(DCI 포맷 0_0 또는 DCI 포맷 1_0)가 UE에 의해 디코딩된 PDCCH의 가장 낮은 자원 엘리먼트 그룹(REG)을 포함하는 RB 번들이도록 선택된다. 제10 실시예에서, 참조 RB 번들은 폴백 DCI(DCI 포맷 0_0 또는 DCI 포맷 1_0)가 UE에 의해 디코딩된 CORESET의 가장 낮은 번호의 PRB를 포함하는 RB 번들이도록 선택된다. 제11 실시예에서, 참조 RB 번들은 활성 BWP 내의 가장 작은 CORESET ID를 가진 구성된 CORESET의 가장 낮은 번호의 PRB를 포함하는 RB 번들이도록 선택된다. 제12 실시예에서, 참조 RB 번들은 초기 DL BWP(또는 CORESET # 0)의 가장 낮은 번호의 PRB를 포함하는 RB 번들이도록 선택된다. 제13 실시예에서, 참조 RB 번들은 가장 작은 BWP ID를 가진 구성된 BWP의 가장 낮은 번호의 PRB를 포함하는 RB 번들이도록 선택된다. 제14 실시예에서, 참조 RB 번들은 디폴트 BWP의 가장 낮은 번호의 PRB를 포함하는 RB 번들이도록 선택된다. 제15 실시예에서, 참조 RB 번들은 상위 계층 시그널링에 의해 구성된 RB 번들이다.
이하에서는 가상 자원 블록에서 물리 자원 블록으로의 매핑에 사용될 참조 RB를 선택하는 것과 관련된 전술한 제9 실시예 내지 제15 실시예를 더 상세하게 설명한다.
(제9 실시예)
인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는,
Figure pct00028
이며 가상 자원 블록 번들
Figure pct00029
이 물리 자원 블록 번들
Figure pct00030
에 매핑된다고 가정할 것이다. 여기서, 물리 자원 블록 번들
Figure pct00031
는 폴백 DCI가 UE에 의해 디코딩된 PDCCH의 가장 낮은 REG를 포함한다.
(제10 실시예)
인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는
Figure pct00032
이며 가상 자원 블록 번들
Figure pct00033
이 물리 자원 블록 번들
Figure pct00034
에 매핑된다고 가정할 것이다. 여기서, 물리 자원 블록 번들
Figure pct00035
은 폴백 DCI가 UE에 의해 디코딩된 제어 자원 세트 내의 가장 낮은 번호의 물리 자원 블록을 포함한다.
(제11 실시예)
인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는
Figure pct00036
이며 가상 자원 블록 번들
Figure pct00037
이 물리 자원 블록 번들
Figure pct00038
에 매핑된다고 가정할 것이다. 여기서, 물리 자원 블록 번들
Figure pct00039
은 활성 대역폭 부분에 구성된 가장 낮은 ID를 갖는 제어 자원 세트 내의 가장 낮은 번호의 물리 자원 블록을 포함한다.
(제12 실시예)
인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는
Figure pct00040
이며 가상 자원 블록 번들
Figure pct00041
이 물리 자원 블록 번들
Figure pct00042
에 매핑된다고 가정할 것이다. 여기서, 물리 자원 블록 번들
Figure pct00043
은 초기 DL 대역폭 부분의 물리 자원 블록 0을 포함한다.
(제13 실시예)
인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는
Figure pct00044
이며 가상 자원 블록 번들
Figure pct00045
이 물리 자원 블록 번들
Figure pct00046
에 매핑된다고 가정할 것이다. 여기서, 물리 자원 블록 번들
Figure pct00047
은 가장 작은 BWP ID로 구성된 대역폭 부분의 물리 자원 블록 0을 포함한다.
(제14 실시예)
인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는
Figure pct00048
이며 가상 자원 블록 번들
Figure pct00049
이 물리 자원 블록 번들
Figure pct00050
에 매핑된다고 가정할 것이다. 여기서, 물리 자원 블록 번들
Figure pct00051
은 디폴트 DL 대역폭 부분의 물리 자원 블록 0을 포함한다.
(제15 실시예)
인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는
Figure pct00052
이며 가상 자원 블록 번들
Figure pct00053
가 물리 자원 블록 번들
Figure pct00054
에 매핑된다고 가정할 것이다. 여기서, 물리 자원 블록 번들
Figure pct00055
은 상위 계층 시그널링에 의해 구성된다.
일부 실시예에서, 예컨대 자원 할당 유형 1을 사용할 때, 폴백 DCI(DCI 포맷 1_0 또는 DCI 포맷 0_0)가 공통 검색 공간에서 디코딩되면, 참조 RB 대역 크기(X)가 BWP 크기를 결정하는 데 사용된다. 참조 PRB 대역 크기는 RIV 계산 또는 VRB-PRB 매핑, 또는 양자 모두에 사용된다. 일부 실시예에서, 제1 참조 RB 대역 크기(X1)가 RIV 계산에 사용되고, 제2 참조 RB 대역 크기(X2)가 VRB-PRB 매핑에 사용된다.
그룹 정보가 폴백 DCI를 통해 UE의 그룹 모두에 제공되면, 참조 PRB 대역 크기(X)가 UE의 그룹에 대해 동일할 수 있다.
다양한 본 개시의 양태는 각각, RIV 계산 또는 VRB-PRB 매핑에 사용될 PRB 대역 크기(X)에 대한 대안적인 선택, 또는 양자 모두를 제공한다. 제1 실시예에서, PRB 대역 크기(X)는 초기 DL BWP의 크기(즉, CORESET #0의 크기)이도록 선택된다. 제2 실시예에서, PRB 대역 크기(X)는 폴백 DCI가 UE에 의해 디코딩된 CORESET의 주파수 크기이도록 선택된다. CORESET의 주파수 크기는 CORESET의 가장 낮은 번호의 PRB에서 CORESET의 가장 높은 번호의 PRB까지의 PRB 개수를 지칭한다. 제3 실시예에서, PRB 대역 크기(X)는 활성 BWP 내의 가장 작은 CORESET ID를 가진 구성된 CORESET의 주파수 크기이도록 선택된다. 제4 실시예에서, PRB 대역 크기(X)는 가장 작은 BWP ID를 가진 구성된 BWP의 크기이도록 선택된다. 제5 실시예에서, PRB 대역 크기(X)는 디폴트 BWP의 크기이도록 선택된다. 제6 실시예에서, PRB 대역 크기(X)는 상위 계층 시그널링에 의해 구성된다. 제1 참조 RB 대역 크기(X1)가 RIV 계산에 사용되고 제2 참조 RB 대역 크기(X2)가 VRB-PRB 매핑에 사용되는 일부 실시예에서, 전술한 제1 실시예 내지 제6 실시예 중 어느 것이 제1 RB 대역 크기(X1) 또는 제2 RB 대역 크기(X2) 또는 둘 다에 사용된다.
다음은 RIV 계산에 사용될 PRB 대역 크기를 선택하거나 또는 가상 물리 자원 블록에서 물리 자원 블록으로의 매핑과 관련하여 앞에서 설명한 제1 실시예 내지 제6 실시예를 더 상세하게 설명한다. VRB-PRB 매핑에 사용될 참조 RB를 선택하기 위한 제1 실시예 내지 제15 실시 예 중 어느 하나가 제1 실시예 내지 제6 실시예와 결합되어 PRB 대역 크기를 선택할 수 있다.
(제1 실시예)
RIV 계산 또는 VRB-PRB 매핑의 경우, BWP 크기가 초기 DL BWP의 자원 블록의 개수와 같다. 선택적으로, 인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 추가로 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는 번들 크기 L=2라고 가정할 것이다.
(제2 실시예)
RIV 계산 또는 VRB-PRB 매핑의 경우, BWP 크기는, 폴백 DCI가 UE에 의해 디코딩된 제어 자원 세트의 가장 낮은 번호의 자원 블록에서 가장 높은 번호의 자원 블록까지의 자원 블록의 개수와 같다. 선택적으로, 인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 추가로 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는 번들 크기 L=2라고 가정할 것이다.
(제3 실시예)
RIV 계산 또는 VRB-PRB 매핑의 경우, BWP 크기는, 활성 대역폭 부분에 구성된 가장 낮은 ID를 가진 제어 자원 세트의 가장 낮은 번호의 자원 블록에서 가장 높은 번호의 자원 블록까지의 자원 블록의 개수와 같다. 선택적으로, 인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 추가로 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는 번들 크기 L=2라고 가정할 것이다.
(제4 실시예)
RIV 계산 또는 VRB-PRB 매핑의 경우, BWP 크기가 가장 작은 BWP ID로 구성된 대역폭 부분에서 자원 블록의 개수와 같다. 선택적으로, 인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 추가로 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는 번들 크기 L=2라고 가정할 것이다.
(제5 실시예)
RIV 계산 또는 VRB-PRB 매핑의 경우, BWP 크기가 디폴트 대역폭 부분에서 자원 블록의 개수와 같다. 선택적으로, 인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 추가로 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는 번들 크기 L=2라고 가정할 것이다.
(제6 실시예)
RIV 계산 또는 VRB-PRB 매핑의 경우, BWP 크기가 상위 계층 시그널링에 의해 구성된 자원 블록의 개수와 같다. 선택적으로, 인터리빙된 VRB-PRB 매핑의 경우, 자원 블록 번들의 관점에서 매핑 프로세스가 추가로 정의된다. 폴백 DCI가 공통 검색 공간에서 디코딩되면, UE는 번들 크기 L=2라고 가정할 것이다.
도 5, 도 6, 도 7, 및 도 8은 가상 자원 블록(virtual resource block, VRB)에서 물리 자원 블록(physical resource block, PRB)로의 매핑이 어떻게 수행될 수 있는지에 대한 예를 포함한다. 기지국이 VRB를 할당하는 것 또는 UE나 UE의 그룹에 이용 가능한 할당된 자원을 UE나 UE의 그룹에 통지하는 DCI를 전송하는 것을 담당한다. UE 또는 UE의 그룹은 DCI를 수신하고, 일단 디코딩되면, 할당된 자원에 접근하여 PDSCH의 경우에 데이터를 수신하거나, 또는 PUSCH의 경우에 데이터를 다시 기지국에 전송한다. 4개의 도면은 기지국에서 처리되는 것으로 간주될 수 있는 VRB, 및 3개의 각각의 UE 각각에 대한 활성 대역폭 부분(BWP)에서 PRB를 도시한다.
도 5는 VRB의 세트를 PRB의 서로 다른 3개의 세트에 매핑하는 것, 3개의 UE 각각에 대한 PRB의 하나의 세트를 도시한다. 이 예에서는 VRB와 PRB로부터의 매핑의 일부로서 인터리브 매핑이 없다. 데이터 전송을 위해 스케줄링된 VRB(512)의 서브세트를 가진 VRB의 세트(510)는 도 4a의 VRB의 세트와 실질적으로 동일하다. 데이터 전송은 상향링크(PUSCH) 또는 하향링크(PDSCH)를 위한 것일 수 있다. PRB(520, 530, 540)의 각각의 세트는 서로 다른 각각의 UE에 대한 활성 대역폭 부분에 대응한다. PRB의 세트 각각은 각각의 PRB의 개수를 가지고 있다. 도 5의 예에서, PRB의 개수, 즉 BWP 크기는 각각의 활성 BWP에서 다르다. 더 일반적으로, 각각의 UE BWP에서 PRB의 개수가 UE-특정적일 수 있다는 것을 이해해야 한다. 각각의 PRB의 세트(520, 530, 540)의 제1 PRB는 시작 PRB = 0을 가지고 있다. PRB(520, 530, 540)의 3개의 세트는 모두 서로에 대해 동일한 참조 PRB를 가지고 있지만, 이 참조 PRB는 PRB = 0에 대해 활성 BWP에서 다른 PRB에 있다. 따라서, 참조 PRB가 3개의 UE 모두에 대해 동일한 물리적 주파수 위치라는 것을 이해해야 한다. PRB(520, 530, 540)의 3개의 세트 모두에서, 특정 전송(510)에 할당된 PRB(522, 532, 542)의 세트는 각각의 UE의 활성 BWP의 범위에 포함된다.
PRB(520)의 제1 세트에서, VRB(514)의 세트에 대응하는 PRB(524)의 세트는 UE1의 활성 BWP의 범위에 포함된다. PRB의 제3 세트(540)에서, VRB(514)의 세트에 대응하는 PRB(544)의 세트는 UE3의 활성 BWP의 범위에 포함된다. PRB(530)의 제2 세트에서, VRB(514)의 세트에 대응하는 PRB(534)의 세트는 UE2의 활성 BWP를 초과하여 확장된다. UE2의 경우에는 PRB(534)의 세트가 활성 BWP 외부로 확장될 수 있지만, 이해되어야 할 것은, UE를 서비스하는 기지국, 또는 더 일반적으로 제어하는 네트워크가 VRB(514)의 세트의 크기와 스케줄링된 VRB(512)의 크기를 정의하는 하나의 UE에 대한 활성 BWP의 크기를 궁극적으로 할당하는 기지국이나 네트워크이기 때문에 이것이 일어날 뿐이라는 것이다. 결과적으로, 기지국은 기지국이 할당했던 활성 BWP 외부에서 서비스하고 있는 임의의 주어진 UE에 정보를 스케줄링하고 전송하지 않도록 충분히 지능적이다.
도 6은 VRB 세트를 PRB의 서로 다른 3개의 세트에 매핑하는 다른 예, 3개의 UE 각각에 대한 PRB의 하나의 세트를 도시한다. 이 예에서는 VRB 및 PRB의 매핑의 일부로서 인터리브 매핑이 없다. 이 예에서, VRB의 부반송파 간격 구성은 PRB의 부반송파 간격 구성과 동일하지 않다. PRB(620, 630, 640)의 세트 내의 각각의 PRB의 높이가 VRB(610)의 세트 내의 VRB의 높이의 대략 2배라는 것을 알 수 있다. 이는 예를 들어 개별 VRB의 부반송파 간격보다 개별 PRB의 부반송파 간격이 넓다는 것을 나타낼 수 있다. 데이터 전송을 위해 스케줄링된 VRB(612)의 서브세트를 가진 VRB(610)의 세트는 도 4a의 VRB의 세트와 실질적으로 동일하다. 데이터 전송은 상향링크 또는 하향링크를 위한 것일 수 있다. PRB(620, 630, 640)의 각각의 세트는 서로 다른 각각의 UE에 대한 활성 대역폭 부분에 대응한다. 각각의 PRB 세트는 각각의 PRB의 개수를 가지고 있다. 도 6의 예에서, PRB의 개수는 각각의 활성 BWP에서 다르다. 더 일반적으로, 각각의 UE BWP에서의 PRB의 개수가 UE-특정적일 수 있다는 것을 이해해야 한다. 각각의 PRB(620, 630, 640)의 세트 내의 제1 PRB는 시작 PRB = 0을 가지고 있다. PRB(620, 630, 640)의 모든 3개의 세트는 서로에 대해 동일한 참조 PRB를 가지고 있지만, 이 참조 PRB는 PRB = 0에 대해 활성 BWP에서 다른 PRB에 있다. 따라서, 참조 PRB가 3개의 UE 모두에 대해 동일한 물리적 주파수 위치라는 것을 이해해야 한다. PRB(620, 630, 640)의 모든 3개의 세트에서, 특정 전송(610)에 할당된 PRB(622, 632, 642)의 세트는 각각의 UE의 활성 BWP의 범위에 포함된다.
PRB(620)의 제1 세트에서, VRB(614)의 세트에 대응하는 PRB(624)의 세트는 UE1의 활성 BWP의 범위에 포함된다. PRB(640)의 제3 세트에서, VRB(614)의 세트에 대응하는 PRB(644)의 세트는 UE3의 활성 BWP의 범위에 포함된다. PRB(630)의 제2 세트에서, VRB(614)의 세트에 대응하는 PRB(634)의 세트는 UE2의 활성 BWP를 초과하여 확장된다. UE2의 경우에는 PRB(634)의 세트가 활성 BWP 외부로 확장될 수 있지만, UE를 서비스하는 기지국, 또는 더 일반적으로 제어하는 네트워크가 궁극적으로 VRB(614)의 세트의 크기 및 스케줄링된 VRB(612)의 크기를 정의하는 UE에 대한 활성 BWP의 크기를 할당하는 기지국이나 네트워크일 수 있기 때문에 이것이 일어날 뿐이라고 이해해야 한다. 결과적으로, 기지국은 기지국이 또한 할당한 활성 BWP 외부에서 서비스하고 있는 임의의 주어진 UE에 정보를 스케줄링하고 전송하지 않도록 충분히 지능적이다.
도 7은 VRB의 세트를 3개의 PRB의 서로 다른 세트, 3개의 UE 각각에 대한 하나의 PRB 세트에 매핑하는 다른 예를 도시한다. 이 예에서는 VRB와 PRB로부터의 매핑의 일부로서 인터리브 매핑이 있다. 데이터 전송을 위해 스케줄링된 VRB(712)의 서브세트를 가진 VRB(710)의 세트는, 715에서 볼 수 있는 바와 같이 VRB-PRB 매핑의 일부로서 인터리빙된다. 데이터 전송은 상향링크 또는 하향링크를 위한 것일 수 있다. 데이터 전송을 위해 스케줄링된 VRB(712)의 서브세트는 2개의 RB(716, 717, 718, 719)의 RB 번들 세트에 매핑될 수 있으며, 도 4b와 실질적으로 동일하다. PRB(720, 730, 740)의 각각의 세트는 서로 다른 각각의 UE에 대한 활성 대역폭 부분에 대응한다. PRB의 세트 각각은 각각의 PRB의 개수를 가지고 있다. 도 7의 예에서, 각각의 활성 BWP에서 PRB의 개수가 다르다. 더 일반적으로, 각각의 UE BWP에서의 PRB의 개수가 UE-특정적일 수 있다고 이해해야 한다. PRB의 각각의 세트(720, 730, 740)의 제1 PRB는 시작 PRB = 0을 가지고 있다. PRB(720, 730, 740)의 3개의 세트 모두가 서로에 대해 동일한 참조 PRB를 가지고 있지만, 이 참조 PRB는 PRB = 0에 대해 활성 BWP에서 서로 다른 PRB에 있다. PRB 번들을 위치시키는 데 사용되는 그리드가 시스템에서 고정된 방식으로 구성될 수 있고, 참조 PRB의 위치가 그에 따라 번들 내에서 발생할 것이다. 따라서, 참조 PRB는 PRB 번들 내의 제1 PRB일 수 있거나 또는 제1 PRB가 아닐 수 있다. 도 7의 예에서, 활성 BWP 각각에서의 참조 PRB는 2 PRB 번들의 제2 PRB이다. 다시 한번, 참조PRB 및 더 일반적으로 참조 PRB 번들이 3개의 UE 모두에 대해 동일한 물리적 주파수 위치라는 것을 이해해야 한다. PRB(720, 730, 740)의 모든 3개의 세트에서, 인터리빙된 VRB 번들(715에서의 716, 717, 718, 719)에 대응하는 PRB(예컨대 720에서의 726, 727, 728, 729)의 인터리빙된 번들은 각각의 UE의 활성 BWP의 범위에 포함된다.
PRB(720)의 제1 세트에서, VRB(714)의 세트에 대응하는 PRB(724)의 세트는 UE1의 활성 BWP의 범위에 포함된다. PRB(740)의 제3 세트에서, VRB(714)의 세트에 대응하는 PRB(744)의 세트는 UE3의 활성 BWP의 범위에 포함된다. PRB(730)의 제2 세트에서, VRB(714)의 세트에 대응하는 PRB(734)의 세트는 UE2의 활성 BWP를 초과하여 확장된다. UE2의 경우에는 PRB(734)의 세트가 활성 BWP 외부로 확장될 수 있지만, UE를 서비스하는 기지국, 또는 더 일반적으로 제어하는 네트워크가 궁극적으로 사용된 인터리빙 매핑과 번들의 크기와 스케줄링된 VRB(712)의 크기를 정의하는 VRB(714)의 세트의 크기를 정의하는, UE에 대한 활성 BWP의 크기를 할당하는 기지국이나 네트워크이기 때문에 이것이 일어날 뿐이라고 이해해야 한다. 결과적으로, 기지국은 기지국이 또한 할당한 활성 BWP 외부에서 서비스하고 있는 임의의 주어진 UE에 정보를 스케줄링하고 전송하지 않도록 충분히 지능적이다.
도 8은 VRB의 세트를 PRB의 서로 다른 3개의 세트, 3개의 UE 각각에 대한 PRB의 하나의 세트에 매핑하는 다른 예를 도시한다. 이 예에서는 VRB와 PRB로부터의 매핑의 일부로서 인터리브 매핑이 있다. 이 예에서, VRB의 부반송파 간격 구성은 PRB의 부반송파 간격 구성과 동일하지 않다. PRB(820, 830, 840)의 세트 내의 각각의 PRB의 높이가 VRB(810)의 세트 내의 VRB의 높이의 대략 2배라는 것을 알 수 있다. 이것은 예를 들어 개별 VRB의 부반송파 간격보다 개별 PRB의 부반송파 간격이 넓다는 것을 나타낼 수 있다. 데이터 전송을 위해 스케줄링된 VRB(812)의 서브 세트를 가진 VRB(810)의 세트는, 815에서 볼 수 있는 바와 같이 VRB-PRB 매핑의 일부로서 인터리빙된다. 데이터 전송은 상향링크 또는 하향링크를 위한 것일 수 있다. 데이터 전송을 위해 스케줄링된 VRB(812)의 서브세트는 도 4b에서와 실질적으로 동일한 2개의 RB(816, 817, 및 818)의 RB 번들의 세트에 매핑되도록 설정될 수 있다. PRB(820, 830, 840)의 각각의 세트는 서로 다른 각각의 UE에 대한 활성 대역폭 부분에 대응한다. PRB의 세트 각각은 각각의 PRB 개수를 가지고 있다. 도 8의 예에서, 각각의 활성 BWP에서 PRB의 개수가 다르다. 더 일반적으로, 각각의 UE BWP에서의 PRB의 개수가 UE-특정적일 수 있다는 것을 이해해야 한다. PRB(820, 830, 840)의 각각의 세트 내의 제1 PRB는 시작 PRB = 0을 가지고 있다. PRB(820, 830, 840)의 3개의 세트는 서로에 대해 동일한 참조 PRB를 가지고 있지만, 이 참조 PRB는 PRB = 0에 대해 활성 BWP에서 서로 다른 PRB에 있다. PRB 번들을 위치시키는 데 사용되는 그리드가 시스템에서 고정된 방식으로 구성될 수 있고, 참조 PRB의 위치가 그에 따라 번들 내에서 발생할 것이다. 따라서, 참조 PRB는 PRB 번들 내의 제1 PRB일 수 있거나 또는 제1 PRB가 아닐 수 있다. 도 8의 예에서, 활성 BWP 각각에서의 참조 PRB는 2 PRB 번들의 제2 PRB이다. 다시 한번, 참조 PRB 및 더 일반적으로 참조 PRB 번들은 3개의 UE 모두에 대해 동일한 물리적 주파수 위치라고 이해해야 한다. PRB(820, 830, 840)의 모든 3개의 세트에서, 인터리빙된 VRB 번들(815에서의 816, 817, 818)에 대응하는 PRB(예컨대 820에서의 826, 827, 828)의 인터리빙된 번들은 각각의 UE의 활성 BWP의 범위에 포함된다.
PRB(820)의 제1 세트에서, VRB(814)의 세트에 대응하는 PRB(824)의 세트는 UE1의 활성 BWP의 범위에 포함된다. PRB(840)의 제3 세트에서, VRB(814)의 세트에 대응하는 PRB(844)의 세트는 UE3의 활성 BWP의 범위에 포함된다. PRB(830)의 제2 세트에서, VRB(814)의 세트에 대응하는 PRB(834)의 세트는 UE2의 활성 BWP를 초과하여 확장된다. PRB(834)의 세트는 UE2의 경우 활성 BWP 외부로 확장될 수 있지만, 이는 UE를 서비스하는 기지국 또는 더 일반적으로 제어하는 네트워크가 궁극적으로, 사용된 인터리빙 매핑과 번들의 크기와 스케줄링된 VRB(812)의 크기를 정의하는, VRB(814)의 세트의 크기를 정의하는 UE에 대한 활성 BWP의 크기를 할당하는 기지국이나 네트워크이기 때문에 이것이 일어날 뿐이라고 이해해야 한다. 결과적으로, 기지국은 기지국이 또한 할당한 활성 BWP 외부에서 서비스하고 있는 임의의 주어진 UE에 정보를 스케줄링하고 전송하지 않도록 충분히 지능적이다.
도 9는 본 개시의 일 실시예에 따른 무선 통신을 위한 예시적인 방법(900)을 설명하는 흐름도를 도시한다. 이 방법은 제1 대역폭 부분(BWP)에서 물리 하향링크 제어 채널(PDCCH) 내의 하향링크 제어 정보(DCI)를 수신하는(910) 사용자 장비(UE)를 포함한다.
다른 단계(920)는, UE가 DCI 내의 주파수 영역 자원 할당 필드의 값, 참조 RB, 및 제2 BWP의 참조 크기에 기초하여 DCI에 의해 할당된 데이터 전송을 위한 시작 자원 블록(RB)을 결정하는 단계를 포함한다.
참조 RB는,
DCI가 UE에 의해 디코딩된 PDCCH의 가장 낮은 번호의 자원 엘리먼트 그룹(resource element group, REG);
DCI가 UE에 의해 디코딩된 제어 자원 세트(control resource set, CORESET)의 가장 낮은 번호의 물리 자원 블록(physical resource block, PRB);
활성 BWP에서 가장 작은 CORESET 식별자(ID)를 가진 구성된 CORESET의 가장 낮은 번호의 PRB;
UE에 의해 사용되는 초기 DL BWP의 가장 낮은 번호의 PRB;
가장 작은 BWP ID를 갖는 구성된 BWP의 가장 낮은 번호의 PRB;
디폴트 BWP의 가장 낮은 번호의 PRB; 및
상위 계층 시그널링에 의해 구성된 PRB 중 하나 이상일 수 있다.
제2 BWP의 참조 크기는,
초기 DL BWP의 RB의 개수;
DCI가 UE에 의해 디코딩된 제어 자원 세트(CORESET)를 정의하는 RB의 개수;
활성 BWP에서 가장 작은 CORESET 식별자(ID)를 가진 구성된 CORESET를 정의하는 RB의 개수;
가장 작은 BWP ID를 가진 구성된 BWP의 크기를 정의하는 RB의 개수;
디폴트 BWP의 크기를 정의하는 RB의 개수; 및
상위 계층 시그널링에 의해 구성된 RB의 개수 다음 중 적어도 하나와 동일한 RB의 개수이다.
선택적 단계(930)는, UE가 DCI 내의 주파수 영역 자원 할당 필드의 값 및 제2 BWP의 참조 크기에 기초하여 데이터 전송을 위한 인접하게 할당된 RB의 길이를 결정하는 단계를 포함할 수 있다.
적어도 시작 RB 및 인접하게 할당된 RB의 길이에 의해 정의된 시간-주파수 자원이 구축되면, UE는 PUSCH의 예에서 데이터 전송을 전송하거나(940) 또는 구축된 시간-주파수 자원에서, 다음의 PDSCH의 예에서 데이터 전송을 수신할 수 있다.
일부 실시예에서, DCI는 UE 그룹과 연관되고, DCI에 의해 할당된 데이터 전송은 UE 그룹 내의 모든 UE에 대해 동일한 시간-주파수 자원에 할당된 하향링크 데이터 전송이다.
일부 실시예에서, 제1 BWP는 활성 BWP이고, 제2 BWP는 초기 하향링크(downlink, DL) BWP이다.
일부 실시예에서, 데이터 전송을 위해 할당된 RB는 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 제1 BWP를 통해 분배된다. 이러한 시나리오에서, 시작 RB는 가상 시작 RB이고, 참조 RB는 가상 참조 RB이다.
일부 실시예에서, UE는 또한 적어도 가상 시작 RB, 인터리브 매핑, 및 물리 RB의 참조 번들에 기초하여 데이터 전송을 위한 인터리빙된 물리 RB의 번들을 결정한다. 이러한 시나리오에서, 데이터 전송을 전송하거나 또는 수신하는 것은 물리 RB의 인터리빙 번들에 의해 적어도 부분적으로 정의된 시간-주파수 자원에 할당된 데이터 전송을 전송하거나 또는 수신하는 것을 포함한다.
일부 실시예에서, 가상 시작 RB는 인접하게 할당된 가상 RB의 길이의 시작을 정의하고, 물리 RB의 인터리빙된 번들을 결정하는 것은, 인접하게 할당된 가상 RB의 길이에 더 기초하여 물리 RB의 인터리빙된 번들을 결정하는 것을 포함한다.
도 10은 본 개시의 일 실시예에 따른 무선 통신을 위한 예시적인 방법(1000)을 설명하는 흐름도를 도시한다. 이 방법은 제1 대역폭 부분(BWP)에서 물리 하향링크 제어 채널(PDCCH) 내의 하향링크 제어 정보(DCI)를 전송하는 단계(1010)를 포함한다. DCI는 DCI에 의해 할당될 데이터 전송을 위한 시작 자원 블록(RB)을 정의하기 위한 값을 가진 주파수 영역 자원 할당 필드를 포함하며, 시작 RB는 참조 RB 및 제2 BWP의 참조 크기와 관련하여 정의된다. 추가적인 단계(1020)가 기지국과 사용자 장비(UE) 사이에서 데이터 전송을 전송하거나 또는 수신하는 단계를 포함한다.
일부 실시예에서, 주파수 영역 자원 할당 필드의 값은 데이터 전송을 위해 인접하게 할당된 RB의 길이를 추가로 정의한다. 1020에서 데이터 전송을 전송하거나 또는 수신하는 단계는, 적어도 시작 RB 및 인접하게 할당된 RB의 길이에 의해 정의된 시간-주파수 자원에 할당된 데이터 전송을 전송하거나 또는 수신하는 단계를 포함한다.
일부 실시예에서, 데이터 전송을 위해 할당된 RB는 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 제1 BWP를 통해 분배된다. 이러한 시나리오에서, 시작 RB는 가상 시작 RB이고, 참조 RB는 가상 참조 RB이다.
일부 실시예에서, 데이터 전송을 위한 물리 RB의 인터리빙된 번들은 가상 시작 RB, 인터리브 매핑, 인접하게 할당된 가상 RB의 길이, 및 물리 RB의 참조 번들에 의해 정의된다. 이러한 시나리오에서, 1020에서 데이터 전송을 전송하거나 또는 수신하는 단계는, 물리 RB의 인터리빙된 번들에 의해 적어도 부분적으로 정의된 시간-주파수 자원에 할당된 데이터 전송을 전송하거나 또는 수신하는 단계를 포함한다.
도 11은 본 개시의 일 실시예에 따른 무선 통신을 위한 다른 예시적인 방법(1100)을 설명하는 흐름도를 도시한다. 이 방법은 UE가 활성 하향 링크(DL) 대역폭 부분(BWP)에서 물리 하향링크 제어 채널(PDCCH) 내의 하향링크 제어 정보(DCI)를 수신하는 단계(1110)를 포함한다. DCI는 데이터 전송을 스케줄링하기 위한 것이며, DCI는 주파수 영역 자원 할당 필드를 포함한다.
다른 단계(1120)는 UE가 적어도 시작 자원 블록(RB)과 인접하게 할당된 RB의 길이에 의해 정의된 시간-주파수 자원에서 데이터 전송을 수신하는 단계를 포함한다. 시작 RB는 DCI의 주파수 영역 자원 할당 필드의 값, 참조 RB, 및 제1 제어 자원 세트(CORESET)의 RB의 개수에 기초한다. 연속적으로 할당된 RB의 길이는 DCI 내의 주파수 영역 자원 할당 필드의 값 및 제1 CORESET의 RB의 개수에 기초한다.
일부 실시예에서, 데이터 전송을 수신하는 단계는, 물리 RB의 인터리빙된 번들에 의해 정의된 시간-주파수 자원에서 데이터 전송을 수신하고, 가상 시작 RB, 인접하게 할당된 가상 RB의 길이, 인터리브 매핑, 및 물리 RB의 참조 번들에 기초하여 물리 RB의 인터리빙된 번들을 수신하는 단계를 포함한다.
일부 실시예에서, 참조 RB는 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(PRB)이고, 제2 CORESET은 DCI가 UE에 의해 디코딩된 CORESET이다.
추가적인(선택적인) 단계 1130는, UE가, 상기 DCI는 인터리빙되지 않은 VRB-PRB 매핑에 기반한 상기 데이터 전송을 위한 폴백 DCI이고; 폴백 DCI는 공통 검색 공간에서 디코딩되며; 및 상기 데이터 전송을 위해, 가상 RB n이
Figure pct00056
에 매핑되고,
Figure pct00057
는 상기 폴백 DCI가 상기 UE에 의해 디코딩된 상기 CORESET 내의 가장 낮은 번호의 PRB라고 결정하는 단계를 포함한다.
일부 실시예에서, 활성 DL BWP는 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 데이터 전송을 위한 RB의 분포를 포함한다. 여기서, 시작 RB는 가상 시작 RB이고, 인접하게 할당된 RB의 길이는 인접하게 할당된 가상 RB의 길이이며, 가상 시작 RB는 인접하게 할당된 가상 RB의 길이의 시작을 정의한다.
일부 실시예에서, 물리 RB의 참조 번들은 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(PRB)을 포함하는 물리 RB의 번들이고, 제2 CORESET은 DCI가 UE에 의해 디코딩된 CORESET이다.
일부 실시예에서, DCI는 폴백 DCI이다.
일부 실시예에서, 제1 CORESET는 "0"의 CORESET 식별자와 연관된다.
일부 실시예에서, DCI는 UE의 그룹과 연관되고, DCI에 의해 스케줄링된 데이터 전송은 UE의 그룹 내의 모든 UE에 대한 동일한 시간-주파수 자원에서 할당된 하향링크 데이터 전송이다.
도 12는 본 개시의 일 실시예에 따른 무선 통신을 위한 다른 예시적인 방법(1200)을 설명하는 흐름도를 도시한다. 이 방법(1200)은 장치가 활성 하향링크(DL) 대역폭 부분(BWP)에서 물리 하향링크 제어 채널(PDCCH) 내의 하향링크 제어 정보(DCI)를 전송하는 단계(1210)를 포함한다. DCI는 데이터 전송을 스케줄링하기 위한 것이며, DCI는 주파수 영역 자원 할당 필드를 포함한다. 상기 장치는 예를 들어 기지국과 같은 네트워크 액세스 포인트일 수 있다.
다른 단계(1220)는 장치가 적어도 시작 자원 블록(RB) 및 인접하게 할당된 RB의 길이에 의해 정의된 시간-주파수 자원에서 데이터 전송을 UE에 전송하는 단계를 포함한다. 시작 RB는 DCI의 주파수 영역 자원 할당 필드의 값, 참조 RB, 및 제1 제어 자원 세트(CORESET)의 RB의 개수에 기초한다. 인접하게 할당된 RB의 길이는 DCI 내의 주파수 영역 자원 할당 필드의 값 및 제1 CORESET의 RB의 개수에 기초한다.
일부 실시예에서, 참조 RB는 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(PRB)이고, 제2 CORESET은 DCI가 UE에 의해 디코딩된 CORESET이다.
일부 실시예에서, 활성 DL BWP는 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 데이터 전송을 위한 RB의 분포를 포함한다. 여기서, 시작 RB는 가상 시작 RB이고, 인접하게 할당된 RB의 길이는 인접하게 할당된 가상 RB의 길이이며, 가상 시작 RB는 인접하게 할당된 가상 RB의 길이의 시작을 정의한다.
일부 실시예에서, 데이터 전송을 전송하는 단계는, 물리 RB의 인터리빙된 번들에 의해 정의되는 시간-주파수 자원에서 데이터 전송을 전송하고, 가상 시작 RB, 인접하게 할당된 가상 RB의 길이, 인터리브 매핑, 및 물리 RB의 참조 번들에 기초하여 물리 RB의 인터리빙된 번들을 전송하는 단계를 포함한다.
일부 실시예에서, 물리 RB의 참조 번들은 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(PRB)을 포함하는 물리 RB의 번들이고, 제2 CORESET은 DCI가 UE에 의해 디코딩된 CORESET이다.
일부 실시예에서, DCI는 폴백 DCI이다.
일부 실시예에서, 제1 CORESET는 "0"의 CORESET 식별자와 연관된다.
일부 실시예에서, DCI는 UE의 그룹과 연관되고, DCI에 의해 스케줄링된 데이터 전송은 UE의 그룹 내의 모든 UE에 대한 동일한 시간-주파수 자원에서 할당된 하향링크 데이터 전송이다.
본 개시의 일 양태에 따르면, 무선 통신을 위한 방법이 제공된다. 무선 통신을 위한 방법은, 사용자 장비(user equipment, UE)가 제1 대역폭 부분(BWP)에서 물리 하향링크 제어 채널(PDCCH) 내의 하향링크 제어 정보(DCI)를 수신하는 단계; UE가 DCI 내의 주파수 영역 자원 할당 필드의 값, 참조 RB, 및 제2 BWP의 참조 크기에 기초하여 DCI에 의해 할당된 데이터 전송을 위한 시작 자원 블록(RB)을 결정하는 단계; 및 UE가 데이터 전송을 전송하거나 또는 수신하는 단계를 포함한다.
일부 실시예에서, 무선 통신을 위한 방법은, UE가 DCI 내의 주파수 영역 자원 할당 필드의 값 및 제2 BWP의 참조 크기에 기초하여 데이터 전송을 위해 인접하게 할당된 RB의 길이를 결정하는 단계를 더 포함한다. 여기서, 데이터 전송을 전송하거나 또는 수신하는 단계는 적어도 시작 RB 및 인접하게 할당된 RB의 길이에 의해 정의된 시간-주파수 자원에 할당된 데이터 전송을 전송하거나 또는 수신하는 단계를 포함한다.
일부 실시예에서, DCI는 UE의 그룹과 관련되고, DCI에 의해 할당된 데이터 전송은 UE 그룹 내의 모든 UE에 대해 동일한 시간-주파수 자원에 할당된 하향링크 데이터 전송이다.
일부 실시예에서, 제1 BWP는 활성 BWP이고, 제2 BWP는 초기 하향링크(DL) BWP이다.
일부 실시예에서, 참조 RB는 DCI가 UE에 의해 디코딩된 PDCCH의 가장 낮은 번호의 자원 엘리먼트 그룹(REG); DCI가 UE에 의해 디코딩된 제어 자원 세트(CORESET)의 가장 낮은 번호의 물리 자원 블록(PRB); 활성 BWP에서 가장 작은 CORESET 식별자(ID)를 가진 구성된 CORESET의 가장 낮은 번호의 PRB; UE에 의해 사용되는 초기 DL BWP의 가장 낮은 번호의 PRB; 가장 작은 BWP ID를 가진 구성된 BWP의 가장 낮은 번호의 PRB; 디폴트 BWP의 가장 낮은 번호의 PRB; 및 상위 계층 시그널링에 의해 구성된 PRB 중 적어도 하나이다.
일부 실시예에서, 제2 BWP의 참조 크기는 초기 DL BWP의 RB의 개수; DCI가 UE에 의해 디코딩된 제어 자원 세트(CORESET)를 정의하는 RB의 개수; 활성 BWP에서 가장 작은 CORESET 식별자(ID)를 가진 구성된 CORESET을 정의하는 RB의 개수; 가장 작은 BWP ID를 가진 구성된 BWP의 크기를 정의하는 RB의 개수; 디폴트 BWP의 크기를 정의하는 RB의 개수; 및 상위 계층 시그널링에 의해 구성된 RB의 개수 중 적어도 하나와 동일한 RB의 개수이다.
일부 실시예에서, 데이터 전송을 위해 할당된 RB는, 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 제1 BWP를 통해 분배된다. 여기서, 시작 RB는 가상 시작 RB이고, 참조 RB는 가상 참조 RB이다.
일부 실시예에서, 무선 통신을 위한 방법은 UE가 적어도 가상 시작 RB, 인터리브 매핑, 및 물리 RB의 참조 번들에 기초하여 데이터 전송을 위한 물리 RB의 인터리빙된 번들을 결정하는 단계를 더 포함한다. 여기서, 데이터 전송을 전송하거나 또는 수신하는 단계는, 물리 RB의 인터리빙 번들에 의해 적어도 부분적으로 정의된 시간-주파수 자원에 할당된 데이터 전송을 전송하거나 또는 수신하는 단계를 포함한다.
일부 실시예에서, 가상 시작 RB는 인접하게 할당된 가상 RB의 길이의 시작을 정의하고, 물리 RB의 인터리빙된 번들을 결정하는 단계는 인접하게 할당된 가상 RB의 길이에 기초하여 물리 RB의 인터리빙된 번들을 결정하는 단계를 포함한다.
일부 실시예에서, DCI는 폴백 DCI이다.
본 개시의 다른 양태에 따르면, 프로세서 및 컴퓨터 실행가능 명령이 저장되어 있는 컴퓨터 판독가능 매체를 포함하는 사용자 장비(UE)가 제공된다. 프로세서에 의해 실행될 때, 컴퓨터 실행가능 명령은 UE로 하여금: 사용자 장비(user equipment, UE)가 제1 대역폭 부분(BWP)에서 물리 하향링크 제어 채널(PDCCH) 내의 하향링크 제어 정보(DCI)를 수신하게 하고; UE가 DCI 내의 주파수 영역 자원 할당 필드의 값, 참조 RB, 및 제2 BWP의 참조 크기에 기초하여, DCI에 의해 할당된 데이터 전송을 위한 시작 자원 블록(RB)을 결정하게 하며; 및 UE가 데이터 전송을 전송하거나 또는 수신하게 한다.
일부 실시예에서, 컴퓨터 실행가능 명령은, 프로세서에 의해 실행될 때, 추가적으로 UE로 하여금: UE가 DCI 내의 주파수 영역 자원 할당 필드의 값 및 제2 BWP의 참조 크기에 기초하여, 데이터 전송을 위한 인접하게 할당된 RB의 길이를 결정하게 한다. 여기서, 데이터 전송을 전송하거나 또는 수신하는 것은, 적어도 시작 RB 및 인접하게 할당된 RB의 길이에 의해 정의된 시간-주파수 자원에 할당된 데이터 전송을 전송하거나 또는 수신하는 것을 포함한다.
일부 실시예에서, DCI는 UE의 그룹과 연관되고, DCI에 의해 할당된 데이터 전송은 UE의 그룹 내의 모든 UE에 대해 동일한 시간-주파수 자원에 할당된 하향링크 데이터 전송이다.
일부 실시예에서, 제1 BWP는 활성 BWP이고, 제2 BWP는 초기 하향링크(DL) BWP이다.
일부 실시예에서, 참조 RB는 DCI가 UE에 의해 디코딩된 PDCCH의 가장 낮은 번호의 자원 엘리먼트 그룹(REG); DCI가 UE에 의해 디코딩된 제어 자원 세트(CORESET)의 가장 낮은 번호의 물리 자원 블록(PRB); 활성 BWP에서 가장 작은 CORESET 식별자(ID)를 가진 구성된 CORESET의 가장 낮은 번호의 PRB; UE에 의해 사용되는 초기 DL BWP의 가장 낮은 번호의 PRB; 가장 작은 BWP ID를 가진 구성된 BWP의 가장 낮은 번호의 PRB; 디폴트 BWP의 가장 낮은 번호의 PRB; 및 상위 계층 시그널링에 의해 구성된 PRB 중 적어도 하나이다.
일부 실시예에서, 제2 BWP의 참조 크기는 초기 DL BWP의 RB의 개수; DCI가 UE에 의해 디코딩된 제어 자원 세트(CORESET)를 정의하는 RB의 개수; 활성 BWP에서 가장 작은 CORESET 식별자(ID)를 갖는 구성된 CORESET을 정의하는 RB의 개수; 가장 작은 BWP ID를 가진 구성된 BWP의 크기를 정의하는 RB의 개수; 디폴트 BWP의 크기를 정의하는 RB의 개수; 및 상위 계층 시그널링에 의해 구성된 RB의 개수 중 적어도 하나와 동일한 RB의 개수이다.
일부 실시예에서, 데이터 전송을 위해 할당된 RB는, 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 제1 BWP를 통해 분배된다. 여기서, 시작 RB는 가상 시작 RB이고, 참조 RB는 가상 참조 RB이다.
일부 실시예에서, 컴퓨터 실행가능 명령은, 프로세서에 의해 실행될 때, 추가적으로 UE로 하여금: 적어도 가상 시작 RB, 인터리브 매핑, 및 물리 RB의 참조 번들에 기초하여 데이터 전송을 위한 물리 RB의 인터리빙된 번들을 결정하게 한다. 여기서, 데이터 전송을 전송하거나 또는 수신하는 것은, 적어도 물리 RB의 인터리빙된 번들에 의해 부분적으로 정의된 시간-주파수 자원에 할당된 데이터 전송을 전송하거나 또는 수신하는 것을 포함한다.
일부 실시예에서, 가상 시작 RB는 인접하게 할당된 가상 RB의 길이의 시작을 정의하고, 물리 RB의 인터리빙된 번들을 결정하는 것은 인접하게 할당된 가상 RB의 길이에 기초하여 물리 RB의 인터리빙된 번들을 결정하는 것을 포함한다.
일부 실시예에서, DCI는 폴백 DCI이다.
본 개시의 다른 양태에 따르면, 무선 통신을 위한 방법이 제공된다. 무선 통신을 위한 방법은, 제1 대역폭 부분(BWP)에서 하향링크 제어 정보(DCI) 내의 물리 하향링크 제어 채널(PDCCH)을 전송하는 단계 - DCI는 DCI에 의해 할당될 데이터 전송을 위한 시작 자원 블록(RB)을 정의하기 위한 값을 가진 주파수 영역 자원 할당 필드를 포함하고, 시작 RB는 참조 RB 및 제2 BWP의 참조 크기와 함께 정의됨 -; 및 기지국과 사용자 장비(user equipment, UE) 사이에서 데이터 전송을 전송하거나 또는 수신하는 단계를 포함한다.
일부 실시예에서, 주파수 영역 자원 할당 필드의 값은 데이터 전송을 위한 인접하게 할당된 RB의 길이를 더 정의하고, 데이터 전송을 전송하거나 또는 수신하는 단계는, 적어도 시작 RB 및 인접하게 할당된 RB의 길이에 의해 정의된 시간-주파수 자원에 할당된 데이터 전송을 전송하거나 또는 수신하는 단계를 포함한다.
일부 실시예에서, 데이터 전송을 위해 할당된 RB는 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 제1 BWP를 통해 분배된다. 여기서, 시작 RB는 가상 시작 RB이고, 참조 RB는 가상 참조 RB이다.
일부 실시예에서, 데이터 전송을 위한 물리 RB의 인터리빙된 번들은 가상 시작 RB, 인터리브 매핑, 인접하게 할당된 가상 RB의 길이, 및 물리 RB의 참조 번들에 의해 정의된다. 여기서, 데이터 전송을 전송하거나 또는 수신하는 단계는, 물리 RB의 인터리빙된 번들에 의해 적어도 부분적으로 정의된 시간-주파수 자원에 할당된 데이터 전송을 전송하거나 또는 수신하는 단계를 포함한다.
일부 실시예에서, VRB는 PRB와 다른 부반송파 간격 구성을 가지고 있다.
본 개시의 또 다른 양태에 따르면, 프로세서 및 컴퓨터 실행가능 명령이 저장된 컴퓨터 판독가능 매체를 포함하는 장치가 제공된다. 프로세서에 의해 실행될 때, 컴퓨터 실행가능 명령은 장치로 하여금: 제1 대역폭 부분(BWP)에서 물리 하향링크 제어 채널(PDCCH) 내의 하향링크 제어 정보(DCI)를 전송하게 하고 - 여기서, DCI는 DCI에 의해 할당될 데이터 전송을 위한 시작 자원 블록(RB)을 정의하기 위한 값을 가진 주파수 영역 자원 할당 필드를 포함하고, 시작 RB는 참조 RB 및 제2 BWP의 참조 크기와 함께 정의됨 -; 기지국과 사용자 장비(user equipment, UE) 사이에서 데이터 전송을 전송하거나 또는 수신하게 한다.
일부 실시예에서, 주파수 영역 자원 할당 필드의 값은 데이터 전송을 위한 인접하게 할당된 RB의 길이를 더 정의하고, 데이터 전송을 전송하거나 또는 수신하는 것은, 적어도 시작 RB 및 인접하게 할당된 RB의 길이에 의해 정의된 시간-주파수 자원에 할당된 데이터 전송을 전송하거나 또는 수신하는 것을 포함한다.
일부 실시예에서, 데이터 전송을 위한 할당된 RB는 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 제1 BWP를 통해 분배된다. 여기서, 시작 RB는 가상 시작 RB이고, 참조 RB는 가상 참조 RB이다.
일부 실시예에서, 데이터 전송을 위한 물리 RB의 인터리빙된 번들은 가상 시작 RB, 인터리브 매핑, 인접하게 할당된 가상 RB의 길이, 및 물리 RB의 참조 번들에 의해 정의된다. 여기서, 데이터 전송을 전송하거나 또는 수신하는 것은, 물리 RB의 인터리빙된 번들에 의해 적어도 부분적으로 정의된 시간-주파수 자원에 할당된 데이터 전송을 전송하거나 또는 수신하는 것을 포함한다.
일부 실시예에서, VRB는 PRB와 다른 부반송파 간격 구성을 가지고 있다.
본 발명은 예시적인 실시예를 참조하여 설명되었지만, 이 설명은 제한적인 의미로 해석되도록 의도한 것은 아니다. 본 발명의 다른 실시예뿐만 아니라 예시적인 실시예의 다양한 수정 및 조합이 이러한 설명을 참조하면 당업자에게 명백할 것이다. 따라서, 첨부된 청구 범위는 이러한 수정 또는 실시예를 포함하려는 것이다.

Claims (21)

  1. 무선 통신 방법으로서,
    사용자 장비(user equipment, UE)가 활성 하향링크(downlink, DL) 대역폭 부분(bandwidth part, BWP)에서 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 내의 하향링크 제어 정보(downlink control information, DCI)를 수신하는 단계 - 상기 DCI는 데이터 전송을 스케줄링하기 위한 것이고, 상기 DCI는 주파수 영역 자원 할당 필드를 포함하고 있음 -; 및
    상기 UE가 시작 자원 블록(resource block, RB) 및 인접하게 할당된 RB의 길이에 의해 정의되는 시간-주파수 자원에서 상기 데이터 전송을 수신하고, 상기 DCI 내의 상기 주파수 영역 자원 할당 필드의 값, 참조 RB, 및 제1 제어 자원 세트(control resource set, CORESET)의 RB의 개수에 기초하여 상기 시작 RB를 수신하며, 상기 DCI 내의 상기 주파수 영역 자원 할당 필드의 값 및 상기 제1 CORESET의 RB의 개수에 기초하여 상기 인접하게 할당된 RB의 길이를 수신하는 단계
    를 포함하는 무선 통신 방법.
  2. 제1항에 있어서,
    상기 참조 RB는 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(physical resource block, PRB)이고, 상기 제2 CORESET은 상기 DCI가 상기 UE에 의해 디코딩된 CORESET인, 무선 통신 방법.
  3. 제2항에 있어서,
    상기 UE가, 상기 DCI가 인터리빙되지 않은 가상 RB(VRB)-PRB 매핑으로 상기 데이터 전송을 위한 폴백 DCI이고; 상기 폴백 DCI가 공통 검색 공간에서 디코딩되며; 상기 데이터 전송을 위해, 가상 RB n이
    Figure pct00058
    에 매핑되고,
    Figure pct00059
    는 상기 폴백 DCI가 상기 UE에 의해 디코딩되었던 상기 CORESET 내의 가장 낮은 번호의 PRB라고 결정하는 단계
    를 더 포함하는 무선 통신 방법.
  4. 제1항에 있어서,
    상기 활성 DL BWP는 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 상기 데이터 전송을 위한 RB의 분포를 포함하고, 상기 시작 RB는 가상 시작 RB이고, 상기 인접하게 할당된 RB의 길이는 인접하게 할당된 가상 RB의 길이이며, 상기 가상 시작 RB는 상기 인접하게 할당된 가상 RB의 길이의 시작을 정의하는, 무선 통신 방법.
  5. 제4항에 있어서,
    상기 데이터 전송을 수신하는 단계는,
    상기 물리 RB의 인터리빙된 번들에 의해 정의되는 시간-주파수 자원에서 상기 데이터 전송을 수신하고, 상기 가상 시작 RB, 상기 인접하게 할당된 가상 RB의 길이, 상기 인터리브 매핑, 및 물리 RB의 참조 번들에 기초하여 상기 물리 RB의 인터리빙된 번들을 수신하는 단계
    를 포함하는, 무선 통신 방법.
  6. 제5항에 있어서,
    상기 물리 RB의 참조 번들은, 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(PRB)을 포함하는 물리 RB의 번들이고, 상기 제2 CORESET는 상기 DCI가 상기 UE에 의해 디코딩된 CORESET인, 무선 통신 방법.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 DCI는 폴백 DCI인, 무선 통신 방법.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 제1 CORESET는 "0"의 CORESET 식별자와 연관된, 무선 통신 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 DCI는 UE의 그룹과 연관되고, 상기 DCI에 의해 스케줄링된 상기 데이터 전송은 상기 UE의 그룹 내의 모든 UE에 대해 동일한 시간-주파수 자원에 할당된 하향링크 데이터 전송인, 무선 통신 방법.
  10. 사용자 장비(user equipment, UE)로서,
    프로세서;
    컴퓨터 실행가능 명령이 저장되어 있는 컴퓨터 판독가능 매체
    를 포함하고,
    상기 컴퓨터 판독가능 매체는 상기 프로세서에 의해 실행될 때 상기 UE로 하여금 제1항 내지 제9항의 무선 통신 방법을 수행하게 하는, 사용자 장비.
  11. 무선 통신 방법으로서,
    기지국이 활성 하향링크(downlink, DL) 대역폭 부분(bandwidth part, BWP)에서 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 내의 하향링크 제어 정보(DCI)를 전송하는 단계 - 상기 DCI는 데이터 전송을 스케줄링하기 위한 것이고, 상기 DCI는 주파수 영역 자원 할당 필드를 포함하고 있음 -; 및
    상기 기지국이 시작 자원 블록(resource block, RB) 및 인접하게 할당된 RB의 길이에 의해 정의되는 시간-주파수 자원에서 상기 데이터 전송을 전송하고, 상기 DCI 내의 상기 주파수 영역 자원 할당 필드의 값, 참조 RB, 및 제1 제어 자원 세트(control resource set, CORESET)의 RB의 개수에 기초하여 상기 시작 RB를 전송하며, 및 상기 DCI 내의 상기 주파수 영역 자원 할당 필드의 값 및 상기 제1 CORESET의 RB의 개수에 기초하여 상기 인접하게 할당된 RB의 길이를 사용자 장비(user equipment, UE)에 전송하는 단계
    를 포함하는 무선 통신 방법.
  12. 제11항에 있어서,
    상기 참조 RB는 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(physical resource block, PRB)이고, 상기 제2 CORESET는 상기 DCI가 상기 UE에 의해 디코딩된 CORESET인, 무선 통신 방법.
  13. 제11항에 있어서,
    상기 활성 DL BWP는 물리 RB의 인터리빙된 번들로의 가상 RB의 번들의 인터리브 매핑에 기초하여 상기 데이터 전송을 위한 RB의 분포를 포함하고, 상기 시작 RB는 가상 시작 RB이고, 상기 인접하게 할당된 RB의 길이는 인접하게 할당된 가상 RB의 길이이며, 상기 가상 시작 RB는 상기 인접하게 할당된 가상 RB의 길이의 시작을 정의하는, 무선 통신 방법.
  14. 제13항에 있어서,
    상기 데이터 전송을 전송하는 단계는,
    상기 물리 RB의 인터리빙된 번들에 의해 정의되는 시간-주파수 자원에서 상기 데이터 전송, 상기 가상 시작 RB, 상기 인접하게 할당된 가상 RB의 길이, 상기 인터리브 매핑, 및 물리 RB의 참조 번들에 기초하여 상기 물리 RB의 인터리빙된 번들을 전송하는 단계
    를 포함하는, 무선 통신 방법.
  15. 제14항에 있어서,
    상기 물리 RB의 참조 번들은 제2 CORESET 내의 가장 낮은 번호의 물리 자원 블록(physical resource block, PRB)을 포함하는 물리 RB의 번들이고, 상기 제2 CORESET는 상기 DCI가 상기 UE에 의해 디코딩된 CORESET인, 무선 통신 방법.
  16. 제11항 내지 제15항 중 어느 한 항에 있어서
    상기 DCI는 폴백 DCI인, 무선 통신 방법.
  17. 제11항 내지 제16항 중 어느 한 항에 있어서,
    상기 제1 CORESET는 "0"의 CORESET 식별자와 연관된, 무선 통신 방법.
  18. 제11항 내지 제17항 중 어느 한 항에 있어서,
    상기 DCI는 UE의 그룹과 연관되고, 상기 DCI에 의해 스케줄링된 상기 데이터 전송은 상기 UE의 그룹 내의 모든 UE에 대해 동일한 시간-주파수 자원에 할당된 하향링크 데이터 전송인, 무선 통신 방법.
  19. 장치로서,
    프로세서;
    컴퓨터 실행가능 명령이 저장되어 있는 컴퓨터 판독가능 매체
    를 포함하고,
    상기 컴퓨터 판독가능 매체는 상기 프로세서에 의해 실행될 때 상기 장치로 하여금 제11항 내지 제18항 중 어느 한 항의 무선 통신 방법을 수행하게 하는, 장치.
  20. 컴퓨터 판독가능 매체로서,
    상기 컴퓨터 판독가능 매체에는 컴퓨터 실행가능 명령이 저장되고,
    상기 컴퓨터 판독가능 매체는 상기 프로세서에 의해 실행될 때 장치로 하여금 제1항 내지 제9항 중 어느 한 항의 무선 통신 방법을 수행하게 하는, 컴퓨터 판독가능 매체.
  21. 컴퓨터 판독가능 매체로서,
    상기 컴퓨터 판독가능 매체에는 컴퓨터 실행가능 명령이 저장되고,
    상기 컴퓨터 판독가능 매체는 상기 프로세서에 의해 실행될 때 장치로 하여금 제11항 내지 제18항 중 어느 한 항의 무선 통신 방법을 수행하게 하는, 컴퓨터 판독가능 매체.
KR1020207016165A 2018-04-04 2019-04-01 하향링크 제어 정보 통신 및 해석을 위한 방법과 장치 KR102432629B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862652490P 2018-04-04 2018-04-04
US62/652,490 2018-04-04
US16/216,191 US11039429B2 (en) 2018-04-04 2018-12-11 Method and apparatus for downlink control information communication and interpretation
US16/216,191 2018-12-11
PCT/CN2019/080802 WO2019192422A1 (en) 2018-04-04 2019-04-01 Method and apparatus for downlink control information communication and interpretation

Publications (2)

Publication Number Publication Date
KR20200079535A true KR20200079535A (ko) 2020-07-03
KR102432629B1 KR102432629B1 (ko) 2022-08-12

Family

ID=68097610

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207016165A KR102432629B1 (ko) 2018-04-04 2019-04-01 하향링크 제어 정보 통신 및 해석을 위한 방법과 장치

Country Status (9)

Country Link
US (3) US11039429B2 (ko)
EP (2) EP3707950B1 (ko)
JP (1) JP7108047B2 (ko)
KR (1) KR102432629B1 (ko)
CN (2) CN111771412A (ko)
AU (1) AU2019248685B2 (ko)
BR (1) BR112020011066A2 (ko)
MX (1) MX2020007220A (ko)
WO (1) WO2019192422A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10708938B2 (en) * 2016-10-31 2020-07-07 Samsung Electronics Co., Ltd. Transmission of UL control channels with dynamic structures
EP3777000A2 (en) * 2018-04-06 2021-02-17 Lenovo (Singapore) Pte. Ltd. Configuring for bandwidth parts
US11503518B2 (en) * 2018-04-13 2022-11-15 Qualcomm Incorporated Reference point determination
JP2019198014A (ja) * 2018-05-10 2019-11-14 シャープ株式会社 端末装置、基地局装置、および、通信方法
US11563541B2 (en) * 2018-05-11 2023-01-24 Qualcomm Incorporated Resource mapping for broadcasted system information
US11166267B2 (en) * 2018-08-17 2021-11-02 Qualcomm Incorporated DCI triggered SRS enhancements
EP3871356B1 (en) * 2018-10-26 2023-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Downlink control information (dci) size matching
US11589239B2 (en) * 2019-01-04 2023-02-21 Mediatek Inc. Methods of efficient wideband operation for intra-band non-contiguous spectrum
WO2020229724A1 (en) * 2019-05-13 2020-11-19 Nokia Technologies Oy Radio resource management
CN115988663A (zh) * 2019-11-14 2023-04-18 维沃移动通信有限公司 一种上行资源确定方法、指示方法、终端和网络设备
US11985643B2 (en) * 2020-04-10 2024-05-14 Qualcomm Incorporated DCI design for multi-cross carrier scheduling
US11943763B2 (en) * 2020-08-06 2024-03-26 Asustek Computer Inc. Method and apparatus for distributed resource allocation in a wireless communication system
CN116848814A (zh) * 2020-10-06 2023-10-03 欧芬诺有限责任公司 控制信道重复中的资源确定
JP2024507977A (ja) * 2021-02-26 2024-02-21 日本電気株式会社 通信方法、端末装置及びネットワーク装置
CN115706651A (zh) * 2021-08-13 2023-02-17 北京三星通信技术研究有限公司 无线通信系统中的方法、终端和基站
CN114175566A (zh) * 2021-11-03 2022-03-11 北京小米移动软件有限公司 资源确定方法、装置、设备及存储介质

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017867A1 (ko) 2012-07-27 2014-01-30 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
US10524237B2 (en) 2016-03-07 2019-12-31 Samsung Electronics Co., Ltd. Control signaling for supporting multiple services in advanced communication systems
US10462739B2 (en) 2016-06-21 2019-10-29 Samsung Electronics Co., Ltd. Transmissions of physical downlink control channels in a communication system
US10638484B2 (en) * 2016-07-21 2020-04-28 Lg Electronics Inc. Method for transmitting or receiving downlink control information in wireless communication system and device therefor
EP3934357B1 (en) * 2016-08-11 2024-05-15 Samsung Electronics Co., Ltd. Method and apparatus of data transmission in next generation cellular networks
JP6963611B2 (ja) * 2017-02-05 2021-11-10 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 無線通信システムにおける端末の上りリンク制御情報送信方法及びそれを支援する装置
EP3471319B1 (en) * 2017-02-14 2023-04-19 LG Electronics Inc. Method for transmitting/receiving data in wireless communication system and apparatus therefor
EP3499783B1 (en) 2017-04-24 2021-11-03 LG Electronics Inc. Method for transmitting or receiving signal in wireless communication system and apparatus therefor
US11096170B2 (en) 2017-06-12 2021-08-17 Qualcomm Incorporated Multi-component interleaver design supporting coresets of different symbol length
CN110999482B (zh) * 2017-06-16 2022-05-17 中兴通讯股份有限公司 用于分配资源块的系统和方法
WO2019011332A1 (en) 2017-07-14 2019-01-17 Cheng Yu Hsin HIGH RELIABILITY ULTRA-RELIABLE LATENCY COMMUNICATION TRANSMISSION SYSTEMS AND METHODS
CN107659994A (zh) 2017-09-05 2018-02-02 宇龙计算机通信科技(深圳)有限公司 资源指示方法、相关设备及通信系统
US10512072B2 (en) 2017-09-11 2019-12-17 Lg Electronics Inc. Method and apparatus for transmitting downlink control information in wireless communication system
CN117042160A (zh) * 2017-10-24 2023-11-10 Lg电子株式会社 基站和由基站执行的方法
GB2568486B (en) 2017-11-16 2020-06-10 Tcl Communication Ltd Improvements in or relating to rate de-matching around resources used by control signalling
US11018910B2 (en) 2017-11-17 2021-05-25 Mediatek Inc. On PDCCH DMRS mapping and coreset resource allocation
US20190158205A1 (en) 2017-11-17 2019-05-23 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
US10772151B2 (en) 2018-01-05 2020-09-08 Ofinno, Llc Beam management in discontinuous reception
KR20190086664A (ko) * 2018-01-12 2019-07-23 엘지전자 주식회사 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 수행 방법 및 상기 방법을 이용하는 단말
US20190222404A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Signaling techniques for bandwidth parts
CA3034014A1 (en) 2018-02-15 2019-08-15 Comcast Cable Communications, Llc Beam failure report
US10993254B2 (en) * 2018-02-16 2021-04-27 Qualcomm Incorporated Downlink control information signaling schemes for bandwidth part switching
WO2019182423A1 (en) * 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting downlink control information in wireless communication system
US10652826B2 (en) 2018-03-23 2020-05-12 Samsung Electronics Co., Ltd. Method and apparatus for power saving signal design in NR

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP R1-1801286* *
3GPP R1-1801730* *
3GPP R1-1803965* *

Also Published As

Publication number Publication date
EP3707950A1 (en) 2020-09-16
EP3707950B1 (en) 2023-02-22
JP7108047B2 (ja) 2022-07-27
JP2021507651A (ja) 2021-02-22
US20220191841A1 (en) 2022-06-16
BR112020011066A2 (pt) 2020-11-17
AU2019248685A1 (en) 2020-06-04
KR102432629B1 (ko) 2022-08-12
US11219005B2 (en) 2022-01-04
US20200008182A1 (en) 2020-01-02
US20190313377A1 (en) 2019-10-10
RU2020122254A (ru) 2022-05-05
AU2019248685B2 (en) 2021-08-19
MX2020007220A (es) 2020-09-07
WO2019192422A1 (en) 2019-10-10
CN111771412A (zh) 2020-10-13
CN116456490A (zh) 2023-07-18
EP3707950A4 (en) 2020-12-23
US11039429B2 (en) 2021-06-15
EP4203586A1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
KR102432629B1 (ko) 하향링크 제어 정보 통신 및 해석을 위한 방법과 장치
CN112385160B (zh) 使用多个收发点增强数据信道可靠性的方法和装置
KR102153971B1 (ko) 크로스 캐리어 스케줄링을 위한 물리 하향링크 제어 채널들의 제어 채널 요소들의 획득
CN111656840B (zh) 用于时域免授权pusch资源分配的系统和方法
US11089582B2 (en) Method and system for downlink control information payload size determination
CN112514484B (zh) 用于每个载波多个激活带宽部分的方法和系统
JP2020516196A (ja) ワイヤレス通信システムのリソース構成のための方法およびシステム
CN112956264B (zh) 用于侧行通信配置的方法和装置
KR102261777B1 (ko) 짧은 물리 다운링크 제어 채널(sPDCCH) 매핑 설계
KR20200051773A (ko) 슬롯 당 다중 스위칭 포인트로 슬롯 포맷을 구성하기 위한 시스템 및 방법
JP7353976B2 (ja) 動的ショート物理ダウンリンク制御チャネル(sPDCCH)リソース決定
US10952215B2 (en) Method and system for transmission over multiple carriers
RU2776428C2 (ru) Способ и устройство для передачи и интерпретации информации управления нисходящей линии связи
CN114731668A (zh) 用于在无线通信中配置符号和符号块参数的系统和方法

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant