KR20200076476A - Spring steel with improved fatigue properties and manufacturing method thereof - Google Patents

Spring steel with improved fatigue properties and manufacturing method thereof Download PDF

Info

Publication number
KR20200076476A
KR20200076476A KR1020180165603A KR20180165603A KR20200076476A KR 20200076476 A KR20200076476 A KR 20200076476A KR 1020180165603 A KR1020180165603 A KR 1020180165603A KR 20180165603 A KR20180165603 A KR 20180165603A KR 20200076476 A KR20200076476 A KR 20200076476A
Authority
KR
South Korea
Prior art keywords
steel
less
molten steel
manufacturing
present
Prior art date
Application number
KR1020180165603A
Other languages
Korean (ko)
Inventor
김동현
연호
노정표
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020180165603A priority Critical patent/KR20200076476A/en
Publication of KR20200076476A publication Critical patent/KR20200076476A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention relates to spring steel and a manufacturing method thereof and, more specifically, to spring steel with improved fatigue property and a manufacturing method thereof. According to an embodiment of the present invention, the method for manufacturing the spring steel comprises the steps of: refining molten steel containing 0.5-0.7 wt% of C, 1.2-2 wt% of Si, 0.5-0.8 wt% of Mn, 0.5-0.8 wt% of Cr, 0.1-0.4 wt% of Ni, 0.1-0.4 wt% of Cu, 0.05-0.2 wt% of V, 0.01-0.1 wt% of Ti, 0.1 wt% or less of Nb, 0.001-0.07 wt% of sol. Al, 0.007 wt% or less of N, 0.004 wt% or less of B, 0.03 wt% or less of P, 0.03 wt% or less of S, and the remainder consisting of Fe and unavoidable impurities; and casting the refined molten steel to manufacture steel blooms, wherein the step for refining the molten steel includes composite deoxidization of sol. Al and Si.

Description

피로 특성이 향상된 스프링강 및 그 제조방법 {Spring steel with improved fatigue properties and manufacturing method thereof}Spring steel with improved fatigue properties and manufacturing method thereof

본 발명은 스프링강 및 그 제조방법에 관한 것으로서, 상세하게는 피로 특성이 향상된 스프링강 및 그 제조방법에 관한 것이다.The present invention relates to a spring steel and a manufacturing method thereof, and more particularly, to a spring steel having improved fatigue properties and a manufacturing method thereof.

최근 자동차의 경량화, 연비 향상을 위해 고응력 스프링에 대한 수요가 증대하고 있다. 이를 위해 스프링강에 Ti, V 및 Nb 등 합금성분을 첨가하는 등 합금원소를 제어하여, 결정립의 미세화 및 템퍼링 시 석출 강화를 통하여 스프링을 고응력화하려는 시도가 있다.2. Description of the Related Art Recently, demand for high-stress springs is increasing in order to reduce the weight of automobiles and improve fuel efficiency. To this end, there are attempts to increase the stress of the spring through finer grains and enhanced precipitation during tempering by controlling alloy elements, such as adding alloy components such as Ti, V, and Nb to the spring steel.

그러나, 첨가된 Ti, V, 및 Nb 등의 합금성분은 강 중 탄소 또는 질소와 결합하여 강편 중심부에 탄질화물을 다량으로 발생시키며, 중심부에 다량으로 발생한 탄질화물은 스프링 성형 후에도 잔존하여 최종 스프링 피로 특성을 저하시키는 문제점이 있다.However, alloy components such as added Ti, V, and Nb are combined with carbon or nitrogen in the steel to generate a large amount of carbonitride in the center of the steel piece, and a large amount of carbonitride generated in the center remains after spring molding, resulting in final spring fatigue There is a problem of deteriorating properties.

한국 공개특허공보 제10-2015-0133850호 (공개일자: 2015년 11월 30일)Korea Patent Publication No. 10-2015-0133850 (published date: November 30, 2015)

상술한 문제점을 해결하기 위해 본 발명은 최종 스프링 피로 특성을 향상시킬 수 있는 스프링강 및 그 제조방법을 제공하고자 한다.In order to solve the above-mentioned problems, the present invention is to provide a spring steel and a method of manufacturing the same, which can improve the final spring fatigue properties.

본 발명의 일 예에 따른 스프링강의 제조방법은 중량%로, C: 0.5~0.7%, Si: 1.2~2%, Mn: 0.5~0.8%, Cr: 0.5~0.8%, Ni: 0.1~0.4%, Cu: 0.1~0.4%, V: 0.05~0.2%, Ti: 0.01~0.1%, Nb: 0.1% 이하, sol. Al: 0.001~0.07%, N: 0.007% 이하, B: 0.004% 이하, P: 0.03% 이하, S: 0.03% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 용강을 정련하는 단계 및 상기 정련된 용강을 주조하여 강편으로 제조하는 단계를 포함하고, 상기 용강을 정련하는 단계는 sol. Al 및 Si 복합 탈산하는 것을 포함한다.Manufacturing method of spring steel according to an example of the present invention is by weight, C: 0.5 ~ 0.7%, Si: 1.2 ~ 2%, Mn: 0.5 ~ 0.8%, Cr: 0.5 ~ 0.8%, Ni: 0.1 ~ 0.4% , Cu: 0.1-0.4%, V: 0.05-0.2%, Ti: 0.01-0.1%, Nb: 0.1% or less, sol. Al: 0.001 ~ 0.07%, N: 0.007% or less, B: 0.004% or less, P: 0.03% or less, S: 0.03% or less, refining the molten steel containing the residual Fe and unavoidable impurities, and the refined molten steel Casting to prepare a steel piece, and the step of refining the molten steel is sol. Al and Si composite deoxidation.

또한, 상기 용강을 정련하는 단계는 중량%로, sol. Al: 0.04~0.07%가 되도록 하여 복합 탈산하는 것을 포함할 수 있다.In addition, the step of refining the molten steel is by weight, sol. Al: 0.04 to 0.07%, and may include complex deoxidation.

또한, 상기 정련된 용강은 중량%로, N: 0.004~0.007%를 포함할 수 있다.In addition, the refined molten steel is weight%, and may include N: 0.004 to 0.007%.

또한, 상기 정련된 용강을 주조하여 강편으로 제조하는 단계에서, TiN이 형성되며, 상기 TiN의 초기 형성온도는 1430℃ 이상일 수 있다.In addition, in the step of casting the refined molten steel to produce a steel piece, TiN is formed, and the initial formation temperature of the TiN may be 1430°C or higher.

본 발명의 다른 일 예에 따른 스프링강은 중량%로, C: 0.5~0.7%, Si: 1.2~2%, Mn: 0.5~0.8%, Cr: 0.5~0.8%, Ni: 0.1~0.4%, Cu: 0.1~0.4%, V: 0.05~0.2%, Ti: 0.01~0.1%, Nb: 0.1% 이하, sol. Al: 0.04~0.07%, N: 0.004~0.007%, B: 0.004% 이하, P: 0.03% 이하, S: 0.03% 이하, 잔부 Fe 및 불가피한 불순물을 포함한다.Spring steel according to another embodiment of the present invention in weight percent, C: 0.5 to 0.7%, Si: 1.2 to 2%, Mn: 0.5 to 0.8%, Cr: 0.5 to 0.8%, Ni: 0.1 to 0.4%, Cu: 0.1-0.4%, V: 0.05-0.2%, Ti: 0.01-0.1%, Nb: 0.1% or less, sol. Al: 0.04 to 0.07%, N: 0.004 to 0.007%, B: 0.004% or less, P: 0.03% or less, S: 0.03% or less, balance Fe and unavoidable impurities.

본 발명은 용강을 정련하는 단계로 용강 중 질소 함량을 높여 TiN 초기 형성온도를 1430℃ 이상으로 제어할 수 있어 강편 중심부에 다량으로 형성되는 탄질화물을 강편 전체에 분산시켜 형성할 수 있으므로, 최종 스프링 피로 특성을 향상시킬 수 있다.The present invention is a step of refining the molten steel, and it is possible to increase the nitrogen content in the molten steel to control the initial formation temperature of TiN to 1430°C or higher, so that a large amount of carbonitride formed in the center of the steel piece can be formed by dispersing it throughout the steel piece, resulting in the final spring. Fatigue properties can be improved.

도 1은 종래 스프링강의 주조 개요도이다.
도 2는 탄질화물의 형성 개요도이다.
도 3은 본 발명 스프링강의 주조 개요도이다.
1 is a schematic view of a conventional spring steel casting.
2 is a schematic view of formation of carbonitride.
3 is a schematic diagram of casting of the spring steel of the present invention.

이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described. However, embodiments of the present invention may be modified in various other forms, and the technical idea of the present invention is not limited to the embodiments described below. In addition, embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.The terms used in this application are only used to describe specific examples. Thus, for example, a singular expression includes a plural expression, unless the context clearly indicates it. In addition, terms such as “comprise” or “include” used in the present application are used to clearly indicate the existence of features, steps, functions, components, or combinations thereof described in the specification, and other features. It should be noted that it is not used to preliminarily exclude the presence of a field or step, function, component, or combination thereof.

한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. 가령, 본 명세서에서 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.On the other hand, unless otherwise defined, all terms used in this specification should be regarded as having the same meaning as generally understood by a person having ordinary skill in the art to which the present invention pertains. Accordingly, unless explicitly defined herein, certain terms should not be construed in excessively ideal or formal sense. For example, in this specification, a singular expression includes a plural expression unless the context clearly has an exception.

또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.In addition, "about", "substantially" and the like in the present specification are used in the sense of or close to the value when manufacturing and substance tolerances unique to the stated meaning are presented, and are used to help understand the present invention. Or, an absolute value is used to prevent unscrupulous use of the disclosed content by unscrupulous intruders.

또한, 본 명세서 상에서 "액상선"은 주조하는 단계에서, 용강에서 강편으로의 응고 개시 온도를 지칭하는 의미로 사용되며, 온도는 약 1460℃이다. "고상선"은 용강에서 강편으로의 응고 완료 온도를 지칭하는 의미로 사용되며, 온도는 약 1380℃이다.In addition, in the present specification, "liquid line" is used in the casting step to refer to the starting temperature of solidification from molten steel to steel, and the temperature is about 1460°C. "Solid ship" is used to mean the completion temperature of solidification from molten steel to steel, and the temperature is about 1380°C.

최근 자동차의 경량화, 연비 향상을 위해 고응력 스프링에 대한 수요가 증대하고 있다. 이를 위해 스프링강에 Ti, V 및 Nb 등 합금성분을 첨가하는 등 합금원소를 제어하여, 결정립의 미세화 및 템퍼링 시 석출 강화를 통하여 스프링을 고응력화하려는 시도가 있다.2. Description of the Related Art Recently, demand for high-stress springs is increasing in order to reduce the weight of automobiles and improve fuel efficiency. To this end, there are attempts to increase the stress of the spring through finer grains and enhanced precipitation during tempering by controlling alloy elements, such as adding alloy components such as Ti, V, and Nb to the spring steel.

그러나, 첨가된 Ti, V, Nb 등의 합금성분은 강 중 탄소 또는 질소와 결합하여 TiN, TiC 등의 탄질화물을 강편 응고 시에 형성하며, 탄질화물의 총량 보다는 탄질화물의 초기 형성 온도와 강편의 액상선, 고상선 간의 차이에 의해 강편 중심부에 탄질화물이 다량으로 발생한다. 중심부에 다량으로 발생한 탄질화물은 스프링 성형 후에도 잔존하여 최종 스프링 피로 특성을 저하시키는 문제점이 있다. 이하에서 첨부된 도 1 및 도 2를 참조하여, 중심부에 다량으로 존재하는 탄질화물의 형성 과정에 대하여 상세히 설명한다. However, alloy components such as added Ti, V, and Nb form carbonitrides such as TiN and TiC during solidification of the steel pieces by combining with carbon or nitrogen in the steel, and the initial formation temperature and steel pieces of carbonitrides rather than the total amount of carbonitrides. A large amount of carbonitride is generated in the center of the steel piece due to the difference between the liquidus and solidus. The carbonitride generated in a large amount in the center remains after the spring molding, thereby deteriorating the final spring fatigue characteristics. Hereinafter, a process of forming carbonitride present in a large amount in the center will be described in detail with reference to FIGS. 1 and 2.

도 1을 참조하면, 강편은 중심부로 향할수록 온도가 더 높으며, 이에 따라 강편 중심부에는 상대적으로 높은 온도의 용강이 장시간 동안 잔류하게 된다. 또한, 용강이 응고되기 시작하는 응고 시작점에서의 온도보다 강편 중심부의 용강까지 모두 응고가 완료되는 응고 완료점에서의 온도가 낮으므로, 탄질화물은 강편 중심부에 형성될 가능성이 높다.Referring to FIG. 1, the higher the temperature toward the center of the steel piece, the higher the molten steel at a relatively high temperature in the center of the steel piece. In addition, since the temperature at the solidification completion point where solidification is completed to all the molten steel at the center of the steel piece is lower than the temperature at the solidification start point at which the molten steel starts to solidify, carbonitride is likely to be formed at the center of the steel piece.

탄질화물 중 TiN의 초기 형성온도는 대략 1400℃로서 고상선에서의 온도와 유사하여, 도 1에 도시된 바와 같이 TiN은 상대적으로 높은 온도의 용강이 장시간 동안 잔류하게 되는 강편 중심부에 다량으로 형성된다. 또한, 도 2를 참조하면, 강편이 주조되는 과정에서 형성되는 TiN을 핵으로 하여 주위에는 보다 낮은 형성온도를 갖는 Ti-C-N(약 1387℃)이 추가적으로 석출되며, 형성된 Ti-C-N을 핵으로 하여 주위에는 보다 낮은 형성온도를 갖는 Nb-C(약 1257℃)가 추가적으로 석출된 결과, 강편 중심부에는 탄질화물이 다량으로 조대하게 형성된다. The initial formation temperature of TiN in the carbonitride is approximately 1400° C., which is similar to the temperature in the solidus, and as shown in FIG. 1, TiN is formed in a large amount in the center of the steel piece where a relatively high temperature molten steel remains for a long time. . In addition, referring to FIG. 2, Ti-CN (about 1387°C) having a lower formation temperature is additionally precipitated around the TiN formed during the process of casting a steel piece as a nucleus, and the formed Ti-CN as a nucleus. As a result of additional precipitation of Nb-C (about 1257°C) having a lower formation temperature in the surroundings, a large amount of carbonitride is coarsely formed in the center of the steel piece.

따라서, 탄질화물을 형성하는 Ti, Nb, C, N 성분을 제어하는 것이 중요하며, 이 중 상대적으로 초기 형성온도가 높은 탄질화물을 형성하는 Ti 성분과 스프링 응력에 영향을 주지 않고, 제어가 가능한 N 성분을 제어하는 것이 중요하다.Therefore, it is important to control the Ti, Nb, C, and N components that form the carbonitride, and among these, it is possible to control without affecting the Ti component and the spring stress that form the relatively high initial formation temperature of the carbonitride. It is important to control the N component.

상술한 문제를 해결하기 위해, 본 발명은 TiN 초기 형성온도를 액상선에 가까워지도록 높게 형성하여, 강편 중심부에 다량으로 형성되는 탄질화물을 강편 전체에 분산시켜 형성할 수 있으므로 최종 스프링 피로 특성을 향상시킬 수 있는 스프링강 및 그 제조방법을 제공하고자 한다. In order to solve the above-described problem, the present invention can be formed by dispersing the carbonitride formed in a large amount in the center of the steel piece to form a high TiN initial formation temperature close to the liquid line, thereby improving the final spring fatigue properties. It is intended to provide a spring steel and a method of manufacturing the same.

일 예에 따르면, 본 발명의 스프링강의 제조방법은 중량%로, C: 0.5~0.7%, Si: 1.2~2%, Mn: 0.5~0.8%, Cr: 0.5~0.8%, Ni: 0.1~0.4%, Cu: 0.1~0.4%, V: 0.05~0.2%, Ti: 0.01~0.1%, Nb: 0.1% 이하, sol. Al: 0.001~0.07%, N: 0.007% 이하, B: 0.004% 이하, P: 0.03% 이하, S: 0.03% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 용강을 정련하는 단계 및 상기 정련된 용강을 주조하여 강편을 제조하는 단계를 포함한다. 이하에서, 각 단계에 대하여 상세히 설명한다.According to one example, the method of manufacturing the spring steel of the present invention is by weight, C: 0.5 to 0.7%, Si: 1.2 to 2%, Mn: 0.5 to 0.8%, Cr: 0.5 to 0.8%, Ni: 0.1 to 0.4 %, Cu: 0.1-0.4%, V: 0.05-0.2%, Ti: 0.01-0.1%, Nb: 0.1% or less, sol. Al: 0.001 ~ 0.07%, N: 0.007% or less, B: 0.004% or less, P: 0.03% or less, S: 0.03% or less, refining the molten steel containing the residual Fe and unavoidable impurities, and the refined molten steel Casting to produce a steel piece. Hereinafter, each step will be described in detail.

용강을 정련하는 단계Steps to refine the molten steel

본 발명에서 용강을 정련하는 단계는 용강 주조 시 형성되는 TiN의 초기 형성온도를 높임으로써 강편 중심부에 다량으로 형성되는 탄질화물을 강편 전체 분산시켜 형성할 수 있는 핵심적인 단계이다.In the present invention, the step of refining molten steel is a key step in which carbonitride formed in a large amount in the center of the steel piece is dispersed throughout the steel piece by increasing the initial formation temperature of TiN formed during casting of the molten steel.

본 발명자들은 연구를 거듭한 결과, Ti 함량 대비 N 함량비가 높을수록 TiN 초기 형성온도를 높일 수 있는 것을 발견하였다. 또한, N 함량은 제강 공정에서 별도의 가질 작업을 통해 높일 수 있으나, 상기 가질 작업은 N 함량 변동이 크며, 공정 부하의 문제점을 가지고 있다. 따라서, 본 발명에서는 용강을 정련하는 단계에서, 제강 탈산법의 변경을 통한 N 함량을 높인다.As a result of repeated research, the present inventors have found that the higher the N content ratio compared to the Ti content, the higher the initial formation temperature of TiN. In addition, the N content can be increased through a separate operation in the steelmaking process, but the operation to have has a large variation in the N content, and has a problem of process load. Therefore, in the present invention, in the step of refining molten steel, the N content is increased through a change in the steelmaking deoxidation method.

본 발명의 일 예에 따른 용강을 정련하는 단계는 sol. Al 및 Si 복합 탈산하는 것을 포함할 수 있다. sol. Al 및 Si 복합 탈산 시 용강 중 [O] 함량을 낮추고, 열역학적으로 [N] 함량을 높일 수 있다. 반면, sol. Al 또는 Si 단독 탈산 시 정련 후의 용강 중 [O] 함량이 높으며, 열역학적으로 [N] 함량이 낮을 수 있다.The step of refining the molten steel according to an example of the present invention is sol. And deoxidizing the Al and Si composites. sol. When deoxidizing Al and Si composites, it is possible to lower the [O] content in the molten steel and increase the [N] content thermodynamically. On the other hand, sol. When deoxidizing Al or Si alone, the [O] content in the molten steel after refining is high, and the [N] content may be low thermodynamically.

본 발명의 일 예에 따르면, 용강을 정련하는 단계에서, sol. Al은 0.04~0.07중량%가 되도록 하여 복합 탈산할 수 있다. sol. Al 함량이 0.04중량% 미만인 경우 정련 후의 용강 중 [O] 함량이 높으며, 열역학적으로 [N] 함량이 낮을 수 있다. sol. Al 함량이 0.07중량%를 초과하는 경우에는 Al계 개재물이 부상 분리되지 않고, 용강 중 잔존 가능성이 커져 최종 강의 품질을 저하시킬 수 있다.According to an example of the present invention, in the step of refining the molten steel, sol. Al can be made to be 0.04 to 0.07% by weight and can be deoxidized in a complex manner. sol. When the Al content is less than 0.04% by weight, the [O] content in the molten steel after refining is high, and the [N] content may be low thermodynamically. sol. When the Al content exceeds 0.07% by weight, the Al-based inclusions do not float and are separated, and the possibility of remaining in molten steel increases, thereby deteriorating the quality of the final steel.

통상적으로 용강 내 포함되는 N 함량은 0.003중량%이며, 본 발명의 일 예에 따르면 상술한 정련 과정으로써 정련된 용강은 N: 0.004~0.007중량%로, 높은 함량으로 질소를 포함할 수 있다.Normally, the N content in the molten steel is 0.003% by weight, and according to an example of the present invention, the molten steel refined as the above-described refining process is N: 0.004 to 0.007% by weight, and may contain nitrogen in a high content.

본 발명에서는 상술한 정련하는 단계로 질소 함량을 높일 수 있으며, 정련되는 용강을 주조하여 강편을 제조하는 단계에서 TiN 형성 시 초기 형성온도를 1430℃ 이상으로 제어할 수 있다. In the present invention, the nitrogen content may be increased by the above-described refining step, and the initial formation temperature may be controlled to 1430° C. or higher when TiN is formed in the step of producing steel pieces by casting molten steel to be refined.

이하에서, 정련된 용강을 주조하여 강편을 제조하는 단계에 대해서 설명한다.Hereinafter, a step of manufacturing a steel piece by casting refined molten steel will be described.

정련된 용강을 주조하여 강편으로 제조하는 단계Step of casting refined molten steel into steel pieces

본 발명에서 정련된 용강을 주조하여 강편을 제조하는 단계는 상술한 합금조성을 가진 용강을 상기 정련과정으로 정련한 다음, 주조하여 강편으로 제조하면 충분하고 특별히 제한되지 않는다. 당해 기술분야의 통상의 기술자가 공지된 주조 과정을 적절히 설계 변경할 수 있다.In the present invention, the step of manufacturing molten steel by casting the refined molten steel is sufficient and not particularly limited if the molten steel having the above-described alloy composition is refined by the refining process, and then cast and manufactured into steel pieces. A person skilled in the art can appropriately design change the known casting process.

상술한 정련하는 단계로 용강 중 질소 함량을 높여 TiN 초기 형성온도를 1430℃ 이상으로 제어할 수 있어 강편 중심부에 다량으로 형성되는 탄질화물을 강편 전체에 분산시켜 형성할 수 있으므로, 최종 스프링 피로 특성을 향상시킬 수 있다. 이하에서, 첨부된 도 3을 참조하여 이를 상세히 설명한다.As the above-described refining step, it is possible to increase the nitrogen content in the molten steel and control the initial formation temperature of TiN to 1430°C or higher, so that a large amount of carbonitride formed in the center of the steel piece can be formed by dispersing it throughout the steel piece, thereby improving the final spring fatigue properties. Can be improved. Hereinafter, this will be described in detail with reference to the accompanying FIG. 3.

도 3을 참조하면, TiN 초기 형성온도가 1430℃ 이상으로 제어된 결과 TiN 초기 형성온도가 액상선의 온도와 가까워지므로, TiN 생성 시작점이 도 1 대비 응고 시작점에 가까이 형성된다. 이에 따라, 상대적으로 강편 전체에 TiN이 분산되어 형성되며, TiN를 핵으로 하여 주위에 생성되는 Ti-C-N, Ti-C-N을 핵으로 하여 주위에 생성되는 Nb-C 역시 강편 전체에 분산되어 형성되게 된다. 따라서, 강편 중심부에 다량으로 형성되는 탄질화물을 강편 전체 분산시켜 형성할 수 있으므로, 최종 스프링 피로 특성을 향상시킬 수 있다.Referring to FIG. 3, since the initial TiN formation temperature is controlled to be 1430° C. or higher, the initial TiN formation temperature is closer to the temperature of the liquidus line, so that the TiN generation starting point is formed closer to the solidification starting point compared to FIG. 1. Accordingly, TiN is formed by dispersing relatively whole steel pieces, and Ti-CN generated around TiN as a nucleus and Nb-C generated around Ti-CN as a nucleus are also formed to be dispersed throughout the steel piece. do. Therefore, since carbonitride formed in a large amount in the center of the steel piece can be formed by dispersing the entire steel piece, the final spring fatigue properties can be improved.

상술한 단계로 제조되는 본 발명의 일 예에 따른 피로 특성이 향상된 스프링강은 중량%로, C: 0.5~0.7%, Si: 1.2~2%, Mn: 0.5~0.8%, Cr: 0.5~0.8%, Ni: 0.1~0.4%, Cu: 0.1~0.4%, V: 0.05~0.2%, Ti: 0.01~0.1%, Nb: 0.1% 이하, sol. Al: 0.04~0.07%, N: 0.004~0.007%, B: 0.004% 이하, P: 0.03% 이하, S: 0.03% 이하, 잔부 Fe 및 불가피한 불순물을 포함한다.Spring steel with improved fatigue properties according to an example of the present invention manufactured in the above-described steps is in weight percent, C: 0.5 to 0.7%, Si: 1.2 to 2%, Mn: 0.5 to 0.8%, Cr: 0.5 to 0.8 %, Ni: 0.1-0.4%, Cu: 0.1-0.4%, V: 0.05-0.2%, Ti: 0.01-0.1%, Nb: 0.1% or less, sol. Al: 0.04 to 0.07%, N: 0.004 to 0.007%, B: 0.004% or less, P: 0.03% or less, S: 0.03% or less, balance Fe and unavoidable impurities.

또한, 본 발명의 일 예에 따른 스프링강은 인장강도(TS)의 40%에 해당하는 하중을 가하여 회전굽힘피로시험(Nakamura Test)을 실시한 결과, 피로 수명이 106회 이상일 수 있다. In addition, the spring steel according to an example of the present invention was subjected to a rotation bending fatigue test (Nakamura Test) by applying a load corresponding to 40% of the tensile strength (TS), and the fatigue life may be 10 6 times or more.

상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.As described above, although exemplary embodiments of the present invention have been described, the present invention is not limited thereto, and a person having ordinary skill in the art does not depart from the concept and scope of the following claims. It will be understood that various modifications and variations are possible.

Claims (5)

중량%로, C: 0.5~0.7%, Si: 1.2~2%, Mn: 0.5~0.8%, Cr: 0.5~0.8%, Ni: 0.1~0.4%, Cu: 0.1~0.4%, V: 0.05~0.2%, Ti: 0.01~0.1%, Nb: 0.1% 이하, sol. Al: 0.001~0.07%, N: 0.007% 이하, B: 0.004% 이하, P: 0.03% 이하, S: 0.03% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 용강을 정련하는 단계; 및
상기 정련된 용강을 주조하여 강편으로 제조하는 단계;를 포함하고,
상기 용강을 정련하는 단계는 sol. Al 및 Si 복합 탈산하는 것을 포함하는 스프링강의 제조방법.
In weight percent, C: 0.5 to 0.7%, Si: 1.2 to 2%, Mn: 0.5 to 0.8%, Cr: 0.5 to 0.8%, Ni: 0.1 to 0.4%, Cu: 0.1 to 0.4%, V: 0.05 to 0.2%, Ti: 0.01 to 0.1%, Nb: 0.1% or less, sol. Al: 0.001 to 0.07%, N: 0.007% or less, B: 0.004% or less, P: 0.03% or less, S: 0.03% or less, refining molten steel containing residual Fe and unavoidable impurities; And
Including; casting the refined molten steel to produce a steel piece;
The step of refining the molten steel is sol. Method for manufacturing spring steel comprising deoxidizing Al and Si composites.
제1항에 있어서,
상기 용강을 정련하는 단계는,
중량%로, sol. Al: 0.04~0.07%가 되도록 하여 복합 탈산하는 것을 포함하는 스프링강의 제조방법.
According to claim 1,
The step of refining the molten steel,
In weight percent, sol. Al: 0.04 ~ 0.07% method of manufacturing a spring steel comprising a complex deoxidation.
제1항에 있어서,
상기 정련된 용강은,
중량%로, N: 0.004~0.007%를 포함하는 스프링강의 제조방법.
According to claim 1,
The refined molten steel,
In weight percent, N: a method of manufacturing spring steel comprising 0.004 to 0.007%.
제1항에 있어서,
상기 정련된 용강을 주조하여 강편으로 제조하는 단계에서,
TiN이 형성되며, 상기 TiN의 초기 형성온도는 1430℃ 이상인 스프링강의 제조방법.
According to claim 1,
In the step of casting the refined molten steel into a steel piece,
TiN is formed, and the initial formation temperature of the TiN is 1430°C or higher.
중량%로, C: 0.5~0.7%, Si: 1.2~2%, Mn: 0.5~0.8%, Cr: 0.5~0.8%, Ni: 0.1~0.4%, Cu: 0.1~0.4%, V: 0.05~0.2%, Ti: 0.01~0.1%, Nb: 0.1% 이하, sol. Al: 0.04~0.07%, N: 0.004~0.007%, B: 0.004% 이하, P: 0.03% 이하, S: 0.03% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 스프링강.
In weight percent, C: 0.5 to 0.7%, Si: 1.2 to 2%, Mn: 0.5 to 0.8%, Cr: 0.5 to 0.8%, Ni: 0.1 to 0.4%, Cu: 0.1 to 0.4%, V: 0.05 to 0.2%, Ti: 0.01 to 0.1%, Nb: 0.1% or less, sol. Al: 0.04 to 0.07%, N: 0.004 to 0.007%, B: 0.004% or less, P: 0.03% or less, S: 0.03% or less, spring steel containing residual Fe and unavoidable impurities.
KR1020180165603A 2018-12-19 2018-12-19 Spring steel with improved fatigue properties and manufacturing method thereof KR20200076476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180165603A KR20200076476A (en) 2018-12-19 2018-12-19 Spring steel with improved fatigue properties and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180165603A KR20200076476A (en) 2018-12-19 2018-12-19 Spring steel with improved fatigue properties and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20200076476A true KR20200076476A (en) 2020-06-29

Family

ID=71400641

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180165603A KR20200076476A (en) 2018-12-19 2018-12-19 Spring steel with improved fatigue properties and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR20200076476A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150133850A (en) 2013-04-23 2015-11-30 신닛테츠스미킨 카부시키카이샤 Spring steel having excellent fatigue characteristics and process for manufacturing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150133850A (en) 2013-04-23 2015-11-30 신닛테츠스미킨 카부시키카이샤 Spring steel having excellent fatigue characteristics and process for manufacturing same

Similar Documents

Publication Publication Date Title
US7534314B2 (en) High carbon steel with superplasticity
CN103114245B (en) A kind of abrasion-proof backing block and preparation method thereof
JP2005206913A (en) Alloy tool steel
US20100186855A1 (en) Steel and processing method for the manufacture of high strength, fracture-splittable machinery components
KR101756016B1 (en) Aluminum alloy for die casting and Method for heat treatment of manufacturing aluminum alloy using thereof
JP2004285444A (en) Low-alloy high-speed tool steel showing stable toughness
KR20220054862A (en) Alloy structural steel and its manufacturing method
JP6293682B2 (en) High strength Ni-base superalloy
US9745649B2 (en) Heat-resisting steel for exhaust valves
WO2017131077A1 (en) Spring steel
WO1995024513A1 (en) Steel alloys and rolling mill rolls produced therefrom
JP2002256394A (en) Non-heattreated steel for hot forging which is easily separable by fracture
KR20200076476A (en) Spring steel with improved fatigue properties and manufacturing method thereof
CA2444175C (en) Reinforced durable tool steel, method for the production thereof, method for producing parts made of said steel, and parts thus obtained
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JPH11315340A (en) Steel for machine structural use, excellent in property of separation by breaking and endurance strength
US9617856B2 (en) Ni base forged alloy and gas turbine utilizing the same
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP4044305B2 (en) Iron-based high rigidity material and manufacturing method thereof
JP5974380B2 (en) Precipitation hardening type stainless steel and stainless steel parts, and method for producing precipitation hardening type stainless steel
JP3403293B2 (en) Steel sheet with excellent toughness of weld heat affected zone
CN100447277C (en) Iron-niobium-silicon alloy
JPH10265896A (en) Thick steel plate excellent in toughness in weld heat-affected zone
JPS6070125A (en) Manufacture of turbine rotor
JPH11217655A (en) High strength heat resistant steel and its production

Legal Events

Date Code Title Description
E601 Decision to refuse application