KR20200076045A - Manufacturing method of high-carbon steel with improved bendability and the method for manufacturing the same - Google Patents

Manufacturing method of high-carbon steel with improved bendability and the method for manufacturing the same Download PDF

Info

Publication number
KR20200076045A
KR20200076045A KR1020180164701A KR20180164701A KR20200076045A KR 20200076045 A KR20200076045 A KR 20200076045A KR 1020180164701 A KR1020180164701 A KR 1020180164701A KR 20180164701 A KR20180164701 A KR 20180164701A KR 20200076045 A KR20200076045 A KR 20200076045A
Authority
KR
South Korea
Prior art keywords
hot
less
steel sheet
manufacturing
excluding
Prior art date
Application number
KR1020180164701A
Other languages
Korean (ko)
Other versions
KR102168369B1 (en
Inventor
조현관
김득중
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020180164701A priority Critical patent/KR102168369B1/en
Publication of KR20200076045A publication Critical patent/KR20200076045A/en
Application granted granted Critical
Publication of KR102168369B1 publication Critical patent/KR102168369B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Abstract

Disclosed are a high-carbon steel with improved bendability and a manufacturing method thereof. According to an embodiment of the present invention, a manufacturing method of a high-carbon steel with improved bendability comprises the steps of: reheating the slab whose composition includes 0.6 to 0.85 wt% of C, 0.01 to 0.5 wt% of Si, 0.3 to 2.0 wt% of Mn, 0.1 wt% or less of Al (excluding 0 wt%), 2.0 wt% or less of Cr (excluding 0 wt%), 0.01 wt% or less of N (excluding 0 wt%), and the remainder containing Fe and inevitable impurities; manufacturing a hot-rolled steel sheet by hot rolling the slab at the finishing temperature of 800 to 880°C; cooling the manufactured hot-rolled steel sheet to 600-650°C at a cooling rate of 30°C/s or higher; and winding the cooled hot-rolled steel sheet at 600 to 680°C.

Description

굽힘가공성이 향상된 고탄소강 및 그 제조방법{MANUFACTURING METHOD OF HIGH-CARBON STEEL WITH IMPROVED BENDABILITY AND THE METHOD FOR MANUFACTURING THE SAME}High carbon steel with improved bending processability and its manufacturing method{MANUFACTURING METHOD OF HIGH-CARBON STEEL WITH IMPROVED BENDABILITY AND THE METHOD FOR MANUFACTURING THE SAME}

본 발명은 우수한 굽힘가공성을 갖는 고탄소강 및 그 제조방법에 관한 것이다.The present invention relates to a high carbon steel having excellent bending processability and a method for manufacturing the same.

건축, 공구, 자동차 부품 등으로 다양하게 사용될 수 있는 고탄소 열연 강판은 재압연사에서 산세 및 냉간압연을 거치고, 최종 고객사에서 열처리 및 목적에 맞게 부품으로 가공된다. 재압연사에서는 열연코일을 Uncoiling하여 산세 입측으로 도입하는데, 코일의 진입이 용이하도록 코일의 선단부를 눌러 굽힌다. 이 때, 고탄소강의 취성이 크면 스트립(strip)에 크랙(crack)이 발생하거나, 심한 경우에는 파단에 이르기도 한다. High-carbon hot-rolled steel sheet that can be used for various purposes such as construction, tools, automobile parts, etc. undergoes pickling and cold rolling in re-rolling, and is processed into parts suitable for heat treatment and purpose at end customers. In the re-rolled yarn, the hot-rolled coil is uncoiling and introduced to the pickling side, and the front end of the coil is bent to bend to facilitate entry of the coil. At this time, if the brittleness of the high carbon steel is large, cracks may occur in the strip or, in severe cases, fracture.

냉각이 과도하거나, 권취온도가 낮을 경우 열연강판의 표면 또는 에지(edge)부에 베이나이트(bainite)와 같이 취성이 높은 저온조직이 생성되어 크랙이 발생한다. 따라서 냉각을 억제하거나, 권취온도를 상향조절하여 저온조직 생성을 억제하고자 하였다. When the cooling is excessive or the coiling temperature is low, a low-temperature structure with high brittleness is formed in the surface or edge of the hot-rolled steel sheet, such as bainite, resulting in cracking. Therefore, it was intended to suppress cooling or to suppress the formation of low-temperature tissue by controlling the winding temperature upward.

그러나, 최근에는 권취온도를 높여 저온 조직이 생성되지 않은 소재에서도 크랙이 발생하는 문제가 있었다. 출원번호 10-1995-0068432의 경우, 표면 탈탄층을 활용하여 표면의 연성을 향상시켜 굽힘가공성을 개선하고자 하였다. 그러나, 이러한 방법은 고탄소강의 경도를 저하시키고, 입계산화를 일으키는 문제가 있어 고탄소강으로 제조된 최종 제품의 품질을 확보할 수 없다. However, recently, there has been a problem in that cracks are generated even in a material in which a low-temperature structure is not generated by raising the coiling temperature. In the case of Application No. 10-1995-0068432, the surface decarburization layer was used to improve the ductility of the surface to improve the bending processability. However, this method has a problem of lowering the hardness of the high carbon steel and causing grain boundary oxidation, and thus it is impossible to secure the quality of the final product made of the high carbon steel.

본 발명의 실시예들은 합금조성 및 제조조건을 최적화하여 굽힘가공성이 향상된 고강도 강선 및 그 제조방법을 제공하고자 한다.Embodiments of the present invention is to provide a high-strength steel wire with improved bending processability by optimizing the alloy composition and manufacturing conditions and a method for manufacturing the same.

본 발명의 일 실시예에 따른 굽힘가공성이 향상된 고탄소 열연강판의 제조방법은 중량%로, C: 0.6 내지 0.85%, Si: 0.01 내지 0.5%, Mn: 0.3 내지 2.0%, Al: 0.1% 이하(0은 제외), Cr: 2.0% 이하(0은 제외), N: 0.01% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함하는 슬라브를 재가열하는 단계; 상기 슬라브를 사상압연 종료온도 800~880℃에서 열간압연하여 열연강판을 제조하는 단계; 상기 제조된 열연강판을 30℃/s 이상의 냉각속도로 600~650℃까지 냉각하는 단계; 및 상기 냉각된 열연강판을 600~680℃에서 권취하는 단계;를 포함한다.The method of manufacturing the “high carbon” hot-rolled steel sheet with improved bending processability according to an embodiment of the present invention is weight%, C: 0.6 to 0.85%, Si: 0.01 to 0.5%, Mn: 0.3 to 2.0%, Al: 0.1% or less (Excluding 0), Cr: 2.0% or less (excluding 0), N: 0.01% or less (excluding 0), the rest reheating the slab containing Fe and unavoidable impurities; Hot rolling the slab by hot rolling at a finishing temperature of 800 to 880°C; Cooling the manufactured hot rolled steel sheet to 600 to 650°C at a cooling rate of 30°C/s or higher; And winding the cooled hot-rolled steel sheet at 600 to 680°C.

또한, 상기 재가열 온도는 1100~1300℃일 수 있다.In addition, the reheating temperature may be 1100 to 1300°C.

또한, 상기 재가열 단계가 완료된 후 조압연 단계;를 더 포함할 수 있다.In addition, after the reheating step is completed, a rough rolling step; may further include.

또한, 열간압연 후, 3초 이내에 냉각을 수행할 수 있다. In addition, cooling can be performed within 3 seconds after hot rolling.

또한, 권취 후, Block Size가 30 ㎛ 이하일 수 있다.In addition, after winding, the block size may be 30 μm or less.

(여기서, Blcok Size란 최종 펄라이트의 결정립 크기를 의미한다.)(Here, Blcok Size means the grain size of the final pearlite.)

본 발명의 일 실시예에 따른 굽힘가공성이 향상된 고탄소강은 중량%로, C: 0.6 내지 0.85%, Si: 0.01 내지 0.5%, Mn: 0.3 내지 2.0%, Al: 0.1% 이하(0은 제외), Cr: 2.0% 이하(0은 제외), N: 0.01% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함하고, Block Size가 30 ㎛ 이하이다. The high-carbon steel with improved bending processability according to an embodiment of the present invention is weight%, C: 0.6 to 0.85%, Si: 0.01 to 0.5%, Mn: 0.3 to 2.0%, Al: 0.1% or less (excluding 0) , Cr: 2.0% or less (excluding 0), N: 0.01% or less (excluding 0), the rest contains Fe and unavoidable impurities, and the block size is 30 μm or less.

(여기서, Blcok Size란 최종 펄라이트의 결정립 크기를 의미한다.)(Here, Blcok Size means the grain size of the final pearlite.)

또한, 미세조직은 면적분율로, 90%이상의 펄라이트와 잔부 페라이트를 포함할 수 있다. In addition, the microstructure may include pearlite and residual ferrite of 90% or more in an area fraction.

본 발명에 따르면, 크랙 및 판파단을 방지할 수 있는 고탄소 열연강판을 제공할 수 있다. 이에추후 재압연 공정에서 예비 열처리 공정을 생략할 수 있어 추가비용 발생을 방지할 수 있다. 또한, 과도한 변태발열로 인한 탈탄이 발생하는 것을 방지하여, 열연강판으로 제조된 최종 제품의 경도를 확보할 수 있다.According to the present invention, it is possible to provide a high-carbon hot-rolled steel sheet capable of preventing cracks and plate breakage. In the future, the pre-heating process can be omitted from the re-rolling process, thereby preventing additional costs. In addition, it is possible to prevent the occurrence of decarburization due to excessive transformation heating, thereby securing the hardness of the final product made of hot-rolled steel sheet.

도 1은 본 발명의 비교예와 실시예의 사상압연 종료온도에 따른 Block Size를 나타낸 그래프이다.
도 2는 실시예 3 및 비교예 3에 따른 탄소강의 Block Size를 EBSD를 이용하여 촬영한 사진이다.
1 is a graph showing the block size according to the finishing temperature of the finishing examples of the comparative examples and examples of the present invention.
Figure 2 is a picture taken using the EBSD block size of carbon steel according to Example 3 and Comparative Example 3.

이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are presented to sufficiently convey the spirit of the present invention to those of ordinary skill in the art. The present invention is not limited to the embodiments presented herein, but may be embodied in other forms. To clarify the present invention, the illustration of parts irrelevant to the description may be omitted, and the size of components may be exaggerated to help understanding.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part “includes” a certain component, this means that other components may be further included rather than excluding other components unless specifically stated to the contrary.

단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Singular expressions include plural expressions, unless the context clearly has an exception.

본 발명의 일 측면에 따른 굽힘가공성이 향상된 고탄소강은 중량%로, C: 0.6 내지 0.85%, Si: 0.01 내지 0.5%, Mn: 0.3 내지 2.0%, Al: 0.1% 이하(0은 제외), Cr: 2.0% 이하(0은 제외), N: 0.01% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함한다. The high-carbon steel with improved bending processability according to an aspect of the present invention is in weight%, C: 0.6 to 0.85%, Si: 0.01 to 0.5%, Mn: 0.3 to 2.0%, Al: 0.1% or less (excluding 0), Cr: 2.0% or less (excluding 0), N: 0.01% or less (excluding 0), the rest include Fe and unavoidable impurities.

이하, 본 발명의 실시예에서의 함금성분 함량의 수치 한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for the numerical limitation of the content of the alloy component in the embodiment of the present invention will be described. In the following, unless otherwise specified, the unit is weight%.

C의 함량은 0.6 내지 0.85%이다.The content of C is 0.6 to 0.85%.

탄소(C)는 강도를 향상시키기 위해 첨가되는 원소로, 펄라이트(Pearlite)와 페라이트(Ferrite)로 구성된 조직을 얻기 위해 0.6%이상 첨가하는 것이 바람직하다. 다만, 그 함량이 과도할 경우, 입계에 초석 세멘타이트(Cementite)가 석출되어 굽힘가공성을 저하되는 문제가 있어, 그 상한을 0.85%로 한정할 수 있다. Carbon (C) is an element added to improve strength, and it is preferable to add 0.6% or more to obtain a structure composed of pearlite and ferrite. However, when the content is excessive, there is a problem in that bending workability is lowered due to the precipitation of cementite on the grain boundary, and the upper limit can be limited to 0.85%.

Si의 함량은 0.01 내지 0.5%이다.The content of Si is 0.01 to 0.5%.

실리콘(Si)은 탈산을 위해 0.01% 이상 첨가할 수 있다. 다만, 그 함량이 과도할 경우, 열연강판 표면에 입계산화를 일으키는 문제가 있어, 그 상한을 0.5%로 한정할 수 있다. Silicon (Si) can be added to 0.01% or more for deoxidation. However, when the content is excessive, there is a problem in causing grain boundary oxidation on the surface of the hot-rolled steel sheet, and the upper limit may be limited to 0.5%.

Mn의 함량은 0.3 내지 2.0%이다.The content of Mn is 0.3 to 2.0%.

망간(Mn)은 C와 함께 강재의 강도를 향상시키기 위해 첨가하는 원소로, 강 중 황을 완전히 MnS로 석출시켜 FeS의 생성에 의한 열간취성을 방지하기 위해 0.3% 이상 첨가할 수 있다. 다만, 그 함량이 과도할 경우, 중심 편석, 개재물 형성과 더불어 입계산화를 일으키는 문제가 있어, 그 상한을 2.0%로 한정할 수 있다. Manganese (Mn) is an element added together with C to improve the strength of the steel, and it can be added in an amount of 0.3% or more to prevent hot embrittlement caused by the formation of FeS by completely precipitating sulfur in the steel to MnS. However, if the content is excessive, there is a problem of intergranular oxidation along with formation of central segregation and inclusions, and the upper limit may be limited to 2.0%.

Al의 함량은 0.1% 이하(0은 제외)이다.The content of Al is 0.1% or less (excluding 0).

알루미늄(Al)은 탈산 효과뿐만 아니라 고용 강화 효과를 위해 첨가하는 원소이다. 다만, 그 함량이 과도할 경우, 연주시 슬라브(slab) 크랙을 유발할 뿐만 아니라, 최종 제품에서 입계 산화를 일으키는 문제가 있어, 그 상한을 0.1%로 한정할 수 있다. Aluminum (Al) is an element added for not only a deoxidizing effect but also a solid solution strengthening effect. However, if the content is excessive, there is a problem that not only causes slab cracks when playing, but also causes grain boundary oxidation in the final product, and the upper limit can be limited to 0.1%.

Cr의 함량은 2.0% 이하(0은 제외)이다.The content of Cr is 2.0% or less (excluding 0).

크롬(Cr)은 강의 경화능을 높이기 위해 첨가하는 원소이며, 대기 중에서 부동태 피막을 형성하여 철의 녹발생을 억제하는 효과가 있다. 다만, 그 함량이 과도할 경우, 열간압연 중 스케일의 탈락이 용이하지 않고, 냉각 중 열연판의 에지(edge) 크랙이 발생하는 문제가 있어, 그 상한을 2.0%로 한정할 수 있다. Chromium (Cr) is an element added to increase the hardenability of steel, and forms an passivation film in the air to suppress the rust of iron. However, if the content is excessive, there is a problem in that the scale is not easily removed during hot rolling, and there is a problem in that edge cracking of the hot rolled sheet occurs during cooling, and the upper limit thereof may be limited to 2.0%.

N의 함량은 0.01% 이하(0은 제외)이다.The content of N is 0.01% or less (excluding 0).

질소(N)는 고용 강화 효과가 있으나, 그 함량이 과다하면 고용원소가 항복점 연신을 일으켜 표면품질이 열위해지고, 질화물을 석출시켜 가공성이 열위해지는 문제가 있어, 그 상한을 0.01%로 한정할 수 있다. Nitrogen (N) has a solid solution strengthening effect, but if the content is excessive, there is a problem in that the surface element is inferior in quality due to the elongation of the yield point, and the workability is inferior due to precipitation of nitride, and the upper limit can be limited to 0.01%. have.

본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 불가피한 불순물로는 예를 들면, P(인), S(황) 등을 들 수 있다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다. The remaining component of the invention is iron (Fe). However, in the normal manufacturing process, impurities that are not intended from the raw material or the surrounding environment may be inevitably mixed, and therefore cannot be excluded. Examples of inevitable impurities include P (phosphorus) and S (sulfur). Since these impurities are known to anyone skilled in the ordinary manufacturing process, they are not specifically mentioned in this specification.

P의 함량은 0.03% 이하(0은 제외)이다.The P content is 0.03% or less (excluding 0).

인(P)은 강 제조과정 중에 불가피하게 첨가되는 원소로서, 편석에 의해 취성을 유발하는 문제가 있어, 그 상한을 0.03%로 한정할 수 있다. Phosphorus (P) is an element that is inevitably added during the steel manufacturing process, and there is a problem of causing brittleness due to segregation, and the upper limit thereof can be limited to 0.03%.

S의 함량은 0.03% 이하(0은 제외)이다.The content of S is 0.03% or less (excluding 0).

황(S)은 강 제조과정 중에 불가피하게 첨가되는 원소로서, 개재물을 형성하거나 융점이 낮은 FeS 황화물을 형성하여 열간압연 중 입계 취성을 일으키는 문제가 있어, 그 상한을 0.03%로 한정할 수 있다. Sulfur (S) is an element that is inevitably added during the manufacturing process of steel, and there is a problem of forming grain boundaries during hot rolling by forming an inclusion or forming FeS sulfide with a low melting point, and the upper limit can be limited to 0.03%.

상기와 같이, 합금조성을 만족하는 본 발명의 열연강판은 미세조직으로 페라이트 및 펄라이트 복합조직을 포함하는 것이 바람직하다.As described above, the hot-rolled steel sheet of the present invention that satisfies the alloy composition is preferably composed of a ferrite and pearlite composite structure as a microstructure.

보다 구체적으로, 상기 펄라이트는 면적분율 90% 이상 포함하고, 잔부 페라이트로 이루어질 수 있다.More specifically, the pearlite contains an area fraction of 90% or more, and may be made of the remaining ferrite.

상술한 바와 같이, 합금조성 및 미세조직 구성을 만족하는 본 발명의 열연강판은 Block size가 30㎛ 이하로 굽힘특성이 우수한 특성을 가진다. 본 발명에서 Block Size란 최종 펄라이트의 결정립 방위가 8도 이하인 결정립 크기를 의미한다. As described above, the hot-rolled steel sheet of the present invention that satisfies the alloy composition and microstructure configuration has excellent bending characteristics with a block size of 30 μm or less. In the present invention, Block Size means a grain size in which the final pearlite has a grain orientation of 8 degrees or less.

즉, Block size가 작을수록 펄라이트 Block을 따라 진전되는 crack을 억제하며, 본 발명에서는 Block size를 30㎛ 이하로 형성함으로써 소재 uncoiling시 crack 발생을 억제할 수 있는 굽힘가공성을 확보할 수 있는 것이다.That is, the smaller the block size, the more the cracks that progress along the pearlite block are suppressed, and in the present invention, by forming the block size to 30 µm or less, it is possible to secure bending workability that can suppress crack generation during uncoiling of the material.

이하, 본 발명의 제조방법에 대하여 설명한다.Hereinafter, the manufacturing method of the present invention will be described.

본 발명의 다른 일 측면에 따른 신선가공성이 향상된 고강도 강선의 제조방법은, 중량%로, C: 0.6 내지 0.85%, Si: 0.01 내지 0.5%, Mn: 0.3 내지 2.0%, Al: 0.1% 이하(0은 제외), Cr: 2.0% 이하(0은 제외), N: 0.01% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함하는 슬라브를 재가열하는 단계; 상기 슬라브를 사상압연 종료온도 800~880℃에서 열간압연하여 열연강판을 제조하는 단계; 상기 제조된 열연강판을 30℃/s 이상의 냉각속도로 600~650℃까지 냉각하는 단계; 및 상기 냉각된 열연강판을 600~700℃에서 권취하는 단계; 를 포함한다. Method for producing a high strength steel wire with improved workability according to another aspect of the present invention, by weight, C: 0.6 to 0.85%, Si: 0.01 to 0.5%, Mn: 0.3 to 2.0%, Al: 0.1% or less ( Re-heating the slab containing Fe and unavoidable impurities; Cr: 2.0% or less (excluding 0), N: 0.01% or less (excluding 0); Hot rolling the slab by hot rolling at a finishing temperature of 800 to 880°C; Cooling the manufactured hot rolled steel sheet to 600 to 650°C at a cooling rate of 30°C/s or higher; And winding the cooled hot-rolled steel sheet at 600 to 700°C. It includes.

본 발명의 고탄소강은 전술한 합금조성을 만족하는 슬라브를 제조한 후, 슬라브를 열간압연-냉각-권취하는 단계를 거침으로써 제조 가능하다. The high carbon steel of the present invention can be manufactured by preparing a slab that satisfies the above-described alloy composition and then subjecting the slab to hot rolling-cooling-winding.

우선, 전술한 조성을 갖는 슬라브(Slab)를 1100~1300℃에서 재가열한다. First, the slab having the above-described composition (Slab) is reheated at 1100 ~ 1300 ℃.

재가열 단계는 슬라브 균질화를 위한 공정으로, 그 온도가 1100℃ 미만인 경우, 열간압연시 압연 하중이 급격히 증가하는 문제가 있다. 반면, 그 온도가 1300℃를 초과하는 경우, 열간압연의 사상압연 시 슬라브의 표면온도가 상승하여 산화 스케일이 두껍게 성장함에 따라 표면 결함을 유발하거나, 권취된 코일을 풀 때 스케일이 강의 표면으로부터 떨어져 나오는 문제가 있다.The reheating step is a process for homogenizing the slab, and when the temperature is less than 1100°C, there is a problem in that the rolling load increases rapidly during hot rolling. On the other hand, when the temperature exceeds 1300°C, the surface temperature of the slab rises when the hot rolling is finished, causing surface defects as the oxidation scale grows thick, or when the coil is unwound, the scale falls off the surface of the steel. There is a problem coming out.

재가열 후, 열간압연하여 열연강판을 제조한다. 열간압연 단계는 조압연 및 사상압연으로 이루어질 수 있다. After reheating, it is hot rolled to produce a hot rolled steel sheet. The hot rolling step may consist of rough rolling and finishing rolling.

2~4개의 압연 스탠드로 구성된 조압연기에서 상기 재가열된 슬라브의 조압연을 수행할 수 있다.It is possible to perform rough rolling of the reheated slab in a rough rolling mill composed of 2 to 4 rolling stands.

개시된 실시예에 따르면, 연속적으로 일정한 간격을 두고 텐덤(Tandem) 압연하는 사상압연의 종료온도를 800~880℃의 온도범위에서 제어할 수 있다. According to the disclosed embodiment, it is possible to control the end temperature of the finishing rolling of tandem rolling at regular intervals in a temperature range of 800 to 880°C.

상기 사상압연 종료온도가 800℃ 미만이면 압연하중이 크게 증가하는 문제가 있으며, 특히 온도 하락이 심한 강판의 양 에지(edge)부의 경우, 초석 페라이트상이 생성되어 폭 방향으로 균일한 재질을 확보할 수 없다. 반면, 사상압연 종료온도가 880℃를 초과하게 되면 고탄소강의 조직이 조대화되고, 스케일이 두꺼워져 표면품질이 저하되는 문제가 있다.If the finish rolling end temperature is less than 800°C, there is a problem in that the rolling load is greatly increased. In particular, in the case of both edge portions of the steel sheet where the temperature is severely reduced, a cornerstone ferrite phase is generated to ensure a uniform material in the width direction. none. On the other hand, when the finish rolling finish temperature exceeds 880°C, the structure of the high carbon steel becomes coarse, and the scale becomes thick, and thus there is a problem that the surface quality is deteriorated.

도 1은 본 발명의 비교예와 실시예의 사상압연 종료온도에 따른 Block Size를 나타낸 그래프이다. 1 is a graph showing the block size according to the finishing temperature of the finishing examples of the comparative examples and examples of the present invention.

도 1을 참조하면, 사상압연 종료온도가 증가함에 따라 고탄소강의 Block Size는 커지는 경향이 있음을 확인할 수 있다. Referring to FIG. 1, it can be confirmed that the block size of the high carbon steel tends to increase as the finishing temperature of the finishing rolling increases.

다음으로 열연강판을 냉각한다. 개시된 실시예에 따르면, 수냉각대(ROT: Run Out Table)에서 수냉에 의해 열연강판을 냉각할 수 있다.Next, the hot rolled steel sheet is cooled. According to the disclosed embodiment, the hot-rolled steel sheet may be cooled by water cooling in a water-cooling table (ROT).

이 때, 사상압연 종료 후 냉각대에서 3초 이내에 냉각을 개시하는 것이 바람직하다. 사상압연 종료 후, 냉각 개시가 3초 보다 늦어지게 되면 펄라이트의 Block Size가 조대해지고, 입계에 film type의 얇은 페라이트가 형성될 수 있다. At this time, it is preferable to start cooling within 3 seconds in the cooling zone after finishing the finishing rolling. After finishing the finishing rolling, if the cooling start is delayed more than 3 seconds, the block size of pearlite becomes coarse, and a film type thin ferrite can be formed at the grain boundary.

한편 열연강편의 냉각 시, 냉각속도를 30℃/s 이상으로 제어할 수 있다. 냉각속도가 30℃/s 미만인 경우, 입계에 film type의 얇은 페라이트가 형성될 수 있다.Meanwhile, when cooling the hot-rolled steel piece, the cooling rate can be controlled to 30°C/s or more. When the cooling rate is less than 30°C/s, a film type thin ferrite may be formed at the grain boundary.

탄소를 0.6~0.85% 포함하는 본 발명의 경우, 적절하게 냉각이 되지 못한 조건에서 입계에 페라이트가 형성되면, 필름 형상의 매우 얇은 페라이트가 생성된다. 이후 강판의 굽힘 변형시 상대적으로 강도가 약한 페라이트에 응력이 집중되어 크랙이 발생하는 것이다. In the case of the present invention containing 0.6 to 0.85% carbon, when ferrite is formed at the grain boundary under conditions where cooling is not properly performed, a very thin ferrite in the form of a film is produced. Then, when bending deformation of the steel sheet, stress is concentrated on ferrite, which has relatively weak strength, and thus cracks are generated.

600~650℃의 온도 범위에서 열연강판에 대한 냉각을 종료한다. 냉각 종료 온도가 600℃ 미만일 경우, 마르텐사이트, 베이나이트 등의 취성이 높은 저온조직이 생성되어 강판의 굽힘 변형시 크랙이 발생할 수 있다. Cooling of the hot-rolled steel sheet is terminated in a temperature range of 600 to 650°C. When the cooling end temperature is less than 600°C, a low-temperature structure having high brittleness such as martensite and bainite is generated, and cracks may occur when bending deformation of the steel sheet.

반면 냉각 종료 온도가 650℃를 초과할 경우, 조대한 펄라이트가 형성되어 재압연 시 구상화 속도를 저하시켜 최종 제품의 경도를 확보할 수 없다.On the other hand, when the cooling end temperature exceeds 650°C, coarse pearlite is formed, and thus the spheroidization speed is reduced during re-rolling, so that the hardness of the final product cannot be secured.

또한, 냉각 종료 온도가 650℃를 초과할 경우, 냉각 단계에서 변태가 충분히 일어나지 않아, 권취 후 변태발열에 의한 코일의 온도상승이 과다하여 탈탄 또는 내부산화 등의 표면 문제를 일으킨다. In addition, when the cooling end temperature exceeds 650°C, transformation does not occur sufficiently in the cooling step, and the temperature rise of the coil due to transformation heat after winding is excessive, causing surface problems such as decarburization or internal oxidation.

다음으로, 냉각된 열연강판의 권취 과정은 저온조직, 탈탄 및 내부 산화를 방지할 수 있는 600~680℃의 온도 범위에서 수행될 수 있다. Next, the winding process of the cooled hot-rolled steel sheet may be performed in a temperature range of 600 to 680°C, which can prevent low-temperature structure, decarburization and internal oxidation.

전술한 바와 같이, 개시된 실시예는 사상압연 종료온도, 냉각개시 시간, 냉각 종료 온도, 권취 온도를 적절하게 제어함으로써 고탄소강의 굽힘가공성을 향상시킬 수 있다. 보다 상세하게, 개시된 실시예는 사상압연 후에 냉각하는 공정을 최적화함으로써, 열연코일을 풀 때(Uncoiling) 크랙이 발생하지 않으면서도 탈탄 발생을 억제할 수 있다. As described above, the disclosed embodiment can improve the bending processability of the high carbon steel by appropriately controlling the finish rolling end temperature, the cooling start time, the cooling end temperature, and the coiling temperature. In more detail, the disclosed embodiment can suppress decarburization without cracking when uncoiling the hot rolled coil by optimizing the cooling process after finishing rolling.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다. Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only intended to illustrate the present invention in more detail and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the items described in the claims and the items reasonably inferred therefrom.

하기 표 1에 나타낸 합금조성을 가지는 강 슬라브를 1,100~1,300℃의 온도범위에서 재가열하였다. The steel slab having the alloy composition shown in Table 1 was reheated in a temperature range of 1,100 to 1,300°C.

강종Steel CC MnMn SiSi AlAl CrCr NN 1One 0.850.85 0.40.4 0.20.2 0.010.01 0.20.2 0.0040.004 22 0.70.7 0.50.5 0.20.2 0.010.01 0.30.3 0.0040.004 33 0.60.6 0.40.4 0.20.2 0.010.01 1.11.1 0.0040.004

이후, 가열된 슬라브를 열간압연 및 냉각하여 열연강판을 제조하였다. Then, the hot-rolled steel sheet was prepared by hot rolling and cooling the heated slab.

이 때, 하기 표 2에 기재된 열간압연시 사상압연 종료온도, 압연 종료 후 냉각개시 시간, 냉각속도 및 냉각종료온도에 따라 열간압연 및 냉각과정을 수행하였다. 이후, 600~700℃의 권취온도에서 권취를 행하였다.At this time, the hot rolling and cooling processes were performed according to the finishing temperature at the end of rolling, the cooling start time, the cooling speed, and the cooling end temperature at the end of rolling. Thereafter, coiling was performed at a coiling temperature of 600 to 700°C.

제조된 각각의 열연강판의 Block Size를 측정하여 표 2에 나타내었다.The block size of each manufactured hot rolled steel sheet is measured and shown in Table 2.

Block Size는 후방산란전자회절(Electron BackScatter Diffraction, EBSD)를 이용하여 소재 두께의 1/4 지점을 측정하였을 때, Grain tolerance angle값을 8도로 설정하여, 8도 이내가 되는 것을 하나의 block으로 측정하였다. When the block size is measured at 1/4 point of the material thickness using Backscatter Diffraction (EBSD), the grain tolerance angle value is set to 8 degrees, and the one within 8 degrees is measured as a block. Did.

제조된 열연강판을 대상으로 한국산업 규격에서 정의된 강의 탈탄층 깊이 측정방법(KS D 0216)에 따라 현미경에 의한 페라이트 탈탄층 깊이를 측정하였고, 탈탄 깊이가 5㎛를 초과하는 경우에는 불량으로 판단하였다. The depth of the ferrite decarburization layer was measured by a microscope according to the method for measuring the depth of the decarburization layer of steel (KS D 0216) as defined in the Korean Industrial Standards for the hot rolled steel sheet. Did.

저온조직(마르텐사이트, 베이나이트)은 광학 현미경 또는 주사전자현미경 (SEM, Scanning Electron Micorscope)을 이용하여 발생 여부를 분석하였다.The low-temperature tissue (martensite, bainite) was analyzed for occurrence using an optical microscope or a scanning electron microscope (SEM).

또한, 입계 Ferrite 발생 여부와 Uncoiling 시 크랙의 발생 유무를 확인하여, 그 결과를 하기 표 2에 나타내었다. In addition, it was confirmed whether or not the occurrence of grain boundary ferrite and whether cracks occurred during uncoiling, and the results are shown in Table 2 below.

구분division 적용 강종Applied steel type 사상압연
종료온도
(℃)
Sasang Rolling
End temperature
(℃)
압연종료후
냉각개시
시간 (초)
After rolling
Cooling start
Time (seconds)
냉각
속도
(℃/S)
Cooling
speed
(℃/S)
냉각 종료
온도(℃)
Cooling down
Temperature (℃)
권취
온도
(℃)
Winding
Temperature
(℃)
Block size (㎛)Block size (㎛) 탈탄
양호 여부
(≤5㎛)
Decarburization
Good or not
(≤5㎛)
저온조직
발생여부
Cold tissue
Occurrence
입계 ferrite 발생 여부Whether grain boundary ferrite occurs Uncoiling시
크랙 발생
여부
When uncoiling
Cracking
Whether
실시예 1Example 1 강종 1Steel type 1 831831 33 3535 645645 673673 2424 양호Good 미발생Not occurring 미발생Not occurring 미발생Not occurring 실시예 2Example 2 강종 1Steel type 1 878878 33 3636 608608 632632 2929 양호Good 미발생Not occurring 미발생Not occurring 미발생Not occurring 실시예 3Example 3 강종 1Steel type 1 850850 22 3333 617617 651651 2525 양호Good 미발생Not occurring 미발생Not occurring 미발생Not occurring 실시예 4Example 4 강종 2Steel type 2 844844 33 3737 622622 654654 2424 양호Good 미발생Not occurring 미발생Not occurring 미발생Not occurring 실시예 5Example 5 강종 3Steel type 3 816816 33 3131 628628 637637 2020 양호Good 미발생Not occurring 미발생Not occurring 미발생Not occurring 비교예 1Comparative Example 1 강종 1Steel type 1 786786 33 3232 632632 654654 1616 양호Good 발생Occur 미발생Not occurring 발생Occur 비교예 2Comparative Example 2 강종 1Steel type 1 910910 33 3333 649649 671671 3636 양호Good 미발생Not occurring 미발생Not occurring 발생Occur 비교예 3Comparative Example 3 강종 1Steel type 1 931931 22 3636 633633 669669 4343 양호Good 미발생Not occurring 미발생Not occurring 발생Occur 비교예 4Comparative Example 4 강종 1Steel type 1 862862 22 1111 624624 662662 2626 양호Good 미발생Not occurring 발생Occur 발생Occur 비교예 5Comparative Example 5 강종 1Steel type 1 852852 55 3434 638638 662662 2525 양호Good 미발생Not occurring 발생Occur 발생Occur 비교예 6Comparative Example 6 강종 1Steel type 1 866866 33 3535 669669 699699 2727 불량Bad 미발생Not occurring 미발생Not occurring 미발생Not occurring

본 발명에서는 건축, 공구, 자동차 부품 소재로 고탄소강을 적용하기 위해, 재압연사에서 코일을 풀 때(Uncoiling) 크랙이 발생하지 않으면서도 탈탄 발생을 억제하고자 하였다. In the present invention, in order to apply high carbon steel as a material for construction, tools, and automobile parts, it was intended to suppress the occurrence of decarburization without cracking when uncoiling the coil in re-rolling.

상기 표 2에 나타난 바와 같이, 본 발명에 부합되는 성분 및 조건으로 제조된 실시예 1 내지 5는 탈탄 기준을 만족할 뿐만 아니라, 저온조직이 발생하지 않고, 코일을 풀 때 크랙이 발생하지 않았음을 확인할 수 있다. 따라서, 개시된 실시예에 따르면 강도를 저하시키지 않으면서 굽힘가공성을 향상시킬 수 있다. As shown in Table 2, Examples 1 to 5 prepared with components and conditions consistent with the present invention not only satisfy the decarburization criteria, but also do not generate low-temperature structure, and that cracking did not occur when the coil was released. Can be confirmed. Therefore, according to the disclosed embodiment, it is possible to improve the bending processability without lowering the strength.

반면, 비교예 1은 사상압연 종료온도가 786℃로 800℃에 미달하여 Block size는 작게 확보할 수 있으나, 강의 폭방향 온도 편차로 인해 edge부가 과냉되어 저온조직이 발생하고, 이에 따라 열연코일을 풀 때 크랙이 발생하였다.On the other hand, in Comparative Example 1, the final rolling end temperature is 786°C, which is less than 800°C, so that the block size can be secured small. Cracking occurred when released.

비교예 2 및 3은 사상압연 종료온도가 각각 910℃, 931℃로 880℃을 초과하여 조대한 Block이 생성되어 취성이 증가하고, 이로 인해 굽힘 특성이 열위하게 되어 열연코일을 풀 때 크랙이 발생하였다.In Comparative Examples 2 and 3, the end rolling temperatures were 910°C and 931°C, respectively, exceeding 880°C, resulting in coarse blocks, which increased brittleness. Did.

도 2는 실시예 3 및 비교예 3에 따른 탄소강의 Block Size를 EBSD를 이용하여 촬영한 사진이다. 도 2를 참조하면, 실시예 3에 비해 비교예 3의 경우에는 펄라이트의 Block Size가 조대한 것을 확인할 수 있다.2 is a photograph taken using EBSD of the block size of carbon steel according to Example 3 and Comparative Example 3. Referring to FIG. 2, it can be seen that in Comparative Example 3 compared to Example 3, the block size of pearlite is coarse.

비교예 4는 냉각속도가 11℃/s로 30℃/s에 미달하고, 비교예 5는 열간압연 종료 후 냉각개시 시간이 5초로 3초를 초과하였다. 비교예 4 및 5와 같이, 냉각조건에 부합하지 않으면 입계 Ferrite가 형성되어, 입계에 응력이 집중됨으로써 열연코일을 풀 때 크랙이 발생하였다.In Comparative Example 4, the cooling rate was 11°C/s, which was less than 30°C/s, and in Comparative Example 5, after the hot rolling was completed, the cooling start time was 5 seconds and exceeded 3 seconds. As in Comparative Examples 4 and 5, if the cooling conditions were not met, a grain boundary ferrite was formed, and stress was concentrated at the grain boundary, resulting in cracks when releasing the hot rolled coil.

한편, 사상압연 종료온도 조건은 만족하였지만, 냉각종료온도가 669℃로 650℃를 초과하는 비교예 6에서는 변태발열에 의해 권취온도가 699℃로 상승하였고, 이로 인해 표면 탈탄이 발생하였다. 이 경우, 열연강판을 가공하여 제조된 최종 제품의 경도를 충분히 확보할 수 없어, 제품 파손의 위험이 있다. On the other hand, although the finish rolling end temperature condition was satisfied, in the comparative example 6 in which the cooling end temperature exceeded 650°C to 669°C, the coiling temperature rose to 699°C due to transformation heat, thereby causing surface decarburization. In this case, the hardness of the final product manufactured by processing the hot rolled steel sheet cannot be sufficiently secured, and there is a risk of product damage.

결론적으로, 개시된 실시예에 따른 중량%로, C: 0.6 내지 0.85%, Si: 0.01 내지 0.5%, Mn: 0.3 내지 2.0%, Al: 0.1% 이하(0은 제외), Cr: 2.0% 이하(0은 제외), N: 0.01% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함하는 고탄소강은 합금조성 및 제조조건을 최적화하여 강도를 확보하면서도 굽힘가공성을 향상시킬 수 있다. In conclusion, in weight percent according to the disclosed embodiment, C: 0.6 to 0.85%, Si: 0.01 to 0.5%, Mn: 0.3 to 2.0%, Al: 0.1% or less (excluding 0), Cr: 2.0% or less ( 0 is excluded), N: 0.01% or less (excluding 0), and the rest, Fe and high carbon steel containing unavoidable impurities can improve alloy composition and manufacturing conditions to improve bending workability while securing   strength.

따라서, 추후 재압연 공정에서 예비 열처리 공정을 생략할 수 있어 추가비용 발생을 방지할 수 있고, 열연강판의 크랙 및 판파단을 방지할 수 있다. 또한 과도한 변태발열로 인한 탈탄이 발생하는 것을 방지하여, 열연강판으로 제조된 최종 제품의 경도를 확보할 수 있다.Therefore, it is possible to omit the pre-heating process in a subsequent re-rolling process, thereby preventing the occurrence of additional costs, and preventing cracking and fracture of the hot-rolled steel sheet. In addition, by preventing the occurrence of decarburization due to excessive transformation heating, it is possible to secure the hardness of the final product made of hot-rolled steel sheet.

상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.As described above, although exemplary embodiments of the present invention have been described, the present invention is not limited thereto, and a person having ordinary skill in the art does not depart from the concept and scope of the following claims. It will be understood that various modifications and variations are possible.

Claims (7)

중량%로, C: 0.6 내지 0.85%, Si: 0.01 내지 0.5%, Mn: 0.3 내지 2.0%, Al: 0.1% 이하(0은 제외), Cr: 2.0% 이하(0은 제외), N: 0.01% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함하는 슬라브를 재가열하는 단계;
상기 슬라브를 사상압연 종료온도 800~880℃에서 열간압연하여 열연강판을 제조하는 단계;
상기 제조된 열연강판을 30℃/s 이상의 냉각속도로 600~650℃까지 냉각하는 단계; 및
상기 냉각된 열연강판을 600~680℃에서 권취하는 단계;를 포함하는 굽힘가공성이 향상된 고탄소 열연강판의 제조방법.
In weight percent, C: 0.6 to 0.85%, Si: 0.01 to 0.5%, Mn: 0.3 to 2.0%, Al: 0.1% or less (excluding 0), Cr: 2.0% or less (excluding 0), N: 0.01 % Or less (excluding 0), the rest reheating the slab containing Fe and unavoidable impurities;
Hot rolling the slab by hot rolling at a finishing temperature of 800 to 880°C;
Cooling the prepared hot-rolled steel sheet to 600 to 650°C at a cooling rate of 30°C/s or more; And
Winding the cooled hot-rolled steel sheet at 600 ~ 680 ℃; Method of manufacturing a high-carbon hot-rolled steel sheet having improved bending processability.
제1항에 있어서,
상기 재가열 온도는 1100~1300℃인 굽힘가공성이 향상된 고탄소 열연강판의 제조방법.
According to claim 1,
The reheating temperature is 1100 ~ 1300 ℃ method of manufacturing a high-carbon hot-rolled steel sheet with improved bending processability.
제1항에 있어서,
상기 재가열 단계가 완료된 후 조압연 단계;를 더 포함하는 굽힘가공성이 향상된 고탄소 열연강판의 제조방법.
According to claim 1,
After the reheating step is completed, a rough rolling step; a method of manufacturing a high-carbon hot-rolled steel sheet further improved bending workability.
제1항에 있어서,
열간압연 후, 3초 이내에 냉각을 수행하는 굽힘가공성이 향상된 고탄소 열연강판의 제조방법.
According to claim 1,
A method of manufacturing a high-carbon hot-rolled steel sheet with improved bending processability that performs cooling within 3 seconds after hot rolling.
제1항에 있어서,
권취 후, Block Size가 30 ㎛ 이하인 굽힘가공성이 향상된 고탄소 열연강판의 제조방법.
(여기서, Blcok Size란 최종 펄라이트의 결정립 크기를 의미한다.)
According to claim 1,
After winding, a method for manufacturing a high-carbon hot-rolled steel sheet with improved bendability with a block size of 30 µm or less.
(Here, Blcok Size means the grain size of the final pearlite.)
중량%로, C: 0.6 내지 0.85%, Si: 0.01 내지 0.5%, Mn: 0.3 내지 2.0%, Al: 0.1% 이하(0은 제외), Cr: 2.0% 이하(0은 제외), N: 0.01% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함하고,
Block Size가 30 ㎛ 이하인 굽힘가공성이 향상된 고탄소강.
(여기서, Blcok Size란 최종 펄라이트의 결정립 크기를 의미한다.)
In weight percent, C: 0.6 to 0.85%, Si: 0.01 to 0.5%, Mn: 0.3 to 2.0%, Al: 0.1% or less (excluding 0), Cr: 2.0% or less (excluding 0), N: 0.01 % Or less (excluding 0), the rest contains Fe and unavoidable impurities,
High-carbon steel with improved bendability with a block size of 30 μm or less.
(Here, Blcok Size means the grain size of the final pearlite.)
제6항에 있어서,
미세조직은 면적분율로, 90%이상의 펄라이트와 잔부 페라이트를 포함하는 굽힘가공성이 향상된 고탄소강.
The method of claim 6,
The microstructure is an area fraction, high-carbon steel with improved bendability, including more than 90% of pearlite and residual ferrite.
KR1020180164701A 2018-12-19 2018-12-19 Manufacturing method of high-carbon steel with improved bendability and the method for manufacturing the same KR102168369B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180164701A KR102168369B1 (en) 2018-12-19 2018-12-19 Manufacturing method of high-carbon steel with improved bendability and the method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180164701A KR102168369B1 (en) 2018-12-19 2018-12-19 Manufacturing method of high-carbon steel with improved bendability and the method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20200076045A true KR20200076045A (en) 2020-06-29
KR102168369B1 KR102168369B1 (en) 2020-10-22

Family

ID=71400913

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180164701A KR102168369B1 (en) 2018-12-19 2018-12-19 Manufacturing method of high-carbon steel with improved bendability and the method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR102168369B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337843A (en) * 1995-06-09 1996-12-24 Kobe Steel Ltd High carbon hot rolled steel sheet excellent in punching workability and its production
KR20130120345A (en) * 2012-04-25 2013-11-04 현대제철 주식회사 Steel sheet and method for manufacturing the hot-rolled steel sheet
JP5630002B2 (en) * 2008-11-17 2014-11-26 Jfeスチール株式会社 High-strength steel sheet having a tensile strength of 1500 MPa or more and a method for producing the same
KR20150112487A (en) * 2014-03-28 2015-10-07 현대제철 주식회사 Hot-rolled steel sheet and method of manufacturing the same
KR20160063172A (en) * 2014-11-26 2016-06-03 현대제철 주식회사 High carbon steel sheet and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337843A (en) * 1995-06-09 1996-12-24 Kobe Steel Ltd High carbon hot rolled steel sheet excellent in punching workability and its production
JP5630002B2 (en) * 2008-11-17 2014-11-26 Jfeスチール株式会社 High-strength steel sheet having a tensile strength of 1500 MPa or more and a method for producing the same
KR20130120345A (en) * 2012-04-25 2013-11-04 현대제철 주식회사 Steel sheet and method for manufacturing the hot-rolled steel sheet
KR20150112487A (en) * 2014-03-28 2015-10-07 현대제철 주식회사 Hot-rolled steel sheet and method of manufacturing the same
KR20160063172A (en) * 2014-11-26 2016-06-03 현대제철 주식회사 High carbon steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
KR102168369B1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
KR101797383B1 (en) High strength hot rolled steel sheet having low deviation of mechanical property and excellent surface quality and method for manufacturing the same
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
KR101858853B1 (en) Hot rolled steel sheet for electro resistance welded pipe with excellent weldability and method for manufacturing thereof
KR20170072995A (en) Non-quenched and tempered wire rod having excellent strength and impact toughness and method for manufacturing same
KR101417260B1 (en) High carbon rolled steel sheet having excellent uniformity and mehtod for production thereof
KR20160073494A (en) High strength hot rolled steel sheet having excellent bake hardenability and high burring workability and method for manufacturing thereof
KR101518588B1 (en) Precipitation hardening steel sheet having excellent yield strength and yield ratio and method for manufacturing the same
JP4192857B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR101657847B1 (en) High strength cold rolled steel sheet having excellent surface quality of thin slab, weldability and bendability and method for manufacturing the same
KR102224892B1 (en) Manufacturing method for steel wire rod having excellent drawability and steel wire rod manufactured using the same
KR102168369B1 (en) Manufacturing method of high-carbon steel with improved bendability and the method for manufacturing the same
KR102020387B1 (en) High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same
KR101977487B1 (en) Hot rolled steel sheet with excellent weldability and method for manufacturing thereof
KR101828699B1 (en) Cold-rolled steel sheet for car component and manufacturing method for the same
KR101353551B1 (en) High carbon hot/cold rolled steel coil and manufactureing method thereof
KR101203647B1 (en) Method for manufacturing hot rolled steel sheet including high carbon contents using minimill process
KR100627475B1 (en) Method for manufacturing a high-strength hot rolled steel sheet havigng superior surface properties by using mini mill process
KR101245698B1 (en) METHOD FOR MANUFACTURING TENSILE STRENGTH 590MPa CLASS HOT ROLLED HIGH BURRING STEEL WITH EXCELLENT VARIATION OF MECHANICAL PROPERTY
KR101657845B1 (en) High strength cold rolled steel sheet having excellent surface quality of thin slab and method for manufacturing the same
KR101657835B1 (en) High strength hot-rolled steel sheet having excellent press formability and method for manufacturing the same
KR100435461B1 (en) A method for manufacturing steel material for cold forging with low property deviation
KR20190022127A (en) Ferritic stainless steel with improved impact toughness at low temperature and method of manufacturing the same
KR101988765B1 (en) Hot rolled steel sheet with excellent durability and method for manufacturing thereof
KR102098478B1 (en) Hot rolled coated steel sheet having high strength, high formability, excellent bake hardenability and method of manufacturing the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right