KR20200075939A - inorganic oxide-monomer complex composition for digital light processing type 3D printer - Google Patents

inorganic oxide-monomer complex composition for digital light processing type 3D printer Download PDF

Info

Publication number
KR20200075939A
KR20200075939A KR1020180160521A KR20180160521A KR20200075939A KR 20200075939 A KR20200075939 A KR 20200075939A KR 1020180160521 A KR1020180160521 A KR 1020180160521A KR 20180160521 A KR20180160521 A KR 20180160521A KR 20200075939 A KR20200075939 A KR 20200075939A
Authority
KR
South Korea
Prior art keywords
acid
inorganic oxide
photocurable
monomer
weight
Prior art date
Application number
KR1020180160521A
Other languages
Korean (ko)
Inventor
강우규
송영춘
송은정
한규성
김진호
황광택
김응수
이진욱
류국현
Original Assignee
주식회사 랜코
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 랜코, 한국세라믹기술원 filed Critical 주식회사 랜코
Priority to KR1020180160521A priority Critical patent/KR20200075939A/en
Publication of KR20200075939A publication Critical patent/KR20200075939A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F20/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The present invention relates to an inorganic oxide-monomer composite composition for photocuring 3D printing and a method for preparing the same, which comprises an inorganic oxide particle, which is surface-treated with a silane coupling agent, a photocurable monomer, and 0.1 to 5 parts by weight of a photopolymerization initiator based on 100 parts by weight of the photocurable monomer, in which the inorganic oxide particle and the photocurable monomer are contained at a weight ratio of 0.05 : 1 to 4 : 1. According to the present invention, the inorganic oxide particle is highly filled and highly dispersed into the photocurable monomer, and thus may be directly applied to a digital light processing (DLP) printing process, so that a design with a complicate shape may be implemented with 3D printing.

Description

광경화 3D 프린팅용 무기산화물-모노머 복합 조성물 및 그 제조방법{inorganic oxide-monomer complex composition for digital light processing type 3D printer}Inorganic oxide-monomer complex composition for digital light processing type 3D printer}

본 발명은 무기산화물-모노머 복합 조성물 및 그 제조방법에 관한 것으로, 더욱 상세하게는 무기산화물 입자가 광경화성 모노머에 고분산되어 있어 DLP(digital light processing) 3D 프린팅 공정에 직접 적용될 수 있는 무용제형 무기산화물-모노머 복합 조성물 및 그 제조방법에 관한 것이다.The present invention relates to an inorganic oxide-monomer composite composition and a method for manufacturing the same, and more specifically, an inorganic oxide particle is highly dispersed in a photocurable monomer, so that it is a solventless inorganic that can be directly applied to a digital light processing (DLP) 3D printing process. It relates to an oxide-monomer composite composition and a method for manufacturing the same.

실리카, 알루미나, 지르코니아와 같은 세라믹 소재는 낮은 열팽창계수와 탁월한 내마모성, 내식성 등 우수한 물리적, 화학적 특성으로 인해 우주항공, 의료, 친환경, 에너지 산업 등 다양한 분야에서 활발하게 적용되고 있다.Ceramic materials such as silica, alumina, and zirconia are actively applied in various fields such as aerospace, medical, eco-friendly, and energy industries due to their excellent physical and chemical properties such as low thermal expansion coefficient, excellent abrasion resistance and corrosion resistance.

하지만, 세라믹 소재 고유의 특성상 우수한 기계적, 화학적, 열적 특성에도 불구하고 경도가 높고, 취성이 강해 복잡한 형상 가공이 요구되는 분야에는 적용이 힘든 애로사항이 존재한다.However, in spite of excellent mechanical, chemical, and thermal properties due to the inherent characteristics of ceramic materials, there are difficulties in application in areas where high hardness and brittleness require complex shape processing.

세라믹 소재의 난성형성을 극복하고 가공성을 향상시키고자 3D 프린팅 기술을 적용하여 복잡한 형상 구현에 대한 기술 수요가 증가하고 있다.In order to overcome the difficulty formation of ceramic materials and improve processability, the demand for technology for realizing complex shapes by applying 3D printing technology is increasing.

3D 프린팅은 디지털 방식으로 디자인된 데이터를 이용하여 2차원의 단면을 반복적으로 적층시켜 3차원의 입체적인 형상으로 출력하는 공정 기술이다. 디자인 설계나 수정이 매우 자유로우며, 시제품 제작에 드는 비용 및 시간이 크게 절감될 수 있다.3D printing is a process technology that repeatedly stacks two-dimensional cross-sections using digitally designed data and outputs them in a three-dimensional three-dimensional shape. Design Design or modification is very free, and the cost and time required for prototyping can be greatly reduced.

적층 방법에 따라 다양한 종류의 3D 프린팅 설비가 상용화되고 있으며, 이에 상응하는 소재의 개발이 활발하게 진행되고 있다. 다양한 적층 방식의 3D 프린팅 기술 중 세라믹 소재를 적용하여 원하는 형상의 적층 구조체 제작을 위해서는 세라믹 소재의 특성상 충진율, 표면처리 등의 공정 최적화가 요구되기 때문에 적용 가능한 3D 프린팅 방식이 다소 제한적이다. Various types of 3D printing equipment have been commercialized according to the lamination method, and development of corresponding materials has been actively conducted. Among 3D printing technologies of various lamination methods, the application of a ceramic material requires a process optimization such as filling rate and surface treatment due to the characteristics of the ceramic material to produce a laminate structure having a desired shape, so the applicable 3D printing methods are somewhat limited.

이러한 세라믹 소재의 특성을 고려할 때 스테레오리소그래피 장치(stereolithography apparatus; SLA), 폴리제트(polyjet), 디지털 라이트 프로세싱(digital light processing; DLP), 퓨즈드 데포지션 모델링(fused deposition modeling; FDM), 바인더 제팅(binder jetting; BJ) 등의 3D 프린팅 방식이 적용 가능할 것으로 전망되고 있다.Considering the properties of these ceramic materials, stereolithography apparatus (SLA), polyjet, digital light processing (DLP), fused deposition modeling (FDM), binder jetting It is expected that 3D printing methods such as (binder jetting; BJ) may be applicable.

이와 같은 3D 프린팅 기술의 다양한 적층 방식 중에서 DLP 방식의 3D 프린터는 디지털 라이트 프로젝터(digital light projector)를 이용하여 광경화성 소재를 적층하는 방식으로 높은 해상도 및 정밀도를 가지며 적층 기물의 품질 안정성을 확보할 수 있다. 또한, 광조사가 선 단위가 아닌 면 단위로 이루어지기 때문에 제작 속도가 비교적 빠른 장점이 있다. Among the various stacking methods of the 3D printing technology, the DLP 3D printer stacks photocurable materials using a digital light projector, has high resolution and precision, and can secure the quality stability of the stacked substrate. have. In addition, since light irradiation is performed in a surface unit, not a line unit, there is an advantage in that the production speed is relatively fast.

대한민국 공개특허공보 제10-2018-0109646호Republic of Korea Patent Publication No. 10-2018-0109646

본 발명이 해결하고자 하는 과제는 무기산화물 입자가 광경화성 모노머에 고분산되어 있어 DLP(digital light processing) 3D 프린팅 공정에 직접 적용될 수 있고 복잡형상의 디자인도 세밀하게 구현할 수 있는 무용제형 무기산화물-모노머 복합 조성물 및 그 제조방법을 제공함에 있다. The problem to be solved by the present invention is that the inorganic oxide particles are highly dispersed in the photocurable monomer, and thus can be directly applied to a digital light processing (DLP) 3D printing process, and a solvent-free inorganic oxide-monomer capable of implementing a complicated design in detail. It is to provide a composite composition and a method of manufacturing the same.

본 발명은, 실란커플링제로 표면개질된 무기산화물 입자와, 광경화성 모노머와, 상기 광경화성 모노머 100중량부에 대하여 광중합반응 개시제 0.1∼5중량부를 포함하며, 상기 무기산화물 입자와 상기 광경화성 모노머는 0.05:1∼4:1의 중량비를 이루는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물을 제공한다. The present invention includes an inorganic oxide particle surface-modified with a silane coupling agent, a photocurable monomer, and 0.1 to 5 parts by weight of a photopolymerization initiator relative to 100 parts by weight of the photocurable monomer, and the inorganic oxide particle and the photocurable monomer Provides an inorganic oxide-monomer composite composition for photocurable 3D printing, characterized in that it forms a weight ratio of 0.05:1 to 4:1.

상기 무기산화물 입자는 실리카(SiO2), 알루미나(Al2O3) 및 지르코니아(ZrO2)로 이루어진 군으로부터 선택된 1종 이상의 입자를 포함할 수 있다.The inorganic oxide particles may include one or more particles selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ).

상기 무기산화물 입자는 10㎚∼10㎛의 입경을 갖는 입자인 것이 바람직하다.The inorganic oxide particles are preferably particles having a particle diameter of 10 nm to 10 μm.

상기 실란커플링제는 비닐트리에톡시실란(vinyl triethoxysilane), 비닐트리메톡시실란(vinyl trimethoxysilane), 비닐트리클로로실란(vinyl trichlorosilane), 비닐트리스(베타-메톡시에톡시)실란(vinyl tris(β-methoxyethoxy)silane), 감마-메타크릴옥시프로필디메톡시실란(γ-methacryloxypropyldimethoxysilane), 베타-(3,4-에폭시시클로헥실)에틸트리메톡시실란(β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), 감마-글리시드옥시프로필트리메톡시실란(γ-glycidoxypropyltrimethoxysilane), 감마-글리시드옥시프로필메틸디에톡시실란(γ-glycidoxypropylmethyldiethoxysilane), 감마-아미노프로필트리에톡시실란(γ-aminopropyltriethoxysilane), 감마-아미노프로필트리메톡시실란(γ-aminopropyltrimethoxysilane), 감마-페닐아미노프로필트리메톡시실란(γ-phenylaminopropyltrimethoxysilane), 감마-메캅토프로필트리메톡시실란(γ-mercaptopropyltrimethoxysilane), 감마-이소시아네이트프로필트리에톡시실란(γ-isocyanatepropyltriethoxysilane) 및 3-메타크릴옥시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The silane coupling agent is vinyl triethoxysilane, vinyl trimethoxysilane, vinyl trichlorosilane, vinyl tris(beta-methoxyethoxy) silane (vinyl tris (β -methoxyethoxy)silane), gamma-methacryloxypropyldimethoxysilane, beta-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), Gamma-glycidoxypropyltrimethoxysilane, gamma-glycidoxypropylmethyldiethoxysilane, gamma-aminopropyltriethoxysilane, gamma-aminopropyltriethoxysilane Γ-aminopropyltrimethoxysilane, gamma-phenylaminopropyltrimethoxysilane, gamma-mecaptopropyltrimethoxysilane, gamma-isocyanatepropyltriethoxysilane (γ -isocyanatepropyltriethoxysilane) and 3-methacryloxypropyltrimethoxysilane.

상기 광경화성 모노머는 트리메티롤프로판 트리아크릴레이트(Trimethylolpropane triacrylate), 헥산디올 디아크릴레이트(Hexanediol diacrylate), 2-하이드록시에틸 메타크릴레이트(2-hydroxyethyl methacrylate), 트리프로필렌글리콜 디아크릴레이트(Tripropyleneglycol diacrylate), 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate), 트리에티렌글리콜 디메타크릴레이트(Triethyleneglycol dimethacrylate) 및 디우레탄 디메타크릴레이트(Diurethane dimethacrylate)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The photocurable monomer is trimethylolpropane triacrylate, hexanediol diacrylate, 2-hydroxyethyl methacrylate, tripropyleneglycol diacrylate diacrylate), pentaerythritol triacrylate, triethylene glycol dimethacrylate, and diurethane dimethacrylate. .

상기 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물은 상기 무기산화물 입자 100중량부에 대하여 소듐알루미네이트(Sodium aluminate) 0.1∼2중량부를 더 포함할 수 있다.The photocurable 3D printing inorganic oxide-monomer composite composition may further include 0.1 to 2 parts by weight of sodium aluminate (Sodium aluminate) with respect to 100 parts by weight of the inorganic oxide particles.

상기 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물은 상기 무기산화물 입자 100중량부에 대하여 포름산(formic acid), 아세트산(acetic acid), 프로피온산(propionic acid), 부틸산(n-butyric acid), 이소부티르산(isobutyric acid), 발레르산(valeric acid), 이소발레르산(isovaleric acid), 피발산(pivalic acid), 카프로산(caproic acid), 이소카프로산(isocapric acid), 에난트산(enanthic acid), 카프릴산(caprylic acid), 펠라곤산(pelargonic acid), 카프릭산(capric acid), 운데실산(undecylic acid), 라우르산(lauric acid), 트리데실산(tridecylic acid), 미리스트산(myristic acid), 펜타데실산(pentadecylic acid), 팔미트산(palmitic acid), 마르가르산(margaric acid), 스테아르산(stearic acid) 및 노나데실산(nonadecyric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질 0.1∼6중량부를 더 포함할 수 있다.The photocurable inorganic oxide-monomer composite composition for 3D printing is formic acid, acetic acid, propionic acid, butyl acid (n-butyric acid), iso with respect to 100 parts by weight of the inorganic oxide particles Butyric acid, valeric acid, isovaleric acid, pivalic acid, caproic acid, isocapric acid, enanthic acid, Caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid ( one or more selected from the group consisting of myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid and nonadecyric acid It may further include 0.1 to 6 parts by weight of the substance.

또한, 본 발명은, (a) 용매에 무기산화물 입자를 첨가하여 무기산화물 졸을 형성하는 단계와, (b) 상기 무기산화물 졸에 실란커플링제를 혼합하여 상기 무기산화물 입자를 표면개질하는 단계와, (c) 표면개질된 무기산화물 입자를 포함하는 무기산화물 졸에 광경화성 모노머를 혼합하는 단계와, (d) 증발기를 이용하여 상기 광경화성 모노머가 혼합된 결과물에 함유된 용매를 휘발시키는 단계 및 (e) 상기 용매가 휘발된 결과물에 상기 광경화성 모노머 100중량부에 대하여 광중합반응 개시제 0.1∼5중량부를 혼합하는 단계를 포함하며, 상기 무기산화물 입자와 상기 광경화성 모노머는 0.05:1∼4:1의 중량비를 이루는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물의 제조방법을 제공한다.In addition, the present invention, (a) forming an inorganic oxide sol by adding inorganic oxide particles to a solvent, and (b) mixing the inorganic oxide sol with a silane coupling agent to surface-modify the inorganic oxide particles and , (c) mixing a photocurable monomer with an inorganic oxide sol containing surface-modified inorganic oxide particles, and (d) volatilizing a solvent contained in the resultant mixture of the photocurable monomers using an evaporator, and (e) mixing 0.1 to 5 parts by weight of a photopolymerization reaction initiator with respect to 100 parts by weight of the photocurable monomer to the product in which the solvent is volatilized, wherein the inorganic oxide particles and the photocurable monomer are 0.05:1 to 4: It provides a method for producing a photocurable 3D printing inorganic oxide-monomer composite composition comprising a weight ratio of 1.

상기 무기산화물 입자는 실리카(SiO2), 알루미나(Al2O3) 및 지르코니아(ZrO2)로 이루어진 군으로부터 선택된 1종 이상의 입자를 포함할 수 있다.The inorganic oxide particles may include one or more particles selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ).

상기 무기산화물 입자는 10㎚∼10㎛의 입경을 갖는 입자인 것이 바람직하다.The inorganic oxide particles are preferably particles having a particle diameter of 10 nm to 10 μm.

상기 실란커플링제는 비닐트리에톡시실란(vinyl triethoxysilane), 비닐트리메톡시실란(vinyl trimethoxysilane), 비닐트리클로로실란(vinyl trichlorosilane), 비닐트리스(베타-메톡시에톡시)실란(vinyl tris(β-methoxyethoxy)silane), 감마-메타크릴옥시프로필디메톡시실란(γ-methacryloxypropyldimethoxysilane), 베타-(3,4-에폭시시클로헥실)에틸트리메톡시실란(β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), 감마-글리시드옥시프로필트리메톡시실란(γ-glycidoxypropyltrimethoxysilane), 감마-글리시드옥시프로필메틸디에톡시실란(γ-glycidoxypropylmethyldiethoxysilane), 감마-아미노프로필트리에톡시실란(γ-aminopropyltriethoxysilane), 감마-아미노프로필트리메톡시실란(γ-aminopropyltrimethoxysilane), 감마-페닐아미노프로필트리메톡시실란(γ-phenylaminopropyltrimethoxysilane), 감마-메캅토프로필트리메톡시실란(γ-mercaptopropyltrimethoxysilane), 감마-이소시아네이트프로필트리에톡시실란(γ-isocyanatepropyltriethoxysilane) 및 3-메타크릴옥시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The silane coupling agent is vinyl triethoxysilane, vinyl trimethoxysilane, vinyl trichlorosilane, vinyl tris(beta-methoxyethoxy) silane (vinyl tris (β -methoxyethoxy)silane), gamma-methacryloxypropyldimethoxysilane, beta-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), Gamma-glycidoxypropyltrimethoxysilane, gamma-glycidoxypropylmethyldiethoxysilane, gamma-aminopropyltriethoxysilane, gamma-aminopropyltriethoxysilane Γ-aminopropyltrimethoxysilane, gamma-phenylaminopropyltrimethoxysilane, gamma-mecaptopropyltrimethoxysilane, gamma-isocyanatepropyltriethoxysilane (γ -isocyanatepropyltriethoxysilane) and 3-methacryloxypropyltrimethoxysilane.

상기 광경화성 모노머는 트리메티롤프로판 트리아크릴레이트(Trimethylolpropane triacrylate), 헥산디올 디아크릴레이트(Hexanediol diacrylate), 2-하이드록시에틸 메타크릴레이트(2-hydroxyethyl methacrylate), 트리프로필렌글리콜 디아크릴레이트(Tripropyleneglycol diacrylate), 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate), 트리에티렌글리콜 디메타크릴레이트(Triethyleneglycol dimethacrylate) 및 디우레탄 디메타크릴레이트(Diurethane dimethacrylate)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The photocurable monomer is trimethylolpropane triacrylate, hexanediol diacrylate, 2-hydroxyethyl methacrylate, tripropyleneglycol diacrylate diacrylate), pentaerythritol triacrylate, triethylene glycol dimethacrylate, and diurethane dimethacrylate. .

상기 (a) 단계에서 상기 무기산화물 입자 100중량부에 대하여 소듐알루미네이트(Sodium aluminate) 0.1∼2중량부를 더 혼합할 수 있다.In step (a), 0.1 to 2 parts by weight of sodium aluminate may be further mixed with respect to 100 parts by weight of the inorganic oxide particles.

상기 (c) 단계에서 상기 무기산화물 입자 100중량부에 대하여 포름산(formic acid), 아세트산(acetic acid), 프로피온산(propionic acid), 부틸산(n-butyric acid), 이소부티르산(isobutyric acid), 발레르산(valeric acid), 이소발레르산(isovaleric acid), 피발산(pivalic acid), 카프로산(caproic acid), 이소카프로산(isocapric acid), 에난트산(enanthic acid), 카프릴산(caprylic acid), 펠라곤산(pelargonic acid), 카프릭산(capric acid), 운데실산(undecylic acid), 라우르산(lauric acid), 트리데실산(tridecylic acid), 미리스트산(myristic acid), 펜타데실산(pentadecylic acid), 팔미트산(palmitic acid), 마르가르산(margaric acid), 스테아르산(stearic acid) 및 노나데실산(nonadecyric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질 0.1∼6중량부를 더 혼합할 수 있다.In the step (c), formic acid, acetic acid, propionic acid, propionic acid, n-butyric acid, isobutyric acid, valer with respect to 100 parts by weight of the inorganic oxide particles Acid (valeric acid), isovaleric acid, pivalic acid, caproic acid, isocapric acid, enanthic acid, caprylic acid , Pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecyl acid 0.1 to 6 parts by weight of one or more substances selected from the group consisting of (pentadecylic acid), palmitic acid, margaric acid, stearic acid and nonadecyric acid You can mix.

본 발명에 의하면, 무기산화물 입자가 광경화성 모노머에 고충진되어 있으면서도 고분산되어 있어 DLP(digital light processing) 3D 프린팅 공정에 직접 적용될 수 있다.According to the present invention, since the inorganic oxide particles are highly filled in the photocurable monomer and highly dispersed, it can be directly applied to a digital light processing (DLP) 3D printing process.

본 발명의 무기산화물-모노머 복합 조성물에 의하면, 복잡형상의 디자인도 3D 프린팅으로 세밀하게 구현할 수 있다. According to the inorganic oxide-monomer composite composition of the present invention, a complex shape design can also be realized in detail by 3D printing.

도 1은 실험예 1에서 사용된 실리카 나노입자를 보여주는 사진이다.
도 2는 표면개질된 실리카 나노입자와 모노머인 HDDA와의 복합화를 위해 HDDA를 첨가하고 상온에서 3시간 동안 교반한 후의 모습을 보여주는 사진이다.
도 3은 실험예 1에 따라 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드를 첨가하여 제조된 실리카-모노머 복합 조성물을 보여주는 사진이다.
도 4는 3D 프린팅 디자인 모식도이다.
도 5는 실험예 1에 따라 제조된 실리카-모노머 복합 조성물로 도 4에 나타낸 디자인 모식도에 따라 3D 프린팅된 시편을 보여주는 사진이다.
도 6은 3D 프린팅 시편의 원본 디자인 크기를 보여주는 도면이다.
도 7은 실험예 1에 따라 제조된 3D 프린팅 시편과 원본 디자인의 형상 비교 결과를 나타낸 도면이다.
도 8은 실험예 1에 따라 제조된 실리카-모노머 복합 조성물로 3D 프린팅된 시편의 표면 거칠기를 분석하여 나타낸 도면이다.
도 9는 실험예 1에 따라 제조된 실리카-모노머 복합 조성물로 3D 프린팅된 시편의 굽힘강도를 분석하여 나타낸 도면이다.
도 10은 복합형상의 원본 디자인을 보여주는 도면이다.
도 11은 복잡형상의 디자인을 실험예 1에 따라 제조된 실리카-모노머 복합 조성물로 3D 프린팅한 사례를 보여주는 도면이다.
도 12a 내지 도 12c는 실험예 2에서 사용된 알루미나 입자를 보여주는 사진이다.
도 13은 표면개질된 알루미나 입자와 모노머인 TMPTA와의 복합화를 위해 TMPTA를 첨가하고 상온에서 3시간 동안 교반한 후의 모습을 보여주는 사진이다.
도 14는 실험예 2에 따라 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드를 첨가하여 제조된 알루미나-모노머 복합 조성물을 보여주는 사진이다.
도 15a 및 도 15b는 3D 프린팅 디자인 모식도이다.
도 16은 실험예 2에 따라 제조된 알루미나-모노머 복합 조성물로 도 15a 및 도 15b에 나타낸 디자인 모식도에 따라 3D 프린팅된 시편을 보여주는 사진이다.
도 17은 3D 프린팅 시편의 원본 디자인 크기를 보여주는 도면이다.
도 18은 실험예 2에 따라 제조된 3D 프린팅 시편과 원본 디자인의 형상 비교 결과를 알루미나 입자의 입도에 따라 나타낸 도면이다.
도 19는 실험예 2에 따라 제조된 3D 프린팅 시편과 원본 디자인의 형상 비교 결과를 TMPTA의 함량에 따라 나타낸 도면이다.
도 20은 실험예 2에 따라 제조된 알루미나-모노머 복합 조성물로 3D 프린팅된 시편의 표면 거칠기를 분석하여 나타낸 도면이다.
도 21은 실험예 2에 따라 제조된 알루미나-모노머 복합 조성물로 3D 프린팅된 시편의 굽힘강도를 분석하여 나타낸 도면이다.
도 22는 복합형상의 원본 디자인을 보여주는 도면이다.
도 23은 복잡형상의 디자인을 실험예 2에 따라 제조된 알루미나-모노머 복합 조성물로 3D 프린팅한 사례를 보여주는 도면이다.
1 is a photograph showing silica nanoparticles used in Experimental Example 1.
FIG. 2 is a photograph showing the state after adding HDDA and stirring for 3 hours at room temperature for the complexation of the surface-modified silica nanoparticles and the monomer, HDDA.
3 is a photograph showing a silica-monomer composite composition prepared by adding phenyl bis(2,4,6-trimethylbenzoyl)-phosphine oxide according to Experimental Example 1.
4 is a schematic diagram of a 3D printing design.
5 is a photograph showing a 3D printed specimen according to a design schematic diagram shown in FIG. 4 with a silica-monomer composite composition prepared according to Experimental Example 1.
6 is a view showing the original design size of the 3D printing specimen.
7 is a view showing the results of the shape comparison of the original design and the 3 D printing specimen prepared according to Experimental Example 1.
8 is a view showing the surface roughness of a 3D printed specimen with a silica-monomer composite composition prepared according to Experimental Example 1.
9 is a view showing the analysis of the bending strength of the specimen 3D printed with a silica-monomer composite composition prepared according to Experimental Example 1.
10 is a view showing the original design of the composite shape.
11 is a view showing an example of 3D printing a complex shape design with a silica-monomer composite composition prepared according to Experimental Example 1.
12A to 12C are photographs showing alumina particles used in Experimental Example 2.
13 is a photograph showing the state after the addition of TMPTA and stirred for 3 hours at room temperature for the composite of the surface-modified alumina particles and the monomer TMPTA.
14 is a photograph showing an alumina-monomer composite composition prepared by adding phenyl bis(2,4,6-trimethylbenzoyl)-phosphine oxide according to Experimental Example 2.
15A and 15B are schematic diagrams of 3D printing design.
FIG. 16 is a photograph showing a 3D printed specimen according to a design schematic diagram shown in FIGS. 15A and 15B with an alumina-monomer composite composition prepared according to Experimental Example 2.
17 is a view showing the original design size of the 3D printing specimen.
18 is a view showing a comparison result of the shape of the original design and the 3 D printing specimen prepared according to Experimental Example 2 according to the particle size of the alumina particles.
19 is a view showing the comparison result of the shape the specimen 3 D printing of the original design prepared according to Test Example 2 in accordance with the amount of TMPTA.
20 is a view showing the analysis of the surface roughness of a 3D printed specimen with an alumina-monomer composite composition prepared according to Experimental Example 2.
21 is a view showing an analysis of the bending strength of a 3D printed specimen with an alumina-monomer composite composition prepared according to Experimental Example 2.
22 is a view showing the original design of the composite shape.
FIG. 23 is a view showing an example of 3D printing a complex shape design with an alumina-monomer composite composition prepared according to Experimental Example 2.

이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the following embodiments are provided to those of ordinary skill in the art to fully understand the present invention and may be modified in various other forms, and the scope of the present invention is limited to the embodiments described below. It does not work.

발명의 상세한 설명 또는 청구범위에서 어느 하나의 구성요소가 다른 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 당해 구성요소만으로 이루어지는 것으로 한정되어 해석되지 아니하며, 다른 구성요소를 더 포함할 수 있는 것으로 이해되어야 한다.In the description or claims of the present invention, when any one component "includes" another component, it is not limited to being interpreted as being composed of the component only, unless specifically stated otherwise, and other components are further added. It should be understood that it can be included.

본 발명의 바람직한 실시예에 따른 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물은, 실란커플링제로 표면개질된 무기산화물 입자와, 광경화성 모노머와, 상기 광경화성 모노머 100중량부에 대하여 광중합반응 개시제 0.1∼5중량부를 포함하며, 상기 무기산화물 입자와 상기 광경화성 모노머는 0.05:1∼4:1의 중량비를 이룬다. Inorganic oxide-monomer composite composition for photocurable 3D printing according to a preferred embodiment of the present invention, the photopolymerization reaction initiator with respect to the inorganic oxide particles surface-modified with a silane coupling agent, a photocurable monomer, and 100 parts by weight of the photocurable monomer 0.1 to 5 parts by weight, the inorganic oxide particles and the photocurable monomer form a weight ratio of 0.05:1 to 4:1.

상기 무기산화물 입자는 실리카(SiO2), 알루미나(Al2O3) 및 지르코니아(ZrO2)로 이루어진 군으로부터 선택된 1종 이상의 입자를 포함할 수 있다.The inorganic oxide particles may include one or more particles selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ).

상기 무기산화물 입자는 10㎚∼10㎛의 입경을 갖는 입자인 것이 바람직하다.The inorganic oxide particles are preferably particles having a particle diameter of 10 nm to 10 μm.

상기 실란커플링제는 비닐트리에톡시실란(vinyl triethoxysilane), 비닐트리메톡시실란(vinyl trimethoxysilane), 비닐트리클로로실란(vinyl trichlorosilane), 비닐트리스(베타-메톡시에톡시)실란(vinyl tris(β-methoxyethoxy)silane), 감마-메타크릴옥시프로필디메톡시실란(γ-methacryloxypropyldimethoxysilane), 베타-(3,4-에폭시시클로헥실)에틸트리메톡시실란(β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), 감마-글리시드옥시프로필트리메톡시실란(γ-glycidoxypropyltrimethoxysilane), 감마-글리시드옥시프로필메틸디에톡시실란(γ-glycidoxypropylmethyldiethoxysilane), 감마-아미노프로필트리에톡시실란(γ-aminopropyltriethoxysilane), 감마-아미노프로필트리메톡시실란(γ-aminopropyltrimethoxysilane), 감마-페닐아미노프로필트리메톡시실란(γ-phenylaminopropyltrimethoxysilane), 감마-메캅토프로필트리메톡시실란(γ-mercaptopropyltrimethoxysilane), 감마-이소시아네이트프로필트리에톡시실란(γ-isocyanatepropyltriethoxysilane) 및 3-메타크릴옥시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The silane coupling agent is vinyl triethoxysilane, vinyl trimethoxysilane, vinyl trichlorosilane, vinyl tris(beta-methoxyethoxy) silane (vinyl tris (β -methoxyethoxy)silane), gamma-methacryloxypropyldimethoxysilane, beta-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), Gamma-glycidoxypropyltrimethoxysilane, gamma-glycidoxypropylmethyldiethoxysilane, gamma-aminopropyltriethoxysilane, gamma-aminopropyltriethoxysilane Γ-aminopropyltrimethoxysilane, gamma-phenylaminopropyltrimethoxysilane, gamma-mecaptopropyltrimethoxysilane, gamma-isocyanatepropyltriethoxysilane (γ -isocyanatepropyltriethoxysilane) and 3-methacryloxypropyltrimethoxysilane.

상기 광경화성 모노머는 트리메티롤프로판 트리아크릴레이트(Trimethylolpropane triacrylate), 헥산디올 디아크릴레이트(Hexanediol diacrylate), 2-하이드록시에틸 메타크릴레이트(2-hydroxyethyl methacrylate), 트리프로필렌글리콜 디아크릴레이트(Tripropyleneglycol diacrylate), 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate), 트리에티렌글리콜 디메타크릴레이트(Triethyleneglycol dimethacrylate) 및 디우레탄 디메타크릴레이트(Diurethane dimethacrylate)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The photocurable monomer is trimethylolpropane triacrylate, hexanediol diacrylate, 2-hydroxyethyl methacrylate, tripropyleneglycol diacrylate diacrylate), pentaerythritol triacrylate, triethylene glycol dimethacrylate, and diurethane dimethacrylate. .

상기 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물은 상기 무기산화물 입자 100중량부에 대하여 소듐알루미네이트(Sodium aluminate) 0.1∼2중량부를 더 포함할 수 있다.The photocurable 3D printing inorganic oxide-monomer composite composition may further include 0.1 to 2 parts by weight of sodium aluminate (Sodium aluminate) with respect to 100 parts by weight of the inorganic oxide particles.

상기 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물은 상기 무기산화물 입자 100중량부에 대하여 포름산(formic acid), 아세트산(acetic acid), 프로피온산(propionic acid), 부틸산(n-butyric acid), 이소부티르산(isobutyric acid), 발레르산(valeric acid), 이소발레르산(isovaleric acid), 피발산(pivalic acid), 카프로산(caproic acid), 이소카프로산(isocapric acid), 에난트산(enanthic acid), 카프릴산(caprylic acid), 펠라곤산(pelargonic acid), 카프릭산(capric acid), 운데실산(undecylic acid), 라우르산(lauric acid), 트리데실산(tridecylic acid), 미리스트산(myristic acid), 펜타데실산(pentadecylic acid), 팔미트산(palmitic acid), 마르가르산(margaric acid), 스테아르산(stearic acid) 및 노나데실산(nonadecyric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질 0.1∼6중량부를 더 포함할 수 있다.The photocurable inorganic oxide-monomer composite composition for 3D printing is formic acid, acetic acid, propionic acid, butyl acid (n-butyric acid), iso with respect to 100 parts by weight of the inorganic oxide particles Butyric acid, valeric acid, isovaleric acid, pivalic acid, caproic acid, isocapric acid, enanthic acid, Caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid ( one or more selected from the group consisting of myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid and nonadecyric acid It may further include 0.1 to 6 parts by weight of the substance.

본 발명의 바람직한 실시예에 따른 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물의 제조방법은, (a) 용매에 무기산화물 입자를 첨가하여 무기산화물 졸을 형성하는 단계와, (b) 상기 무기산화물 졸에 실란커플링제를 혼합하여 상기 무기산화물 입자를 표면개질하는 단계와, (c) 표면개질된 무기산화물 입자를 포함하는 무기산화물 졸에 광경화성 모노머를 혼합하는 단계와, (d) 증발기를 이용하여 상기 광경화성 모노머가 혼합된 결과물에 함유된 용매를 휘발시키는 단계 및 (e) 상기 용매가 휘발된 결과물에 상기 광경화성 모노머 100중량부에 대하여 광중합반응 개시제 0.1∼5중량부를 혼합하는 단계를 포함하며, 상기 무기산화물 입자와 상기 광경화성 모노머는 0.05:1∼4:1의 중량비를 이룬다.A method of manufacturing an inorganic oxide-monomer composite composition for photocuring 3D printing according to a preferred embodiment of the present invention includes: (a) adding inorganic oxide particles to a solvent to form an inorganic oxide sol, (b) the inorganic oxide Mixing a silane coupling agent in a sol to surface-modify the inorganic oxide particles, and (c) mixing a photocurable monomer with an inorganic oxide sol containing surface-modified inorganic oxide particles, and (d) using an evaporator. And volatilizing the solvent contained in the resultant mixture of the photocurable monomers and (e) mixing 0.1 to 5 parts by weight of a photopolymerization initiator with respect to 100 parts by weight of the photocurable monomer to the resultant volatilized solvent. The inorganic oxide particles and the photocurable monomer form a weight ratio of 0.05:1 to 4:1.

상기 무기산화물 입자는 실리카(SiO2), 알루미나(Al2O3) 및 지르코니아(ZrO2)로 이루어진 군으로부터 선택된 1종 이상의 입자를 포함할 수 있다.The inorganic oxide particles may include one or more particles selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ).

상기 무기산화물 입자는 10㎚∼10㎛의 입경을 갖는 입자인 것이 바람직하다.The inorganic oxide particles are preferably particles having a particle diameter of 10 nm to 10 μm.

상기 실란커플링제는 비닐트리에톡시실란(vinyl triethoxysilane), 비닐트리메톡시실란(vinyl trimethoxysilane), 비닐트리클로로실란(vinyl trichlorosilane), 비닐트리스(베타-메톡시에톡시)실란(vinyl tris(β-methoxyethoxy)silane), 감마-메타크릴옥시프로필디메톡시실란(γ-methacryloxypropyldimethoxysilane), 베타-(3,4-에폭시시클로헥실)에틸트리메톡시실란(β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), 감마-글리시드옥시프로필트리메톡시실란(γ-glycidoxypropyltrimethoxysilane), 감마-글리시드옥시프로필메틸디에톡시실란(γ-glycidoxypropylmethyldiethoxysilane), 감마-아미노프로필트리에톡시실란(γ-aminopropyltriethoxysilane), 감마-아미노프로필트리메톡시실란(γ-aminopropyltrimethoxysilane), 감마-페닐아미노프로필트리메톡시실란(γ-phenylaminopropyltrimethoxysilane), 감마-메캅토프로필트리메톡시실란(γ-mercaptopropyltrimethoxysilane), 감마-이소시아네이트프로필트리에톡시실란(γ-isocyanatepropyltriethoxysilane) 및 3-메타크릴옥시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The silane coupling agent is vinyl triethoxysilane, vinyl trimethoxysilane, vinyl trichlorosilane, vinyl tris(beta-methoxyethoxy) silane (vinyl tris (β -methoxyethoxy)silane), gamma-methacryloxypropyldimethoxysilane, beta-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), Gamma-glycidoxypropyltrimethoxysilane, gamma-glycidoxypropylmethyldiethoxysilane, gamma-aminopropyltriethoxysilane, gamma-aminopropyltriethoxysilane Γ-aminopropyltrimethoxysilane, gamma-phenylaminopropyltrimethoxysilane, gamma-mecaptopropyltrimethoxysilane, gamma-isocyanatepropyltriethoxysilane (γ -isocyanatepropyltriethoxysilane) and 3-methacryloxypropyltrimethoxysilane.

상기 광경화성 모노머는 트리메티롤프로판 트리아크릴레이트(Trimethylolpropane triacrylate), 헥산디올 디아크릴레이트(Hexanediol diacrylate), 2-하이드록시에틸 메타크릴레이트(2-hydroxyethyl methacrylate), 트리프로필렌글리콜 디아크릴레이트(Tripropyleneglycol diacrylate), 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate), 트리에티렌글리콜 디메타크릴레이트(Triethyleneglycol dimethacrylate) 및 디우레탄 디메타크릴레이트(Diurethane dimethacrylate)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The photocurable monomer is trimethylolpropane triacrylate, hexanediol diacrylate, 2-hydroxyethyl methacrylate, tripropyleneglycol diacrylate diacrylate), pentaerythritol triacrylate, triethylene glycol dimethacrylate, and diurethane dimethacrylate. .

상기 (a) 단계에서 상기 무기산화물 입자 100중량부에 대하여 소듐알루미네이트(Sodium aluminate) 0.1∼2중량부를 더 혼합할 수 있다.In step (a), 0.1 to 2 parts by weight of sodium aluminate may be further mixed with respect to 100 parts by weight of the inorganic oxide particles.

상기 (c) 단계에서 상기 무기산화물 입자 100중량부에 대하여 포름산(formic acid), 아세트산(acetic acid), 프로피온산(propionic acid), 부틸산(n-butyric acid), 이소부티르산(isobutyric acid), 발레르산(valeric acid), 이소발레르산(isovaleric acid), 피발산(pivalic acid), 카프로산(caproic acid), 이소카프로산(isocapric acid), 에난트산(enanthic acid), 카프릴산(caprylic acid), 펠라곤산(pelargonic acid), 카프릭산(capric acid), 운데실산(undecylic acid), 라우르산(lauric acid), 트리데실산(tridecylic acid), 미리스트산(myristic acid), 펜타데실산(pentadecylic acid), 팔미트산(palmitic acid), 마르가르산(margaric acid), 스테아르산(stearic acid) 및 노나데실산(nonadecyric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질 0.1∼6중량부를 더 혼합할 수 있다.In the step (c), formic acid, acetic acid, propionic acid, propionic acid, n-butyric acid, isobutyric acid, valer with respect to 100 parts by weight of the inorganic oxide particles Acid (valeric acid), isovaleric acid, pivalic acid, caproic acid, isocapric acid, enanthic acid, caprylic acid , Pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecyl acid 0.1 to 6 parts by weight of one or more substances selected from the group consisting of (pentadecylic acid), palmitic acid, margaric acid, stearic acid and nonadecyric acid You can mix.

이하에서, 본 발명의 바람직한 실시예에 따른 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물을 더욱 구체적으로 설명한다.Hereinafter, an inorganic oxide-monomer composite composition for photocurable 3D printing according to a preferred embodiment of the present invention will be described in more detail.

본 발명은 DLP(digital light processing) 3D 프린팅 공정에 직접 적용될 수 있는 무용제형 무기산화물-모노머 복합 조성물을 제시한다. The present invention provides a solvent-free inorganic oxide-monomer composite composition that can be directly applied to a digital light processing (DLP) 3D printing process.

본 발명의 바람직한 실시예에 따른 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물은, 실란커플링제로 표면개질된 무기산화물 입자와, 광경화성 모노머와, 상기 광경화성 모노머 100중량부에 대하여 광중합반응 개시제 0.1∼5중량부를 포함한다. Inorganic oxide-monomer composite composition for photocurable 3D printing according to a preferred embodiment of the present invention, the photopolymerization reaction initiator with respect to the inorganic oxide particles surface-modified with a silane coupling agent, a photocurable monomer, and 100 parts by weight of the photocurable monomer 0.1 to 5 parts by weight.

상기 무기산화물 입자와 상기 광경화성 모노머는 0.05:1∼4:1의 중량비를 이루고 있다. The inorganic oxide particles and the photocurable monomer form a weight ratio of 0.05:1 to 4:1.

상기 무기산화물 입자는 실리카(SiO2), 알루미나(Al2O3) 및 지르코니아(ZrO2)로 이루어진 군으로부터 선택된 1종 이상의 입자를 포함할 수 있다. 상기 무기산화물 입자는 10㎚∼10㎛의 입경을 갖는 입자인 것이 바람직하다. The inorganic oxide particles may include one or more particles selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ). The inorganic oxide particles are preferably particles having a particle diameter of 10 nm to 10 μm.

상기 무기산화물 입자는 실란커플링제로 표면개질되어 있다. 상기 실란커플링제는 비닐트리에톡시실란(vinyl triethoxysilane), 비닐트리메톡시실란(vinyl trimethoxysilane), 비닐트리클로로실란(vinyl trichlorosilane), 비닐트리스(베타-메톡시에톡시)실란(vinyl tris(β-methoxyethoxy)silane), 감마-메타크릴옥시프로필디메톡시실란(γ-methacryloxypropyldimethoxysilane), 베타-(3,4-에폭시시클로헥실)에틸트리메톡시실란(β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), 감마-글리시드옥시프로필트리메톡시실란(γ-glycidoxypropyltrimethoxysilane), 감마-글리시드옥시프로필메틸디에톡시실란(γ-glycidoxypropylmethyldiethoxysilane), 감마-아미노프로필트리에톡시실란(γ-aminopropyltriethoxysilane), 감마-아미노프로필트리메톡시실란(γ-aminopropyltrimethoxysilane), 감마-페닐아미노프로필트리메톡시실란(γ-phenylaminopropyltrimethoxysilane), 감마-메캅토프로필트리메톡시실란(γ-mercaptopropyltrimethoxysilane), 감마-이소시아네이트프로필트리에톡시실란(γ-isocyanatepropyltriethoxysilane) 및 3-메타크릴옥시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다. The inorganic oxide particles are surface-modified with a silane coupling agent. The silane coupling agent is vinyl triethoxysilane, vinyl trimethoxysilane, vinyl trichlorosilane, vinyl tris(beta-methoxyethoxy) silane (vinyl tris (β -methoxyethoxy)silane), gamma-methacryloxypropyldimethoxysilane, beta-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), Gamma-glycidoxypropyltrimethoxysilane, gamma-glycidoxypropylmethyldiethoxysilane, gamma-aminopropyltriethoxysilane, gamma-aminopropyltriethoxysilane Γ-aminopropyltrimethoxysilane, gamma-phenylaminopropyltrimethoxysilane, gamma-mecaptopropyltrimethoxysilane, gamma-isocyanatepropyltriethoxysilane (γ -isocyanatepropyltriethoxysilane) and 3-methacryloxypropyltrimethoxysilane.

상기 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물은 레이저, 자외선(UV) 등 광 조사를 이용한 적층 공정을 위해 광경화 특성을 가지는 모노머를 포함한다. 상기 광경화성 모노머는 트리메티롤프로판 트리아크릴레이트(Trimethylolpropane triacrylate; TMPTA), 헥산디올 디아크릴레이트(Hexanediol diacrylate; HDDA), 2-하이드록시에틸 메타크릴레이트(2-hydroxyethyl methacrylate; 2-HEMA), 트리프로필렌글리콜 디아크릴레이트(Tripropyleneglycol diacrylate; TGGDA), 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate; PETA), 트리에티렌글리콜 디메타크릴레이트(Triethyleneglycol dimethacrylate; TEGDMA) 및 디우레탄 디메타크릴레이트(Diurethane dimethacrylate; UDMA)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다. The inorganic oxide-monomer composite composition for photocuring 3D printing includes a monomer having photocuring properties for a lamination process using light irradiation such as laser, ultraviolet (UV), and the like. The photocurable monomer is trimethylolpropane triacrylate (TMPTA), hexanediol diacrylate (HDD), 2-hydroxyethyl methacrylate (2-HEMA), Tripropyleneglycol diacrylate (TGGDA), Pentaerythritol triacrylate (PETA), Triethyleneglycol dimethacrylate (TEGDMA) and Diurethane dimethacrylate; UDMA) may include one or more substances selected from the group consisting of.

상기 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물은 상기 무기산화물 입자 100중량부에 대하여 소듐알루미네이트(Sodium aluminate) 0.1∼2중량부를 더 포함할 수 있다. 상기 소듐알루미네이트는 무기산화물-모노머 복합 조성물을 3D 프린팅 공정을 이용하여 경화 적층 후 적층 성형체의 강도를 증진시킨다. The photocurable 3D printing inorganic oxide-monomer composite composition may further include 0.1 to 2 parts by weight of sodium aluminate (Sodium aluminate) with respect to 100 parts by weight of the inorganic oxide particles. The sodium aluminate enhances the strength of the laminated molded body after curing lamination of the inorganic oxide-monomer composite composition using a 3D printing process.

상기 광중합반응 개시제는 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드(phenyl bis(2,4,6-trimethylbenzoyl)-phosphineoxide), 디페닐(2,4,6-트리메틸벤조일)-포스핀옥사이드(Diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide), 비스(에타 5-2,4-시클로펜타디엔-1-일)비스[2,6-디플루오로-3-(1H-피롤-1-일)페닐]티타늄(Bis (eta 5-2,4-cyclopentadiene-1-yl)Bis [2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl]titanium), 1-하이드록시-시클로헥실-페닐-케톤(1-Hydroxy-cyclohexyl-phenyl-ketone), 이들의 혼합물 등을 포함할 수 있다. 상기 광중합반응 개시제는 상기 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물에 상기 광경화성 모노머 100중량부에 대하여 0.1∼5중량부 함유되는 것이 바람직하다. The photopolymerization initiator is phenyl bis (2,4,6-trimethylbenzoyl)-phosphine oxide (phenyl bis (2,4,6-trimethylbenzoyl)-phosphineoxide), diphenyl (2,4,6-trimethylbenzoyl)- Phosphine oxide (Diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide), bis(eta 5-2,4-cyclopentadien-1-yl)bis[2,6-difluoro-3-(1H -Pyrrole-1-yl)phenyl]titanium (Bis (eta 5-2,4-cyclopentadiene-1-yl)Bis [2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl]titanium), 1-hydroxy-cyclohexyl-phenyl-ketone (1-Hydroxy-cyclohexyl-phenyl-ketone), and mixtures thereof. It is preferable that the photopolymerization reaction initiator is contained in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the photocurable monomer in the photocurable 3D printing inorganic oxide-monomer composite composition.

상기 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물은 상기 무기산화물 입자 100중량부에 대하여 포름산(formic acid), 아세트산(acetic acid), 프로피온산(propionic acid), 부틸산(n-butyric acid), 이소부티르산(isobutyric acid), 발레르산(valeric acid), 이소발레르산(isovaleric acid), 피발산(pivalic acid), 카프로산(caproic acid), 이소카프로산(isocapric acid), 에난트산(enanthic acid), 카프릴산(caprylic acid), 펠라곤산(pelargonic acid), 카프릭산(capric acid), 운데실산(undecylic acid), 라우르산(lauric acid), 트리데실산(tridecylic acid), 미리스트산(myristic acid), 펜타데실산(pentadecylic acid), 팔미트산(palmitic acid), 마르가르산(margaric acid), 스테아르산(stearic acid) 및 노나데실산(nonadecyric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질 0.1∼6중량부를 더 포함할 수 있다. The photocurable inorganic oxide-monomer composite composition for 3D printing is formic acid, acetic acid, propionic acid, butyl acid (n-butyric acid), iso with respect to 100 parts by weight of the inorganic oxide particles Butyric acid, valeric acid, isovaleric acid, pivalic acid, caproic acid, isocapric acid, enanthic acid, Caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid ( one or more selected from the group consisting of myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid and nonadecyric acid It may further include 0.1 to 6 parts by weight of the substance.

상기 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물은 상기 무기산화물 입자 100중량부에 대하여 분산제 1∼10중량부를 더 포함할 수 있다. 상기 분산제는 아크릴 블록 공중합체 고분자 분산제, 변성 폴리우레탄 고분자 분산제, 변성 폴리아크릴레이트 고분자 분산제 등일 수 있다. The photocurable 3D printing inorganic oxide-monomer composite composition may further include 1 to 10 parts by weight of a dispersant relative to 100 parts by weight of the inorganic oxide particles. The dispersant may be an acrylic block copolymer polymer dispersant, a modified polyurethane polymer dispersant, a modified polyacrylate polymer dispersant, or the like.

이하에서, 본 발명의 바람직한 실시예에 따른 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물의 제조방법을 더욱 구체적으로 설명한다.Hereinafter, a method of manufacturing an inorganic oxide-monomer composite composition for photocuring 3D printing according to a preferred embodiment of the present invention will be described in more detail.

용매에 무기산화물 입자를 첨가하여 무기산화물 졸을 형성한다. 상기 무기산화물 입자는 실리카(SiO2), 알루미나(Al2O3) 및 지르코니아(ZrO2)로 이루어진 군으로부터 선택된 1종 이상의 입자를 포함할 수 있다. 상기 무기산화물 입자는 10㎚∼10㎛의 입경을 갖는 입자인 것이 바람직하다. 상기 용매는 메틸알코올, 에틸알코올 등의 알코올류 등일 수 있다. The inorganic oxide particles are added to the solvent to form an inorganic oxide sol. The inorganic oxide particles may include one or more particles selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ). The inorganic oxide particles are preferably particles having a particle diameter of 10 nm to 10 μm. The solvent may be alcohols such as methyl alcohol or ethyl alcohol.

상기 용매에 상기 무기산화물 입자를 첨가할 때, 소듐알루미네이트(Sodium aluminate)를 함께 첨가하여 무기산화물 졸을 형성할 수도 있다. 상기 소듐알루미네이트는 무기산화물-모노머 복합 조성물을 3D 프린팅 공정을 이용하여 경화 적층 후 적층 성형체의 강도를 증진시키기 위하여 첨가한다. 소듐알루미네이트를 첨가하여 무기산화물 입자 표면에 처리함으로써 3D 프린팅된 성형체의 강도가 증가될 수 있다. 상기 소듐알루미네이트는 상기 무기산화물 입자 100중량부에 대하여 소듐알루미네이트(Sodium aluminate) 0.1∼2중량부 첨가하는 것이 바람직하다.When adding the inorganic oxide particles to the solvent, sodium aluminate may be added together to form an inorganic oxide sol. The sodium aluminate is added to the inorganic oxide-monomer composite composition to enhance the strength of the laminated molded product after curing lamination using a 3D printing process. The strength of the 3D printed molded body can be increased by adding sodium aluminate to the surface of the inorganic oxide particles. The sodium aluminate is preferably added 0.1 to 2 parts by weight of sodium aluminate (Sodium aluminate) with respect to 100 parts by weight of the inorganic oxide particles.

상기 무기산화물 졸에 실란커플링제를 혼합하여 상기 무기산화물 입자를 표면개질한다. 상기 실란커플링제는 비닐트리에톡시실란(vinyl triethoxysilane), 비닐트리메톡시실란(vinyl trimethoxysilane), 비닐트리클로로실란(vinyl trichlorosilane), 비닐트리스(베타-메톡시에톡시)실란(vinyl tris(β-methoxyethoxy)silane), 감마-메타크릴옥시프로필디메톡시실란(γ-methacryloxypropyldimethoxysilane), 베타-(3,4-에폭시시클로헥실)에틸트리메톡시실란(β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), 감마-글리시드옥시프로필트리메톡시실란(γ-glycidoxypropyltrimethoxysilane), 감마-글리시드옥시프로필메틸디에톡시실란(γ-glycidoxypropylmethyldiethoxysilane), 감마-아미노프로필트리에톡시실란(γ-aminopropyltriethoxysilane), 감마-아미노프로필트리메톡시실란(γ-aminopropyltrimethoxysilane), 감마-페닐아미노프로필트리메톡시실란(γ-phenylaminopropyltrimethoxysilane), 감마-메캅토프로필트리메톡시실란(γ-mercaptopropyltrimethoxysilane), 감마-이소시아네이트프로필트리에톡시실란(γ-isocyanatepropyltriethoxysilane) 및 3-메타크릴옥시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다. 상기 실란커플링제는 상기 무기산화물 입자 100중량부에 대하여 5∼40중량부 혼합하는 것이 바람직하다. 상기 실란커플링제를 혼합하여 무기산화물을 표면개질함으로써 무기산화물 입자와 광경화성 모노머의 네트워크(network)가 개선될 수 있다. The inorganic oxide particles are surface-modified by mixing a silane coupling agent with the inorganic oxide sol. The silane coupling agent is vinyl triethoxysilane, vinyl trimethoxysilane, vinyl trichlorosilane, vinyl tris(beta-methoxyethoxy) silane (vinyl tris (β -methoxyethoxy)silane), gamma-methacryloxypropyldimethoxysilane, beta-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), Gamma-glycidoxypropyltrimethoxysilane, gamma-glycidoxypropylmethyldiethoxysilane, gamma-aminopropyltriethoxysilane, gamma-aminopropyltriethoxysilane Γ-aminopropyltrimethoxysilane, gamma-phenylaminopropyltrimethoxysilane, gamma-mecaptopropyltrimethoxysilane, gamma-isocyanatepropyltriethoxysilane (γ -isocyanatepropyltriethoxysilane) and 3-methacryloxypropyltrimethoxysilane. The silane coupling agent is preferably mixed with 5 to 40 parts by weight based on 100 parts by weight of the inorganic oxide particles. By mixing the silane coupling agent to surface-modify the inorganic oxide, a network of inorganic oxide particles and a photocurable monomer may be improved.

표면개질된 무기산화물 입자를 포함하는 무기산화물 졸에 광경화성 모노머를 혼합한다. 상기 무기산화물 입자와 상기 광경화성 모노머가 0.05:1∼4:1의 중량비를 이루도록 상기 광경화성 모노머를 혼합하는 것이 바람직하다. 상기 광경화성 모노머는 레이저, 자외선(UV) 등 광 조사에 대하여 광경화 특성을 가지는 모노머이다. 상기 광경화성 모노머는 트리메티롤프로판 트리아크릴레이트(Trimethylolpropane triacrylate; TMPTA), 헥산디올 디아크릴레이트(Hexanediol diacrylate; HDDA), 2-하이드록시에틸 메타크릴레이트(2-hydroxyethyl methacrylate; 2-HEMA), 트리프로필렌글리콜 디아크릴레이트(Tripropyleneglycol diacrylate; TGGDA), 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate; PETA), 트리에티렌글리콜 디메타크릴레이트(Triethyleneglycol dimethacrylate; TEGDMA) 및 디우레탄 디메타크릴레이트(Diurethane dimethacrylate; UDMA)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다. The photocurable monomer is mixed with the inorganic oxide sol containing the surface-modified inorganic oxide particles. It is preferable to mix the photocurable monomer so that the inorganic oxide particles and the photocurable monomer form a weight ratio of 0.05:1 to 4:1. The photocurable monomer is a monomer having a photocurable property with respect to light irradiation such as laser and ultraviolet (UV). The photocurable monomer is trimethylolpropane triacrylate (TMPTA), hexanediol diacrylate (HDD), 2-hydroxyethyl methacrylate (2-HEMA), Tripropyleneglycol diacrylate (TGGDA), Pentaerythritol triacrylate (PETA), Triethyleneglycol dimethacrylate (TEGDMA) and Diurethane dimethacrylate; UDMA) may include one or more substances selected from the group consisting of.

상기 광경화성 모노머를 혼합할 때, 상기 무기산화물 입자 100중량부에 대하여 포름산(formic acid), 아세트산(acetic acid), 프로피온산(propionic acid), 부틸산(n-butyric acid), 이소부티르산(isobutyric acid), 발레르산(valeric acid), 이소발레르산(isovaleric acid), 피발산(pivalic acid), 카프로산(caproic acid), 이소카프로산(isocapric acid), 에난트산(enanthic acid), 카프릴산(caprylic acid), 펠라곤산(pelargonic acid), 카프릭산(capric acid), 운데실산(undecylic acid), 라우르산(lauric acid), 트리데실산(tridecylic acid), 미리스트산(myristic acid), 펜타데실산(pentadecylic acid), 팔미트산(palmitic acid), 마르가르산(margaric acid), 스테아르산(stearic acid) 및 노나데실산(nonadecyric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질 0.1∼6중량부를 더 혼합할 수 있다. 무기산화물-모노머 복합 조성물 내에서 무기산화물 입자의 단분산을 지속시켜 안정화를 유지하기 위해 첨가한다. When mixing the photocurable monomer, formic acid, acetic acid, propionic acid, propionic acid, n-butyric acid, isobutyric acid with respect to 100 parts by weight of the inorganic oxide particles ), valeric acid, isovaleric acid, pivalic acid, caproic acid, isocapric acid, enanthic acid, caprylic acid ( caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, 0.1 to 6 or more substances selected from the group consisting of pentadecylic acid, palmitic acid, margaric acid, stearic acid and nonadecyric acid More parts by weight can be mixed. In the inorganic oxide-monomer composite composition, the monodispersity of the inorganic oxide particles is continued to be added to maintain stabilization.

상기 광경화성 모노머를 혼합할 때, 상기 무기산화물 입자 100중량부에 대하여 분산제 1∼10중량부를 더 혼합할 수 있다. 상기 분산제는 무기산화물-모노머 복합 조성물 내에서 무기산화물 입자의 분산성을 강화하기 위해 첨가한다. 상기 분산제는 아크릴 블록 공중합체 고분자 분산제, 변성 폴리우레탄 고분자 분산제, 변성 폴리아크릴레이트 고분자 분산제 등일 수 있다. When mixing the photocurable monomer, 1 to 10 parts by weight of the dispersant may be further mixed with respect to 100 parts by weight of the inorganic oxide particles. The dispersant is added to enhance the dispersibility of the inorganic oxide particles in the inorganic oxide-monomer composite composition. The dispersant may be an acrylic block copolymer polymer dispersant, a modified polyurethane polymer dispersant, a modified polyacrylate polymer dispersant, or the like.

증발기를 이용하여 상기 광경화성 모노머가 혼합된 결과물에 함유된 용매를 휘발시킨다. The solvent contained in the resultant mixture of the photocurable monomer is volatilized using an evaporator.

상기 용매가 휘발된 결과물에 상기 광경화성 모노머 100중량부에 대하여 광중합반응 개시제 0.1∼5중량부를 혼합한다. 상기 광중합반응 개시제는 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드(phenyl bis(2,4,6-trimethylbenzoyl)-phosphineoxide), 디페닐(2,4,6-트리메틸벤조일)-포스핀옥사이드(Diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide), 비스(에타 5-2,4-시클로펜타디엔-1-일)비스[2,6-디플루오로-3-(1H-피롤-1-일)페닐]티타늄(Bis (eta 5-2,4-cyclopentadiene-1-yl)Bis [2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl]titanium), 1-하이드록시-시클로헥실-페닐-케톤(1-Hydroxy-cyclohexyl-phenyl-ketone), 이들의 혼합물 등을 포함할 수 있다. 0.1 to 5 parts by weight of the photopolymerization reaction initiator is mixed with 100 parts by weight of the photocurable monomer in the product in which the solvent is volatilized. The photopolymerization initiator is phenyl bis (2,4,6-trimethylbenzoyl)-phosphine oxide (phenyl bis (2,4,6-trimethylbenzoyl)-phosphineoxide), diphenyl (2,4,6-trimethylbenzoyl)- Phosphine oxide (Diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide), bis(eta 5-2,4-cyclopentadien-1-yl)bis[2,6-difluoro-3-(1H -Pyrrole-1-yl)phenyl]titanium (Bis (eta 5-2,4-cyclopentadiene-1-yl)Bis [2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl]titanium), 1-hydroxy-cyclohexyl-phenyl-ketone (1-Hydroxy-cyclohexyl-phenyl-ketone), and mixtures thereof.

이렇게 제조된 무기산화물-모노머 복합 조성물는 무기산화물 입자가 광경화성 모노머에 고충진되어 있으면서도 고분산되어 있어 DLP 3D 프린터에 직접 적용될 수 있다.The inorganic oxide-monomer composite composition thus prepared can be directly applied to a DLP 3D printer because the inorganic oxide particles are highly filled in a photocurable monomer and highly dispersed.

이하에서, 본 발명에 따른 실험예들을 구체적으로 제시하며, 다음에 제시하는 실험예들에 본 발명이 한정되는 것은 아니다. Hereinafter, experimental examples according to the present invention are specifically presented, and the present invention is not limited to the experimental examples presented below.

<실험예 1><Experimental Example 1>

출발원료로 실리카 나노입자(입도 90nm) 60중량부(실리카 나노입자와 광경화성 모노머의 전체 함량 100중량부에 대하여 60중량부), 광경화성 모노머인 헥산디올 디아크릴레이트(hexanediol diacrylate; HDDA) 40중량부(실리카 나노입자와 광경화성 모노머의 전체 함량 100중량부에 대하여 40중량부), 상기 실리카 나노입자 100중량부에 대하여 표면개질제인 비닐트리메톡시실란(Vinyltrimethoxy silane; VTMS) 15중량부, 상기 광경화성 모노머 100중량부에 대하여 광중합반응 개시제인 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드(phenyl bis(2,4,6-trimethylbenzoyl)-phosphineoxide) 0.5∼3.0중량부, 상기 실리카 나노입자 100중량부에 대하여 소듐알루미네이트(sodium aluminate) 0.6중량부, 상기 실리카 나노입자 100중량부에 대하여 변성 폴리아크릴레이트 고분자 분산제 6중량부, 상기 실리카 나노입자 100중량부에 대하여 아세트산(Acetic acid) 4중량부를 준비하였다. As starting material, 60 parts by weight of silica nanoparticles (particle size: 90 nm) (60 parts by weight based on 100 parts by weight of the total content of silica nanoparticles and photocurable monomer), and hexanediol diacrylate (HDDA) 40 Parts by weight (40 parts by weight based on 100 parts by weight of the total content of silica nanoparticles and photocurable monomers), 15 parts by weight of vinyltrimethoxysilane (VTMS), a surface modifier, based on 100 parts by weight of the silica nanoparticles, 0.5 to 3.0 parts by weight of phenyl bis (2,4,6-trimethylbenzoyl)-phosphineoxide, a photopolymerization initiator, based on 100 parts by weight of the photocurable monomer, 0.6 parts by weight of sodium aluminate with respect to 100 parts by weight of the silica nanoparticles, 6 parts by weight of a modified polyacrylate polymer dispersant with respect to 100 parts by weight of the silica nanoparticles, acetic acid with respect to 100 parts by weight of the silica nanoparticles ( Acetic acid) 4 parts by weight was prepared.

메틸알코올, 상기 실리카 나노입자 및 상기 소듐알루미네이트를 24시간 볼밀링으로 혼합하여 실리카 졸을 형성하고, 실리카 나노입자의 표면개질을 위해 표면개질제인 VTMS를 첨가한 뒤 50℃에서 24시간 동안 교반하여 실리카 표면에 VTMS를 화학적으로 흡착시켜 표면개질 하였으며, 표면개질된 실리카 나노입자와 광경화성 모노머인 HDDA와의 복합화를 위해 HDDA를 첨가하고 상기 변성 폴리아크릴레이트 고분자 분산제와 상기 아세트산 첨가한 후 상온에서 3시간 동안 교반하였다. 도 1은 실험예 1에서 사용된 실리카 나노입자를 보여주는 사진이고, 도 2는 표면개질된 실리카 나노입자와 광경화성 모노머인 HDDA와의 복합화를 위해 HDDA를 첨가하고 상온에서 3시간 동안 교반한 후의 모습을 보여주는 사진이다. Methyl alcohol, the silica nanoparticles and the sodium aluminate were mixed by ball milling for 24 hours to form a silica sol, and after adding VTMS, a surface modifier for surface modification of the silica nanoparticles, the mixture was stirred for 24 hours at 50°C. VTMS was chemically adsorbed on the silica surface to surface-modify, and HDDA was added for the combination of the surface-modified silica nanoparticles and the photocurable monomer, HDDA, and the modified polyacrylate polymer dispersant and acetic acid were added for 3 hours at room temperature. Stir for a while. Figure 1 is a photograph showing the silica nanoparticles used in Experimental Example 1, Figure 2 is a surface modified silica nanoparticles and a photo-curable monomer for the composite of HDDA HDDA is added and stirred for 3 hours at room temperature. It is a picture showing.

HDDA가 첨가되어 교반된 결과물에 대하여 증발기(Evaporator)를 이용하여 50℃에서 1시간 동안 가열하여 잔존하는 메틸알코올을 휘발시킨 후, 광중합반응 개시제인 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드를 첨가하고 상온에서 24시간 동안 교반하여 실리카-모노머 복합 조성물을 제조하였다. 도 3은 실험예 1에 따라 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드를 첨가하여 제조된 실리카-모노머 복합 조성물을 보여주는 사진이다. After the HDDA is added and stirred to heat the resulting product by heating at 50° C. for 1 hour using an evaporator, phenyl bis (2,4,6-trimethylbenzoyl), which is a photopolymerization initiator, is evaporated. Phosphine oxide was added and stirred at room temperature for 24 hours to prepare a silica-monomer composite composition. 3 is a photograph showing a silica-monomer composite composition prepared by adding phenyl bis(2,4,6-trimethylbenzoyl)-phosphine oxide according to Experimental Example 1.

합성된 실리카-모노머 복합 조성물을 이용하여 DLP(digital light processing) 방식의 3D 프린터로 적층 조형하였다. The synthesized silica-monomer composite composition was used to laminate and mold a digital light processing (DLP) 3D printer.

도 4는 3D 프린팅 디자인 모식도이고, 도 5는 실험예 1에 따라 제조된 실리카-모노머 복합 조성물로 도 4에 나타낸 디자인 모식도에 따라 3D 프린팅된 시편을 보여주는 사진이다. 도 5에서 (a)는 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드를 0.5중량부 첨가하여 제조된 실리카-모노머 복합 조성물을 이용한 경우이고, (b)는 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드를 1.0중량부 첨가하여 제조된 실리카-모노머 복합 조성물을 이용한 경우이며, (c)는 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드를 1.5중량부 첨가하여 제조된 실리카-모노머 복합 조성물을 이용한 경우이고, (d)는 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드를 2.0중량부 첨가하여 제조된 실리카-모노머 복합 조성물을 이용한 경우이며, (e)는 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드를 3.0중량부 첨가하여 제조된 실리카-모노머 복합 조성물을 이용한 경우이다.4 is a schematic diagram of a 3D printing design, and FIG. 5 is a photograph showing a 3D printed specimen according to the design schematic diagram shown in FIG. 4 as a silica-monomer composite composition prepared according to Experimental Example 1. In Figure 5 (a) is a case using a silica-monomer composite composition prepared by adding 0.5 parts by weight of phenyl bis (2,4,6-trimethylbenzoyl)-phosphine oxide, (b) is phenyl bis (2, 4,6-trimethylbenzoyl)-phosphine oxide is used when the silica-monomer composite composition prepared by adding 1.0 part by weight, (c) is phenyl bis (2,4,6-trimethylbenzoyl)-phosphine oxide The case of using a silica-monomer composite composition prepared by adding 1.5 parts by weight, (d) is a silica-monomer composite composition prepared by adding 2.0 parts by weight of phenyl bis(2,4,6-trimethylbenzoyl)-phosphine oxide In the case of using, (e) is a case using a silica-monomer composite composition prepared by adding 3.0 parts by weight of phenyl bis(2,4,6-trimethylbenzoyl)-phosphine oxide.

도 4 및 도 5를 참조하면, 실리카-모노머 복합 조성물로 도 4에 나타낸 디자인 모식도와 같이 DLP 3D 프린터에 적용하여 테스트를 진행하였으며, 모든 샘플이 디자인대로 원활하게 3D 프린팅된 것을 확인할 수 있었다.4 and 5, the silica-monomer composite composition was applied to a DLP 3D printer as shown in the design schematic shown in FIG. 4 to test it, and it was confirmed that all samples were smoothly 3D printed as designed.

도 6은 3D 프린팅 시편의 원본 디자인 크기를 보여주는 도면이고, 도 7은 3D 프린팅 시편과 원본 디자인의 형상 비교 결과를 나타낸 도면이다. Figure 6 is a diagram showing the original design, the size of the 3D printed specimen, Figure 7 is a view showing the shape of the comparison 3 D printing samples of the original design.

도 6 및 도 7을 참조하면, 실리카-모노머 복합 조성물로 3D 프린팅된 시편과 원본 디자인 파일의 XYZ 축 길이를 비교분석하여 원본 디자인대로 조형이 되었는지를 확인하였다. 실리카-모노머 복합 조성물로 3D 프린팅된 모든 시편이 원본 디자인과 XYZ 축 길이가 2% 미만의 차이를 나타내어 원본 디자인대로 원활하게 조형되었음을 확인할 수 있었다.Referring to FIGS. 6 and 7, it was confirmed whether the specimen was molded according to the original design by comparing and analyzing the XYZ axis length of the 3D printed specimen and the original design file with a silica-monomer composite composition. It was confirmed that all specimens 3D printed with the silica-monomer composite composition had a difference of less than 2% in the XYZ axis length from the original design, and thus it was confirmed that the specimens were smoothly molded according to the original design.

실리카-모노머 복합 조성물로 3D 프린팅된 시편의 표면 거칠기를 분석하여 도 8에 나타내었다.The surface roughness of the 3D printed specimen with the silica-monomer composite composition was analyzed and shown in FIG. 8.

도 8을 참조하면, 실리카-모노머 복합 조성물로 3D 프린팅된 모든 시편의 표면거칠기는 3㎛ 미만이며, 광중합반응 개시제(PI) 함량에 따라 1 ㎛까지 감소한 것을 확인할 수 있었다.Referring to FIG. 8, it was confirmed that the surface roughness of all specimens 3D printed with the silica-monomer composite composition was less than 3 μm, and decreased to 1 μm according to the content of the photopolymerization initiator (PI).

실리카-모노머 복합 조성물로 3D 프린팅된 시편의 굽힘강도를 분석하여 도 9에 나타내었다.The flexural strength of the 3D printed specimens with the silica-monomer composite composition was analyzed and shown in FIG. 9.

도 9를 참조하면, 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드가 1.5중량부 첨가된 시편에서 20MPa까지 향상된 강도를 확보하였다.Referring to FIG. 9, phenyl bis(2,4,6-trimethylbenzoyl)-phosphine oxide was added to 1.5 parts by weight to secure improved strength to 20 MPa.

도 10은 복합형상의 원본 디자인을 보여주고, 도 11은 복잡형상의 디자인을 실리카-모노머 복합 조성물로 3D 프린팅한 사례를 보여주는 도면이다.FIG. 10 shows an original design of a complex shape, and FIG. 11 is a view showing an example of 3D printing a complex shape design with a silica-monomer composite composition.

도 10 및 도 11을 참조하면, 원본 디자인과 같이 세밀한 부분도 실리카-모노머 복합 조성물을 이용하여 3D 프린팅으로 구현될 수 있음을 확인하였다. Referring to FIGS. 10 and 11, it has been confirmed that the fine details, such as the original design, can be implemented by 3D printing using a silica-monomer composite composition.

<실험예 2><Experimental Example 2>

출발원료로 알루미나 입자(입도는 각각 100nm, 500nm, 1㎛) 60중량부(알루미나 입자와 광경화성 모노머의 전체 함량 100중량부에 대하여 60중량부), 광경화성 모노머인 트리메티롤프로판 트리아크릴레이트(Trimethylolpropane triacylate; TMPTA) 40중량부(알루미나 입자와 광경화성 모노머의 전체 함량 100중량부에 대하여 40중량부), 상기 알루미나 입자 100중량부에 대하여 3-메타크릴록시프로필트리메톡시실란((3-methacryloxypropyltrimethoxysilane; MPTMS) 15중량부, 상기 광경화성 모노머 100중량부에 대하여 광중합반응 개시제인 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드(phenyl bis(2,4,6-trimethylbenzoyl)-phosphineoxide) 0.5∼3.0중량부, 상기 알루미나 입자 100중량부에 대하여 소듐알루미네이트(sodium aluminate) 0.6중량부, 상기 알루미나 입자 100중량부에 대하여 변성 폴리아크릴레이트 고분자 분산제 6중량부, 상기 알루미나 입자 100중량부에 대하여 아세트산(Acetic acid) 4중량부를 준비하였다. As starting material, 60 parts by weight of alumina particles (particle sizes of 100 nm, 500 nm, and 1 µm, respectively) (60 parts by weight based on 100 parts by weight of the total content of alumina particles and photocurable monomers) and trimethyrolpropane triacrylate as photocurable monomers (Trimethylolpropane triacylate; TMPTA) 40 parts by weight (40 parts by weight based on 100 parts by weight of the total content of alumina particles and photocurable monomers), 3-methacryloxypropyl trimethoxysilane ((3 -methacryloxypropyltrimethoxysilane (MPTMS) 15 parts by weight, a photopolymerization reaction initiator phenyl bis (2,4,6-trimethylbenzoyl)-phosphine oxide (phenyl bis(2,4,6-trimethylbenzoyl) with respect to 100 parts by weight of the photocurable monomer) -phosphineoxide) 0.5 to 3.0 parts by weight, 0.6 parts by weight of sodium aluminate with respect to 100 parts by weight of the alumina particles, 6 parts by weight of a modified polyacrylate polymer dispersant with respect to 100 parts by weight of the alumina particles, and 100 parts of the alumina particles 4 parts by weight of acetic acid was prepared based on parts by weight.

메틸알코올, 알루미나 입자 및 소듐알루미네이트를 24시간 볼밀링으로 혼합하여 알루미나 졸을 형성하고, 알루미나 입자의 표면개질을 위해 표면개질제인 MPTMS를 첨가한 뒤 50℃에서 24시간 동안 교반하여 알루미나 표면에 MPTMS를 화학적으로 흡착시켜 표면개질 하였으며, 표면개질된 알루미나 입자와 광경화성 모노머인 TMPTA와의 복합화를 위해 TMPTA를 첨가하고 상기 변성 폴리아크릴레이트 고분자 분산제와 상기 아세트산 첨가한 후 상온에서 3시간 동안 교반하였다. 도 12a 내지 도 12c는 실험예 2에서 사용된 알루미나 입자를 보여주는 사진으로서, 도 12a는 입도가 100nm인 알루미나 입자를 보여주고, 도 12b는 입도가 500nm인 알루미나 입자를 보여주며, 도 12c는 입도가 1㎛인 알루미나 입자를 보여준다. 도 13은 표면개질된 알루미나 입자와 광경화성 모노머인 TMPTA와의 복합화를 위해 TMPTA를 첨가하고 상온에서 3시간 동안 교반한 후의 모습을 보여주는 사진이다. Methyl alcohol, alumina particles and sodium aluminate are mixed by ball milling for 24 hours to form an alumina sol, and MPTMS, a surface modifier for surface modification of alumina particles, is added and stirred at 50° C. for 24 hours to MPTMS on the alumina surface. Was chemically adsorbed to surface-modify, TMPTA was added for complexing the surface-modified alumina particles with the photocurable monomer, TMPTA, and the modified polyacrylate polymer dispersant and acetic acid were added, followed by stirring at room temperature for 3 hours. 12A to 12C are photographs showing alumina particles used in Experimental Example 2, FIG. 12A shows alumina particles having a particle size of 100 nm, FIG. 12B shows alumina particles having a particle size of 500 nm, and FIG. 12C shows a particle size Alumina particles of 1 µm are shown. 13 is a photograph showing the state after adding TMPTA and agitating at room temperature for 3 hours for complexing the surface-modified alumina particles with the photocurable monomer, TMPTA.

TMPTA가 첨가되어 교반된 결과물에 대하여 증발기(Evaporator)를 이용하여 50℃에서 1시간 동안 가열하여 잔존하는 메틸알코올을 휘발시킨 후, 광중합반응 개시제인 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드를 첨가하고 상온에서 24시간 동안 교반하여 알루미나-모노머 복합 조성물을 합성하였다. 도 14는 실험예 2에 따라 페닐 비스(2,4,6-트리메틸벤조일)-포스핀옥사이드를 첨가하여 제조된 알루미나-모노머 복합 조성물을 보여주는 사진이다. After the TMPTA was added to the stirred result, the remaining methyl alcohol was evaporated by heating at 50° C. for 1 hour using an evaporator, and then the photopolymerization initiator phenyl bis (2,4,6-trimethylbenzoyl)- Phosphine oxide was added and stirred at room temperature for 24 hours to synthesize an alumina-monomer composite composition. 14 is a photograph showing an alumina-monomer composite composition prepared by adding phenyl bis(2,4,6-trimethylbenzoyl)-phosphine oxide according to Experimental Example 2.

합성된 알루미나-모노머 복합 조성물을 이용하여 DLP(digital light processing) 방식의 3D 프린터로 적층 조형하였다. The synthesized alumina-monomer composite composition was used to laminate and mold a digital light processing (DLP) 3D printer.

도 15a 및 도 15b는 3D 프린팅 디자인 모식도이고, 도 16은 실험예 2에 따라 제조된 알루미나-모노머 복합 조성물로 도 15a 및 도 15b에 나타낸 디자인 모식도에 따라 3D 프린팅된 시편을 보여주는 사진이다. 도 16에서 (a)는 입도가 100nm인 알루미나 입자를 사용하여 제조된 알루미나-모노머 복합 조성물을 이용한 경우이고, (b)는 입도가 500nm인 알루미나 입자를 사용하여 제조된 알루미나-모노머 복합 조성물을 이용한 경우이며, (c)는 입도가 1㎛인 알루미나 입자를 사용하여 제조된 알루미나-모노머 복합 조성물을 이용한 경우이다.15A and 15B are schematic diagrams of 3D printing design, and FIG. 16 is a photograph showing specimens 3D printed according to the design schematic diagrams shown in FIGS. 15A and 15B as an alumina-monomer composite composition prepared according to Experimental Example 2. In Figure 16 (a) is a case using an alumina-monomer composite composition prepared using alumina particles having a particle size of 100nm, (b) is using alumina-monomer composite composition prepared using alumina particles having a particle size of 500nm In the case, (c) is a case using an alumina-monomer composite composition prepared using alumina particles having a particle size of 1 µm.

도 15a 내지 도 16을 참조하면, 알루미나-모노머 복합 조성물로 도 15a 및 도 15b에 나타낸 디자인 모식도와 같이 DLP 3D 프린터에 적용하여 테스트를 진행하였으며, 모든 샘플이 디자인대로 원활하게 3D 프린팅된 것을 확인할 수 있었다.15A to 16, the alumina-monomer composite composition was applied to the DLP 3D printer as shown in the design schematics shown in FIGS. 15A and 15B to test, and it was confirmed that all samples were smoothly 3D printed as designed. there was.

도 17은 3D 프린팅 시편의 원본 디자인 크기를 보여주는 도면이고, 도 18은 3D 프린팅 시편과 원본 디자인의 형상 비교 결과를 알루미나 입자의 입도에 따라 나타낸 도면이고, 도 19는 3D 프린팅 시편과 원본 디자인의 형상 비교 결과를 TMPTA의 함량에 따라 나타낸 도면이다.And Figure 17 is a diagram showing the original design, the size of the 3D printing specimens, Figure 18 is a view along the shape comparison result of 3 D printing specimen and the original design, the particle size of the alumina particles, 19 is a 3 D printing samples of the original design It is a view showing the results of the shape comparison according to the content of TMPTA.

도 17 내지 도 19를 참조하면, 알루미나-모노머 복합 조성물로 3D 프린팅된 시편과 원본 디자인 파일의 XYZ 축 길이를 비교분석하여 원본 디자인대로 조형이 되었는지를 확인하였다. 알루미나-모노머 복합 조성물로 3D 프린팅된 모든 시편이 원본 디자인과 XYZ 축 길이가 3.5% 미만의 차이를 나타내어 원본 디자인대로 원활하게 조형되었음을 확인할 수 있었다.Referring to FIGS. 17 to 19, it was confirmed whether the specimen was molded according to the original design by comparing and analyzing the 3D printed specimens of the alumina-monomer composite composition and the XYZ axis length of the original design file. It was confirmed that all specimens 3D printed with the alumina-monomer composite composition exhibited a difference of less than 3.5% between the original design and the XYZ axis length, and thus it was confirmed that the specimens were smoothly molded according to the original design.

알루미나-모노머 복합 조성물로 3D 프린팅된 시편의 표면 거칠기를 분석하여 도 20에 나타내었다.The surface roughness of the 3D printed specimen with the alumina-monomer composite composition was analyzed and shown in FIG. 20.

도 20을 참조하면, 알루미나-모노머 복합 조성물로 3D 프린팅된 모든 시편의 표면거칠기는 2㎛ 미만이며, 광중합반응 개시제 함량에 따라 감소한 것을 확인할 수 있었다. 알루미나 입자의 입도가 감소할수록 3D 프린팅된 시편의 표면 거칠기도 감소하였다. 알루미나 입자의 입도가 100nm일때 광중합반응 개시제 3.0중량부 첨가시 표면거칠기가 0.5 ㎛까지 감소하였다.Referring to FIG. 20, it was confirmed that the surface roughness of all specimens 3D printed with the alumina-monomer composite composition was less than 2 μm and decreased according to the content of the photopolymerization initiator. As the particle size of the alumina particles decreased, the surface roughness of the 3D printed specimens also decreased. When the particle size of the alumina particles was 100 nm, the surface roughness was reduced to 0.5 μm when 3.0 parts by weight of the photopolymerization initiator was added.

알루미나-모노머 복합 조성물로 3D 프린팅된 시편의 굽힘강도를 분석하여 도 21에 나타내었다.The bending strength of the specimen 3D printed with the alumina-monomer composite composition was analyzed and shown in FIG. 21.

도 21을 참조하면, 알루미나 입자 입도가 증가할수록 3D 프린팅 시편의 강도가 증가하였다. 알루미나 입자의 입도에 상관없이 광중합반응 개시제를 1중량부 첨가 시 가장 높은 강도를 나타내었다. 알루미나 입자의 입도가 2㎛일때 광중합반응 개시제 1중량부 첨가 시 26MPa까지 향상된 강도를 확보하였다.Referring to FIG. 21, as the particle size of alumina increases, the strength of the 3D printed specimen increases. Regardless of the particle size of the alumina particles, the highest strength was obtained when 1 part by weight of the photopolymerization initiator was added. When the particle size of the alumina particles was 2 µm, enhanced strength was secured to 26 MPa when 1 part by weight of the photopolymerization initiator was added.

도 22는 복합형상의 원본 디자인을 보여주고, 도 23은 복잡형상의 디자인을 알루미나-모노머 복합 조성물로 3D 프린팅한 사례를 보여주는 도면이다.Fig. 22 shows the original design of the complex shape, and Fig. 23 is a view showing an example of 3D printing the complex shape design with an alumina-monomer composite composition.

도 22 및 도 23을 참조하면, 원본 디자인과 같이 세밀한 부분도 알루미나-모노머 복합 조성물을 이용하여 3D 프린팅으로 구현될 수 있음을 확인하였다. Referring to FIGS. 22 and 23, it has been confirmed that the fine details, such as the original design, can be implemented by 3D printing using an alumina-monomer composite composition.

이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.As described above, the preferred embodiments of the present invention have been described in detail, but the present invention is not limited to the above embodiments, and various modifications can be made by those skilled in the art.

Claims (14)

실란커플링제로 표면개질된 무기산화물 입자;
광경화성 모노머; 및
상기 광경화성 모노머 100중량부에 대하여 광중합반응 개시제 0.1∼5중량부를 포함하며,
상기 무기산화물 입자와 상기 광경화성 모노머는 0.05:1∼4:1의 중량비를 이루는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물.
Inorganic oxide particles surface-modified with a silane coupling agent;
Photocurable monomers; And
0.1 to 5 parts by weight of a photopolymerization initiator based on 100 parts by weight of the photocurable monomer,
The inorganic oxide particles and the photocurable monomer is a photocurable 3D printing inorganic oxide-monomer composite composition, characterized in that it forms a weight ratio of 0.05:1 to 4:1.
제1항에 있어서, 상기 무기산화물 입자는 실리카(SiO2), 알루미나(Al2O3) 및 지르코니아(ZrO2)로 이루어진 군으로부터 선택된 1종 이상의 입자를 포함하는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물.
The photocurable 3D printing of claim 1, wherein the inorganic oxide particles include at least one particle selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ) and zirconia (ZrO 2 ). Inorganic oxide-monomer composite composition.
제1항에 있어서, 상기 무기산화물 입자는 10㎚∼10㎛의 입경을 갖는 입자인 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물.
According to claim 1, wherein the inorganic oxide particles are particles having a particle diameter of 10nm to 10㎛ photocurable inorganic oxide-monomer composite composition for 3D printing.
제1항에 있어서, 상기 실란커플링제는 비닐트리에톡시실란(vinyl triethoxysilane), 비닐트리메톡시실란(vinyl trimethoxysilane), 비닐트리클로로실란(vinyl trichlorosilane), 비닐트리스(베타-메톡시에톡시)실란(vinyl tris(β-methoxyethoxy)silane), 감마-메타크릴옥시프로필디메톡시실란(γ-methacryloxypropyldimethoxysilane), 베타-(3,4-에폭시시클로헥실)에틸트리메톡시실란(β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), 감마-글리시드옥시프로필트리메톡시실란(γ-glycidoxypropyltrimethoxysilane), 감마-글리시드옥시프로필메틸디에톡시실란(γ-glycidoxypropylmethyldiethoxysilane), 감마-아미노프로필트리에톡시실란(γ-aminopropyltriethoxysilane), 감마-아미노프로필트리메톡시실란(γ-aminopropyltrimethoxysilane), 감마-페닐아미노프로필트리메톡시실란(γ-phenylaminopropyltrimethoxysilane), 감마-메캅토프로필트리메톡시실란(γ-mercaptopropyltrimethoxysilane), 감마-이소시아네이트프로필트리에톡시실란(γ-isocyanatepropyltriethoxysilane) 및 3-메타크릴옥시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함하는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물.
The method of claim 1, wherein the silane coupling agent is vinyl triethoxysilane (vinyl triethoxysilane), vinyl trimethoxysilane (vinyl trimethoxysilane), vinyl trichlorosilane (vinyl trichlorosilane), vinyl tris (beta-methoxyethoxy) Silane (vinyl tris(β-methoxyethoxy)silane), gamma-methacryloxypropyldimethoxysilane, beta-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (β-(3,4 -epoxycyclohexyl)ethyltrimethoxysilane), gamma-glycidoxypropyltrimethoxysilane, gamma-glycidoxypropylmethyldiethoxysilane, gamma-aminopropyltriethoxysilane ), gamma-aminopropyltrimethoxysilane, gamma-phenylaminopropyltrimethoxysilane, gamma-mecaptopropyltrimethoxysilane, gamma-isopropylpropyl Inorganic oxide-monomer for photocurable 3D printing, characterized in that it contains at least one material selected from the group consisting of γ-isocyanatepropyltriethoxysilane and 3-methacryloxypropyltrimethoxysilane. Composite composition.
제1항에 있어서, 상기 광경화성 모노머는 트리메티롤프로판 트리아크릴레이트(Trimethylolpropane triacrylate), 헥산디올 디아크릴레이트(Hexanediol diacrylate), 2-하이드록시에틸 메타크릴레이트(2-hydroxyethyl methacrylate), 트리프로필렌글리콜 디아크릴레이트(Tripropyleneglycol diacrylate), 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate), 트리에티렌글리콜 디메타크릴레이트(Triethyleneglycol dimethacrylate) 및 디우레탄 디메타크릴레이트(Diurethane dimethacrylate)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함하는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물.
The method of claim 1, wherein the photocurable monomer is trimethylolpropane triacrylate, trihexaneol diacrylate, hexanediol diacrylate, 2-hydroxyethyl methacrylate, tripropylene At least one selected from the group consisting of tripropyleneglycol diacrylate, pentaerythritol triacrylate, triethyleneglycol dimethacrylate and diurethane dimethacrylate Inorganic oxide-monomer composite composition for photocurable 3D printing, comprising a material.
제1항에 있어서, 상기 무기산화물 입자 100중량부에 대하여 소듐알루미네이트(Sodium aluminate) 0.1∼2중량부를 더 포함하는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물.
The inorganic oxide-monomer composite composition for photocurable 3D printing according to claim 1, further comprising 0.1 to 2 parts by weight of sodium aluminate with respect to 100 parts by weight of the inorganic oxide particles.
제1항에 있어서, 상기 무기산화물 입자 100중량부에 대하여 포름산(formic acid), 아세트산(acetic acid), 프로피온산(propionic acid), 부틸산(n-butyric acid), 이소부티르산(isobutyric acid), 발레르산(valeric acid), 이소발레르산(isovaleric acid), 피발산(pivalic acid), 카프로산(caproic acid), 이소카프로산(isocapric acid), 에난트산(enanthic acid), 카프릴산(caprylic acid), 펠라곤산(pelargonic acid), 카프릭산(capric acid), 운데실산(undecylic acid), 라우르산(lauric acid), 트리데실산(tridecylic acid), 미리스트산(myristic acid), 펜타데실산(pentadecylic acid), 팔미트산(palmitic acid), 마르가르산(margaric acid), 스테아르산(stearic acid) 및 노나데실산(nonadecyric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질 0.1∼6중량부를 더 포함하는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물.
According to claim 1, Formic acid, acetic acid (acetic acid), propionic acid (propionic acid), butyric acid (n-butyric acid), isobutyric acid (isobutyric acid), valer with respect to 100 parts by weight of the inorganic oxide particles Acid (valeric acid), isovaleric acid, pivalic acid, caproic acid, isocapric acid, enanthic acid, caprylic acid , Pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecyl acid 0.1 to 6 parts by weight of one or more substances selected from the group consisting of (pentadecylic acid), palmitic acid, margaric acid, stearic acid and nonadecyric acid Inorganic oxide-monomer composite composition for photocurable 3D printing, characterized in that it comprises.
(a) 용매에 무기산화물 입자를 첨가하여 무기산화물 졸을 형성하는 단계;
(b) 상기 무기산화물 졸에 실란커플링제를 혼합하여 상기 무기산화물 입자를 표면개질하는 단계;
(c) 표면개질된 무기산화물 입자를 포함하는 무기산화물 졸에 광경화성 모노머를 혼합하는 단계;
(d) 증발기를 이용하여 상기 광경화성 모노머가 혼합된 결과물에 함유된 용매를 휘발시키는 단계; 및
(e) 상기 용매가 휘발된 결과물에 상기 광경화성 모노머 100중량부에 대하여 광중합반응 개시제 0.1∼5중량부를 혼합하는 단계를 포함하며,
상기 무기산화물 입자와 상기 광경화성 모노머는 0.05:1∼4:1의 중량비를 이루는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물의 제조방법.
(a) adding inorganic oxide particles to a solvent to form an inorganic oxide sol;
(b) mixing the inorganic oxide sol with a silane coupling agent to surface-modify the inorganic oxide particles;
(c) mixing a photocurable monomer with an inorganic oxide sol containing surface-modified inorganic oxide particles;
(d) volatilizing the solvent contained in the resultant mixture of the photocurable monomers using an evaporator; And
(e) a step of mixing 0.1 to 5 parts by weight of a photopolymerization initiator with respect to 100 parts by weight of the photocurable monomer to the result of volatilization of the solvent,
The inorganic oxide particles and the photocurable monomer is a method of manufacturing an inorganic oxide-monomer composite composition for photocurable 3D printing, characterized in that it forms a weight ratio of 0.05:1 to 4:1.
제8항에 있어서, 상기 무기산화물 입자는 실리카(SiO2), 알루미나(Al2O3) 및 지르코니아(ZrO2)로 이루어진 군으로부터 선택된 1종 이상의 입자를 포함하는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물의 제조방법.
The photocurable 3D printing of claim 8, wherein the inorganic oxide particles include at least one particle selected from the group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ) and zirconia (ZrO 2 ). Preparation method for inorganic oxide-monomer composite composition.
제8항에 있어서, 상기 무기산화물 입자는 10㎚∼10㎛의 입경을 갖는 입자인 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물의 제조방법.
The method of claim 8, wherein the inorganic oxide particles are particles having a particle diameter of 10 nm to 10 µm. The method of manufacturing an inorganic oxide-monomer composite composition for photocurable 3D printing.
제8항에 있어서, 상기 실란커플링제는 비닐트리에톡시실란(vinyl triethoxysilane), 비닐트리메톡시실란(vinyl trimethoxysilane), 비닐트리클로로실란(vinyl trichlorosilane), 비닐트리스(베타-메톡시에톡시)실란(vinyl tris(β-methoxyethoxy)silane), 감마-메타크릴옥시프로필디메톡시실란(γ-methacryloxypropyldimethoxysilane), 베타-(3,4-에폭시시클로헥실)에틸트리메톡시실란(β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane), 감마-글리시드옥시프로필트리메톡시실란(γ-glycidoxypropyltrimethoxysilane), 감마-글리시드옥시프로필메틸디에톡시실란(γ-glycidoxypropylmethyldiethoxysilane), 감마-아미노프로필트리에톡시실란(γ-aminopropyltriethoxysilane), 감마-아미노프로필트리메톡시실란(γ-aminopropyltrimethoxysilane), 감마-페닐아미노프로필트리메톡시실란(γ-phenylaminopropyltrimethoxysilane), 감마-메캅토프로필트리메톡시실란(γ-mercaptopropyltrimethoxysilane), 감마-이소시아네이트프로필트리에톡시실란(γ-isocyanatepropyltriethoxysilane) 및 3-메타크릴옥시프로필트리메톡시실란(3-methacryloxypropyltrimethoxysilane)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함하는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물의 제조방법.
The method of claim 8, wherein the silane coupling agent is vinyl triethoxysilane (vinyl triethoxysilane), vinyl trimethoxysilane (vinyl trimethoxysilane), vinyl trichlorosilane (vinyl trichlorosilane), vinyl tris (beta-methoxyethoxy) Silane (vinyl tris(β-methoxyethoxy)silane), gamma-methacryloxypropyldimethoxysilane, beta-(3,4-epoxycyclohexyl)ethyl trimethoxysilane (β-(3,4 -epoxycyclohexyl)ethyltrimethoxysilane), gamma-glycidoxypropyltrimethoxysilane, gamma-glycidoxypropylmethyldiethoxysilane, gamma-aminopropyltriethoxysilane ), gamma-aminopropyltrimethoxysilane, gamma-phenylaminopropyltrimethoxysilane, gamma-mecaptopropyltrimethoxysilane, gamma-isopropylpropyl Inorganic oxide-monomer for photocurable 3D printing, characterized in that it contains at least one material selected from the group consisting of γ-isocyanatepropyltriethoxysilane and 3-methacryloxypropyltrimethoxysilane. Method for preparing a composite composition.
제8항에 있어서, 상기 광경화성 모노머는 트리메티롤프로판 트리아크릴레이트(Trimethylolpropane triacrylate), 헥산디올 디아크릴레이트(Hexanediol diacrylate), 2-하이드록시에틸 메타크릴레이트(2-hydroxyethyl methacrylate), 트리프로필렌글리콜 디아크릴레이트(Tripropyleneglycol diacrylate), 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate), 트리에티렌글리콜 디메타크릴레이트(Triethyleneglycol dimethacrylate) 및 디우레탄 디메타크릴레이트(Diurethane dimethacrylate)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함하는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물의 제조방법.
The method of claim 8, wherein the photocurable monomer is trimethylolpropane triacrylate (Trimethylolpropane triacrylate), hexanediol diacrylate (Hexanediol diacrylate), 2-hydroxyethyl methacrylate (2-hydroxyethyl methacrylate), tripropylene At least one selected from the group consisting of tripropyleneglycol diacrylate, pentaerythritol triacrylate, triethyleneglycol dimethacrylate and diurethane dimethacrylate Method for producing a photocurable 3D printing inorganic oxide-monomer composite composition comprising a material.
제8항에 있어서, 상기 (a) 단계에서 상기 무기산화물 입자 100중량부에 대하여 소듐알루미네이트(Sodium aluminate) 0.1∼2중량부를 더 혼합하는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물의 제조방법.
The inorganic oxide-monomer composite for photocuring 3D printing according to claim 8, wherein 0.1 to 2 parts by weight of sodium aluminate is further mixed with respect to 100 parts by weight of the inorganic oxide particles in step (a). Method of preparing the composition.
제9항에 있어서, 상기 (c) 단계에서 상기 무기산화물 입자 100중량부에 대하여 포름산(formic acid), 아세트산(acetic acid), 프로피온산(propionic acid), 부틸산(n-butyric acid), 이소부티르산(isobutyric acid), 발레르산(valeric acid), 이소발레르산(isovaleric acid), 피발산(pivalic acid), 카프로산(caproic acid), 이소카프로산(isocapric acid), 에난트산(enanthic acid), 카프릴산(caprylic acid), 펠라곤산(pelargonic acid), 카프릭산(capric acid), 운데실산(undecylic acid), 라우르산(lauric acid), 트리데실산(tridecylic acid), 미리스트산(myristic acid), 펜타데실산(pentadecylic acid), 팔미트산(palmitic acid), 마르가르산(margaric acid), 스테아르산(stearic acid) 및 노나데실산(nonadecyric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질 0.1∼6중량부를 더 혼합하는 것을 특징으로 하는 광경화 3D 프린팅용 무기산화물-모노머 복합 조성물의 제조방법.The formic acid, acetic acid, propionic acid, butyl acid (n-butyric acid), isobutyric acid according to claim 9, wherein in step (c), 100 parts by weight of the inorganic oxide particles are used. (isobutyric acid), valeric acid, isovaleric acid, pivalic acid, caproic acid, isocapric acid, enanthic acid, ka Caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid and nonadecyric acid. A method for producing an inorganic oxide-monomer composite composition for photocuring 3D printing, characterized in that 0.1 to 6 parts by weight is further mixed.
KR1020180160521A 2018-12-13 2018-12-13 inorganic oxide-monomer complex composition for digital light processing type 3D printer KR20200075939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180160521A KR20200075939A (en) 2018-12-13 2018-12-13 inorganic oxide-monomer complex composition for digital light processing type 3D printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180160521A KR20200075939A (en) 2018-12-13 2018-12-13 inorganic oxide-monomer complex composition for digital light processing type 3D printer

Publications (1)

Publication Number Publication Date
KR20200075939A true KR20200075939A (en) 2020-06-29

Family

ID=71400939

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180160521A KR20200075939A (en) 2018-12-13 2018-12-13 inorganic oxide-monomer complex composition for digital light processing type 3D printer

Country Status (1)

Country Link
KR (1) KR20200075939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117088701A (en) * 2023-10-19 2023-11-21 天津南极星隔热材料有限公司 Method for preparing silicon oxide fiber-based heat insulation material by photo-curing 3D printing process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180109646A (en) 2017-03-28 2018-10-08 주식회사 엠오피(M.O.P Co., Ltd.) Functional material composition for digital light processing type 3d printer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180109646A (en) 2017-03-28 2018-10-08 주식회사 엠오피(M.O.P Co., Ltd.) Functional material composition for digital light processing type 3d printer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117088701A (en) * 2023-10-19 2023-11-21 天津南极星隔热材料有限公司 Method for preparing silicon oxide fiber-based heat insulation material by photo-curing 3D printing process
CN117088701B (en) * 2023-10-19 2023-12-19 天津南极星隔热材料有限公司 Method for preparing silicon oxide fiber-based heat insulation material by photo-curing 3D printing process

Similar Documents

Publication Publication Date Title
Sun et al. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography
Chujo Organic—inorganic hybrid materials
WO2012032868A1 (en) Manufacturing method for surface-modified titanium particles, dispersion of titanium particles, and resin having titanium particles dispersed therein
JP5683966B2 (en) ORGANIC-INORGANIC HYBRID MATERIAL, OPTICAL THIN LAYER MADE OF THE MATERIAL, OPTICAL MATERIAL CONTAINING THE SAME, AND METHOD FOR PRODUCING THE SAME
JP4276077B2 (en) Nanoparticles with rutile-like crystal phase and method for preparing the same
US7037583B2 (en) Functionalized zirconium oxide particles
US8344039B2 (en) Three-dimensional pattern forming material
US20090071368A1 (en) Process for the dispersion of fine-particle inorganic powders in liquid media, with use of reactive siloxanes
KR20130105291A (en) Synthesis, capping and dispersion of nanocrystals
WO2013031799A1 (en) Inorganic oxide transparent dispersion and resin composition for forming transparent composite, and transparent composite and optical member
JP2010143806A (en) Surface-treated silica-based particle and process of manufacturing same
KR101864767B1 (en) Preparation method of hollow silica nano powder with high purity and low reflection coating membrane comprising the powder
JP2013075822A (en) Method for producing surface-treated silica-based particle
KR20200075939A (en) inorganic oxide-monomer complex composition for digital light processing type 3D printer
EP2186776A1 (en) Organized clay complex, method for producing the same, and resin complex containing organized clay complex
JP2009217119A (en) Metal oxide fine particle dispersion and molding
KR102276000B1 (en) Photocurable composite resin composition for 3D printing and manufacturing method thereof
CN113165900B (en) Method for preparing zirconium dioxide nano particles in presence of amino acid
KR20230162652A (en) Materials and processes for manufacturing and forming transparent multicomponent fused silica glass
Kickelbick Introduction to sol-gel nanocomposites
KR102214666B1 (en) 3D printing ink composition using a coating of ceramic particles, a method for producing the same, and 3D printing method
KR102151410B1 (en) Uv curable liquid type ceramics-polymer composite resin and method of manufacturing the same
JP2010006647A (en) High refractive index transparent particle and transparent composite material using the same
KR102277231B1 (en) 3D printing ink composition comprising frit and manufacturing method thereof and 3D printing method
JP5896628B2 (en) Molding

Legal Events

Date Code Title Description
E601 Decision to refuse application