KR20200075327A - Single crystalline film by abnormal grain growth of polycrystalline metal fim and preparation method thereof - Google Patents
Single crystalline film by abnormal grain growth of polycrystalline metal fim and preparation method thereof Download PDFInfo
- Publication number
- KR20200075327A KR20200075327A KR1020180163884A KR20180163884A KR20200075327A KR 20200075327 A KR20200075327 A KR 20200075327A KR 1020180163884 A KR1020180163884 A KR 1020180163884A KR 20180163884 A KR20180163884 A KR 20180163884A KR 20200075327 A KR20200075327 A KR 20200075327A
- Authority
- KR
- South Korea
- Prior art keywords
- metal film
- polycrystalline
- single crystal
- cold rolled
- heat treatment
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B1/00—Single-crystal growth directly from the solid state
- C30B1/02—Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
- C30B1/023—Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing from solids with amorphous structure
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B1/00—Single-crystal growth directly from the solid state
- C30B1/02—Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
본 발명은 다결정 금속 필름의 비정상입자성장에 의한 단결정 금속 필름 및 그 제조방법에 관한 것으로, 보다 상세하게는 냉간 압연 공정으로 제조된 다결정 금속 필름을 단 1회의 열처리만으로 비정상입자성장에 의하여 단결정 금속 필름으로 전환하는 기술에 관한 것이다. The present invention relates to a single crystal metal film by abnormal grain growth of a polycrystalline metal film and a method for manufacturing the same, and more specifically, a single crystal metal film by abnormal grain growth by only one heat treatment of a polycrystalline metal film produced by a cold rolling process. It is about technology to switch to.
단결정 금속 필름은 다결정 금속 필름에 비하여 뛰어난 전기적, 광학적 특성으로 인하여 전자, 광학 기기에 사용되며, 최근에는 고품질의 단결정 이차원 나노물질을 합성할 수 있는 기판으로서 수요가 크게 늘고 있다. 그러나 종래 단결정 금속 필름은 용융된 상태에서 생성된 단결정 주괴를 얇게 자르거나 사파이어 등의 또 다른 단결정 기판 위에 얇게 증착시키는 방법으로 생산되었다. 또한, 단결정 기판에 대한 수요가 늘어나면서 열처리 과정을 반복적으로 수행하거나, 동적 열처리 등 다양한 방법으로 다결정질 금속을 단결정화 시키는 기술이 알려져 있다.Single crystal metal films are used in electronic and optical devices due to their superior electrical and optical properties compared to polycrystalline metal films, and recently, there is a great increase in demand as a substrate capable of synthesizing high quality single crystal two-dimensional nanomaterials. However, the conventional single crystal metal film was produced by thinly cutting a single crystal ingot produced in a molten state or depositing thinly on another single crystal substrate such as sapphire. In addition, as the demand for a single crystal substrate increases, a technique of repeatedly performing a heat treatment process or a single crystallization of a polycrystalline metal by various methods such as dynamic heat treatment is known.
그러나 주괴나 사파이어 증착으로부터 얻어진 단결정 금속은 그 가격이 매우 비싸 대량생산이 어렵고 대면적으로 제작하기 곤란한 단점이 있다. 아울러 다결정 금속 필름을 열처리함으로써 단결정을 얻는 통상의 방법은 반복 재현성이 떨어지고 특수한 장비가 필요할 뿐만 아니라, 연속 공정에 적용하기 쉽지 않고 그 메커니즘도 명확하게 알려진 바 없다.However, the single crystal metal obtained from the ingot or sapphire deposition has a disadvantage that it is very expensive and difficult to mass-produce and difficult to manufacture in a large area. In addition, the conventional method of obtaining a single crystal by heat-treating a polycrystalline metal film is not only repeatable and requires special equipment, it is not easy to apply to a continuous process, and its mechanism is not clearly known.
따라서 본 발명자는 다결정 금속 필름으로부터 간단한 공정에 의하여 단결정 금속 필름을 양산할 수 있는 연구를 거듭한 결과, 다결정 금속 필름의 재결정화 구조를 제어하고, 비활성화 상태에서 열처리를 수행하면, 종래 다결정 금속 필름으로부터 단결정 금속 필름을 제조하는 과정에서 통상적으로 나타나는 정상입자성장(normal grain growth)을 억제함과 동시에, 수소 분위기 하에서 단 1회 사이클의 열처리 공정을 수행하는 것만으로 비정상입자성장(abnormal grain growth)을 촉진시켜단결정 금속 필름을 얻을 수 있음을 발견하고 본 발명을 완성하기에 이르렀다.Therefore, the present inventor has repeatedly conducted studies on mass production of a single crystal metal film by a simple process from a polycrystalline metal film. As a result, when the recrystallization structure of the polycrystalline metal film is controlled and heat treatment is performed in an inactive state, the conventional polycrystalline metal film In addition to suppressing the normal grain growth that normally occurs in the process of manufacturing a single crystal metal film, it promotes abnormal grain growth only by performing a single cycle heat treatment process under a hydrogen atmosphere. It has been found that a single crystal metal film can be obtained, and the present invention has been completed.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 수소 분위기 하에서 단 1회 사이클의 열처리 공정을 수행하는 것만으로 비정상입자성장을 촉진시켜 (111) 결정면으로 배향된 단결정 금속 필름 및 그 제조방법을 제공하고자 하는 것이다.The present invention has been devised in view of the above problems, and the object of the present invention is to promote abnormal grain growth only by performing a single-cycle heat treatment process under a hydrogen atmosphere to promote (111) a single crystal metal film oriented toward a crystal plane. And to provide a method for manufacturing the same.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 다결정 냉간 압연 금속 필름의 비정상입자성장에 의해 (111) 결정면으로 배향된 단결정 금속 필름을 제공한다.The present invention for achieving the above object, provides a single crystal metal film oriented to the (111) crystal plane by the abnormal grain growth of the polycrystalline cold rolled metal film.
상기 다결정 냉간 압연 금속 필름은 두께가 13 ㎛ 이하인 것을 특징으로 한다.The polycrystalline cold rolled metal film is characterized by having a thickness of 13 μm or less.
상기 금속 필름은 구리, 금, 은 및 알루미늄 필름으로 이루어진 군으로부터 선택된 것을 특징으로 한다.The metal film is characterized in that it is selected from the group consisting of copper, gold, silver and aluminum films.
또한, 본 발명은 I) 다결정 냉간 압연 금속 필름을 준비하는 단계; II) 상기 다결정 냉간 압연 금속 필름을 900℃ 내지 1100℃로 승온시키는 단계; III) 상기 승온된 온도에서 10분~4시간 등온상태를 유지하여 열처리 하는 단계; 및 IV) 상기 열처리 후 자연 냉각 시키는 단계;를 포함하는 (111) 결정면으로 배향된 단결정 금속 필름의 제조방법을 제공한다.In addition, the present invention I) preparing a polycrystalline cold rolled metal film; II) heating the polycrystalline cold rolled metal film to 900°C to 1100°C; III) heat-treating by maintaining an isothermal state for 10 minutes to 4 hours at the elevated temperature; And IV) naturally cooling after the heat treatment; provides a method for manufacturing a single crystal metal film oriented with a (111) crystal plane.
상기 (II) 단계의 승온과정은 수소 또는 아르곤 가스 분위기(100~500 sccm, 2 torr 미만)에서 1~20℃/min의 승온속도로 수행되는 것을 특징으로 한다.The heating process in step (II) is characterized in that it is performed at a heating rate of 1 to 20°C/min in a hydrogen or argon gas atmosphere (100 to 500 sccm, less than 2 torr).
상기 (III) 단계의 열처리 과정은 수소 가스 분위기(100~500 sccm, 1 torr 이상)에서 수행되는 것을 특징으로 한다.The heat treatment process in step (III) is characterized in that it is carried out in a hydrogen gas atmosphere (100 ~ 500 sccm, 1 torr or more).
상기 (II) 내지 (IV) 단계는 단 1회의 사이클로 수행되는 것을 특징으로 한다.Steps (II) to (IV) are characterized in that they are performed in only one cycle.
상기 (I) 단계의 다결정 냉간 압연 금속 필름에 파단응력의 80% 이상에 해당하는 장력을 가하는 것을 특징으로 한다.It is characterized in that a tension corresponding to 80% or more of the breaking stress is applied to the polycrystalline cold-rolled metal film of the step (I).
상기 다결정 냉간 압연 금속 필름은 두께가 13 ㎛ 초과인 것을 특징으로 한다. The polycrystalline cold rolled metal film is characterized in that the thickness is more than 13 ㎛.
본 발명에 따르면, 구입이 용이하고 저렴한 상업화된 다결정 금속 필름을 이용하여 정상입자성장을 억제함과 동시에, 단 1회 사이클의 열처리 공정만으로 비정상입자성장을 촉진시켜 (111) 결정면으로 배향된 단결정 금속 필름을 얻을 수 있으므로, 종래 단결정 금속 필름의 제조방법에 비하여 공정이 간단하여 생산비용이 크게 절감된다. 아울러 단결정화 속도가 매우 빨라 롤투롤(roll-to-roll) 연속 공정에 적용이 가능하고 열처리 공정조건이 민감하지 않으므로 넓은 범위의 조건에 걸쳐 단결정화가 가능하여 대면적으로 대량 생산이 가능할 것으로 기대된다. According to the present invention, the normal grain growth is suppressed by using a commercialized polycrystalline metal film that is easy to purchase and inexpensive, and at the same time, the single grain metal oriented toward the (111) crystal plane is promoted by promoting the abnormal grain growth in only one heat treatment process Since the film can be obtained, the production cost is greatly reduced due to the simple process compared to the conventional method for producing a single crystal metal film. In addition, since the single crystallization speed is very fast, it can be applied to a roll-to-roll continuous process, and since the heat treatment process conditions are not sensitive, it is expected that single crystallization is possible over a wide range of conditions and mass production is possible in a large area. .
도 1은 상업화된 냉간 압연 구리 필름의 통상적인 열처리 방법에 의한 열처리 전과 후의 정상입자성장 과정을 나타낸 전자후방산란회절(EBSD) 이미지.
도 2는 상업화된 냉간 압연 구리 필름의 두께에 따른 재결정화 구조를 나타낸 전자후방산란회절(EBSD) 이미지.
도 3은 10 ㎛ 두께의 상업화된 냉간 압연 구리 필름의 재결정화 구조를 나타낸 전자후방산란회절(EBSD) 이미지.
도 4는 상업화된 냉간 압연 구리 필름의 두께에 따른 결정 구조에서의 정상입자성장을 나타낸 그래프.
도 5는 10 ㎛ 두께의 상업화된 냉간 압연 구리 필름을 다양한 기체 분위기 하에서 열처리 후 결정 구조를 나타낸 X선-회절(XRD) 패턴.
도 6은 10 ㎛ 두께의 상업화된 냉간 압연 구리 필름의 수소 분위기 하에서 열처리 시간에 따른 결정성장 양상을 나타낸 전자후방산란회절(EBSD) 이미지.
도 7은 다양한 두께를 갖는 다결정 냉간 압연 필름의 열처리 전과 후의 결정구조를 나타낸 X선-회절(XRD) 패턴.
도 8은 본 발명의 실시예 1로부터 제조된 1 x 1 cm2의 구리 필름의 결정 구조를 나타낸 전자후방산란회절(EBSD) 이미지(ND:normal direction, TD:traverse direction).
도 9는 본 발명의 실시예 2로부터 제조된 10 x 10 cm2의 구리 필름의 결정 구조를 나타낸 전자후방산란회절(EBSD) 이미지.
도 10은 각각 본 발명의 실시예 3 및 4로부터 제조된 1 x 1 cm2의 금, 은 필름의 결정 구조를 나타낸 전자후방산란회절(EBSD) 이미지.
도 11은 본 발명의 실시예 5로부터 제조된 1 x 1 cm2의 구리 필름의 결정 구조를 나타낸 전자후방산란회절(EBSD) 이미지.
1 is an electron backscattering diffraction (EBSD) image showing a normal particle growth process before and after heat treatment by a conventional heat treatment method of a commercialized cold rolled copper film.
2 is an electron backscattering diffraction (EBSD) image showing a recrystallization structure according to the thickness of a commercialized cold rolled copper film.
3 is an electron backscattering diffraction (EBSD) image showing the recrystallization structure of a commercialized cold rolled copper film of 10 μm thickness.
Figure 4 is a graph showing the normal grain growth in the crystal structure according to the thickness of the commercialized cold rolled copper film.
5 is an X-ray-diffraction (XRD) pattern showing a crystal structure after heat treatment of a commercialized cold rolled copper film having a thickness of 10 μm under various gas atmospheres.
6 is an electron backscattering diffraction (EBSD) image showing a crystal growth pattern according to the heat treatment time under a hydrogen atmosphere of a commercialized cold rolled copper film having a thickness of 10 μm.
7 is an X-ray-diffraction (XRD) pattern showing crystal structures before and after heat treatment of a polycrystalline cold rolled film having various thicknesses.
8 is an electron backscattering diffraction (EBSD) image (ND: normal direction, TD: traverse direction) showing the crystal structure of a 1 x 1 cm 2 copper film prepared from Example 1 of the present invention.
9 is an electron backscattering diffraction (EBSD) image showing the crystal structure of a copper film of 10 x 10 cm 2 prepared from Example 2 of the present invention.
10 is an electron backscattering diffraction (EBSD) image showing crystal structures of 1 x 1 cm 2 of gold and silver films prepared from Examples 3 and 4 of the present invention, respectively.
11 is an electron backscattering diffraction (EBSD) image showing the crystal structure of a 1 x 1 cm 2 copper film prepared from Example 5 of the present invention.
이하에서는 본 발명에 따른 다결정 금속 필름의 비정상입자성장에 의한 단결정 금속 필름 및 그 제조방법에 관하여 상세히 설명하기로 한다.Hereinafter, a single crystal metal film due to abnormal grain growth of the polycrystalline metal film according to the present invention and a method of manufacturing the same will be described in detail.
단결정이라는 것은 샘플 전체의 결정격자가 연속적이고 입자경계(grain boundaries) 없이 샘플 에지(edge)의 손상이 없는 물질을 의미한다. 구조적인 결함이 없는 단결정이 독특한 기계적, 광학적, 전기적 성질을 나타내기 때문에 전자 및 광학 소자용으로서는 단결정 금속 필름이 요구된다. 단결정 금속 필름이 특유의 결정면 배향(예, 구리(111))을 가질 때, 그래핀 또는 육방정계 붕화질소와 같은 고품질의 단결정 이차원 물질을 위하여 효율적인 성장 기판으로 사용될 수 있다. 그러나 고체 금속은 보통 여러 구조적 결함을 갖는 다결정질 구조로 존재하기 때문에 단결정 금속 필름의 대량생산 여부가 실제 응용에 있어서 걸림돌이 되고 있다.A single crystal means a material in which the crystal lattice of the entire sample is continuous and without damage to the sample edges without grain boundaries. Monocrystalline metal films are required for electronic and optical devices because single crystals without structural defects exhibit unique mechanical, optical, and electrical properties. When the single crystal metal film has a unique crystal plane orientation (eg, copper 111), it can be used as an efficient growth substrate for high quality single crystal two-dimensional materials such as graphene or hexagonal boron boride. However, since solid metals are usually present in a polycrystalline structure having various structural defects, whether mass production of a single crystal metal film has become an obstacle in practical application.
일반적으로, 커다란 단결정을 생산하는 기술로서 용융 성장(melt-growth) 또는 에피택셜 성장(epitaxial growth)법이 알려져 있다. 특히, 에피택셜 성장법은 기존단결정의 표면 위에 동종 내지 이종 물질의 매우 얇은 단결정 층을 증착시키는데 사용되고 있다. 그런데 용융 성장(melt-growth) 또는 에피택셜 성장(epitaxial growth)법과 같은 통상적인 방법으로 대면적의 단결정 필름을 얻기 위해서는 양산과 비용 측면에서 한계가 있다. 따라서 열처리에 의하여 다결정질 금속을 단결정으로 직접 전환시키는 것이 그 공정의 단순함으로 인하여 단결정 금속 필름의 양산에 가장 적절한 방법으로 인식되고 있다.In general, as a technique for producing large single crystals, a melt-growth or epitaxial growth method is known. In particular, epitaxial growth is used to deposit very thin single crystal layers of homogeneous or heterogeneous materials on the surface of existing single crystals. However, in order to obtain a large-area single crystal film by a conventional method such as melt-growth or epitaxial growth, there are limits in terms of mass production and cost. Therefore, direct conversion of polycrystalline metal to single crystal by heat treatment is recognized as the most appropriate method for mass production of single crystal metal films due to the simplicity of the process.
한편, 입자성장은 보통 회복과 재결정화가 완전할 때 일어나고, 나아가 내부에너지의 감소는 단지 입자경계(grain boundaries)의 전체 면적을 최소화함으로써 당성될 수 있다. 재결정화 후에는 두 가지의 입자성장 메커니즘, 즉 정상입자성장(normal grain growth, NGG) 및 비정상입자성장(abnormal grain growth, AGG)이 관여한다. 정상입자성장 메커니즘에서는 입자가 균일한 방법으로 점차적으로 커지는 반면, 비정상입자성장 메커니즘에서는 단지 소수의 특정한 입자만이 커지면서 성장는바, 큰 사이즈의 단결정 입자를 얻기 위해서는 비정상입자성장 메커니즘이 정상입자성장 메커니즘보다 더욱 바람직한 것으로 알려져 있다.On the other hand, particle growth usually occurs when recovery and recrystallization are complete, and further reduction in internal energy can be justified by minimizing the total area of the grain boundaries. After recrystallization, two mechanisms of particle growth are involved: normal grain growth (NGG) and abnormal grain growth (AGG). In the normal particle growth mechanism, the particles gradually grow in a uniform manner, whereas in the abnormal particle growth mechanism, only a small number of specific particles grow, and the growth is large. In order to obtain large-sized single crystal particles, the abnormal particle growth mechanism is larger than the normal particle growth mechanism. It is known to be more desirable.
도 1에는 상업화된 냉간 압연(cold-rolled) 구리 필름의 재결정화 후 정상입자성장 과정을 전자후방산란회절(electron backscatter diffraction, EBSD) 이미지로 나타내었는바, 냉간 압연(cold-rolled) 공정으로 제조된 상용 구리 필름을 통상적인 방법으로 열처리 하였을 때, 재결정화 후 입자의 크기가 균일하게 성장하는 정상입자성장이 일어남을 알 수 있다.In FIG. 1, the normal grain growth process after recrystallization of a commercialized cold-rolled copper film is illustrated by electron backscatter diffraction (EBSD) images, which are prepared by a cold-rolled process. It can be seen that when the commercial copper film is heat-treated by a conventional method, normal grain growth occurs in which the particle size is uniformly grown after recrystallization.
또한, 냉간 압연(cold-rolled) 공정으로 생산되는 금속 필름의 경우에는 축적된 서로 다른 에너지로 인하여 두께에 따른 재결정화 구조가 상이한바, 도 2에는 상업화된 냉간 압연(cold-rolled) 구리 필름의 두께에 따른 재결정화 구조를 전자후방산란회절(EBSD) 이미지로 나타내었다. 도 2에서 보는 바와 같이, 축적된 에너지가 많은 얇은 필름일수록 촘촘하고 균일한 재결정화 구조를 가지게 된다.In addition, in the case of a metal film produced by a cold-rolled process, the recrystallization structure according to the thickness is different due to accumulated different energy, and FIG. 2 shows a commercialized cold-rolled copper film. The recrystallization structure according to the thickness is shown by an electron backscattering diffraction (EBSD) image. As shown in FIG. 2, the thinner film having more accumulated energy has a denser and more uniform recrystallization structure.
아울러 본 발명에서는 일정 두께 이하(13 ㎛ 이하)에서 금속 필름의 재결정 구조가 균일한 기둥구조를 갖는 것으로 확인되었는데, 그 일례로서 도 3에 나타낸 전자후방산란회절(EBSD) 이미지로부터 10 ㎛ 두께의 상업화된 냉간 압연 구리 필름은 균일한 기둥 형상의 재결정화 구조를 갖는다는 것을 알 수 있다.In addition, in the present invention, it was confirmed that the recrystallized structure of the metal film has a uniform columnar structure at a predetermined thickness or less (13 μm or less), and as an example, commercialization of a thickness of 10 μm from the electron backscattering diffraction (EBSD) image shown in FIG. 3. It can be seen that the cold rolled copper film has a uniform columnar recrystallization structure.
또한, 도 4에는 상업화된 냉간 압연 구리 필름의 두께에 따른 결정 구조에서의 정상입자성장을 그래프로 나타내었는바, 10 ㎛ 두께의 상업화된 냉간 압연 구리 필름이 정상입자성장을 억제할 수 있는 최적의 구조임을 알 수 있다.In addition, FIG. 4 shows the normal grain growth in the crystal structure according to the thickness of the commercialized cold rolled copper film. As a result, the commercialized cold rolled copper film having a thickness of 10 μm is optimal for suppressing the normal grain growth. It can be seen that it is a structure.
그러므로 본 발명에서는, 상업화된 다결정질 냉간 압연 구리 필름의 재결정화 구조를 제어하여 정상입자성장을 억제함으로써, 다결정 냉간 압연 금속 필름의 비정상입자성장에 의해 (111) 결정면으로 배향된 단결정 금속 필름을 제공한다.Therefore, in the present invention, by controlling the recrystallization structure of the commercialized polycrystalline cold rolled copper film to suppress normal grain growth, to provide a single crystal metal film oriented to the (111) crystal plane by abnormal grain growth of the polycrystalline cold rolled metal film do.
즉, 정상입자성장이 억제된 상태에서, 다결정 냉간 압연 금속 필름을 수소 분위기 하에서 열처리 공정을 수행하는 것만으로 비정상입자성장을 촉진시켜 단결정 금속 필름을 얻을 수 있다.That is, in a state in which normal grain growth is suppressed, a single crystal metal film can be obtained by promoting abnormal grain growth by simply performing a heat treatment process on a polycrystalline cold rolled metal film in a hydrogen atmosphere.
아울러 상술한 바와 같이, 다결정 냉간 압연 금속 필름의 비정상입자성장에 의해 (111) 결정면으로 배향된 단결정 금속 필름을 얻기 위해서는 다결정 냉간 압연 필름의 두께가 중요한 인자인바, 그 두께가 13 ㎛ 이하인 것이 균일한 기둥 형상의 재결정화 구조를 가지면서 정상입자성장을 억제할 수 있으므로 더욱 바람직하다.In addition, as described above, in order to obtain a single crystal metal film oriented toward a (111) crystal plane by abnormal grain growth of a polycrystalline cold rolled metal film, the thickness of the polycrystalline cold rolled film is an important factor. It is more preferable because it has a columnar recrystallization structure and can suppress normal grain growth.
또한, 본 발명에 따른 금속 필름은 그 일례로서 구리 필름 이외에 금, 은 및 알루미늄 필름으로 이루어진 군으로부터 선택된 것일 수 있다.In addition, the metal film according to the present invention may be selected from the group consisting of gold, silver and aluminum films in addition to the copper film as an example.
또한, 본 발명에서는 I) 다결정 냉간 압연 금속 필름을 준비하는 단계; II) 상기 다결정 냉간 압연 금속 필름을 900℃ 내지 1100℃로 승온시키는 단계; III) 상기 승온된 온도에서 10분~4시간 등온상태를 유지하여 열처리 하는 단계; 및 IV) 상기 열처리 후 자연 냉각 시키는 단계;를 포함하는 (111) 결정면으로 배향된 단결정 금속 필름의 제조방법을 제공한다.In addition, in the present invention, I) preparing a polycrystalline cold rolled metal film; II) heating the polycrystalline cold rolled metal film to 900°C to 1100°C; III) heat-treating by maintaining an isothermal state for 10 minutes to 4 hours at the elevated temperature; And IV) naturally cooling after the heat treatment; provides a method for manufacturing a single crystal metal film oriented with a (111) crystal plane.
상기 (I) 단계에서는 상술한 바와 같은 상업화된 다결정 냉간 압연 금속 필름을 준비하며, 상기 (II) 단계에서는 다결정 냉간 압연 금속 필름을 900℃ 내지 1100℃로 승온시켜 재결정화 과정을 수행한다. 특히, 상기 다결정 냉간 압연 금속 필름은 그 두께가 13 ㎛ 이하인 것을 사용하면 균일한 기둥 형상의 재결정화 구조를 가지면서 정상입자성장을 억제할 수 있으므로 더욱 바람직하다.In step (I), a commercialized polycrystalline cold rolled metal film is prepared as described above, and in step (II), the polycrystalline cold rolled metal film is heated to 900°C to 1100°C to perform a recrystallization process. In particular, the polycrystalline cold-rolled metal film is more preferable because it can suppress normal grain growth while having a uniform columnar recrystallization structure when a thickness of 13 µm or less is used.
이때, 상기 (II) 단계의 승온과정은 수소 또는 아르곤 가스 분위기(100~500 sccm, 2 torr 미만)에서 1~20℃/min의 승온속도로 수행하는 것이 바람직하고, 아르곤 가스 분위기(500 sccm, 0.5 torr)에서 20℃/min의 승온속도로 수행하는 것이 더욱 바람직하다.At this time, the heating process in step (II) is preferably performed at a heating rate of 1 to 20°C/min in a hydrogen or argon gas atmosphere (100 to 500 sccm, less than 2 torr), and an argon gas atmosphere (500 sccm, 0.5 torr) is more preferably carried out at a heating rate of 20 ℃ / min.
다음으로, 상기 (III) 단계에서는 상기 (II) 단계에서 수행한 재결정화 후 열처리를 통하여 비정상입자성장을 가속하는바, 재결정화를 위하여 승온된 900℃ 내지 1100℃에서 10분~4시간 등온상태를 유지함으로써 열처리를 하는데, 상기 (III) 단계의 열처리 과정은 수소 가스 분위기(100~500 sccm, 1 torr 이상)에서 수행되는 것이 바람직하고, 수소 가스 분위기(100 sccm, 5 torr)에서 수행하는 것이 더욱 바람직하다.Next, in the step (III), after the recrystallization performed in the step (II), abnormal grain growth is accelerated through heat treatment, and the temperature is increased from 900° C. to 1100° C. for 10 minutes to 4 hours in order to recrystallize. The heat treatment process in step (III) is preferably performed in a hydrogen gas atmosphere (100 to 500 sccm, 1 torr or more), and is performed in a hydrogen gas atmosphere (100 sccm, 5 torr). It is more preferable.
도 5에는 10 ㎛ 두께의 상업화된 냉간 압연 구리 필름을 다양한 기체 분위기 하에서 열처리 후 결정 구조를 X선-회절(XRD) 패턴으로 나타내었는바, 정상입자성장이 억제된 상태에서 수소 가스 분위기로 열처리 하는 것이 비활성 가스 분위기로 열처리 하는 것보다 결정립계의 움직임을 촉진시킨다는 사실을 알 수 있다.In FIG. 5, the commercialized cold rolled copper film having a thickness of 10 μm was heat treated under various gas atmospheres, and the crystal structure was shown in an X-ray-diffraction (XRD) pattern. As shown in FIG. It can be seen that this promotes the movement of grain boundaries rather than heat treatment with an inert gas atmosphere.
또한, 도 6에는 10 ㎛ 두께의 상업화된 냉간 압연 구리 필름의 수소 분위기 하에서 열처리 시간에 따른 결정성장 양상을 전자후방산란회절(EBSD) 이미지로 나타내었는바(열처리 온도는 1005℃로 일정), 열처리 시간이 경과함에 따라 열역학적으로 안정한 (111) 결정면 방향의 결정이 다른 결정보다 더욱 빠르게 성장하는 것을 알 수 있다.In addition, in FIG. 6, the crystal growth pattern according to the heat treatment time under a hydrogen atmosphere of a commercialized cold-rolled copper film of 10 μm thickness is shown by an electron backscattering diffraction (EBSD) image (heat treatment temperature is constant at 1005° C.), heat treatment It can be seen that the crystals in the (111) crystal plane direction that are thermodynamically stable grow faster than other crystals over time.
마지막으로, 상기 (IV) 단계에서는 상기 (III) 단계의 열처리 과정 후 자연 냉각시킴으로써 본 발명의 목적물인 (111) 결정면으로 배향된 단결정 금속 필름을 제조하는바, 상기 (IV) 단계의 자연 냉각 과정은 상기 (III) 단계에서 수행한 열처리 과정과 동일한 수소 가스 분위기(100~500 sccm, 1 torr 이상)에서 수행되는 것이 바람직하고, 수소 가스 분위기(100 sccm, 5 torr)에서 수행하는 것이 더욱 바람직하다.Lastly, in the step (IV), a single crystal metal film oriented to the (111) crystal plane, which is the object of the present invention, is produced by natural cooling after the heat treatment process of the step (III), so that the natural cooling process of the step (IV) The silver is preferably performed in the same hydrogen gas atmosphere (100 to 500 sccm, 1 torr or more) as the heat treatment process performed in step (III), and more preferably to be performed in a hydrogen gas atmosphere (100 sccm, 5 torr). .
또한, 본 발명에서는 상기 (II) 내지 (IV) 단계를 단 1회의 사이클만 수행하여도 목적물인 (111) 결정면으로 배향된 단결정 금속 필름을 제조할 수 있었는데, 이로 인하여 종래 반복적인 재결정화 및 열처리 과정을 거침으로써 공정이 번거롭고 생산비용이 많이 들었던 문제점을 해소할 수 있어 대량생산이 가능하다.In addition, in the present invention, a single crystal metal film oriented to the target (111) crystal plane could be produced by performing only steps (II) to (IV) in one cycle, thereby repetitively recrystallizing and heat-treating. By going through the process, it is possible to solve the problem that the process is cumbersome and costly to produce, so mass production is possible.
한편, 본 발명에서 규명한 것처럼 상업화된 다결정 냉간 압연 금속 필름의 정상입자성장을 억제하면서 비정상입자성장을 촉진시키기 위해서는, 도 7에 나타낸 다양한 두께를 갖는 다결정 냉간 압연 필름의 열처리 전과 후의 결정구조로부터 확인할 수 있는 바와 같이 다결정 냉간 압연 금속 필름의 두께가 중요한 인자로서 13 ㎛ 이하의 두께를 갖는 것이 바람직하다. 그러나 본 발명에서는 다결정 냉간 압연 금속 필름의 두께가 13 ㎛를 초과하는 경우에도 열처리 과정을 수행하기 전의 필름에 일정한 장력을 부여함으로써 두꺼운 필름에서도 열처리 후 비정상입자성장이 가속화되는 것을 발견하였다.On the other hand, as described in the present invention, in order to promote the abnormal grain growth while suppressing the normal grain growth of the commercialized polycrystalline cold rolled metal film, it is confirmed from the crystal structure before and after heat treatment of the polycrystalline cold rolled film having various thicknesses shown in FIG. As can be seen, it is preferable that the thickness of the polycrystalline cold rolled metal film has a thickness of 13 µm or less as an important factor. However, in the present invention, even when the thickness of the polycrystalline cold-rolled metal film exceeds 13 μm, it was found that the abnormal particle growth is accelerated even after the heat treatment, even in a thick film by applying a constant tension to the film before performing the heat treatment process.
즉, 본 발명에서는 상업화된 다결정 냉간 압연 금속 필름의 두께가 13 ㎛를 초과하는 경우, 열처리 전 파단응력의 80% 이상에 해당하는 장력을 금속 필름에 가함으로써 열처리 과정에서 비정상입자성장을 가속시킬 수 있다. 이렇게 두꺼운 필름에서 비정상입자성장을 유도하는 것이 중요한 이유는, 냉간 압연 필름에 있어서 특정 두께 이하에서는 얇은 필름이 상대적으로 비싸고, 두꺼운 필름에서 단결정화 유도 시에는 결정 결함이 적으면서 최종 결정의 크기가 얇은 필름에 비해 더 크기 때문이다. That is, in the present invention, when the thickness of the commercialized polycrystalline cold rolled metal film exceeds 13 μm, abnormal grain growth can be accelerated in the heat treatment process by applying a tension corresponding to 80% or more of the fracture stress before heat treatment to the metal film. have. The reason why it is important to induce abnormal grain growth in such a thick film is that in a cold rolled film, a thin film is relatively expensive below a certain thickness, and when inducing monocrystallization in a thick film, there are few crystal defects and the final crystal size is thin. This is because it is larger than the film.
이하 구체적인 실시예를 첨부된 도면과 함께 상세히 설명한다.Hereinafter, specific embodiments will be described in detail with reference to the accompanying drawings.
(실시예 1) (111) 결정면으로 배향된 단결정 구리 필름의 제조(Example 1) (111) Preparation of single crystal copper film oriented to crystal plane
상업화된 다결정 냉간 압연 구리 필름(두께 10 ㎛, 1 x 1 cm2)을 준비하고, 상기 다결정 냉간 압연 구리 필름을 아르곤 가스 분위기(500 sccm, 0.5 torr)에서 20℃/min의 승온속도로 1005℃까지 승온시켜 재결정화 과정을 수행하였다. 이어서, 수소 가스 분위기(100 sccm, 5 torr)로 1005℃에서 2시간 등온상태를 유지함으로써 열처리 과정을 수행하였다. 상기 열처리 과정 후, 수소 가스 분위기(100 sccm, 5 torr)로 자연 냉각시킴으로써 (111) 결정면으로 배향된 단결정 구리 필름을 제조하였다. A commercialized polycrystalline cold rolled copper film (10 μm thick, 1 x 1 cm 2 ) was prepared, and the polycrystalline cold rolled copper film was heated at an elevated temperature of 20° C./min in an argon gas atmosphere (500 sccm, 0.5 torr) at 1005° C. The temperature was raised to a recrystallization process. Subsequently, a heat treatment process was performed by maintaining the isothermal state at 1005° C. for 2 hours in a hydrogen gas atmosphere (100 sccm, 5 torr). After the heat treatment process, a single crystal copper film oriented to a (111) crystal plane was prepared by natural cooling with a hydrogen gas atmosphere (100 sccm, 5 torr).
(실시예 2) (111) 결정면으로 배향된 대면적의 단결정 구리 필름의 제조(Example 2) (111) Preparation of large area single crystal copper film oriented with crystal plane
상업화된 다결정 냉간 압연 구리 필름(두께 10 ㎛, 10 x 10 cm2)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 (111) 결정면으로 배향된 대면적의 단결정 구리 필름을 제조하였다.A large area single crystal copper film oriented with a (111) crystal plane was prepared in the same manner as in Example 1, except that a commercialized polycrystalline cold rolled copper film (10 μm thick, 10×10 cm 2 ) was used.
(실시예 3) (111) 결정면으로 배향된 단결정 금 필름의 제조(Example 3) (111) Preparation of single crystal gold film oriented to crystal plane
상업화된 다결정 냉간 압연 금 필름(두께 10 ㎛, 1 x 1 cm2)을 사용하고, 1050℃에서 열처리 과정을 수행한 것을 제외하고는 실시예 1과 동일한 방법으로 (111) 결정면으로 배향된 단결정 금 필름을 제조하였다.A single crystal gold oriented to the (111) crystal plane in the same manner as in Example 1, except that a commercialized polycrystalline cold rolled gold film (10 μm thick, 1 x 1 cm 2 ) was used and a heat treatment process was performed at 1050°C. A film was prepared.
(실시예 4) (111) 결정면으로 배향된 단결정 은 필름의 제조(Example 4) Preparation of (111) single crystal silver film oriented in a crystal plane
상업화된 다결정 냉간 압연 은 필름(두께 12.5 ㎛, 1 x 1 cm2)을 사용하고, 950℃에서 열처리 과정을 수행한 것을 제외하고는 실시예 1과 동일한 방법으로 (111) 결정면으로 배향된 단결정 금 필름을 제조하였다.A single crystal gold oriented with a (111) crystal plane in the same manner as in Example 1, except that a commercialized polycrystalline cold rolled silver film (12.5 µm thick, 1 x 1 cm 2 ) was used and a heat treatment process was performed at 950°C. A film was prepared.
(실시예 5) (111) 결정면으로 배향된 두꺼운 단결정 구리 필름의 제조(Example 5) (111) Preparation of thick single crystal copper film oriented with crystal plane
상업화된 다결정 냉간 압연 구리 필름(두께 15 ㎛, 1 x 1 cm2)을 준비한 후, 만능재료시험기(universal testing machine)를 사용하여 파단응력의 80% 이상에 해당하는 장력을 상기 필름에 가한 것을 제외하고는 실시예 1과 동일한 방법으로 (111) 결정면으로 배향된 두꺼운 단결정 구리 필름을 제조하였다.After preparing a commercialized polycrystalline cold rolled copper film (thickness 15 µm, 1 x 1 cm 2 ), a tension corresponding to 80% or more of the breaking stress was applied to the film using a universal testing machine. Then, a thick single crystal copper film oriented with a (111) crystal plane was prepared in the same manner as in Example 1.
도 8에는 본 발명의 실시예 1로부터 제조된 1 x 1 cm2의 구리 필름의 결정 구조를 전자후방산란회절(EBSD) 이미지(ND:normal direction, TD:traverse direction)로 나타내었는바, 재결정화 내지 열처리 과정을 거치면서 구리 필름 전면적이 완벽하게 (111) 결정면으로 배향된 단결정이 되었음을 알 수 있다. In FIG. 8, the crystal structure of a copper film of 1 x 1 cm 2 prepared from Example 1 of the present invention is shown by an electron backscattering diffraction (EBSD) image (ND: normal direction, TD: traverse direction), and recrystallization. Through the heat treatment process, it can be seen that the entire area of the copper film became a single crystal perfectly oriented to the (111) crystal plane.
또한, 도 9에는 본 발명의 실시예 2로부터 제조된 10 x 10 cm2의 구리 필름의 결정 구조를 전자후방산란회절(EBSD) 이미지로 나타내었는바, 대면적의 상업화된 다결정 냉간 압연 구리 필름을 사용한 경우에도 비정상입자성장이 촉진됨을 확인할 수 있다.In addition, FIG. 9 shows a crystal structure of a copper film of 10×10 cm 2 prepared from Example 2 of the present invention as an electron backscattering diffraction (EBSD) image, showing a large area commercial polycrystalline cold rolled copper film. Even when used, it can be confirmed that abnormal grain growth is promoted.
또한, 도 10에는 각각 본 발명의 실시예 3 및 4로부터 제조된 1 x 1 cm2의 금, 은 필름의 결정 구조를 전자후방산란회절(EBSD) 이미지로 나타내었는바, 구리 필름 이외에 금, 은 필름에서도 재결정화에 의한 정상입자성장 억제와 열처리 시 수소에 의한 비정상입자성장 촉진 효과에 의하여 단결정화가 일어남을 확인할 수 있다.In addition, FIG. 10 shows the crystal structures of 1 x 1 cm 2 of gold and silver films prepared from Examples 3 and 4 of the present invention, respectively, by electron backscattering diffraction (EBSD) images. In the film, it can be seen that monocrystallization occurs due to the effect of inhibiting normal grain growth by recrystallization and promoting abnormal grain growth by hydrogen during heat treatment.
또한, 도 11에는 본 발명의 실시예 5로부터 제조된 1 x 1 cm2의 구리 필름의 결정 구조를 전자후방산란회절(EBSD) 이미지로 나타내었는바, 두께가 13 ㎛를 초과하는 상대적으로 두꺼운 다결정 냉간 압연 금속 필름을 사용하는 경우에도 열처리 전 파단응력의 80% 이상에 해당하는 장력을 가함으로써 비정상입자성장을 가속할 수 있음을 확인하였다.In addition, FIG. 11 shows a crystal structure of a 1 x 1 cm 2 copper film prepared from Example 5 of the present invention as an electron backscattering diffraction (EBSD) image. As a result, a relatively thick polycrystal having a thickness exceeding 13 μm It was confirmed that even when a cold rolled metal film is used, abnormal grain growth can be accelerated by applying a tension corresponding to 80% or more of the breaking stress before heat treatment.
그러므로 본 발명에 따르면, 구입이 용이하고 저렴한 상업화된 다결정 금속 필름을 이용하여 정상입자성장을 억제함과 동시에, 단 1회 사이클의 열처리 공정만으로 비정상입자성장을 촉진시켜 (111) 결정면으로 배향된 단결정 금속 필름을 얻을 수 있으므로, 종래 단결정 금속 필름의 제조방법에 비하여 공정이 간단하여 생산비용이 크게 절감된다. 아울러 단결정화 속도가 매우 빨라 롤투롤(roll-to-roll) 연속 공정에 적용이 가능하고 열처리 공정조건이 민감하지 않으므로 넓은 범위의 조건에 걸쳐 단결정화가 가능하여 대면적으로 대량 생산이 가능할 것으로 기대된다.Therefore, according to the present invention, the normal grain growth is suppressed by using a commercialized polycrystalline metal film that is easy to purchase and inexpensive, and at the same time, the single crystal oriented toward the (111) crystal plane is promoted by promoting the abnormal grain growth in only one heat treatment process. Since a metal film can be obtained, the process is simple compared to the conventional method for producing a single crystal metal film, and the production cost is greatly reduced. In addition, since the single crystallization speed is very fast, it can be applied to a roll-to-roll continuous process, and since the heat treatment process conditions are not sensitive, it is expected that single crystallization is possible over a wide range of conditions and mass production is possible in a large area. .
Claims (11)
II) 상기 다결정 냉간 압연 금속 필름을 900℃ 내지 1100℃로 승온시키는 단계;
III) 상기 승온된 온도에서 10분~4시간 등온상태를 유지하여 열처리 하는 단계; 및
IV) 상기 열처리 후 자연 냉각 시키는 단계;를 포함하는 (111) 결정면으로 배향된 단결정 금속 필름의 제조방법.I) preparing a polycrystalline cold rolled metal film;
II) heating the polycrystalline cold rolled metal film to 900°C to 1100°C;
III) heat-treating by maintaining an isothermal state for 10 minutes to 4 hours at the elevated temperature; And
IV) The method of manufacturing a single crystal metal film oriented to a (111) crystal plane comprising; naturally cooling after the heat treatment.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180163884A KR102170111B1 (en) | 2018-12-18 | 2018-12-18 | Single crystalline film by abnormal grain growth of polycrystalline metal fim and preparation method thereof |
PCT/KR2019/015854 WO2020130371A1 (en) | 2018-12-18 | 2019-11-19 | Monocrystalline metal film formed by abnormal grain growth of polycrystalline metal film, and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180163884A KR102170111B1 (en) | 2018-12-18 | 2018-12-18 | Single crystalline film by abnormal grain growth of polycrystalline metal fim and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200075327A true KR20200075327A (en) | 2020-06-26 |
KR102170111B1 KR102170111B1 (en) | 2020-10-26 |
Family
ID=71100332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180163884A KR102170111B1 (en) | 2018-12-18 | 2018-12-18 | Single crystalline film by abnormal grain growth of polycrystalline metal fim and preparation method thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102170111B1 (en) |
WO (1) | WO2020130371A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102456782B1 (en) * | 2020-11-05 | 2022-10-19 | 부산대학교 산학협력단 | Wafer scale Ag thin film using single crystal Cu buffer layer and manufacturing method therof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100564092B1 (en) | 2002-10-11 | 2006-03-27 | 주식회사 세라콤 | Method for the Solid-State Single Crystal Growth |
KR20140137301A (en) * | 2013-05-21 | 2014-12-02 | 한양대학교 산학협력단 | Lare-size Single-crystal Monolayer Graphene and Manufacturing Method Thereof |
KR20150126195A (en) * | 2014-05-02 | 2015-11-11 | 에스 알 씨 주식회사 | A copper thin foil for manufacturing graphene and a method of manufacturing graphene using the same |
KR20150141139A (en) * | 2014-06-09 | 2015-12-17 | 한양대학교 산학협력단 | Single crystalline metal films containing hydrogen atom or hydrogen ion and manufacturing method thereof |
KR20180007334A (en) * | 2016-07-12 | 2018-01-22 | 기초과학연구원 | Single crystal metal foil, and method of manufacturing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011105530A1 (en) * | 2010-02-26 | 2011-09-01 | 独立行政法人産業技術総合研究所 | Carbon film laminate |
-
2018
- 2018-12-18 KR KR1020180163884A patent/KR102170111B1/en active IP Right Grant
-
2019
- 2019-11-19 WO PCT/KR2019/015854 patent/WO2020130371A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100564092B1 (en) | 2002-10-11 | 2006-03-27 | 주식회사 세라콤 | Method for the Solid-State Single Crystal Growth |
KR20140137301A (en) * | 2013-05-21 | 2014-12-02 | 한양대학교 산학협력단 | Lare-size Single-crystal Monolayer Graphene and Manufacturing Method Thereof |
KR20150126195A (en) * | 2014-05-02 | 2015-11-11 | 에스 알 씨 주식회사 | A copper thin foil for manufacturing graphene and a method of manufacturing graphene using the same |
KR20150141139A (en) * | 2014-06-09 | 2015-12-17 | 한양대학교 산학협력단 | Single crystalline metal films containing hydrogen atom or hydrogen ion and manufacturing method thereof |
KR20180007334A (en) * | 2016-07-12 | 2018-01-22 | 기초과학연구원 | Single crystal metal foil, and method of manufacturing the same |
Non-Patent Citations (1)
Title |
---|
비특허문헌 1. Miki Moriyama et al. Materials Transaction, Vol 45, No. 10(2004), pp. 3033-3038 |
Also Published As
Publication number | Publication date |
---|---|
KR102170111B1 (en) | 2020-10-26 |
WO2020130371A1 (en) | 2020-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10683586B2 (en) | Method of pulsed laser-based large area graphene synthesis on metallic and crystalline substrates | |
KR101878746B1 (en) | Hexagonal boron nitride sheet, process for preparing the sheet and electronic device comprising the sheet | |
CN108728813B (en) | Method and device for rapidly and continuously preparing oversized single crystal film | |
JP6450675B2 (en) | Method for forming a multilayer substrate structure | |
KR101767242B1 (en) | Single crystalline metal films containing hydrogen atom or hydrogen ion and manufacturing method thereof | |
CN110273176B (en) | Method for preparing large-area copper Cu (111) single crystal | |
JP2004052111A (en) | Superfine crystal grain copper sputtering target | |
CN105839056A (en) | Preparation method of iron base compound superconducting thin film | |
KR102170111B1 (en) | Single crystalline film by abnormal grain growth of polycrystalline metal fim and preparation method thereof | |
CN108315705B (en) | Structure for improving crystallization resistance of amorphous metal film material and preparation method thereof | |
Grivel et al. | Deposition of highly oriented (K, Na) NbO3 films on flexible metal substrates | |
KR20120001121A (en) | Fabrication method of graphene films using physical vapor deposition techniques | |
Tse et al. | ZnO thin films produced by filtered cathodic vacuum arc technique | |
Vannozzi et al. | Cube-textured substrates for YBCO-coated conductors: microstructure evolution and stability | |
KR20190064015A (en) | Single-crystal metal thin film and preparing method thereof | |
Jardine et al. | Investigation into the thin-film fabrication of intermetallic NiTi | |
Schneider et al. | Aluminum-induced crystallization of amorphous silicon: Influence of temperature profiles | |
JP4664915B2 (en) | Method for producing metal flat wire or strip having cubic texture | |
Xiao et al. | Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition | |
Huan-Hua et al. | Strong surface diffusion mediated glancing-angle deposition: growth, recrystallization and reorientation of tin nanorods | |
Wang et al. | Crystallization of GeSn thin films deposited on Ge (100) substrate by magnetron sputtering | |
CN105914258B (en) | Semiconductor structure and the method for preparing semiconductor structure | |
Ma et al. | Rapid preparation of Cu (111) foil with large single-crystal grains through a graphene induction and contactless annealing method | |
Jang et al. | Metal induced crystallization of amorphous silicon | |
EP2991122A1 (en) | Heat treatment method for compound semiconductor precursor layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |