KR20200070963A - Manufacturing method of environment-friendly polyurethane heat insulating material using waste - Google Patents

Manufacturing method of environment-friendly polyurethane heat insulating material using waste Download PDF

Info

Publication number
KR20200070963A
KR20200070963A KR1020190004933A KR20190004933A KR20200070963A KR 20200070963 A KR20200070963 A KR 20200070963A KR 1020190004933 A KR1020190004933 A KR 1020190004933A KR 20190004933 A KR20190004933 A KR 20190004933A KR 20200070963 A KR20200070963 A KR 20200070963A
Authority
KR
South Korea
Prior art keywords
waste
water
foaming
foam
foaming composition
Prior art date
Application number
KR1020190004933A
Other languages
Korean (ko)
Inventor
고대희
Original Assignee
고대희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고대희 filed Critical 고대희
Publication of KR20200070963A publication Critical patent/KR20200070963A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/33Agglomerating foam fragments, e.g. waste foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0468Crushing, i.e. disintegrating into small particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0496Pyrolysing the materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2272/00Resin or rubber layer comprising scrap, waste or recycling material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

According to the present invention, disclosed is a method of manufacturing an eco-friendly polyurethane heat insulation material by recycling waste. The method comprises: a water-forming composition forming step (S110) of mixing polyol, a water-forming agent, and an additive in a stirrer (210) so as to prepare a liquid or a gel type water-forming composition (40); a waste processing step (S120) of pulverizing at least one waste among Styrofoam (EPS, 10), waste PET (20), waste vinyl (30), or waste cans (70), forming the at least one waste into a sheet, or processing the at least one waste by injecting the water-foaming composition (40) thereinto; and a water-foaming synthesis step of putting the water-foaming composition (40) and the processed waste into a foaming mold (230) in which a foaming/molding space is formed and causing the composition (40) and the waste to be synthesized to each other and cured so as to form a polyurethane heat insulation material (50).

Description

폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법{MANUFACTURING METHOD OF ENVIRONMENT-FRIENDLY POLYURETHANE HEAT INSULATING MATERIAL USING WASTE}MANUFACTURING METHOD OF ENVIRONMENT-FRIENDLY POLYURETHANE HEAT INSULATING MATERIAL USING WASTE}

본 발명은 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법에 관한 것으로, 보다 상세하게는 폐스티로폼, 폐PET, 폐비닐 및 폐캔 등의 재활용 폐기물과 폴리올이 합성되도록 수발포 방식으로 발포성형하여 환경친화적이면서도 단열재의 제조단가를 절감할 수 있고 위험물 취급소로의 인허가가 불필요하며 열차단율 및 난연성을 대폭 증대시킨 폴리우레탄 단열재를 제조할 수 있는 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an environmentally friendly polyurethane insulating material in which waste is recycled, and more specifically, it is environmentally friendly by foaming in a water-foaming method so that recycled waste and polyols such as waste styrofoam, waste PET, waste vinyl and waste cans are synthesized. The present invention relates to a method for manufacturing an eco-friendly polyurethane insulation material in which recycled waste can be produced, which can reduce the manufacturing cost of the insulation material, does not require a license to handle dangerous goods, and can significantly increase the heat insulation rate and flame retardancy.

종래에는 폴리우레탄을 발포시키기 위한 발포제로 수소염화불화탄소(HCFC-141b)를 주로 이용하였다. 그러나, 상기 수소염화불화탄소는 프레온의 일종으로 환경오염을 발생시키기 때문에 각종 규제로 인해 점차 생산이 줄어들고 있는 실정이며 공급량 부족으로 발포제의 원가가 상승하여 폴리우레탄을 발포성형한 단열재의 제조단가가 대폭 상승하는 문제점이 있었다.Conventionally, hydrogen fluorocarbon (HCFC-141b) was mainly used as a foaming agent for foaming polyurethane. However, the hydrogen fluoride fluoride is a kind of freon, and since it generates environmental pollution, production is gradually decreasing due to various regulations. The cost of the foaming agent rises due to insufficient supply, and the manufacturing cost of the foamed polyurethane foam insulation material is significantly increased. There was a rising issue.

또한, 이러한 수소염화불화탄소를 대체하기 위한 발포제로 사이크로펜탄(Cyclopentane)이 이용되기도 하나, 상기 사이크로펜탄은 고인화성물질로 위험물3등급에 해당하는 가연성 물질이기 때문에 원료제조소나 취급소 모두 위험물 취급소로 인허가를 받아야 하고, 이를 위해서는 방폭설비의 비용 부담(200평 기준 5억원) 및 토지이용계획에 따른 인허가 가능성을 모두 따져 봐야 하며 인화성물질의 사용으로 인해 단열재 제품의 화재 위험성이 증폭되는 문제점이 있었다.In addition, although cyclopentane is used as a foaming agent to replace the hydrogen fluoride, the cyclopentane is a highly flammable material and is a combustible material corresponding to Class 3 of dangerous goods. In order to do so, the cost of explosion-proof equipment (500 million won per 200 pyeong) and the possibility of licensing according to the land use plan must all be evaluated, and there is a problem that the fire risk of the insulation product is amplified due to the use of flammable materials. .

한편, 최근 세계 쓰레기의 절반 이상을 수입하던 중국이 환경오염을 이유로 플라스틱, 비닐, 섬유 및 금속 등 24개 재활용쓰레기를 수입금지 품목으로 지정하면서 서울을 포함한 수도권 지역내의 2차 재활용 수거업체들이 재활용 폐기물의 수거를 거부하면서 쓰레기 대란이 발생하기도 하였다. 즉, 재활용 폐기물은 버릴 곳이 없어 넘쳐나고 있으며 이에 재활용제품의 원료로서의 경제적 가치를 유지할 수 있는 사업이 활발히 이루어져야 하고 정부의 재활용분야 사업의 적극적인 지원과 중장기 전략적 대책이 필요한 실정이다.On the other hand, China, which recently imported more than half of the world's waste, has designated 24 recycling wastes as plastics, vinyl, textiles, and metals for import due to environmental pollution, and secondary recycling collectors in Seoul and other metropolitan areas have recycled waste. Refusal of the collection caused a disturbance of garbage. That is, recycled waste is overflowing because there is no place to throw away. Therefore, projects that can maintain economic value as raw materials for recycled products must be actively carried out, and active support from the government's recycling field projects and mid- to long-term strategic measures are needed.

공개특허공보 제10-2018-0041916호(2018. 04. 25), 복합 단열재 및 그 제조방법.Published Patent Publication No. 10-2018-0041916 (2018. 04. 25), composite insulation material and a method for manufacturing the same.

본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 본 발명의 목적은 물을 발포제로 이용한 수발포 방식으로 폴리우레탄 단열재을 발포성형하여 기존의 가스타입의 발포제에 의한 환경오염 및 화재위험성을 방지하고 위험물 취급소로의 인허가가 불필요하며 단열재의 제조비용을 대폭 절감할 수 있고, 폐스티로폼, 폐PET, 폐비닐 및 폐캔 등의 재활용 폐기물을 폴리올과 합성시켜 단열재를 발포성형하여 열차단율을 증대시켜 단열성능을 향상시키며 난연성을 대폭 증대시킬 수 있는 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법을 제공하는 것에 있다.The present invention was created to solve the above-mentioned problems, and the object of the present invention is to foam and mold a polyurethane insulating material in a water-foaming method using water as a foaming agent to prevent environmental pollution and fire hazards caused by conventional gas-type foaming agents. It does not require a license to handle dangerous goods and can significantly reduce the manufacturing cost of insulation materials.It synthesizes recycled wastes such as waste styrofoam, waste PET, waste vinyl, and waste cans with polyol to foam and insulate the insulation to increase the thermal insulation rate to increase thermal insulation performance. It is to provide a method for manufacturing an environmentally friendly polyurethane insulating material with recycled waste that can significantly improve flame retardancy and improve flame retardancy.

상기의 목적을 달성하기 위한 본 발명에 따른 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법은, 폴리올, 수발포제 및 첨가제를 교반기(210) 내에서 혼합하여 액상 또는 젤상의 수발포 조성물(40)을 형성하는 수발포 조성물 형성 단계(S110); 폐스티로폼(EPS,10), 폐PET(20), 폐비닐(30) 또는 폐캔(70) 중 어느 하나 이상의 폐기물을 분쇄하거나 시트형태로 성형하거나 내부에 상기 수발포 조성물(40)을 발포 주입하여 가공하는 폐기물 가공 단계(S120); 및 발포성형 공간이 형성된 발포금형(230) 내부에 상기 수발포 조성물(40)과 가공된 폐기물을 투입하여 상호 합성시킨 후 경화시켜 폴리우레탄 단열재(50)를 형성하는 수발포 합성 단계(S130);를 포함한다.In order to achieve the above object, a method for manufacturing an eco-friendly polyurethane insulating material in which wastes are recycled according to the present invention is mixed with a polyol, a water-foaming agent, and an additive in a stirrer 210 to form a liquid or gel-like water-foaming composition 40. The water-foaming composition forming step (S110); Waste styrofoam (EPS, 10), waste PET (20), waste vinyl (30), or waste cans of any one or more of the waste cans (70) are crushed or molded into a sheet form, or foam-injected into the water-foaming composition (40). Waste processing step of processing (S120); And the foaming molding space is formed in the foaming mold 230, the water-foaming composition 40 and the processed wastes are introduced into each other and then synthesized and cured to form a polyurethane insulating material 50 to form a water-foaming step (S130); It includes.

여기서, 상기 폐기물은 폐스티로폼(10)이고, 상기 폐기물 가공 단계(S120)에서는 상기 폐스티로폼(10)을 분쇄하여 폼알갱이(11) 형태로 가공하며, 상기 수발포 합성 단계(S130)에서는 가공된 폼알갱이(11)와 상기 수발포 조성물(40)을 혼합한 후 발포기로 상기 발포금형(230) 내부에 경화제와 함께 주입하여 발포된 수발포 조성물(40) 내에 폼알갱이(11)가 분산배치된 형태로 상호 합성할 수 있다.Here, the waste is waste styrofoam 10, and in the waste processing step (S120), the waste styrofoam (10) is crushed and processed into a form of foam (11), and the water-foam synthesis step (S130) is processed. After mixing the foam granules 11 and the water-foaming composition 40, the foam granules 11 are dispersed and disposed in the foamed water-foaming composition 40 by injecting it with a curing agent inside the foam mold 230 with a foamer. Can be synthesized in a mutual form.

또한, 상기 폐기물 가공 단계(S120)에서는 분쇄된 폼알갱이(11)를 페놀수지가 함유된 난연코팅제와 혼합하여 폼알갱이(11)의 표면에 난연코팅제를 코팅하고 코팅된 난연코팅제를 건조시키며, 상기 수발포 합성 단계(S130)에서는 난연코팅제가 건조된 폼알갱이(11)와 상기 수발포 조성물(40)을 혼합할 수 있다.In addition, in the waste processing step (S120), the crushed foam granules 11 are mixed with a phenolic resin-containing flame retardant coating agent to coat the flame retardant coating agent on the surface of the foam granules 11 and to dry the coated flame retardant coating agent. In the water foam synthesis step (S130), the flame retardant coating agent may be mixed with the dried foam granules 11 and the water foam composition 40.

또한, 상기 폐기물 가공 단계(S120)에서는 페놀수지에 물이 희석되어 점도가 20℃ / 50 내지 100cps(centipoise)인 난연코팅제를 상기 폼알갱이(11)와 혼합하되, 상기 폼알갱이(11)와 난연코팅제 및 경화제를 10 : 7 내지 15 : 0.7 내지 1.5의 비율로 혼합하여 상기 폼알갱이(11)의 표면에 난연코팅제를 코팅할 수 있다.In addition, in the waste processing step (S120), water is diluted in a phenolic resin, and a flame retardant coating agent having a viscosity of 20° C. / 50 to 100 cps (centipoise) is mixed with the foam granules 11, but the foam granules 11 and flame retardant are mixed. A flame retardant coating agent may be coated on the surface of the foam granules 11 by mixing the coating agent and the curing agent in a ratio of 10:7 to 15:0.7 to 1.5.

또한, 상기 폐기물 가공 단계(S120)에서는 표면에 코팅된 난연코팅제를 건조시킨 후 상기 폼알갱이(11)의 입자가 수축되도록 폼알갱이(11)를 10℃ 내지 25℃의 온도로 냉각시킬 수 있다.In addition, in the waste processing step (S120), after drying the flame-retardant coating agent coated on the surface, the foam granules 11 may be cooled to a temperature of 10° C. to 25° C. so that the particles of the foam grains 11 contract.

또한, 상기 폐기물은 폐PET(20)이고, 상기 폐기물 가공 단계(S120)에서는 상기 폐PET(20)를 가열하여 용융시킨 후 압착하여 PET시트(21)로 가공하며, 상기 수발포 합성 단계(S130)에서는 발포기로 발포금형(230) 내부에 상기 수발포 조성물(40)을 경화제와 함께 주입하여 수발포 조성물층을 형성하고 형성된 수발포 조성물층의 상부에 상기 PET시트(21)를 배치하는 과정을 반복하여 복수의 수발포 조성물층과 복수의 PET시트(21)가 번갈아 적층된 형태로 수발포 조성물(40)과 PET시트(21)를 상호 합성할 수 있다.In addition, the waste is a waste PET (20), and in the waste processing step (S120), the waste PET (20) is heated and melted, then compressed and processed into a PET sheet (21), and the water-foaming synthesis step (S130). In ), the process of placing the PET sheet 21 on top of the formed water-foaming composition layer by forming the water-foaming composition layer by injecting the water-foaming composition 40 with a curing agent inside the foaming mold 230 with a foaming machine. The water-repellent composition 40 and the PET sheet 21 may be mutually synthesized in a form in which a plurality of water-repellent composition layers and a plurality of PET sheets 21 are alternately stacked.

또한, 상기 폐기물은 폐비닐(30)이고, 상기 폐기물 가공 단계(S120)에서는 각 폐비닐(30)을 시트형태로 상호 부착하거나 가열하여 용융시킨 후 시트형태로 압착하여 폐비닐시트(31)로 가공하며, 상기 수발포 합성 단계(S130)에서는 발포기로 발포금형(230) 내부에 상기 수발포 조성물(40)을 경화제와 함께 주입하여 수발포 조성물층을 형성하고 형성된 수발포 조성물층의 상부에 상기 폐비닐시트(31)를 배치하는 과정을 반복하여 복수의 수발포 조성물층과 복수의 폐비닐시트(31)가 번갈아 적층된 형태로 수발포 조성물(40)과 폐비닐(30)을 상호 합성할 수 있다.In addition, the waste is waste vinyl 30, and in the waste processing step (S120), each waste vinyl 30 is attached to each other in the form of a sheet, or heated and melted, and then compressed in a sheet form to a waste vinyl sheet 31. In the step of synthesizing the water-foaming step (S130), the water-foaming composition 40 is injected into the foaming mold 230 with a curing agent to form a water-foaming composition layer, and the upper part of the water-foaming composition layer is formed. The process of arranging the waste vinyl sheet 31 is repeated to synthesize the water-foaming composition 40 and the waste vinyl 30 in a form in which a plurality of the water-foaming composition layers and the plurality of waste-vinyl sheets 31 are alternately stacked. Can be.

또한, 상기 폐기물은 폐캔(70)이고, 상기 폐기물 가공 단계(S120)에서는 폐캔(40)의 내부에 상기 수발포 조성물(40)을 경화제와 함께 주입하여 폐캔(40) 내부에 수발포 조성물(40)이 발포되도록 가공하며, 상기 수발포 합성 단계(S130)에서는 내부에 수발포 조성물(40)이 발포된 복수의 폐캔(40)을 발포금형(230) 내부에 일정간격으로 이격 배치하고, 상기 발포금형(230) 내부에 상기 수발포 조성물(40)을 경화제와 함께 주입하여 발포된 수발포 조성물(40) 내에 각 폐캔(40)이 분산배치된 형태로 상기 수발포 조성물(40)과 폐캔(40)을 상호 합성할 수 있다.In addition, the waste is a waste can 70, and in the waste processing step (S120), the water-repellent composition 40 is injected into the waste can 40 by injecting the water-foaming composition 40 with a curing agent into the waste can 40. ) Is processed to be foamed, and in the water-foaming synthesis step (S130), a plurality of closed cans 40 in which the water-foaming composition 40 is foamed are disposed at regular intervals inside the foam mold 230, and the foaming is performed. The water-foaming composition 40 and the waste can 40 in a form in which each waste can 40 is dispersed in the foamed water-foaming composition 40 by injecting the water-foaming composition 40 with a curing agent inside the mold 230 ).

또한, 상기 폐기물 가공 단계(S120)에서는 폐캔(40) 내부에서 발포된 수발포 조성물(40)이 경화되면, 상기 수발포 합성 단계(S130)에서 발포되는 수발포 조성물(40)과 상기 폐캔(40) 내부에서 발포된 수발포 조성물(40)이 상호 접착되도록 상기 폐캔(40)의 표면에 복수 개의 관통공을 형성할 수 있다.In addition, in the waste processing step (S120), when the foamed foam composition 40 foamed inside the waste can 40 is cured, the foamed foam composition 40 foamed in the water foam synthesis step (S130) and the waste can 40 ) It is possible to form a plurality of through-holes on the surface of the closed can 40 so that the foamed water-foaming composition 40 is adhered to each other.

또한, 상기 수발포 조성물 형성 단계(S110)에서는, 상기 수발포 합성 단계(S130)를 거쳐 경화되는 수발포 조성물(40)의 부서짐 현상 및 수축 현상이 감소되도록 Mw(Molecular weight) 400의 제1폴리올, Mw 500의 제2폴리올 및 Mw 1,000의 제3폴리올을 배합하여 OH-Value 300 내지 500 이하가 되도록 한 폴리올 혼합물을 상기 수발포제 및 첨가제와 함께 교반기(210) 내에서 혼합할 수 있다.In addition, in the step of forming the water-foaming composition (S110), the first polyol of Mw (Molecular weight) 400 is reduced so that the brittleness and shrinkage of the water-foaming composition 40 cured through the water-foaming synthesis step (S130) are reduced. , A polyol mixture having a second polyol of Mw 500 and a third polyol of Mw 1,000 so as to have an OH-Value of 300 to 500 or less may be mixed in the agitator 210 together with the water blowing agent and additives.

본 발명에 따른 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법에 의하면, 폴리우레탄 단열재(50)를 성형하는데 필요한 발포원료인 수발포 조성물(40)을 형성하는 수발포 조성물 형성 단계(S110)에서는 기존의 수소염화불화탄소나 사이크로펜탄 등의 가스타입의 발포제를 대체하여 물 등의 수발포제를 이용하여 수발포 조성물(40)을 형성함으로써, 가스타입 발포제에 의한 환경오염 및 화재위험성을 방지하고 위험물 취급소로의 인허가가 불필요하며 발포제의 원가절감으로 단열재의 제조비용을 대폭 절감할 수 있다.According to the method of manufacturing an eco-friendly polyurethane insulation material recycled waste according to the present invention, the water-foaming composition forming step (S110) of forming the water-foaming composition 40, which is a foaming material necessary for molding the polyurethane heat-insulating material 50, is performed. By replacing the gas-type foaming agent such as hydrogen fluoride or cyclopentane to form the water-foaming composition 40 using a water-foaming agent such as water, it prevents environmental pollution and fire risk caused by the gas-type foaming agent and handles dangerous goods Furnace licensing is not required and the cost of the foaming agent can be reduced, thereby significantly reducing the manufacturing cost of the insulation.

또한,Also,

도 1은 본 발명의 바람직한 실시예에 따른 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법의 순서를 나타낸 블럭도,
도 2는 본 발명의 바람직한 실시예에 따른 교반기의 구성을 나타낸 개략도,
도 3은 본 발명의 바람직한 실시예에 따른 발포금형(230)의 구성을 나타낸 개략도,
도 4는 본 발명의 바람직한 실시예에 따른 폐스티로폼을 이용하여 폴리우레탄 단열재를 제조하는 과정을 나타낸 개략도,
도 5는 본 발명의 바람직한 실시예에 따른 폐스티로폼을 분쇄하여 폼알갱이 형태로 가공한 상태를 촬영한 사진,
도 6은 본 발명의 바람직한 실시예에 따른 폐PET를 이용하여 폴리우레탄 단열재를 제조하는 과정을 나타낸 개략도,
도 7은 본 발명의 바람직한 실시예에 따른 폐비닐을 이용하여 폴리우레탄 단열재를 제조하는 과정을 나타낸 개략도,
도 8은 본 발명의 바람직한 실시예에 따른 폐캔을 이용하여 폴리우레탄 단열재를 제조하는 과정을 나타낸 개략도이다.
1 is a block diagram showing the sequence of a method for manufacturing an environmentally friendly polyurethane insulation material in which waste is recycled according to a preferred embodiment of the present invention;
Figure 2 is a schematic diagram showing the configuration of a stirrer according to a preferred embodiment of the present invention,
Figure 3 is a schematic diagram showing the configuration of the foam mold 230 according to a preferred embodiment of the present invention,
Figure 4 is a schematic diagram showing the process of manufacturing a polyurethane insulating material using a waste styrofoam according to a preferred embodiment of the present invention,
5 is a photograph of a state in which the waste styrofoam according to a preferred embodiment of the present invention is crushed and processed into a form of foam grains;
Figure 6 is a schematic diagram showing a process for producing a polyurethane insulation using a waste PET according to a preferred embodiment of the present invention,
7 is a schematic view showing a process for producing a polyurethane insulating material using waste vinyl according to a preferred embodiment of the present invention,
8 is a schematic view showing a process of manufacturing a polyurethane insulating material using a waste can according to a preferred embodiment of the present invention.

이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms or words used in the present specification and claims should not be interpreted as being limited to ordinary or dictionary meanings, and the inventor appropriately explains the concept of terms in order to explain his or her invention in the best way. Based on the principle of being able to be defined, it should be interpreted as meaning and concept consistent with the technical idea of the present invention.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the configuration shown in the embodiments and drawings described in this specification is only one of the most preferred embodiments of the present invention and does not represent all of the technical spirit of the present invention, and thus can replace them at the time of application. It should be understood that there may be equivalents and variations.

본 발명의 바람직한 실시예에 따른 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법은 폐스티로폼(10), 폐PET(20), 폐비닐(30) 및 폐캔(40) 등의 재활용 폐기물과 폴리올이 합성되도록 수발포 방식으로 발포성형하여 환경친화적이면서도 단열재의 제조단가를 절감할 수 있고 위험물 취급소로의 인허가가 불필요하며 열차단율 및 난연성을 대폭 증대시킨 폴리우레탄 단열재(50)를 제조할 수 있는 제조방법으로서, 도 1에 도시된 바와 같이 수발포 조성물 형성 단계(S110), 폐기물 가공 단계(S120) 및 수발포 합성 단계(S130)를 포함한다.A method of manufacturing an eco-friendly polyurethane insulation material in which waste is recycled according to a preferred embodiment of the present invention is such that recycled waste and polyol such as waste styrofoam 10, waste PET 20, waste vinyl 30 and waste can 40 are synthesized. As a method of manufacturing a polyurethane insulating material 50 that is environmentally friendly and reduces the manufacturing cost of an insulating material by foaming with a water-foaming method, and does not require a license to handle dangerous goods, and significantly increases the heat blocking rate and flame retardancy, As shown in Figure 1 includes a water-foaming composition forming step (S110), a waste processing step (S120) and a water-foaming synthesis step (S130).

먼저, 상기 수발포 조성물 형성 단계(S110)는 폴리우레탄 단열재(50)를 성형하는데 필요한 발포 주원료인 수발포 조성물(40)을 형성하는 단계로서, 폴리올, 수발포제 및 첨가제 등의 재료들을 교반기(210) 내에서 혼합하여 액상 또는 젤상의 수발포 조성물(40)을 형성한다.First, the step of forming the water-foaming composition (S110) is a step of forming the water-foaming composition 40, which is a main raw material for foaming the polyurethane heat insulating material 50, and agitator 210 for materials such as polyol, water-foaming agent and additives ) To form a liquid or gel-like water-foaming composition 40.

여기서, 도 2에 도시된 바와 같이 상기 교반기(210)는 내부에 각 재료들을 교반할 수 있는 내부공간을 제공하는 교반챔버(211)와, 상기 교반챔버(211)의 내부공간에 배치되며 회전하면서 회전수류를 형성하여 투입된 각 재료들을 교반하는 임펠러(212)와, 상기 임펠러(212)와 교반축(214)으로 축연결되어 임펠러(212)가 회전하는데 필요한 구동력을 제공하는 구동모터(213)와, 상기 교반챔버(211)의 내벽에 직립된 판형상으로 이루어져 상기 임펠러(212)의 회전수류에 저항하면서 와류를 형성하는 방해판(215) 및, 상기 교반챔버(211)를 설정된 온도로 가열하는 히팅부(216)를 포함한다.Here, as shown in Figure 2, the stirrer 210 is disposed in the stirring chamber 211 and the inner space of the stirring chamber 211 to provide an inner space for stirring each material therein while rotating An impeller 212 that agitates each of the materials introduced by forming a rotational flow, and a drive motor 213 that is axially connected to the impeller 212 and the stirring shaft 214 to provide a driving force required for the impeller 212 to rotate. , It is made of a plate shape upright on the inner wall of the stirring chamber 211 to resist the rotational flow of the impeller 212 to form a vortex 215, and heating the stirring chamber 211 to a set temperature It includes a heating unit 216.

또한, 상기 수발포 조성물 형성 단계(S110)에서 교반기(210)에 투입되는 수발포제로 친환경 소재이면서 가격이 저렴한 물을 이용함으로써 기존의 수소염화불화탄소를 대체할 수 있어 환경오염을 방지하고 발포제의 원가절감으로 단열재의 제조비용을 대폭 절감할 수 있으며, 기존의 사이크로펜탄을 대체할 수 있어 화재위험성을 방지하고 위험물 취급소로의 인허가가 불필요한 효과를 구현할 수 있다.In addition, in the step of forming the water-foaming composition (S110), the water-foaming agent injected into the stirrer 210 can be used as an eco-friendly material and inexpensive water to replace the existing hydrogen fluoride fluoride to prevent environmental pollution and prevent foaming. Cost reduction can significantly reduce the manufacturing cost of insulation materials, and can replace the existing cyclopentane, thereby preventing fire hazards and realizing unnecessary effects of permitting permission to handle dangerous goods.

더불어, 상기 교반기(210)에 투입되는 폴리올은 단일의 분자량을 갖는 폴리올을 이용할 수도 있으나, Mw(Molecular weight) 400의 제1폴리올 × 2, Mw 500의 제2폴리올 × 1 및 Mw 1,000의 제3폴리올 × 1 등 총 4종류의 폴리올을 사용하여 OH-Value 300 내지 500 이하가 되도록 하는 것과 같이, 각기 다른 분자량의 폴리올과 OH Value를 구성함으로써 경화된 수발포 조성물(40)의 부서짐 현상과 수축 현상을 개선하고 최적의 수치안정성을 구현할 수 있다. 그리고, 분자량별 폴리올 비율은 Mv 400은 30 내지 50%, Mv 500은 10 내지 30%, Mv 600은 20 내지 40%로 할 수 있다.In addition, a polyol having a single molecular weight may be used as the polyol input to the stirrer 210, but the first polyol of Mw (Molecular weight) 400 × 2, the second polyol of Mw 500 × 1 and the third of Mw 1,000 By using a total of four types of polyols, such as polyol × 1, to make OH-Value 300 to 500 or less, by forming polyols and OH Values of different molecular weights, the phenomenon of brittleness and shrinkage of the cured water-foaming composition 40 occurs. And improve the numerical stability. In addition, the polyol ratio for each molecular weight may be 30 to 50% for Mv 400, 10 to 30% for Mv 500, and 20 to 40% for Mv 600.

그리고, 폴리우레탄 단열재(50)의 특성상 영하온도로 내려가면 수축과 치수변형률이 높아지는 현상이 발생하는데 이를 위해 상기 첨가제에 실리콘 정포제를 포함시킴으로써 Close sell의 구조를 안정화하고 셀벽의 Open을 방지하며 독립기포율을 높여 단열성을 개선함으로써 온도변화에 민감하지 않은 셀구조를 구현할 수 있다.In addition, due to the nature of the polyurethane insulating material 50, shrinkage and dimensional strain increase when the temperature drops below zero. To this end, by including a silicone antifoaming agent in the additive, the structure of the close sell is stabilized, cell cell opening is prevented and independent. It is possible to realize a cell structure that is not sensitive to temperature changes by improving the heat insulation by increasing the bubble ratio.

또한, 상기 첨가제로 실리콘 정포제 2종류와 침강방지제 아민촉매 2종류를 폴리올 특성에 맞게 상호 작용할 수 있는 물질로 구성하여, Blowing time 및 Gel time 반응성을 최적의 상태로 제조할 수 있다. 상기 실리콘 정포제로 실리콘계와 비실리콘계를 이용할 수 있고 아민촉매로 pentamethyl diethylene triamine(PMDETA), dimethyl cyclohexyl amine(DMCHA)을 이용할 수 있다.In addition, two types of silicone antifoaming agents and two types of anti-settling agent amine catalysts may be made of a material capable of interacting with polyol properties to prepare the blowing and gel time reactivity in an optimal state. As the silicone antifoaming agent, silicone-based and non-silicone-based silicones may be used, and pentamethyl diethylene triamine (PMDETA) and dimethyl cyclohexyl amine (DMCHA) may be used as the amine catalyst.

더불어, 상기 수발포 조성물(40) 형성시 원료투입의 순서와 임펠러타입, 온도 및 시간 등 혼합조건이 주요하다는 것을 실험을 확인할 수 있었다. 교반 RPM은 1,500이고 온도는 25℃ 내지 30℃가 바람직하며 원료투입시 온도도 완제품에 영향을 미치는 것으로 확인되었다. 온도가 25℃ 이하가 되거나 온도가 일정하지 않으면 교반효율성 및 물성이 좋지 않아 제품의 품질이 일정하지 않을 수 있다. 이 또한 오랜 연구개발을 통해 최적의 투입기술과 혼합조건을 찾을 수 있었다.In addition, the experiment was confirmed that the order of raw material input and the mixing conditions such as the impeller type, temperature and time are main when forming the water-foaming composition 40. The stirring RPM is 1,500 and the temperature is preferably 25°C to 30°C, and it was confirmed that the temperature when injecting the raw material also affects the finished product. If the temperature is 25°C or less or the temperature is not constant, the agitation efficiency and physical properties are not good, so the product quality may not be constant. Also, through the long-term research and development, it was possible to find the optimal input technology and mixing conditions.

그리고, 상기 수발포 조성물(40)의 성분으로는 제1폴리올 20~30% (평균관능기3~6, 500~600mgKOH/g , Glycerol Base), 제2폴리올 20~30% (평균관능기5~7 , 400~500mgKOH/g , Seed Oil/Glycerol Base), 제3폴리올 10~20% (평균관능기2~5 , 400~500mgKOH/g , Glycerol Base), 제4폴리올15~25%(평균관능기3~6, 200~300mg/KOH/g ,Triol Sucrose/Glycerol Base), 난연제 5~10% (TCPP, Tris(1-Chloro-2-Propyl)Phosphate), 제1실리콘 1~2% (실리콘계), 제2실리콘 0.5~1.5%(비실리콘계), 제1촉매 0.5~2%(Pentamethyl Diethylene Triamine(PMDETA), 제2촉매 0.5~2%(Dimethyl Cyclohexyl Amine(DMCHA), 발포제 3~10% (H2O 물)로 구성될 수 있다.And, as a component of the water-foaming composition 40, the first polyol 20 ~ 30% (average functional group 3 ~ 6, 500 ~ 600mgKOH / g, Glycerol Base), the second polyol 20 ~ 30% (average functional group 5 ~ 7 , 400~500mgKOH/g, Seed Oil/Glycerol Base), 10~20% of 3rd polyol (average functional group 2~5, 400~500mgKOH/g, Glycerol Base), 15~25% of 4th polyol (average functional group 3~ 6, 200~300mg/KOH/g, Triol Sucrose/Glycerol Base), flame retardant 5~10% (TCPP, Tris(1-Chloro-2-Propyl)Phosphate), 1st silicon 1~2% (silicone system), 1st 2 Silicon 0.5~1.5% (non-silicone), 1st catalyst 0.5~2% (Pentamethyl Diethylene Triamine (PMDETA), 2nd catalyst 0.5~2% (Dimethyl Cyclohexyl Amine (DMCHA), Blowing agent 3~10% (H 2 O Water).

여기서, 정포제로 이용되는 실리콘은 수용성타입으로 밀도 45 내지 50kg/㎥로 구성하여 경화된 수발포 조성물(40)의 부서지거나 수축되는 현상을 최소화할 수 있다. 상기 밀도 범위를 벗어나는 경우 영하의 온도에서 단열재 수축 및 치수변형이 발생하고, 즉, 상기 밀도 범위와 같이 제품의 경량화에 적정 밀도를 맞추어 건축작업시 애로 사항이 없고 치수변형을 방지할 수 있는 것이다.Here, the silicone used as the foaming agent is a water-soluble type, and is composed of a density of 45 to 50 kg/m 3 to minimize the phenomenon of breaking or shrinking of the cured water-foaming composition 40. When the density is out of the above range, shrinkage and dimensional deformation of the insulating material occur at sub-zero temperatures, that is, it is possible to prevent the dimensional deformation without any trouble during construction work by setting the appropriate density to the weight reduction of the product as in the above density range.

또한, 실험결과 원료별 투입순서에 따라 품질이 상이하였는데, 폴리올→난연제→실리콘 정포제→발포제→촉매 순으로 투입한 결과가 가장 우수하였다. 교반시 회전 RPM은 1,000 내지 1,500이 적합했으며 촉매 투입시에는 1,000이하로 낮추는 것이 성형된 폴리우레탄 단열재(50)의 반응성 및 품질이 동일하였다.In addition, as a result of the experiment, the quality was different according to the input order by raw material, and the result in the order of polyol→flame retardant→silicone foaming agent→foaming agent→catalyst was the best. When stirring, the rotation RPM was 1,000 to 1,500, and when the catalyst was added, the reactivity and quality of the molded polyurethane insulation 50 were the same when lowering to 1,000 or less.

한편, 상기 폐기물 가공 단계(S120)는 폐기물을 상기 수발포 조성물(40)과 합성 가능한 형태로 가공하는 단계로서, 폐스티로폼(EPS,10), 폐PET(20), 폐비닐(30) 또는 폐캔(40) 중 어느 하나 이상의 폐기물을 분쇄하거나 시트형태로 가공하거나 내부에 상기 수발포 조성물(40)을 발포 주입하여 가공한다.On the other hand, the waste processing step (S120) is a step of processing the waste into a form that can be synthesized with the water-foaming composition 40, waste styrofoam (EPS, 10), waste PET 20, waste vinyl 30 or waste cans. Grinding any one or more of the waste (40) or processing in the form of a sheet, or by foam injection processing the water-foaming composition 40 therein.

상기 수발포 합성 단계(S130)는 수발포 조성물 형성 단계(S110)를 통해 형성된 수발포 조성물(40)과 폐기물 가공 단계(S120)를 통해 가공된 폐기물을 합성시켜 폴리우레탄 단열재(50)로 발포성형하는 단계로서, 발포성형 공간이 형성된 발포금형(230) 내부에 상기 수발포 조성물(40)과 가공된 폐기물을 투입하여 상호 합성시킨 후 경화시켜 폴리우레탄 단열재(50)를 형성한다.The water-foaming synthetic step (S130) synthesizes the water-foaming composition (40) formed through the water-foaming composition forming step (S110) and the waste processed through the waste processing step (S120) to form a foam with a polyurethane insulating material (50). As a step to do, the foaming mold space is formed, and the water-foaming composition 40 and the processed waste are put into each other to synthesize and cure to form a polyurethane insulating material 50.

이러한 폐기물 가공 단계(S120) 및 수발포 합성 단계(S130)를 통해 버려지는 폐기물을 단열재의 소재로 이욤함으로써 폐기물수거 대란문제 및 재활용방안을 해결할 수 있으며 동시에 단열재의 열차단율을 증대시켜 단열성능을 향상시킬 수 있고 수발포 조성물(40)의 사용량을 감소시켜 단열재의 제조단가를 더욱 절감할 수 있다..Through the waste processing step (S120) and the water-foaming synthesis step (S130), waste waste is transferred to the material of the insulation material, thereby solving the problem of waste collection and recycling, and at the same time, improving the thermal insulation performance by increasing the thermal insulation rate of the insulation material. It is possible to reduce the production cost of the heat insulating material by reducing the amount of the water-foaming composition 40.

도 3에 도시된 바와 같이 상기 발포금형(230)은 성형공간이 마련된 발포챔버(231)와, 상기 발포챔버(231)의 개구된 상부를 개폐가능하게 커버하는 상부덮개(232) 및 상기 발포챔버(231)의 개구된 상부를 개폐가능하게 커버하는 측방커버(233)를 포함할 수 있으며, 상기 상부덮개(232) 및 측방커버(233)를 통해 성형이 완료된 폴리우레탄 단열재(50)를 용이하게 탈형할 수 있다. 상기 발포챔버(231)의 성형공간 내면에는 테프론 코팅되어 주입된 수발포 조성물(40)이 표면에 부착되는 것을 방지할 수 있다.As shown in FIG. 3, the foaming mold 230 includes a foaming chamber 231 provided with a molding space, an upper cover 232 covering the opened upper portion of the foaming chamber 231 to be opened and closed, and the foaming chamber It may include a lateral cover 233 that covers the opened upper portion of the opening 231 to be opened and closed, it is easy to mold the polyurethane insulation 50 is completed through the upper cover 232 and lateral cover 233 It can be demolded. The foaming chamber 231 may be prevented from being attached to the surface of the water-foaming composition 40 injected by being coated with Teflon on the inner surface of the molding space.

이하에서는 폐기물의 대상에 따라 상기 폐기물 가공 단계(S120)와 수발포 합성 단계(S130)의 구체적인 제조방법을 구분하여 설명한다.Hereinafter, a detailed manufacturing method of the waste processing step (S120) and the water foam synthesis step (S130) according to the target of the waste will be described separately.

상기 폐기물이 폐스티로폼(10)인 경우, 도 4에 도시된 바와 같이 상기 폐기물 가공 단계(S120)에서는 상기 폐스티로폼(10)을 분쇄하여 폼알갱이(11, 도 5 참고) 형태로 가공한다. 여기서, 도면에서와 같이 분쇄수단으로 해머밀(220)을 이용할 수 있으며 이 밖에 본 발명이 속하는 기술분야에서 스티로폼을 폼알갱이 형태로 분쇄하는데 이용되는 다양한 수단이 이용될 수 있다. 그리고 각 폼알갱이(11)의 크기는 20mm이하가 되도록 분쇄하는 것이 바람직하다.When the waste is waste styrofoam 10, as shown in FIG. 4, in the waste processing step (S120), the waste styrofoam 10 is crushed and processed into a form of foam granules (see FIG. 11 and FIG. 5). Here, as shown in the drawing, the hammer mill 220 may be used as a crushing means, and various other means used to crush styrofoam in the form of foam particles may be used in the technical field to which the present invention pertains. And the size of each foam grain 11 is preferably crushed to be 20 mm or less.

또한, 상기 수발포 합성 단계(S130)에서는 가공된 폼알갱이(11)와 상기 수발포 조성물(40)을 혼합한 후 발포기로 상기 발포금형(230) 내부에 경화제와 함께 주입하여 발포된 수발포 조성물(40) 내에 폼알갱이(11)가 분산배치된 형태로 상호 합성시킴으로써 폐스티로폼(10)의 수거문제를 해결하고 경량화된 폴리우레탄 단열재(50)를 제조할 수 있다.In addition, in the water-foaming synthesis step (S130), the processed foam granules 11 and the water-foaming composition 40 are mixed and then injected with a curing agent into the foaming mold 230 with a foamer to foam the water-foaming composition. It is possible to solve the collection problem of the waste styrofoam 10 and to prepare a lightweight polyurethane insulating material 50 by mutually synthesizing the foam grains 11 in a distributed arrangement.

여기서, 상기 폐기물 가공 단계(S120)에서는 분쇄된 폼알갱이(11)를 페놀수지가 함유된 난연코팅제와 혼합하여 폼알갱이(11)의 표면에 난연코팅제를 코팅하고 코팅된 난연코팅제를 건조시키며, 상기 수발포 합성 단계(S130)에서는 난연코팅제가 건조된 폼알갱이(11)와 상기 수발포 조성물(40)을 혼합하여 폴리우레탄 단열재(50)로 발포성형한다. 이와 같이 폼알갱이(11)를 난연코팅제로 코팅함으로써 성형된 폴리우레탄 단열재(50)의 난연성을 강화하고 폼알갱이(11) 간의 정전기를 방지할 수 있으며 폼알갱이(11)의 무게를 증대시켜 수발포 조성물(40)과 용이하게 혼합할 수 있다. 해머밀(220)에서 분쇄된 폼알갱이(11)는 난연코팅제로 코팅하기 위한 별도의 교반기(혼합기, 미도시)와 연결된 스크류이송관을 통해 용이하게 이송시킬 수 있으며 난연코팅제로 코팅된 폼알갱이(11)는 열풍기가 마련된 건조기(미도시)와 연결된 스크류이송관을 통해 용이하게 이송시켜 표면에 코팅된 난연코팅제를 건조시킬 수 있으며 상기 건조기에서는 300℃ 내지 400℃의 건조온도로 30분 내지 60분동안 건조공정이 이루어진다.Here, in the waste processing step (S120), the crushed foam granules 11 are mixed with a phenolic resin-containing flame retardant coating agent to coat the flame retardant coating agent on the surface of the foam granules 11 and to dry the coated flame retardant coating agent. In the water-foaming synthetic step (S130), the flame-retardant coating agent is foamed and molded with the polyurethane foam 50 by mixing the dried foam granules 11 and the water-foaming composition 40. As described above, the foam granules 11 are coated with a flame retardant coating agent to enhance the flame retardancy of the molded polyurethane insulating material 50 and prevent static electricity between the foam granules 11, and increase the weight of the foam granules 11 to foam water. It can be easily mixed with the composition 40. The foam granules 11 crushed in the hammer mill 220 can be easily transported through a screw transport pipe connected to a separate stirrer (mixer, not shown) for coating with a flame retardant coating agent, and the foam granules 11 coated with a flame retardant coating agent ) Can be easily transferred through a screw transfer pipe connected to a dryer (not shown) provided with a hot air blower to dry the flame retardant coating agent coated on the surface, and the dryer is dried at a drying temperature of 300°C to 400°C for 30 minutes to 60 minutes. The process takes place.

또한, 상기 폐기물 가공 단계(S120)에서 난연코팅제를 코팅함에 있어, 페놀수지에 물이 희석되어 점도가 20℃ / 50 내지 100cps(centipoise)인 난연코팅제를 상기 폼알갱이(11)와 혼합함으로써 고점도(대략 10,000cps)인 페놀수지가 폼알갱이(11)의 표면에 코팅되기 전에 뭉쳐져 겔화되는 것을 방지하여 코팅효율성을 구현하며, 상기 폼알갱이(11)와 난연코팅제 및 경화제를 10 : 7 내지 15 : 0.7 내지 1.5의 비율(바람직하게는 10 : 10 : 1)로 혼합하여 상기 폼알갱이(11)의 표면에 난연코팅제를 코팅함으로써, 난연코팅제가 폼알갱이(11)의 표면에 코팅되는데 필요한 혼합 소요시간(대략 1시간)내에 경화되지 않도록 하여 액체상태에서 표면에 코팅될 수 있다.In addition, in coating the flame retardant coating agent in the waste processing step (S120), water is diluted in a phenolic resin, and the viscosity is 20°C / 50 to 100 cps (centipoise) and the flame retardant coating agent is mixed with the foam granules 11 to obtain a high viscosity ( The phenolic resin of approximately 10,000 cps) is prevented from being agglomerated and gelled before being coated on the surface of the foam granules 11 to realize coating efficiency, and the foam granules 11, a flame retardant coating agent and a curing agent are 10:7 to 15:0.7 The mixing time required for the flame retardant coating agent to be coated on the surface of the foam granules 11 by mixing at a ratio of 1.5 to 1.5 (preferably 10:10:1) to coat the flame retardant coating agent on the surface of the foam granules 11 ( It can be coated on the surface in a liquid state so as not to harden within about 1 hour).

상기 폐기물 가공 단계(S120)에서는 표면에 코팅된 난연코팅제를 건조시킨 후 냉풍기(미도시)를 이용하여 10℃ 내지 25℃(바람직하게는 약 15℃ 내지 20℃)의 온도로 냉각시켜 난연코팅제가 코팅된 폼알갱이(11)의 입자가 수축되도록 함으로써, 차후 폴리우레탄 단열재(50)로의 발포성형된 후에 폼알갱이(11)가 수축되어 단열재의 강도 및 단열성이 저하되는 것을 미연에 방지할 수 있다.In the waste processing step (S120), the flame-retardant coating agent is cooled by drying the flame-retardant coating agent coated on the surface to a temperature of 10° C. to 25° C. (preferably about 15° C. to 20° C.) using a cold air blower (not shown). By allowing the particles of the coated foam granules 11 to shrink, it is possible to prevent the foam granules 11 from shrinking after being molded into the polyurethane insulating material 50, thereby deteriorating the strength and thermal insulation of the insulating material.

이와 같이 설정온도로 냉각된 폼알갱이(11)는 교반기(혼합기)로 이송하여 수발포 조성물(40)과 1 : 1의 비율로 30분 내지 60분 동안 혼합하는 공정을 거친다.The foam granules 11 cooled to the set temperature are transferred to a stirrer (mixer) and mixed with the water-foaming composition 40 at a ratio of 1:1 for 30 to 60 minutes.

또한, 상기 수발포 합성 단계(S130)에서는 위 혼합공정을 거쳐 고르게 혼합된 수발포 조성물(40)과 폼알갱이(11)를 발포금형(230)에 발포 주입하는데 이때 상기 발포금형(230)을 40℃ 내지 50℃로 가열함으로써 수발포 조성물(40)과 합성된 폐기물이 열변형되지 않도록 할 수 있다.In addition, in the water-foaming synthesis step (S130), foaming injection of the water-foaming composition 40 and the foam granules 11 evenly mixed through the above mixing process into the foaming mold 230, wherein the foaming mold 230 is 40 By heating to ℃ to 50 ℃ can be prevented from thermal deformation of the water-foaming composition 40 and the synthesized waste.

발포시에는 상기 수발포 조성물(40)과 폼알갱이(11)가 혼합된 원료와 경화제를 1 : 1의 비율로 설정하여 발포기를 이용하여 발포금형(230) 내에 발포 주입하며, 금형사이즈에 맞게 밀도 45㎏/㎥ 내지 50㎏/㎥에 맞춰 원료 중량을 설정한다.When foaming, the raw material and the curing agent in which the water-foaming composition 40 and the foam granules 11 are mixed are set at a ratio of 1: 1 and foamed into the foaming mold 230 using a foaming machine, and the density is adjusted according to the mold size. The raw material weight is set according to 45 kg/m 3 to 50 kg/m 3.

이후 발포금형(230)을 패킹하여 약 5분 내지 10분간 1차 숙성시키는 공정을 거치며, 금형으로부터 발포성형성된 폴리우레탄 단열재(50)를 탈형한 후 별도의 열실(미도시)에서 약 30℃ 내지 40℃의 가열온도에서 약 30분 내지 60분간 가열하는 2차 숙성시키는 공정을 거친다. 이러한 숙성공정을 거쳐 폴리우레탄 단열재(50)에 함유된 수분을 완전히 건조시켜 단열재의 단열성능이 수분에 의해 저하되는 것을 방지할 수 있으며 제조된 단열재의 쉽게 변형되는 것을 방지할 수 있다.Subsequently, the foamed mold 230 is packed to undergo a primary aging process for about 5 minutes to 10 minutes, and after the molded foamed polyurethane insulation 50 is demolded from a mold, it is about 30°C to 40°C in a separate heat chamber (not shown). A second aging process is performed for heating at a heating temperature of ℃ for about 30 to 60 minutes. Through this aging process, the moisture contained in the polyurethane insulating material 50 is completely dried, so that the heat insulating performance of the heat insulating material can be prevented from being lowered by moisture, and it is possible to prevent the easily deformed manufactured heat insulating material.

한편, 상기 폐기물이 폐PET(20)인 경우, 도 6에 도시된 바와 같이 상기 폐기물 가공 단계(S120)에서는 상기 폐PET(20)를 가열하여 용융시킨 후 압착하여 PET시트(21)로 가공한다 상기 PET시트(21)는 0.3mm 내지 1mm의 두께가 되도록 가공하는 것이 바람직하다.On the other hand, when the waste is a waste PET 20, as shown in FIG. 6, in the waste processing step (S120), the waste PET 20 is heated and melted, then compressed and processed into a PET sheet 21. The PET sheet 21 is preferably processed to a thickness of 0.3mm to 1mm.

상기 수발포 합성 단계(S130)에서는 발포기로 발포금형(230) 내부에 상기 수발포 조성물(40)을 경화제와 함께 주입하여 수발포 조성물층을 형성하고 형성된 수발포 조성물층의 상부에 상기 PET시트(21)를 배치하는 과정을 반복하여 복수의 수발포 조성물층과 복수의 PET시트(21)가 번갈아 적층된 형태로 수발포 조성물(40)과 PET시트(21)를 상호 합성함으로써, 폐PET(20)의 수거문제를 해결할 수 있고 단열성, 휨저항력 및 내구성을 대폭 향상시킬 수 있다.In the water-foaming synthesis step (S130), the water-foaming composition 40 is injected into the foamed mold 230 with a foaming agent together with a curing agent to form a water-foaming composition layer and the PET sheet on the formed water-foaming composition layer ( 21) by repeating the process of arranging a plurality of water-repellent composition layers and a plurality of PET sheets 21 alternately stacked to form a water-repellent composition 40 and PET sheet 21, thereby synthesizing waste PET 20 ) Can solve the problem of collection and can significantly improve the insulation, bending resistance and durability.

여기서, 상기 PET시트(21)에 일정간격(예를 들어 10㎝ 내지 30㎝)으로 상하 개구된 통공을 형성하여 PET시트(21)를 사이에 두고 상부에 발포주입되는 수발포 조성물(40)과 하부에 발포주입된 수발포 조성물(40)이 통공을 통해 상하로 부착되도록 하여 접착력을 더욱 견고하게 할 수 있다. Here, the PET sheet (21) with a predetermined interval (for example, 10 cm to 30 cm) to form a through hole opened up and down, with the PET sheet (21) interposed therebetween, the foamed composition 40 is foamed and injected into the upper part The water-foaming composition 40 foamed in the lower portion can be attached up and down through the through hole to further strengthen the adhesion.

한편, 상기 폐기물이 폐비닐(30)인 경우, 도 7에 도시된 바와 같이 상기 폐기물 가공 단계(S120)에서는 각 폐비닐(30)을 상호 부착하거나 폐비닐시트(31)와 마찬가지로 가열하여 용융시킨 후 시트형태로 압착하여 폐비닐시트(31)로 가공한다. 보다 구체적으로 설명하면, 수거한 폐비닐(30)을 상태에 맞게 세척후 종류에 맞게 분류한다. 그 후 커팅기를 이용하여 1m 내지 3m 단위로 커팅하며, 이후 열선 접착설비을 이용하여 3 ~ 5겹으로 비닐을 겹쳐 열을 가해 각각의 비닐을 벌집모양으로 접착하여 하나의 폐비닐시트(31)로 만든다.On the other hand, when the waste is waste vinyl 30, as shown in FIG. 7, in the waste processing step (S120), each waste vinyl 30 is attached to each other or heated and melted as in the waste vinyl sheet 31. After pressing it in a sheet form, it is processed into a waste vinyl sheet (31). In more detail, the collected waste vinyl 30 is classified according to the type after washing according to the state. After that, it is cut in units of 1 m to 3 m using a cutting machine, and then, using a hot wire adhesive facility, 3 to 5 layers of vinyl are stacked and heat is applied to bond each vinyl in a honeycomb shape to make one waste vinyl sheet (31). .

상기 수발포 합성 단계(S130)에서는 상기 PET시트(21)를 이용하는 경우와 마찬가지로 발포기로 발포금형(230) 내부에 상기 수발포 조성물(40)을 경화제와 함께 주입하여 수발포 조성물층을 형성하고 형성된 수발포 조성물층의 상부에 상기 폐비닐시트(31)를 배치하는 과정을 반복하여 복수의 수발포 조성물층과 복수의 폐비닐시트(31)가 번갈아 적층된 형태로 수발포 조성물(40)과 폐비닐시트(31)를 상호 합성함으로써, 폐비닐(30)의 수거문제를 해결할 수 있고 폐비닐시트(31)를 이용하는 경우와 마찬가지로 단열성, 휨저항력 및 내구성을 향상시킬 수 있다. In the water-foaming synthesis step (S130), a water-foaming composition layer is formed by injecting the water-foaming composition 40 with a curing agent into the foaming mold 230 with a foamer as in the case of using the PET sheet 21. By repeating the process of disposing the waste vinyl sheet 31 on the top of the water-foaming composition layer, a plurality of water-foaming composition layers and a plurality of waste vinyl sheets 31 are alternately stacked to form a water-foaming composition 40 and lungs. By mutually synthesizing the vinyl sheet 31, the collection problem of the waste vinyl 30 can be solved and, as in the case of using the waste vinyl sheet 31, heat insulation, bending resistance, and durability can be improved.

여기서, 상기 폐비닐시트(31)에 일정간격(예를 들어 10㎝ 내지 30㎝)으로 상하 개구된 통공을 형성하여 폐비닐시트(31)를 사이에 두고 상부에 발포주입되는 수발포 조성물(40)과 하부에 발포주입된 수발포 조성물(40)이 통공을 통해 상하로 부착되도록 하여 접착력을 더욱 견고하게 할 수 있다.Here, to form a through hole opened up and down at regular intervals (for example, 10 cm to 30 cm) on the waste vinyl sheet 31, the foamed foam composition 40 is foamed and injected over the waste vinyl sheet 31 therebetween. ) And the water-foaming composition 40 foamed in the lower portion can be attached up and down through the through hole to further strengthen the adhesion.

한편, 상기 폐기물이 폐캔(40)인 경우, 도 8에 도시된 바와 같이 상기 폐기물 가공 단계(S120)에서는 폐캔(40)의 내부에 상기 수발포 조성물(40)을 경화제와 함께 주입하여 폐캔(40) 내부에 수발포 조성물(40)이 발포되도록 가공하며, 상기 수발포 합성 단계(S130)에서는 내부에 수발포 조성물(40)이 발포된 복수의 폐캔(40)을 발포금형(230) 내부에 일정간격으로 이격 배치하고 상기 발포금형(230) 내부에 상기 수발포 조성물(40)을 경화제와 함께 주입하여 수발포 조성물(40) 내에 각 폐캔(40)이 분산 배치된 형태로 상기 수발포 조성물(40)와 폐캔(40)을 상호 합성시킴으로써, 폐캔(40)의 수거문제를 해결할 수 있고 단열성 및 내구성을 향상시킬 수 있으며 수발포 조성물(40)의 사용량을 대폭 감소시켜 제조단가를 낮출 수 있다. 또한, 폐캔(40)의 알루미늄 성분이 난연성을 강화시킬 수 있으며 통상적으로 폐캔(40)을 가공없이 그대로 이용가능하여 통상 폐캔의 재활용시 압축시키고 용융시키는 재활용 준비공정이 불필요한 장점이 있다.On the other hand, when the waste is a waste can 40, in the waste processing step (S120), as shown in FIG. 8, the water-foaming composition 40 is injected with a curing agent into the waste can 40 to close the waste can 40 ) The water-foaming composition 40 is processed to be foamed, and in the water-foaming synthesis step (S130), a plurality of waste cans 40 in which the water-foaming composition 40 is foamed is fixed inside the foaming mold 230. The water-foaming composition 40 is arranged in a form in which each waste can 40 is dispersedly disposed in the water-foaming composition 40 by disposing the water-foaming composition 40 with a curing agent inside the foam mold 230 and spaced apart at intervals. ) By synthesizing the waste cans 40 with each other, the collection problem of the waste cans 40 can be solved, the heat insulation and durability can be improved, and the production cost can be lowered by significantly reducing the amount of the water-foaming composition 40. In addition, the aluminum component of the waste can 40 can enhance the flame retardancy, and the waste can 40 can be used as it is without processing, so there is no need for a recycling preparation process that compresses and melts when recycling the waste can.

여기서, 수거한 폐캔(70)을 50℃ 내지 60℃로 설정된 히팅룸에 넣어 혹시라도 폐캔(70) 내부에 있을 수분을 증발시켜 제거하며, 수분이 제거된 폐캔(70)에 발포기를 이용하여 캔내부 크기에 맞게 수발포 조성물(40)을 주입하여 발포하며, 발포 후에는 열실에 넣어 약 40℃ 내지 50℃의 가열온도에서 약 30분 내지 60분간 가열하여 숙성시킨다.Here, the collected waste cans 70 are put into a heating room set at 50°C to 60°C to remove the evaporated water inside the waste cans 70 by using a foamer to remove the water. Foaming is performed by injecting the water-foaming composition 40 according to the inner size, and after foaming, it is placed in a heat chamber and heated at a heating temperature of about 40°C to 50°C for about 30 minutes to 60 minutes to mature.

또한, 상기 폐기물 가공 단계(S120)에서는 폐캔(40) 내부에서 발포된 수발포 조성물(40)이 경화되면 상기 폐캔(40)의 표면에 복수 개의 관통공을 형성함으로써 상기 수발포 합성 단계(S130)에서 발포금형(230) 내에서 발포되는 수발포 조성물(40)과 상기 폐캔(40) 내부에서 발포된 수발포 조성물(40)이 상호 접착되도록 하여 수발포 조성물(40)과 폐캔(40)간의 접착력을 대폭 강화시킬 수 있다.In addition, in the waste processing step (S120), when the water-foaming composition 40 foamed inside the waste can 40 is cured, the water-foaming synthesis step (S130) by forming a plurality of through holes on the surface of the waste can 40 The adhesive force between the water-repellent composition 40 and the closed can 40 by allowing the water-foaming composition 40 to be foamed in the foam mold 230 and the water-foaming composition 40 foamed inside the closed can 40 to be adhered to each other. Can be greatly enhanced.

예를 들어, 발포금형(230)에 각 폐캔(70) 간에 50mm 내지 100mm 사이에 두고 오와 열을 맞추어 1층 내지 3층 구조로 발포금형(230)에 고정시킨다. 이후 발포기를 이용하여 발포금형(230)에 주입, 발포합성시킨다. 이후 발포금형(230)을 패킹하여 약 5분 내지 10분간 1차숙성시키며, 숙성이 완료된 폴리우레탄 단열재(50)는 금형으로부터 탈형한 후 약 30℃ 내지 60℃의 가열온도에서 30분 내지 60분간 2차 숙성시킨다.For example, the foam mold 230 is placed between 50 mm to 100 mm between each of the closed cans 70, and is fixed to the foam mold 230 in a 1 to 3 layer structure by aligning heat and heat. Subsequently, the foaming mold 230 is injected and foamed by using a foaming machine. Thereafter, the foamed mold 230 is packed to primary aging for about 5 minutes to 10 minutes, and the matured polyurethane insulation 50 is demolded from the mold and then heated at a heating temperature of about 30°C to 60°C for 30 minutes to 60 minutes. 2nd aging.

이와 같이, 각 폐기물을 발포된 폼 즉, 수발포 조성물(40)에 합성시켜 단열재의 품질을 향상시킬 수 있는데, 구체적으로는 수발포 조성물(40)의 공기층을 재생처리된 시트(21,31)가 층층이 합성되어 열차단되면서 열전도율을 낮출 수 있다. 또한, 수발포의 고질적인 치수안정성(수축현상)의 문제도 층층이 시트(21,31)가 견고히 층을 유지하여 수축을 최소화시킴으로써 단열재의 변형을 방지할 수 있다. As described above, the quality of the heat insulating material can be improved by synthesizing each waste into foamed foam, that is, the water-foaming composition 40, and specifically, the air layers of the water-foaming composition 40 are recycled sheets 21 and 31. As the temporary layer is synthesized and thermally blocked, the thermal conductivity can be lowered. In addition, the problem of the dimensional stability (contraction phenomenon) of the water foam can also prevent deformation of the heat insulating material by minimizing shrinkage by keeping the layers 21 and 31 firmly in the layers.

또한, 발포발포금형(230)은 제품사이즈에 맞게 설계하며 폐기물에 영향이 없도록 발포금형(230)온도에 대한 실험을 다방면으로 실시하여 40℃ 내지 50℃가 가장 적합한 결과를 도출할 수 있었다. 또한, 폐기물과 우레탄과의 접착성도 우수하였으며 용융이나 빈공간도 없었다. 그리고 발포금형(230) 내부면에는 테프론 코팅되어 성형완료후 용이하게 단열재를 분리시킬 수 있도록 하여 생산의 효율성을 높이도록 설계하는 것이 바람직하다.In addition, the foamed foam mold 230 was designed to fit the product size, and experiments on the temperature of the foam mold 230 were conducted in various ways so as not to affect the waste, so that 40°C to 50°C was able to derive the most suitable results. In addition, the adhesiveness between waste and urethane was excellent, and there was no melting or empty space. Also, it is preferable to design the foam mold 230 to be coated with Teflon so that the insulation can be easily separated after the molding is completed, thereby increasing production efficiency.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by a limited number of embodiments and drawings, the present invention is not limited thereto, and the technical spirit of the present invention and the following will be described by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims to be described.

10...폐스티로폼 11...폼알갱이
20...폐PET 21...PET시트
30...폐비닐 31...폐비닐시트
40...수발포 조성물 50...폴리우레탄 단열재
70...폐캔 210...교반기
220...해머밀 230...발포금형
S110...수발포 조성물 형성 단계
S120...폐기물 가공 단계
S130...수발포 합성 단계
10... waste styrofoam 11... foam granules
20... waste PET 21... PET sheet
30... waste vinyl 31... waste vinyl sheet
40...Water-repellent composition 50...Polyurethane insulation
70...closed can 210...stirrer
220...hammer mill 230...foam mold
S110...water foam composition forming step
S120...waste processing step
S130...water foam synthesis step

Claims (10)

폴리올, 수발포제 및 첨가제를 교반기(210) 내에서 혼합하여 액상 또는 젤상의 수발포 조성물(40)을 형성하는 수발포 조성물 형성 단계(S110);
폐스티로폼(EPS,10), 폐PET(20), 폐비닐(30) 또는 폐캔(70) 중 어느 하나 이상의 폐기물을 분쇄하거나 시트형태로 성형하거나 내부에 상기 수발포 조성물(40)을 발포 주입하여 가공하는 폐기물 가공 단계(S120); 및
발포성형 공간이 형성된 발포금형(230) 내부에 상기 수발포 조성물(40)과 가공된 폐기물을 투입하여 상호 합성시킨 후 경화시켜 폴리우레탄 단열재(50)를 형성하는 수발포 합성 단계(S130);를 포함하는 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법.
A water-foaming composition forming step (S110) of mixing a polyol, a water-foaming agent, and an additive in a stirrer 210 to form a liquid or gel-like water-foaming composition 40;
Waste styrofoam (EPS, 10), waste PET (20), waste vinyl (30), or waste cans of any one or more of the waste cans (70) are crushed or molded into a sheet form, or foam-injected into the water-foaming composition (40). Waste processing step of processing (S120); And
The water-foaming composition step (S130) to form a polyurethane insulating material 50 by synthesizing each other by injecting the water-foaming composition 40 and the processed waste into the foamed mold 230 having the foam-molding space formed therein to form a polyurethane insulating material 50; Method for manufacturing eco-friendly polyurethane insulation that recycles waste.
청구항 1에 있어서,
상기 폐기물은 폐스티로폼(10)이고,
상기 폐기물 가공 단계(S120)에서는 상기 폐스티로폼(10)을 분쇄하여 폼알갱이(11) 형태로 가공하며,
상기 수발포 합성 단계(S130)에서는 가공된 폼알갱이(11)와 상기 수발포 조성물(40)을 혼합한 후 발포기로 상기 발포금형(230) 내부에 경화제와 함께 주입하여 발포된 수발포 조성물(40) 내에 폼알갱이(11)가 분산배치된 형태로 상호 합성하는 것을 특징으로 하는 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법.
The method according to claim 1,
The waste is waste styrofoam (10),
In the waste processing step (S120), the waste styrofoam 10 is crushed and processed into a form of granules 11,
In the water-foaming synthesis step (S130), the processed foam granules 11 and the water-foaming composition 40 are mixed, and then injected with a curing agent into the foaming mold 230 with a foamer to expand the foamed water-foaming composition 40 Method for manufacturing an eco-friendly polyurethane insulation material with recycled waste, characterized in that the foam particles (11) are synthesized in a distributed manner.
청구항 2에 있어서,
상기 폐기물 가공 단계(S120)에서는 분쇄된 폼알갱이(11)를 페놀수지가 함유된 난연코팅제와 혼합하여 폼알갱이(11)의 표면에 난연코팅제를 코팅하고 코팅된 난연코팅제를 건조시키며,
상기 수발포 합성 단계(S130)에서는 난연코팅제가 건조된 폼알갱이(11)와 상기 수발포 조성물(40)을 혼합하는 것을 특징으로 하는 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법.
The method according to claim 2,
In the waste processing step (S120), the crushed foam granules 11 are mixed with a flame retardant coating agent containing phenolic resin to coat the flame retardant coating agent on the surface of the foam granules 11 and to dry the coated flame retardant coating agent.
In the water-foaming synthesis step (S130), a method for manufacturing an eco-friendly polyurethane insulation material with recycled waste, characterized in that a flame retardant coating agent is mixed with the dried foam granules 11 and the water-foaming composition 40.
청구항 3에 있어서,
상기 폐기물 가공 단계(S120)에서는 페놀수지에 물이 희석되어 점도가 20℃ / 50 내지 100cps(centipoise)인 난연코팅제를 상기 폼알갱이(11)와 혼합하되, 상기 폼알갱이(11)와 난연코팅제 및 경화제를 10 : 7 내지 15 : 0.7 내지 1.5의 비율로 혼합하여 상기 폼알갱이(11)의 표면에 난연코팅제를 코팅하는 것을 특징으로 하는 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법.
The method according to claim 3,
In the waste processing step (S120), water is diluted in phenolic resin to mix a flame retardant coating agent having a viscosity of 20° C. / 50 to 100 cps (centipoise) with the foam granules 11, the foam granule 11 and a flame retardant coating agent, and A method of manufacturing an eco-friendly polyurethane insulation material with recycled waste, characterized in that a flame retardant coating agent is coated on the surface of the foam granules 11 by mixing a curing agent in a ratio of 10:7 to 15:0.7 to 1.5.
청구항 4에 있어서,
상기 폐기물 가공 단계(S120)에서는 표면에 코팅된 난연코팅제를 건조시킨 후 상기 폼알갱이(11)의 입자가 수축되도록 폼알갱이(11)를 10℃ 내지 25℃의 온도로 냉각시키는 것을 특징으로 하는 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법.
The method according to claim 4,
In the waste processing step (S120), after drying the flame-retardant coating agent coated on the surface, the waste characterized in that the foam granules 11 are cooled to a temperature of 10° C. to 25° C. so that the particles of the foam grains 11 contract. Recycled eco-friendly polyurethane insulation manufacturing method.
청구항 1에 있어서,
상기 폐기물은 폐PET(20)이고,
상기 폐기물 가공 단계(S120)에서는 상기 폐PET(20)를 가열하여 용융시킨 후 압착하여 PET시트(21)로 가공하며,
상기 수발포 합성 단계(S130)에서는 발포기로 발포금형(230) 내부에 상기 수발포 조성물(40)을 경화제와 함께 주입하여 수발포 조성물층을 형성하고 형성된 수발포 조성물층의 상부에 상기 PET시트(21)를 배치하는 과정을 반복하여 복수의 수발포 조성물층과 복수의 PET시트(21)가 번갈아 적층된 형태로 수발포 조성물(40)과 PET시트(21)를 상호 합성하는 것을 특징으로 하는 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법.
The method according to claim 1,
The waste is waste PET (20),
In the waste processing step (S120), the waste PET 20 is heated, melted, compressed, and processed into a PET sheet 21,
In the water-foaming synthesis step (S130), the water-foaming composition 40 is injected into the foamed mold 230 with a foaming agent together with a curing agent to form a water-foaming composition layer and the PET sheet on the formed water-foaming composition layer ( 21) Wastes characterized by repeatedly synthesizing the water-repellent composition 40 and the PET sheet 21 in a form in which a plurality of water-repellent composition layers and a plurality of PET sheets 21 are alternately laminated. Recycled eco-friendly polyurethane insulation manufacturing method.
청구항 1에 있어서,
상기 폐기물은 폐비닐(30)이고,
상기 폐기물 가공 단계(S120)에서는 각 폐비닐(30)을 시트형태로 상호 부착하거나 가열하여 용융시킨 후 시트형태로 압착하여 폐비닐시트(31)로 가공하며,
상기 수발포 합성 단계(S130)에서는 발포기로 발포금형(230) 내부에 상기 수발포 조성물(40)을 경화제와 함께 주입하여 수발포 조성물층을 형성하고 형성된 수발포 조성물층의 상부에 상기 폐비닐시트(31)를 배치하는 과정을 반복하여 복수의 수발포 조성물층과 복수의 폐비닐시트(31)가 번갈아 적층된 형태로 수발포 조성물(40)과 폐비닐(30)을 상호 합성하는 것을 특징으로 하는 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법.
The method according to claim 1,
The waste is waste vinyl (30),
In the waste processing step (S120), each waste vinyl 30 is attached to each other in the form of a sheet or heated to melt and then compressed into a sheet to be processed into a waste vinyl sheet 31,
In the water-foaming synthesis step (S130), the water-foaming composition 40 is injected with a curing agent into the foam mold 230 to form a water-foaming composition layer, and the waste vinyl sheet is formed on the formed water-foaming composition layer. (31) by repeating the process of arranging a plurality of water-repellent composition layer and a plurality of waste vinyl sheet (31) alternately stacked in a form in which the water-repellent composition (40) and waste vinyl (30) are mutually synthesized Manufacturing method of eco-friendly polyurethane insulation that recycles waste.
청구항 1에 있어서,
상기 폐기물은 폐캔(70)이고,
상기 폐기물 가공 단계(S120)에서는 폐캔(40)의 내부에 상기 수발포 조성물(40)을 경화제와 함께 주입하여 폐캔(40) 내부에 수발포 조성물(40)이 발포되도록 가공하며,
상기 수발포 합성 단계(S130)에서는 내부에 수발포 조성물(40)이 발포된 복수의 폐캔(40)을 발포금형(230) 내부에 일정간격으로 이격 배치하고, 상기 발포금형(230) 내부에 상기 수발포 조성물(40)을 경화제와 함께 주입하여 발포된 수발포 조성물(40) 내에 각 폐캔(40)이 분산배치된 형태로 상기 수발포 조성물(40)과 폐캔(40)을 상호 합성하는 것을 특징으로 하는 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법.
The method according to claim 1,
The waste is a waste can (70),
In the waste processing step (S120), the water-foaming composition 40 is injected into the waste can 40 with a curing agent to process the water-foaming composition 40 to foam inside the waste can 40,
In the water-foaming synthesis step (S130), a plurality of cans 40 in which the water-foaming composition 40 is foamed is disposed at regular intervals inside the foam mold 230, and the foam mold 230 is placed inside the foam foam mold 230. The water-foaming composition 40 is injected with a curing agent, and each waste can 40 is dispersed in the foamed water-foaming composition 40, and the water-foaming composition 40 and the waste can 40 are synthesized with each other. Manufacturing method of eco-friendly polyurethane insulation by recycling waste.
청구항 8에 있어서,
상기 폐기물 가공 단계(S120)에서는 폐캔(40) 내부에서 발포된 수발포 조성물(40)이 경화되면, 상기 수발포 합성 단계(S130)에서 발포되는 수발포 조성물(40)과 상기 폐캔(40) 내부에서 발포된 수발포 조성물(40)이 상호 접착되도록 상기 폐캔(40)의 표면에 복수 개의 관통공을 형성하는 것을 특징으로 하는 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법.
The method according to claim 8,
In the waste processing step (S120), when the foamed foam composition 40 inside the waste can 40 is cured, the foamed foam composition 40 foamed in the water foam synthesis step (S130) and the waste can 40 inside Eco-friendly polyurethane insulation manufacturing method of recycling waste, characterized in that a plurality of through-holes are formed on the surface of the waste can 40 so that the foamed water-foaming composition 40 is adhered to each other.
청구항 2 내지 청구항 9 중 어느 한 청구항에 있어서,
상기 수발포 조성물 형성 단계(S110)에서는,
상기 수발포 합성 단계(S130)를 거쳐 경화되는 수발포 조성물(40)의 부서짐 현상 및 수축 현상이 감소되도록 Mw(Molecular weight) 400의 제1폴리올, Mw 500의 제2폴리올 및 Mw 1,000의 제3폴리올을 배합하여 OH-Value 300 내지 500 이하가 되도록 한 폴리올 혼합물을 상기 수발포제 및 첨가제와 함께 교반기(210) 내에서 혼합하는 것을 특징으로 하는 폐기물을 재활용한 친환경 폴리우레탄 단열재 제조방법.
The method according to any one of claims 2 to 9,
In the step of forming the water-foaming composition (S110),
The first polyol of Mw (Molecular weight) 400, the second polyol of Mw 500, and the third of Mw 1,000 so that the fracture and shrinkage of the water-foaming composition 40 cured through the water-foaming synthesis step (S130) is reduced. A method for manufacturing an environmentally friendly polyurethane insulation material with recycled waste, characterized in that a polyol mixture is formulated in an agitator 210 together with the water blowing agent and additives so that the OH-Value is 300 to 500 or less by mixing the polyol.
KR1020190004933A 2018-12-10 2019-01-15 Manufacturing method of environment-friendly polyurethane heat insulating material using waste KR20200070963A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180158403 2018-12-10
KR20180158403 2018-12-10

Publications (1)

Publication Number Publication Date
KR20200070963A true KR20200070963A (en) 2020-06-18

Family

ID=71143359

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190004933A KR20200070963A (en) 2018-12-10 2019-01-15 Manufacturing method of environment-friendly polyurethane heat insulating material using waste

Country Status (1)

Country Link
KR (1) KR20200070963A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143021A (en) * 2020-09-04 2020-12-29 朱万礼 Method for recycling polyurethane AB foaming material
KR102612088B1 (en) * 2022-10-27 2023-12-11 주식회사 광운기술 A Fabrication Method for a New Anti-firing Material by Recycling an Anti-firing Material Scrap
KR102630933B1 (en) * 2023-04-18 2024-02-01 주식회사 에코리아 Semi-non-combustible insulation board manufacturing method, manufacturing system and semi-non-combustible insulation board manufactured thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180041916A (en) 2016-10-17 2018-04-25 대우조선해양 주식회사 Complex insulation material and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180041916A (en) 2016-10-17 2018-04-25 대우조선해양 주식회사 Complex insulation material and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143021A (en) * 2020-09-04 2020-12-29 朱万礼 Method for recycling polyurethane AB foaming material
KR102612088B1 (en) * 2022-10-27 2023-12-11 주식회사 광운기술 A Fabrication Method for a New Anti-firing Material by Recycling an Anti-firing Material Scrap
KR102630933B1 (en) * 2023-04-18 2024-02-01 주식회사 에코리아 Semi-non-combustible insulation board manufacturing method, manufacturing system and semi-non-combustible insulation board manufactured thereby

Similar Documents

Publication Publication Date Title
KR20200070963A (en) Manufacturing method of environment-friendly polyurethane heat insulating material using waste
US4018722A (en) Reclaimed plastic material
CA2616415C (en) Composite material including rigid foam with inorganic fillers
CN106117483B (en) Cast polyurethane protecting housing of storage battery and its manufacturing method
Kim et al. Nanoclay reinforced rigid polyurethane foams
CN103467694B (en) A kind of polyurethane plate and preparation method thereof
CN102229698A (en) Method for making heat insulation board by using hard polyurethane foamed waste
CA2943265A1 (en) Process for encapsulating fragile insulation materials within polyisocyanurate
CN103724982A (en) Preparation method of environment-friendly PU (polyurethane) ceiling with flame retardant and sound absorption functions
CN106832204A (en) A kind of modified polyurethane roofing heat insulating material and preparation method thereof
CN110092882A (en) Method based on waste paint slag preparation flame retarded polyurethane-foam material
KR102061128B1 (en) Producing method of anticombustible adiabatic panel using waste urethane and anticombustible adiabatic panel
CN110643099A (en) Environment-friendly polyethylene foam board and preparation method thereof
US20150377406A1 (en) Insulating element
CN1376579A (en) Composite foam sandwich colour steel-phenolic aldehyde plate and its production technology
KR100939035B1 (en) Plate made by mixing heterogeneous material and its manufacturing method
US9643343B2 (en) Method for molding recycled EPS using powder adhesive and steam
KR20150056918A (en) Mehod for manufacturing heat insulating material using waste heat insulating material, and heat insulating material using the smae
Makai et al. The possibilities of Polystyrene waste recycling
KR101648152B1 (en) Manufacturing method of foamed insulation material and foamed insulation material manufactured therefrom
Morris et al. Rigid polyurethane foam: Refrigerator cabinet design and construction
CN107603189A (en) A kind of preparation method of environmentally-friendly low-cost polyurethane ceiling tile materials
CN104592481B (en) A kind of high-fire-resistance polyurethane thermal insulation board and preparation method thereof
KR102391272B1 (en) Apparatus for manufacturing synthetic resin foam sheet
WO2023035698A1 (en) Polyurethane composite, laminated product comprising the polyurethane composite and process for producing the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right