KR20200069502A - Air fuel ratio control method - Google Patents

Air fuel ratio control method Download PDF

Info

Publication number
KR20200069502A
KR20200069502A KR1020180156611A KR20180156611A KR20200069502A KR 20200069502 A KR20200069502 A KR 20200069502A KR 1020180156611 A KR1020180156611 A KR 1020180156611A KR 20180156611 A KR20180156611 A KR 20180156611A KR 20200069502 A KR20200069502 A KR 20200069502A
Authority
KR
South Korea
Prior art keywords
value
lambda
catalyst
oxygen sensor
correction
Prior art date
Application number
KR1020180156611A
Other languages
Korean (ko)
Inventor
김완호
김희섭
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020180156611A priority Critical patent/KR20200069502A/en
Publication of KR20200069502A publication Critical patent/KR20200069502A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The present invention relates to an air-fuel ratio control method for reducing exhaust gas through more robust fuel control using a rear oxygen sensor when maintaining a constant driving state for a long time. According to the present invention, the method comprises: a lambda offset value securing step of securing a lambda offset value according to the degree of deterioration of a catalyst when a driving situation, in which an engine load is kept constant, is determined; a correction target lambda value calculating step of calculating a correction target lambda value by adding the lambda offset value to a target lambda value required by the oxygen sensor behind the catalyst; and a correction feedback control step of performing feedback control so that an actual lambda value measured by the oxygen sensor behind the catalyst converges to the correction target lambda value.

Description

공연비 제어방법{AIR FUEL RATIO CONTROL METHOD}Air-fuel ratio control method {AIR FUEL RATIO CONTROL METHOD}

본 발명은 장시간 동안 일정한 주행상태를 유지하는 경우, 후방 산소센서를 이용한 보다 강건한 연료 제어를 통해 배출가스를 저감하는 공연비 제어방법에 관한 것이다.The present invention relates to an air-fuel ratio control method for reducing exhaust gas through more robust fuel control using a rear oxygen sensor when maintaining a constant driving state for a long time.

가솔린 차량의 경우 강화된 배출가스 대응을 위해 전방/후방 산소센서를 이용한 연료 제어 로직을 사용하고 있다.In the case of gasoline vehicles, fuel control logic using a front/rear oxygen sensor is used to respond to enhanced emissions.

특히, 후방 산소센서는 촉매에서 산화/환원 반응 후의 배기가스의 농후/희박 정도를 측정하여 더욱 정밀한 연료 피드백 제어를 가능하게 하고, 또한 전방 산소센서의 변화 및 열화 정도를 보정하여 배출가스 저감에 도움을 준다.In particular, the rear oxygen sensor measures the richness/leanness of the exhaust gas after the oxidation/reduction reaction in the catalyst to enable more precise fuel feedback control, and also corrects the change and deterioration of the front oxygen sensor to help reduce emissions. Gives

이 같은 후방 산소센서를 이용한 연료 제어는 후방 산소센서에서 요구하는 목표 람다값과 실측 람다값의 차이가 발생하는 경우, PID제어를 통해 연료 제어가 이루어진다. 이때에, PID제어값은 전방 산소센서의 stoichiometric point를 이동하여 전반적인 배출가스 농후/희박 정도를 변경함으로써 배출가스를 저감하게 한다.Fuel control using the rear oxygen sensor is performed through PID control when a difference between a target lambda value and a measured lambda value required by the rear oxygen sensor occurs. At this time, the PID control value reduces the exhaust gas by moving the stoichiometric point of the front oxygen sensor to change the overall exhaust gas richness/leanness.

즉, 배출가스가 가장 우수한 영역에서 후방 산소센서의 람다값이 유지되도록PID제어를 실시하며, 이때에 적절한 게인(gain)량 및 불감대(Deadband)값을 설정하게 된다.That is, PID control is performed so that the lambda value of the rear oxygen sensor is maintained in the region where the exhaust gas is the best, and an appropriate gain amount and deadband value are set at this time.

그런데, 차량의 가감속이 포함된 일반적인 운전 조건과 같이, 촉매에 로딩되는 산소량의 편차가 작은 영역에서는 게인량/deadband 값이 최적화가 되어 있지 않더라도 촉매가 댐핑역할을 하기 때문에 배출가스의 영향이 상대적으로 크지 않다.However, in the area where the variation in the amount of oxygen loaded in the catalyst is small, such as general driving conditions that include acceleration/deceleration of the vehicle, the effect of the exhaust gas is relatively affected because the catalyst plays a damping role even if the gain/deadband value is not optimized. not big.

하지만, 고속도로에서의 크루즈 주행과 같이 장시간 동안 일정한 주행상태를 유지하는 운전 조건에서는, 촉매 내에 로딩되는 산소량이 어느 한 방향으로 계속해서 치우치기 때문에 산소량이 촉매의 한계치를 초과하여 로딩되는 경우, 배출가스의 발생량이 급격하게 증가하는 문제가 발생하게 된다.However, in a driving condition that maintains a constant driving state for a long time, such as a cruise on a highway, when the oxygen amount is loaded in excess of the catalyst limit because the amount of oxygen loaded in the catalyst is continuously biased in one direction, the exhaust gas A problem occurs in which the amount of generated is rapidly increased.

상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The above descriptions as background arts are only for improving understanding of the background of the present invention, and should not be taken as an admission that they correspond to the prior arts already known to those skilled in the art.

KR 10-2011-0116581 AKR 10-2011-0116581 A

본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 안출한 것으로, 장시간 동안 일정한 주행상태를 유지하는 경우, 후방 산소센서를 이용한 보다 강건한 연료 제어를 통해 배출가스를 저감하는 공연비 제어방법을 제공하는 데 있다.The present invention has been made to solve the problems as described above, and when maintaining a constant driving state for a long time, to provide an air-fuel ratio control method for reducing exhaust gas through more robust fuel control using a rear oxygen sensor. .

상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 컨트롤러가 엔진의 부하가 일정하게 유지되는 주행 상황으로 판단시, 촉매의 열화도에 따른 람다옵셋값을 확보하는 람다옵셋값 확보단계; 컨트롤러가 촉매 후방의 산소센서에서 요구하는 목표 람다값에 상기 람다옵셋값을 합산하여 보정목표 람다값을 산출하는 보정목표 람다값 산출단계; 및 컨트롤러가 상기 촉매 후방의 산소센서에서 측정되는 실제 람다값이 상기 보정목표 람다값에 수렴하도록 피드백 제어하는 보정피드백 제어단계;를 포함하는 것을 특징으로 할 수 있다.The configuration of the present invention for achieving the above object, the controller determines the lambda offset value securing a lambda offset value according to the degree of deterioration of the catalyst, when the engine load is determined to be a constant driving condition; A correction target lambda value calculating step of calculating a correction target lambda value by adding the lambda offset value to a target lambda value required by the controller at the oxygen sensor behind the catalyst; And a correction feedback control step in which the controller feedback-controls the actual lambda value measured by the oxygen sensor behind the catalyst to converge to the correction target lambda value.

엔진회전수 및 흡입공기량을 체크하여, 일정 차속 이상에서 상기 엔진회전수 변화율과 흡입공기량 변화율이 일정값 이하인 경우, 엔진의 부하가 일정하게 유지되는 주행 상황으로 판단할 수 있다.By checking the engine speed and the amount of intake air, when the rate of change of the engine speed and the rate of change of the amount of intake air are equal to or less than a predetermined value above a certain vehicle speed, it can be determined as a driving situation in which the load of the engine is kept constant.

상기 람다옵셋값 확보단계는, 일정 차속 이상에서 상기 엔진회전수 변화율과 흡입공기량 변화율이 일정값 이하시, 상기 흡입공기량의 단위시간당 누적흡입공기량과, 목표 람다값과 실제 람다값의 오차인 람다오차값의 단위시간당 누적람다오차값을 산출하는 단계; 상기 누적흡입공기량과 누적람다오차값을 곱하여 연료보정팩터를 산출하는 단계; 상기 연료보정팩터의 절대값이 일정값 초과시, 촉매열화도의 함수에 의해 람다옵셋값이 결정되는 단계;를 포함할 수 있다.In the step of securing the lambda offset value, when the rate of change of the engine speed and the rate of change of the intake air amount are equal to or less than a predetermined vehicle speed, the cumulative intake air amount per unit time of the intake air amount and the target lambda value and the actual lambda value error is a lambda error. Calculating a cumulative lambda error value per unit time of the value; Calculating a fuel correction factor by multiplying the cumulative suction air amount and a cumulative lambda error value; It may include; when the absolute value of the fuel correction factor exceeds a certain value, the lambda offset value is determined by a function of the degree of catalyst degradation.

상기 람다옵셋값 확보단계에서, 상기 엔진회전수 변화율 또는 흡입공기량 변화율이 일정값 초과시, 상기 실제 람다값이 목표 람다값에 수렴하도록 피드백 제어할 수 있다.In the step of securing the lambda offset value, when the rate of change of engine speed or the rate of change of intake air exceeds a predetermined value, feedback control may be performed so that the actual lambda value converges to the target lambda value.

상기 보정피드백 제어단계 이 후에, 후방 산소센서에서 측정된 실제 람다값이 일정범위 내에서 벗어나는 경우, 상기 실제 람다값이 목표 람다값에 수렴하도록 피드백 제어할 수 있다.After the correction feedback control step, if the actual lambda value measured by the rear oxygen sensor is out of a predetermined range, feedback control may be performed so that the actual lambda value converges to the target lambda value.

상기한 과제 해결수단을 통해 본 발명은, 후방 산소센서에서 측정되는 실제 람다값이 보정목표 람다값을 수렴하도록 피드백 제어함으로써, 촉매 내에 산소 로딩량을 적절한 수준으로 유지하게 되고, 이에 배출가스의 발생량이 급격하게 증가하는 것을 방지하는 효과가 있다.The present invention through the above-described problem solving means, by controlling the feedback so that the actual lambda value measured by the rear oxygen sensor converges the correction target lambda value, the oxygen loading amount in the catalyst is maintained at an appropriate level, thereby generating the amount of exhaust gas. This has the effect of preventing the rapid increase.

더불어, 촉매의 열화도가 고려된 람다옵셋값을 목표 람다값에 반영하여 보정함으로써, 촉매열화도에 따라 보정 제어시점과 보정량을 차별화하게 되고, 이에 촉매의 편차 및 열화도에 따라 발생할 수 있는 배출가스 편차를 줄여 강화된 배출가스 규제에 적절하게 대응 가능한 효과도 있다. In addition, by correcting the lambda offset value considering the deterioration degree of the catalyst by reflecting it in the target lambda value, the correction control time point and the amount of correction are differentiated according to the catalyst deterioration degree, and thus, emissions that may occur depending on the deviation and deterioration degree of the catalyst It is also possible to appropriately respond to the strengthened emission regulations by reducing gas deviation.

도 1은 본 발명에 따른 공연비 제어를 위한 시스템 구성을 예시하여 나타낸 도면.
도 2는 본 발명에 따른 공연비 제어과정의 흐름을 나타낸 도면.
1 is a view showing an example of a system configuration for air-fuel ratio control according to the present invention.
2 is a view showing the flow of the air-fuel ratio control process according to the present invention.

본 발명의 바람직한 실시예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.If described in detail with reference to the accompanying drawings, preferred embodiments of the present invention.

도 1은 본 발명에 적용된 공연비 제어 시스템을 도시한 것으로, 도면을 참조하여 설명하면, 배기라인 상에 촉매(1)(ex : 삼원촉매)가 구비되고, 상기 촉매(1)의 전단 및 후단에 전방 산소센서(3) 및 후방 산소센소가 구비된다. 1 shows an air-fuel ratio control system applied to the present invention. Referring to the drawings, a catalyst 1 (ex: a three-way catalyst) is provided on an exhaust line, and the front and rear ends of the catalyst 1 are provided. The front oxygen sensor 3 and the rear oxygen sensor are provided.

그리고, 상기 전방 산소센서(3) 및 후방 산소센서(5)가 컨트롤러(CLR)에 연결되어 각 산소센소에서 측정된 출력값이 컨트롤러(CLR)에 입력되고, 상기 컨트롤러(CLR)에는 엔진회전수 및 흡입공기량이 입력되어, 차량의 주행상태를 판단할 수 있게 된다.Then, the front oxygen sensor 3 and the rear oxygen sensor 5 is connected to the controller (CLR), the output value measured at each oxygen sensor is input to the controller (CLR), the controller (CLR) engine speed and The amount of intake air is input, so that the driving state of the vehicle can be determined.

한편, 본 발명은 상기 공연비 제어시스템을 이용하여 공연비를 제어하는 방법으로, 람다옵셋값 산출단계와, 람다값 산출단계 및 보정피드백 제어단계를 포함하여 구성이 된다.On the other hand, the present invention is a method for controlling the air-fuel ratio using the air-fuel ratio control system, and includes a lambda offset value calculating step, a lambda value calculating step, and a correction feedback control step.

도 1 및 도 2를 참조하여 설명하면, 먼저 람다옵셋값 확보단계에서는, 상기 컨트롤러(CLR)를 통해 엔진의 부하가 일정하게 유지되는 주행 상황으로 판단시, 촉매(1)의 열화도에 따른 람다옵셋값을 확보하게 된다.Referring to FIGS. 1 and 2, first, in the step of securing the lambda offset value, when it is determined as a driving situation in which the load of the engine is kept constant through the controller CLR, the lambda according to the degree of deterioration of the catalyst 1 The offset value is secured.

이때에, 엔진의 부하가 일정하게 유지되는 주행상황인지 판단하기 위한 조건으로, 엔진회전수와 흡입공기량을 이용할 수 있다.At this time, the engine speed and the amount of intake air can be used as conditions for determining whether the engine load is a driving situation in which the load is kept constant.

즉, 엔진회전수 및 흡입공기량을 체크하여, 일정 차속 이상에서 상기 엔진회전수 변화율이 일정값 이하이고, 흡입공기량 변화율이 일정값 이하인 경우, 엔진의 부하가 일정하게 유지되는 주행 상황으로 판단하게 된다.That is, by checking the engine speed and the amount of intake air, when the rate of change of the engine speed is equal to or less than a certain value at a predetermined vehicle speed or higher, and the rate of change of the amount of intake air is equal to or less than the predetermined value, it is determined as a driving situation in which the engine load is kept constant. .

아울러, 보정목표 람다값 산출단계에서는, 컨트롤러(CLR)에서 촉매(1) 후방의 산소센서에서 요구하는 목표 람다값에 상기 람다옵셋값을 합산하여 보정목표 람다값을 산출하게 된다. 여기서, 상기 목표 람다값은 실측 람다값에 피드백제어량이 합산된 값일 수 있다.In addition, in the step of calculating the target lambda value, the controller CLR calculates the target lambda value by adding the lambda offset value to the target lambda value required by the oxygen sensor behind the catalyst 1. Here, the target lambda value may be a value obtained by adding a feedback control amount to an actual lambda value.

그리고, 보정피드백 제어단계에서는, 컨트롤러(CLR)가 상기 촉매(1) 후방의 산소센서에서 측정되는 실제 람다값이 상기 보정목표 람다값에 수렴하도록 피드백 제어하게 된다.In the correction feedback control step, the controller CLR feedback-controls the actual lambda value measured by the oxygen sensor behind the catalyst 1 to converge to the correction target lambda value.

즉, 일반적으로 가감속이 반복되는 운전조건의 경우, 후방 산소센서(5)의 실측 람다값이 목표 람다값을 수렴하도록 피드백 제어하게 된다.That is, in general, in the case of an operation condition in which acceleration/deceleration is repeated, feedback control is performed such that the measured lambda value of the rear oxygen sensor 5 converges the target lambda value.

다만, 이 과정에서 고속도로의 크루즈 주행과 같이 장시간 동안 일정한 주행상태를 유지하는 운전조건을 만족하게 되면, 상기 목표 람다값에 촉매열화도가 반영된 람다옵셋값(+/-)을 추가하여 상기 목표 람다값을 보정함으로써, 신규의 보정목표 람다값을 산출하게 된다. However, in this process, if a driving condition that maintains a constant driving condition for a long time, such as cruise driving on a highway, is satisfied, the target lambda is added to the target lambda value by adding a lambda offset value (+/-) that reflects catalyst deterioration. By correcting the value, a new correction target lambda value is calculated.

따라서, 상기 후방 산소센서(5)에서 측정되는 실제 람다값이 상기 보정목표 람다값을 수렴하도록 피드백 제어함으로써, 촉매(1) 내에 산소 로딩량을 적절한 수준으로 유지하게 되고, 이에 배출가스의 발생량이 급격하게 증가하는 것을 방지하게 된다.Accordingly, by controlling the actual lambda value measured by the rear oxygen sensor 5 to converge the correction target lambda value, the oxygen loading amount in the catalyst 1 is maintained at an appropriate level, and thus the amount of generated exhaust gas It prevents a sharp increase.

아울러, 도 2를 참조하여 상기 람다옵셋값을 확보하는 방법에 대해 구체적으로 설명하면, 차량이 일정 차속 이상에서 상기 엔진회전수 변화율과 흡입공기량 변화율이 일정값 이하시, 상기 흡입공기량의 단위시간당 누적흡입공기량을 산출하고, 이와 함께 상기 목표 람다값과 실제 람다값의 오차인 람다오차값의 단위시간당 누적람다오차값을 산출한다. 이는 아래의 수식(1) 및 수식(2)와 같이 표현될 수 있다.In addition, with reference to FIG. 2, the method for securing the lambda offset value will be described in detail. When the engine speed change rate and the change rate of the intake air amount are less than or equal to a predetermined value at a predetermined vehicle speed or more, the accumulated amount of the intake air amount per unit time The intake air amount is calculated, and the cumulative lambda error value per unit time of the lambda error value which is an error between the target lambda value and the actual lambda value is calculated. This can be expressed as Equation (1) and Equation (2) below.

누적흡입공기량(kg/h) = 흡입공기량(n-1) + 흡입공기량(n)......(1)Cumulative suction air volume (kg/h) = suction air volume (n-1) + suction air volume (n)......(1)

누적람다오차값 = 람다오차값(n-1) + 람다오차값(n-1)..........(2)Accumulated lambda error value = lambda error value (n-1) + lambda error value (n-1) .....(2)

그리고, 상기 누적흡입공기량과 누적람다오차값을 곱하여 연료보정팩터를 산출한다. 이는 아래의 수식(3)와 같이 표현될 수 있다.Then, the fuel correction factor is calculated by multiplying the cumulative suction air amount and the cumulative lambda error value. This can be expressed as Equation (3) below.

연료보정팩터 = 누적흡입공기량 × 누적람다오차값..............(3)Fuel correction factor = cumulative suction air amount × cumulative lambda error value............(3)

이어서, 상기 연료보정팩터의 절대값이 일정값 초과하는 경우, 촉매열화도의 함수에 의해 람다옵셋값이 결정될 수 있게 된다. 여기서, 상기 람다옵셋값은 촉매열화도의 함수에 의해 미리 결정된 값일 수 있는 것으로, 상기 촉매열화도를 검출하는 방법은 공지의 기술로 생략하기로 한다.Subsequently, when the absolute value of the fuel correction factor exceeds a certain value, the lambda offset value can be determined as a function of the degree of catalyst deterioration. Here, the lambda offset value may be a predetermined value as a function of the degree of catalyst degradation, and a method for detecting the degree of catalyst degradation will be omitted by a known technique.

람다옵셋값 = f(Catalyst OSC)Lambda offset value = f (Catalyst OSC)

OSC : Oxygen Storage CapacityOSC: Oxygen Storage Capacity

즉, 촉매(1)의 열화도에 따라 배출가스의 발생시점이 다르기 때문에 촉매(1)의 열화도가 고려된 람다옵셋값을 목표 람다값에 반영하여 보정함으로써, 촉매열화도에 따라 보정 제어시점과 보정량을 차별화하게 되고, 이에 촉매(1)의 편차 및 열화도에 따라 발생할 수 있는 배출가스 편차를 줄여 강화된 배출가스 규제에 적절하게 대응할 수 있게 된다.That is, since the generation time of the exhaust gas is different depending on the degree of deterioration of the catalyst 1, the correction and control time according to the degree of catalyst deterioration by correcting the lambda offset value considering the deterioration degree of the catalyst 1 to be reflected in the target lambda value The over-correction amount is differentiated, and accordingly, the variation in the emission gas that may occur depending on the variation and the degree of deterioration of the catalyst 1 is reduced, thereby making it possible to appropriately respond to the strengthened emission regulation.

한편, 본 발명은 엔진의 부하가 일정하게 유지되는 주행 상황이 아닌 경우, 기존의 피드백 제어를 통해 후방 산소센서(5)를 이용한 연료 제어가 이루어지도록 구성하게 된다.On the other hand, the present invention is configured to perform fuel control using the rear oxygen sensor 5 through the existing feedback control when the engine load is not a constant driving condition.

구체적으로, 상기 람다옵셋값 확보단계에서, 상기 엔진회전수 변화율 또는 흡입공기량 변화율이 일정값 초과시, 상기 실제 람다값이 목표 람다값에 수렴하도록 피드백 제어하게 된다.Specifically, in the step of securing the lambda offset value, when the rate of change of the engine speed or the rate of change of the intake air exceeds a predetermined value, feedback control is performed so that the actual lambda value converges to the target lambda value.

또한, 상기 보정피드백 제어단계 이 후에, 후방 산소센서(5)에서 측정된 실제 람다값이 일정범위 내에서 벗어나는 경우, 상기 실제 람다값이 목표 람다값에 수렴하도록 피드백 제어할 수 있다.In addition, after the correction feedback control step, if the actual lambda value measured by the rear oxygen sensor 5 is out of a predetermined range, feedback control may be performed so that the actual lambda value converges to the target lambda value.

물론, 이 경우 상기 수식(1) 및 수식(2)에서 적산된 누적값들은 모두 초기화되면서 기존의 피드백 제어로직과 동일한 제어가 수행이 된다.Of course, in this case, the accumulated values accumulated in Equations (1) and (2) are all initialized, and the same control as the existing feedback control logic is performed.

이하에서는, 본 발명에 따른 공연비 제어방법을 순차적으로 설명하기로 한다.Hereinafter, the air-fuel ratio control method according to the present invention will be sequentially described.

도 2를 참조하면, 먼저 컨트롤러(CLR)에서 엔진회전수와, 흡입공기량과, 전후방 산소센서(5)의 실측 람다값과 목표 람다값을 입력받고(S10), 입력된 후방 산소센서(5)의 목표 람다값과 실측 람다값의 차이값을 계산하여 람다오차값을 확보한다(S20).Referring to FIG. 2, first, the engine speed, the intake air amount, and the measured lambda value and the target lambda value of the front and rear oxygen sensors 5 are input from the controller CLR (S10), and the input rear oxygen sensor 5 is input. The difference between the target lambda value and the actual lambda value is calculated to obtain a lambda error value (S20).

이어서, 상기 엔진회전수 변화율이 A 미만이고, 상기 흡입공기량 변화율이 B 미만인지 판단한다(S30).Subsequently, it is determined whether the rate of change of the engine speed is less than A and the rate of change of the intake air amount is less than B (S30).

S30의 판단 결과, 이들 조건을 만족하면 단위시간당 흡입공기량을 누적하여 누적흡입공기량을 산출하고, 단위시간당 람다오차값을 누적하여 누적람다오차값을 산출한다(S40).As a result of the determination of S30, if these conditions are satisfied, the cumulative suction air amount is calculated by accumulating the intake air amount per unit time, and the cumulative lambda error value per unit time is calculated to calculate the cumulative lambda error value (S40).

그리고, 상기 산출된 누적흡입공기량과 누적람다오차값을 곱하여 연료보정팩터를 산출한다(S50).Then, the fuel correction factor is calculated by multiplying the calculated cumulative suction air amount and the cumulative lambda error value (S50).

이어서, 산출된 연료보정팩터의 절대값이 C를 초과하는지 판단하고(S60), S60의 판단결과 C를 초과시, 촉매열화도의 함수에 의해 결정되는 람다옵셋값을 확보한다(S70).Subsequently, it is determined whether the calculated absolute value of the fuel correction factor exceeds C (S60), and when the determination result of S60 exceeds C, a lambda offset value determined by a function of catalyst deterioration is secured (S70).

이 후, 후방 산소센서(5)에서 측정된 실측 람다값과, 피드백제어량(기존 목표 람다값을 수렴하기 위해 요구되는 피드백제어량)과, 상기 람다옵셋값을 합산하여, 새로운 보정목표 람다값을 산출한다(S80).Thereafter, the actual measured lambda value measured by the rear oxygen sensor 5, the feedback control amount (a feedback control amount required to converge the existing target lambda value), and the lambda offset value are summed to calculate a new correction target lambda value. (S80).

이에, 상기 후방 산소센서(5)에서 측정되는 실제 람다값이 상기 보정목표 람다값을 수렴하도록 연료를 피드백 제어한다(S90).Accordingly, the fuel is feedback-controlled so that the actual lambda value measured by the rear oxygen sensor 5 converges the correction target lambda value (S90).

이어서, 상기 후방 산소센서(5)에서 측정되는 실측 람다값이 D와 E 사이의 일정범위 내에 있는지 판단하고(S100), 상기 범위 내에 있는 경우 S70단계로 진행하여 순환하게 된다.Subsequently, it is determined whether the measured lambda value measured by the rear oxygen sensor 5 is within a certain range between D and E (S100), and if it is within the above range, the process proceeds to step S70 to circulate.

다만, 상기 후방 산소센서(5)에서 측정되는 실측 람다값이 D와 E 사이에서 벗어나는 경우, S40단계에서 산출된 누적흡입공기량 및 누적람다오차값을 0으로 리셋한다(S110). However, when the measured lambda value measured by the rear oxygen sensor 5 deviates between D and E, the cumulative suction air amount and cumulative lambda error value calculated in step S40 are reset to 0 (S110).

그러면, 상기 실측 람다값에 피드백제어량이 더해진 목표 람다값을 산출하고(S120), 상기 실측 람다값이 산출된 목표 람다값을 수렴하도록 연료를 피드백 제어하게 된다(S130).Then, a target lambda value with a feedback control amount added to the measured lambda value is calculated (S120), and the fuel is feedback-controlled to converge the calculated target lambda value (S130).

상술한 바와 같이, 본 발명은 후방 산소센서(5)에서 측정되는 실제 람다값이 보정목표 람다값을 수렴하도록 피드백 제어함으로써, 촉매(1) 내에 산소 로딩량을 적절한 수준으로 유지하게 되고, 이에 배출가스의 발생량이 급격하게 증가하는 것을 방지하게 된다.As described above, the present invention provides feedback control so that the actual lambda value measured by the rear oxygen sensor 5 converges the correction target lambda value, thereby maintaining the oxygen loading amount in the catalyst 1 at an appropriate level and discharging it. The amount of gas generated is prevented from increasing rapidly.

또한, 촉매(1)의 열화도가 고려된 람다옵셋값을 목표 람다값에 반영하여 보정함으로써, 촉매열화도에 따라 보정 제어시점과 보정량을 차별화하게 되고, 이에 촉매(1)의 편차 및 열화도에 따라 발생할 수 있는 배출가스 편차를 줄여 강화된 배출가스 규제에 적절하게 대응할 수 있게 된다.In addition, by correcting the lambda offset value considering the deterioration degree of the catalyst 1 to the target lambda value, the correction control time point and the amount of correction are differentiated according to the catalyst deterioration degree, and thus the deviation and deterioration degree of the catalyst 1 Accordingly, it is possible to appropriately respond to the strengthened emission regulations by reducing the fluctuations in emissions that may occur.

한편, 본 발명은 상기한 구체적인 예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.On the other hand, the present invention has been described in detail only with respect to the specific examples described above, but it is obvious to those skilled in the art that various modifications and variations are possible within the technical scope of the present invention, and it is natural that such modifications and modifications belong to the appended claims. .

1 : 촉매
3 : 전방 산소센서
5 : 후방 산소센서
CLR : 컨트롤러
1: Catalyst
3: Forward oxygen sensor
5: rear oxygen sensor
CLR: Controller

Claims (5)

컨트롤러가 엔진의 부하가 일정하게 유지되는 주행 상황으로 판단시, 촉매의 열화도에 따른 람다옵셋값을 확보하는 람다옵셋값 확보단계;
컨트롤러가 촉매 후방의 산소센서에서 요구하는 목표 람다값에 상기 람다옵셋값을 합산하여 보정목표 람다값을 산출하는 보정목표 람다값 산출단계; 및
컨트롤러가 상기 촉매 후방의 산소센서에서 측정되는 실제 람다값이 상기 보정목표 람다값에 수렴하도록 피드백 제어하는 보정피드백 제어단계;를 포함하는 공연비 제어방법.
When the controller determines that the engine load is a constant driving condition, a lambda offset value securing step of securing a lambda offset value according to the degree of deterioration of the catalyst;
A correction target lambda value calculating step of calculating a correction target lambda value by adding the lambda offset value to a target lambda value required by the controller at the oxygen sensor behind the catalyst; And
And a correction feedback control step in which the controller feedback-controls the actual lambda value measured by the oxygen sensor at the rear of the catalyst to converge to the correction target lambda value.
청구항 1에 있어서,
엔진회전수 및 흡입공기량을 체크하여, 일정 차속 이상에서 상기 엔진회전수 변화율과 흡입공기량 변화율이 일정값 이하인 경우, 엔진의 부하가 일정하게 유지되는 주행 상황으로 판단하는 것을 특징으로 하는 공연비 제어방법.
The method according to claim 1,
Air-fuel ratio control method, characterized in that by checking the engine speed and the amount of intake air, when the rate of change of the engine speed and the rate of change of the amount of intake air is less than or equal to a predetermined value at a predetermined vehicle speed or higher, the engine load is determined as a driving condition.
청구항 2에 있어서,
상기 람다옵셋값 확보단계는,
일정 차속 이상에서 상기 엔진회전수 변화율과 흡입공기량 변화율이 일정값 이하시, 상기 흡입공기량의 단위시간당 누적흡입공기량과, 목표 람다값과 실제 람다값의 오차인 람다오차값의 단위시간당 누적람다오차값을 산출하는 단계;
상기 누적흡입공기량과 누적람다오차값을 곱하여 연료보정팩터를 산출하는 단계;
상기 연료보정팩터의 절대값이 일정값 초과시, 촉매열화도의 함수에 의해 람다옵셋값이 결정되는 단계;를 포함하는 것을 특징으로 하는 공연비 제어방법.
The method according to claim 2,
The step of securing the lambda offset value,
When the rate of change of the engine speed and the rate of change of the intake air amount below a certain value above a certain vehicle speed, the accumulated intake air amount per unit time of the intake air amount and the cumulative lambda error value per unit time of the lambda error value which is an error between the target lambda value and the actual lambda value Calculating a;
Calculating a fuel correction factor by multiplying the cumulative suction air amount and a cumulative lambda error value;
And when the absolute value of the fuel correction factor exceeds a certain value, determining a lambda offset value as a function of the degree of catalyst deterioration.
청구항 3에 있어서,
상기 람다옵셋값 확보단계에서, 상기 엔진회전수 변화율 또는 흡입공기량 변화율이 일정값 초과시, 상기 실제 람다값이 목표 람다값에 수렴하도록 피드백 제어하는 것을 특징으로 하는 공연비 제어방법.
The method according to claim 3,
In the step of securing the lambda offset value, the air-fuel ratio control method characterized in that when the rate of change of the engine speed or the rate of change of the intake air exceeds a certain value, the actual lambda value is feedback-controlled to converge to the target lambda value.
청구항 3에 있어서,
상기 보정피드백 제어단계 이 후에, 후방 산소센서에서 측정된 실제 람다값이 일정범위 내에서 벗어나는 경우, 상기 실제 람다값이 목표 람다값에 수렴하도록 피드백 제어하는 것을 특징으로 하는 공연비 제어방법.
The method according to claim 3,
After the correction feedback control step, if the actual lambda value measured by the rear oxygen sensor is within a certain range, feedback control is performed so that the actual lambda value converges to the target lambda value.
KR1020180156611A 2018-12-07 2018-12-07 Air fuel ratio control method KR20200069502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180156611A KR20200069502A (en) 2018-12-07 2018-12-07 Air fuel ratio control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180156611A KR20200069502A (en) 2018-12-07 2018-12-07 Air fuel ratio control method

Publications (1)

Publication Number Publication Date
KR20200069502A true KR20200069502A (en) 2020-06-17

Family

ID=71405573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180156611A KR20200069502A (en) 2018-12-07 2018-12-07 Air fuel ratio control method

Country Status (1)

Country Link
KR (1) KR20200069502A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110116581A (en) 2010-04-19 2011-10-26 콘티넨탈 오토모티브 시스템 주식회사 Lambda controlling system and method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110116581A (en) 2010-04-19 2011-10-26 콘티넨탈 오토모티브 시스템 주식회사 Lambda controlling system and method thereof

Similar Documents

Publication Publication Date Title
EP2354505B1 (en) Exhaust gas purifying apparatus for internal combustion engine
JP3161539B2 (en) Method and apparatus for controlling air-fuel ratio of an internal combustion engine
US8977461B2 (en) Vehicle control system
JP4292909B2 (en) Air-fuel ratio control device for internal combustion engine
KR101854057B1 (en) Internal combustion engine controller
JPH07253039A (en) Fuel controller using adaptive addend
JPWO2009128169A1 (en) Exhaust gas purification device for internal combustion engine
US7225609B2 (en) Control apparatus for internal combustion engine
US7788903B2 (en) Air-fuel ratio control apparatus of internal combustion engine
JP7222366B2 (en) Control device for internal combustion engine
US10851696B2 (en) Method and device for operating an exhaust gas aftertreatment device of an engine system including an internal combustion engine
WO2010095221A1 (en) Exhaust gas purification system for internal combustion engine
JP4007384B2 (en) Air-fuel ratio control device for internal combustion engine
US7438066B2 (en) Method and device for controlling an internal combustion engine
US6513496B2 (en) Fuel injection controller of engine
JP2016027256A (en) Internal combustion engine control system
US8020369B2 (en) Expanded mixture control for reducing exhaust-gas emissions
US20020029560A1 (en) Active adaptive bias for closed loop air/fuel control system
KR20200069502A (en) Air fuel ratio control method
EP1052383A2 (en) Engine air-to fuel ratio control system
US20190063346A1 (en) Device and method for controlling internal combustion engine
KR101628463B1 (en) Device and method for controlling auto cruise of vehicle
JP2006257904A (en) Catalyst deterioration judging device of internal combustion engine
JP7159614B2 (en) Air-fuel ratio controller
JP2009293510A (en) Catalyst diagnosis device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application