KR20200065977A - Method of preparing polyaspartic ester - Google Patents

Method of preparing polyaspartic ester Download PDF

Info

Publication number
KR20200065977A
KR20200065977A KR1020180152957A KR20180152957A KR20200065977A KR 20200065977 A KR20200065977 A KR 20200065977A KR 1020180152957 A KR1020180152957 A KR 1020180152957A KR 20180152957 A KR20180152957 A KR 20180152957A KR 20200065977 A KR20200065977 A KR 20200065977A
Authority
KR
South Korea
Prior art keywords
catalyst
weight
polyetheramine
polyaspartic ester
compound
Prior art date
Application number
KR1020180152957A
Other languages
Korean (ko)
Inventor
김진형
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020180152957A priority Critical patent/KR20200065977A/en
Publication of KR20200065977A publication Critical patent/KR20200065977A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • B01J35/08
    • B01J35/1019
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/42Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having etherified hydroxy groups and at least two amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/02Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C219/04Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C219/06Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having the hydroxy groups esterified by carboxylic acids having the esterifying carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms of an acyclic saturated carbon skeleton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for preparing a catalyst for a reductive amination reaction, a catalyst for a reductive amination reaction produced thereby, and a method for preparing a polyaspartic ester in high yield from a polyetheramine compound with high amine value prepared using the same.

Description

폴리아스파르틱 에스테르의 제조방법 {METHOD OF PREPARING POLYASPARTIC ESTER}Manufacturing method of polyaspartic ester {METHOD OF PREPARING POLYASPARTIC ESTER}

본 발명은 폴리아스파르틱 에스테르의 제조방법에 관한 것이다.The present invention relates to a method for producing polyaspartic esters.

폴리아스파르틱 에스테르는 고품질의 폴리우레아 코팅에 자동차 및 건축용 용도로 주로 사용되고, 디알킬 말레이트와 방향족 및 지방족 아민의 마이클 첨가반응을 통해 제조될 수 있는데 지방족 아민은 방향족 아민에 기초한 폴리아스파르틱 에스테르보다 이소시아네이트와 빠르게 반응하고 점도가 낮아 상업적으로 많이 활용되고 있다. Polyaspartic esters are mainly used for high-quality polyurea coatings for automotive and architectural applications, and can be prepared through the Michael addition reaction of dialkyl maleates with aromatic and aliphatic amines. Aliphatic amines are polyaspartic based on aromatic amines. It reacts with isocyanate faster than esters and has a low viscosity, making it widely used commercially.

폴리아스파르틱 에스테르를 제조하기 위해서는 원료로 사용되는 폴리에테르아민(polyether amine: PEA)이 97% 이상의 아민가(total amine value,%)을 가지는 것이 바람직하다. 아민가가 97% 미만일 경우 미반응물(폴리프로필렌글리콜)이 용출되어 최종 제품의 도막이 불안정하고 경화가 이루어지지 않는 문제점을 가진다. 한국 특허출원 제2012-0108179호의 경우, PEA를 생산하는 파우더 형태의 촉매를 상업 공정상 도입하게 될 경우 본 반응은 액상-고압 반응으로 진행되는 특성으로 연속적으로 제품을 생산하는데 어려움이 있고, 반응물과 파우더 형태의 촉매를 분리하기 위해 추가 공정으로 촉매 회수/여과/세척 단계가 적용되어 경제성이 낮은 단점이 있다. 또한 파우더 형태의 촉매는 침전법으로 제조되기 때문에 함침법으로 촉매를 제조할 경우보다 제조 공정이 훨씬 복잡하다. 한국 특허출원 제2011-0021513호에서는 이소프로필 알콜(isopropyl alcohol: IPA)로부터 모노-이소프로필 아민(mono-isopropyl amine: MIPA)을 합성하는 것에 관한 것이지만 원하는 제품(MIPA) 생성 수율이 80% 미만으로 매우 낮다는 단점이 있다. In order to prepare a polyaspartic ester, it is preferable that polyether amine (PEA) used as a raw material has a total amine value (%) of 97% or more. When the amine value is less than 97%, unreacted materials (polypropylene glycol) are eluted, and thus, the coating film of the final product is unstable and hardly cured. In the case of Korean Patent Application No. 2012-0108179, when a PEA-producing powder-type catalyst is introduced in a commercial process, this reaction is a liquid-high-pressure reaction, and it is difficult to continuously produce products. In order to separate the catalyst in powder form, a catalyst recovery/filtration/washing step is applied as an additional process, and thus has a disadvantage of low economic efficiency. In addition, since the catalyst in the form of powder is produced by a precipitation method, the manufacturing process is much more complicated than when the catalyst is prepared by an impregnation method. Korean Patent Application No. 2011-0021513 relates to the synthesis of mono-isopropyl amine (MIPA) from isopropyl alcohol (IPA), but the desired product (MIPA) yield is less than 80%. It has the disadvantage of being very low.

또한, 종래 폴리에테르아민 기반 폴리아스파르틱 에스테르는 환류장치 기반 질소분위기에서 염기성 촉매와 폴리에테르아민 존재 하에 디알킬 말레이트를 가하고 후 80℃에서 20시간 정도 교반하여 반응시켜 제조되었는데, 중국 특허출원공개 제103524700A호에 따르면 90 ℃에서 15시간, 100℃ 13시간, 180℃에서~220℃ 반응 시 2시간이 소요된다. 최종 혼합물은 마이클 첨가반응이 충분히 일어나도록 실온에서 약 한달 정도 보관하며 최종 물질은 투명한 액체로 노란색을 띈다. 환류장치를 이용한 가열방법은 피가열물 내의 수분을 열복사에 의한 열전도나 대류에 의해 피가열물의 표면에서부터 내부로 전달하여 가열하는 방법이다. 이러한 가열방법은 투과되어야 하는 다양한 물질의 열전도도에 영향을 받기 때문에 에너지 전달 면에서 매우 느리고 비효율적인 방법이다. 그리고 혼합물이 열평형에 도달하기 전까지 시료 용기의 온도가 혼합물의 온도보다 높아지고, 전도열은 반응의 조작 및 제어를 어렵게 한다. 외부 열원에 의한 열은 열원의 표면으로부터 전도와 대류를 통해 전달해야 하기 때문에 대상 물질이 고르게 가열되기까지 시간이 많이 소모되며, 반응 용기에 담긴 경우 용기까지 가열해야 하므로 에너지가 추가로 소모된다. 또한 교반 효율이 좋더라도 열원과의 거리 차이에 따라 구역별로 가열되는 정도가 다른 현상이 발생할 수 있으며 이는 불균일 반응을 초래할 수 있다. 또한 반응시간을 줄이기 위해 온도가 100℃ 이상일 경우, 디알킬말레이트 간의 결합에 따라 생성된 부 반응물의 분리 문제가 존재한다. 또한 완전히 반응을 시키기 위해 한달 이상의 추가 반응 시간이 소요되는 문제점을 가진다. In addition, the conventional polyetheramine-based polyaspartic ester was prepared by adding a dialkyl malate in the presence of a basic catalyst and polyetheramine in a nitrogen atmosphere based on a reflux device, followed by stirring at 80°C for about 20 hours to react. According to Publication No. 103524700A, it takes 15 hours at 90°C, 13 hours at 100°C, and 2 hours at 180°C to 220°C. The final mixture is stored for about a month at room temperature so that the Michael addition reaction takes place sufficiently, and the final material is yellow in a transparent liquid. The heating method using the reflux device is a method in which the moisture in the object to be heated is transferred from the surface of the object to be heated by heat conduction or convection by heat radiation. This heating method is very slow and inefficient in terms of energy transfer because it is affected by the thermal conductivity of various materials to be permeated. In addition, the temperature of the sample container becomes higher than the temperature of the mixture until the mixture reaches thermal equilibrium, and the heat of conduction makes operation and control of the reaction difficult. Since the heat from the external heat source has to be transferred from the surface of the heat source through conduction and convection, it takes a lot of time until the target material is evenly heated. In addition, even if the stirring efficiency is good, a phenomenon in which the degree of heating is different for each zone may occur according to a distance from a heat source, which may cause a non-uniform reaction. In addition, in order to reduce the reaction time, when the temperature is 100°C or more, there is a problem of separation of side reactants generated according to the bond between dialkyl maleates. In addition, there is a problem that it takes an additional reaction time more than a month to completely react.

이에 본 발명자들은 촉매 제조 방법을 단순화시키고, 반복 사용이 용이한 형태를 갖는 담체를 적용한 신규 촉매를 사용하여 아민가가 높은 폴리에테르아민 화합물을 제조한 후 폴리아스파르틱 에스테르를 단시간에 고수율로 수득하는 제조방법을 개발하였다.Accordingly, the present inventors have simplified the method for preparing the catalyst and prepared a polyetheramine compound having a high amine value using a new catalyst to which a carrier having a form that can be easily used repeatedly is obtained, and then obtained a polyaspartic ester in high yield in a short time. The manufacturing method was developed.

한국 특허출원 제2012-0108179호Korean Patent Application No. 2012-0108179 한국 특허출원 제2011-0021513호Korean Patent Application No. 2011-0021513 중국 특허출원공개 제103524700A호Chinese Patent Application Publication No. 103524700A

본 발명은 환원성 아민화 반응용 촉매를 사용하여 높은 아민가로 제조된 폴리에테르아민으로부터 폴리아스파르틱 에스테르(Polyaspartic ester: PAE)를 고수율로 제조하는 방법을 제공한다. The present invention provides a method for producing polyaspartic ester (PAE) in high yield from polyetheramines prepared at high amine values using a catalyst for a reductive amination reaction.

본 발명은, (1) 환원성 아민화 반응용 촉매 및 수소의 존재 하에, 폴리프로필렌글리콜(PPG)을 아민 화합물과 접촉시켜 폴리에테르아민을 생성하는 단계; 및 (2) 상기 단계 (1)에서 생성된 폴리에테르아민을 염기성 촉매의 존재 하에 디(C1-6알킬)말레이트와 혼합하여 가열 반응시키는 단계를 포함하며, 폴리에테르아민 투입 중량 대비 폴리아스파라틱 에스테르(polyaspartic ester, PAE) 수득률이 99.5% 이상에 도달하는 시간이 5 내지 60분인 폴리아스파르틱 에스테르(polyaspartic ester, PAE)의 제조방법을 제공한다.The present invention, (1) in the presence of a catalyst for a reductive amination reaction and hydrogen, contacting polypropylene glycol (PPG) with an amine compound to produce a polyetheramine; And (2) heating the polyetheramine produced in step (1) by mixing it with di(C 1-6 alkyl) maleate in the presence of a basic catalyst, and reacting it with heat. It provides a method for producing a polyaspartic ester (PAE) in which the time for the yield of the polyaspartic ester (PAE) to reach 99.5% or more is 5 to 60 minutes.

본 발명은 촉매 제조방법을 단순화시키고, 반복 사용이 용이한 형태를 갖는 담체(예, 구형)를 적용한 신규 촉매를 활용해 폴리프로필렌글리콜(polypropylene glycol: PPG)의 환원성 아민화 반응으로부터 99% 이상의 아민가(Amine Value)을 가지는 폴리에테르아민(polyether amine: PEA)을 제조함으로써 미반응 PPG가 용출되어 최종 제품의 도막이 불안정하고 경화가 이루어지지 않는 문제점을 방지하였다. 또한 1 시간 내에 99.5%이상의 높은 수득률로 폴리에테르아민 기반 폴리아스파르틱 에스테르를 수득할 수 있다.The present invention simplifies the method for preparing the catalyst and utilizes a new catalyst to which a carrier (eg, spherical) having a form that can be easily used repeatedly is used, and a amine value of 99% or more from the reductive amination reaction of polypropylene glycol (PPG) By preparing polyether amine (PEA) having (Amine Value), unreacted PPG was eluted to prevent the unstable coating and curing of the final product. In addition, polyetheramine-based polyaspartic esters can be obtained with a high yield of 99.5% or more within 1 hour.

도 1은 제조된 촉매의 환원온도를 확인하기 위해 수소 분위기에서 TPR(temperature-programmed reduction) 분석한 결과이다.
도 2는 제조된 촉매의 XRD 분석 결과이다.
1 is a result of TPR (temperature-programmed reduction) analysis in a hydrogen atmosphere to confirm the reduction temperature of the prepared catalyst.
2 is an XRD analysis result of the prepared catalyst.

본 발명은 환원성 아민화 반응용 촉매를 사용하여 높은 아민가로 제조된 폴리에테르아민으로부터 폴리아스파르틱 에스테르(polyaspartic ester: PAE)를 고수율로 제조하는 방법을 제공한다.The present invention provides a method for producing a polyaspartic ester (PAE) in high yield from polyetheramines prepared at a high amine value using a catalyst for a reductive amination reaction.

본 발명에 따른 일 구현예에 따르면, According to one embodiment according to the invention,

(1) 환원성 아민화 반응용 촉매 및 수소의 존재 하에, 폴리프로필렌글리콜(PPG)을 아민 화합물과 접촉시켜 폴리에테르아민(PEA)을 생성하는 단계; 및(1) in the presence of a catalyst for a reductive amination reaction and hydrogen, contacting polypropylene glycol (PPG) with an amine compound to produce polyetheramine (PEA); And

(2) 상기 단계 (1)에서 생성된 폴리에테르아민을 염기성 촉매의 존재 하에 디(C1-6알킬)말레이트와 혼합하여 가열 반응시키는 단계를 포함하며, 폴리에테르아민 투입 중량 대비 폴리아스파라틱 에스테르(polyaspartic ester, PAE) 수득률이 99.5% 이상에 도달하는 시간이 5 내지 60분인, 폴리아스파르틱 에스테르의 제조방법이 제공된다.(2) mixing the polyetheramine produced in step (1) with a di(C 1-6 alkyl) maleate in the presence of a basic catalyst to heat react, and polyaspara to polyetheramine input weight. A method for producing a polyaspartic ester is provided, wherein the time for the yield of the polyaspartic ester (PAE) to reach 99.5% or more is 5 to 60 minutes.

폴리아스파르틱 에스테르를 고수율로 제조하기 위해서는 원료로 사용되는 폴리에테르아민이 적어도 97% 이상의 아민가(Amine Value)을 가져야 한다. 아민가가 97% 미만일 경우 미반응 PPG가 용출되어 최종 제품의 도막이 불안정하고 경화가 이루어지지 않는 문제점을 가진다. 상기 목적을 달성하기 위하여, 본 발명의 일 구현예에 따른 환원성 아민화 반응용 촉매는 담체에 고정된 코발트 화합물, 이트륨 화합물 및 팔라듐 화합물을 포함하는 금속 담지 촉매일 수 있다.In order to produce polyaspartic esters in high yield, the polyetheramine used as a raw material must have an amine value of at least 97% or more. When the amine value is less than 97%, unreacted PPG is eluted, resulting in unstable coating of the final product and hardening. In order to achieve the above object, the catalyst for a reductive amination reaction according to an embodiment of the present invention may be a metal supported catalyst comprising a cobalt compound, a yttrium compound and a palladium compound fixed to a carrier.

본 발명에 따른 일 구현예에 따르면, 상기 환원성 아민화 반응용 촉매는 코발트(Co) 화합물, 이트륨(Y) 화합물 및 팔라듐(Pd) 화합물이 180 내지 250m2/g의 비표면적 및 330 내지 400m2/g 의 메조 기공 표면적을 갖는 구형의 γ-Al2O3 담체에 담지된 촉매이다.According to one embodiment according to the present invention, the catalyst for the reductive amination reaction is a cobalt (Co) compound, a yttrium (Y) compound and a palladium (Pd) compound of 180 to 250m 2 / g specific surface area and 330 to 400m 2 It is a catalyst supported on a spherical γ-Al 2 O 3 carrier having a meso-pore surface area of /g.

본 발명의 일 구현예에서, 상기 담체는 SiO2, θ-Al2O3, γ-Al2O3 및 SiO2-Al2O3로 이루어진 군에서 선택될 수 있으며, 예를 들어 500-600℃에서 5-7시간, 또는 600℃에서 6시간, 또는 600-700℃ 에서 4-6시간 열처리한 γ-Al2O3 일 수 있다.In one embodiment of the present invention, the carrier may be selected from the group consisting of SiO 2 , θ-Al 2 O 3 , γ-Al 2 O 3 and SiO 2 -Al 2 O 3 , for example 500-600 It may be γ-Al 2 O 3 heat-treated at 5°C for 5-7 hours, or at 600°C for 6 hours, or at 600-700°C for 4-6 hours.

본 발명의 일 구현예에서, 상기 담체는 180~250m2/g의 비표면적과 산점을 갖는 γ- Al2O3 일 수 있다In one embodiment of the present invention, the carrier may be γ-Al 2 O 3 having a specific surface area and an acid point of 180 to 250 m 2 /g.

본 발명의 일 구현예에서, 상기 담체는 메조 기공(meso-pore)의 분포가 총 담체기공 용적에 대해 55% 이상인 γ- Al2O3 일 수 있고/있거나, 구형, 원통형, 또는 정방형(큐브형)의 γ- Al2O3 일 수 있다.In one embodiment of the present invention, the carrier may be γ-Al 2 O 3 having a distribution of meso-pore of 55% or more relative to the total carrier pore volume, and/or spherical, cylindrical, or square (cube Form) of γ-Al 2 O 3 .

본 발명의 일 구현예에서, 상기 금속들은 전구체로 예를 들어 Cobalt(II) nitrate hexahydrate, Cobalt(II) chloride hexahydrate, Cobalt(II) acetate tetrahydrate, Yttrium nitrate hexahydrate, Yttrium(III) chloride hexahydrate, Palladium(II) nitrate dihydrate, Palladium(II) acetate, Palladium(II) chloride, Palladium(II) Bis(trifluoromethansulfonate) 등을 사용할 수 있다.In one embodiment of the present invention, the metals are precursors, for example, Cobalt(II) nitrate hexahydrate, Cobalt(II) chloride hexahydrate, Cobalt(II) acetate tetrahydrate, Yttrium nitrate hexahydrate, Yttrium(III) chloride hexahydrate, Palladium( II) nitrate dihydrate, Palladium(II) acetate, Palladium(II) chloride, Palladium(II) Bis(trifluoromethansulfonate) can be used.

본 발명의 일 구현예에서, 코발트 화합물, 이트륨 화합물 및 팔라듐 화합물을 활성성분으로 포함하는 환원성 아민화 반응용 촉매에서, 코발트 금속은 담체 중량을 기준으로 1 내지 12 중량%의 양으로 함유되고, 이트륨 금속은 코발트 금속의 중량을 기준으로 0.05 내지 30 중량%의 양으로 함유되고, 상기 팔라듐 금속은 코발트 금속의 중량을 기준으로 0.01 내지 50 중량%의 양으로 함유될 수 있다. In one embodiment of the present invention, in a catalyst for a reductive amination reaction comprising a cobalt compound, a yttrium compound and a palladium compound as an active ingredient, the cobalt metal is contained in an amount of 1 to 12% by weight based on the weight of the carrier, and yttrium The metal is contained in an amount of 0.05 to 30% by weight based on the weight of the cobalt metal, and the palladium metal may be contained in an amount of 0.01 to 50% by weight based on the weight of the cobalt metal.

상기와 같은 담체에 전술한 활성성분을 담지시키는 방법은 수분이 제거된(dehydrated) 담체에 활성성분을 직접 담지시키는 방법, 또는 활성성분과 담체를 혼합하여 침강법으로 담지시킨 후 소성하는 방법 등 당업계에 공지된 통상의 담지 방법이 적용될 수 있다.The method of supporting the above-described active ingredient on the carrier as described above is a method of directly supporting the active ingredient on a dehydrated carrier, or a method of mixing the active ingredient and the carrier to support it by sedimentation, followed by firing. Conventional loading methods known in the industry can be applied.

이때, 상기 담체 상에 담지되는 활성성분의 함량은 최소한도의 활성이 발현될 수 있는 정도 이상의 범위와, 담체 도입에 따른 활성성분의 사용량 감량 효과 등을 감안하여 결정될 수 있으므로, 특별히 제한되지 않는다. 다만, 바람직하게는, 상기 활성성분은 담체 100 중량부를 기준으로 1 중량부 이상, 또는 1 내지 200 중량부, 또는 10 내지 150 중량부로 포함될 수 있다. 여기서, 상기 담체 100 중량부를 기준으로 활성성분이 100 중량부로 포함될 경우를 '활성성분이 50 중량%로 담지되었다'라고 표현할 수 있다.At this time, the content of the active ingredient supported on the carrier may be determined in consideration of a range over which the minimum activity can be expressed and the effect of reducing the amount of the active ingredient used according to the introduction of the carrier, and is not particularly limited. However, preferably, the active ingredient may be included in 1 part by weight or more, or 1 to 200 parts by weight, or 10 to 150 parts by weight based on 100 parts by weight of the carrier. Here, when the active ingredient is included in 100 parts by weight based on 100 parts by weight of the carrier, it can be expressed as'the active ingredient is supported at 50% by weight'.

이 밖에도, 상기 촉매는 전술한 활성성분의 활성도를 보다 더 향상시킬 수 있는 조촉매 화합물을 더욱 포함할 수 있다. 상기 조촉매 화합물은 전술한 담체 상에 함께 담지될 수 있으며, 당업계에 공지된 통상의 조촉매 화합물들이 특별한 제한 없이 채택될 수 있다.In addition, the catalyst may further include a cocatalyst compound that can further improve the activity of the above-described active ingredient. The co-catalyst compound may be carried together on the above-described carrier, and conventional co-catalyst compounds known in the art may be employed without particular limitation.

본 발명에 따라 제조된 촉매는 촉매의 환원온도를 현저히 낮출 수 있어 촉매의 비활성화 요인을 제거할 수 있어 촉매의 수명을 장기적으로 유지할 있는데, 이를 확인하기 위하여 본 발명자들은 촉매 담체로 600℃에서 6시간 열처리한 구형 γ-Al2O3를 사용하고, 각 금속들은 전구체로 각각 Cobalt(II) nitrate hexahydrate (Purity, 98%), Yttrium nitrate hexahydrate (Purity, 99.999%), Palladium(II) nitrate dihydrate (Purity, 14.47%) 를 사용하여 촉매를 제조하였다. 이 때, 상기 각 금속들은 Cobalt 전구체 중량비 100 기준으로 무게를 측정하여 준비하였는데, Yttrium은 1 중량부, Palladium은 각각 0 중량부, 0.1 중량부, 및 0.2 중량부를 전해액에 혼화하여 알루미나 담체에 함침법(Incipient wetness impregnation)으로 고정화하였다. 제조된 촉매의 환원온도를 확인하기 위하여 수소 분위기에서 TPR(temperature-programmed reduction)로 각각의 촉매를 분석한 결과는 도 1과 같다. 도 1에 나타난 바와 같이, 코발트 화합물과 이트륨 화합물로 이루어진 이원 촉매에 팔라듐 화합물을 투입함으로써(도 1에서 Pd(X 1)은 Cobalt 전구체 중량비 100 기준으로 Pd 0.2 중량부 투입, Pd(X 1/2)은 Cobalt 전구체 중량비 100 기준으로 Pd 0.1 중량부 투입, Pd(X 0)은 Pd을 미투입을 의미함) 515.9℃ 이상의 고온의 환원온도를 258.8℃로 절반 가량 낮출 수 있음을 확인할 수 있었다. 또한, 도 2에 나타난 바와 같이, 촉매의 X선 회절분석을 통해 220℃의 환원온도 조건에서도 팔라듐에 의해 Co3O4가 대부분 환원되어 코발트 금속으로 존재하는 것이 확인되었다.The catalyst prepared according to the present invention can significantly lower the reduction temperature of the catalyst, thereby removing the deactivation factor of the catalyst, thereby maintaining the life of the catalyst for a long time. To confirm this, the present inventors used a catalyst carrier at 600°C for 6 hours Heat-treated spherical γ-Al 2 O 3 is used, and each metal is a precursor to each of Cobalt(II) nitrate hexahydrate (Purity, 98%), Yttrium nitrate hexahydrate (Purity, 99.999%), and Palladium(II) nitrate dihydrate (Purity). , 14.47%). At this time, each of the metals was prepared by measuring the weight based on the Cobalt precursor weight ratio of 100, Yttrium is 1 part by weight, Palladium is 0 parts by weight, 0.1 parts by weight, and 0.2 parts by weight of the electrolyte solution, impregnated into the alumina carrier (Incipient wetness impregnation). The results of analyzing each catalyst with a temperature-programmed reduction (TPR) in a hydrogen atmosphere to confirm the reduction temperature of the prepared catalyst are shown in FIG. 1. As shown in FIG. 1, by adding a palladium compound to a binary catalyst consisting of a cobalt compound and a yttrium compound (Pd(X 1) in FIG. 1 is 0.2 parts by weight of Pd based on 100 weight ratio of Cobalt precursor, Pd(X 1/2 ) Is 0.1 parts by weight of Pd based on the weight ratio of Cobalt precursor, Pd(X 0) means that Pd is not introduced). It was confirmed that the reduction temperature of high temperature of 515.9°C or higher can be reduced by half to 258.8°C. In addition, as shown in FIG. 2, it was confirmed through the X-ray diffraction analysis of the catalyst that Co 3 O 4 was mostly reduced by palladium even at a reduction temperature of 220° C. and existed as a cobalt metal.

이와 같은 본 발명에 따른 촉매는 폴리프로필렌글리콜(PPG)의 환원성 아민화를 통한 폴리에테르아민(PEA)의 제조에 사용될 수 있다.The catalyst according to the present invention may be used for the production of polyetheramine (PEA) through reductive amination of polypropylene glycol (PPG).

한편, 본 발명의 또 다른 구현예에 따르면, 상기 단계 (1)에서 아민 화합물은 아민기를 포함하는 통상적인 화합물이 특별한 제한 없이 사용될 수 있으며, 바람직하게는 1급 아민 화합물 또는 2급 아민 화합물이 사용될 수 있다. 보다 바람직하게는, 상기 아민 화합물은 암모니아, 메틸아민, 에틸아민, 프로필아민, 부틸아민, 에틸렌디아민, 아닐린, 피페라진, 아미노에틸피페라진, 디에틸렌트리아민, 트리에틸렌테트라아민, 테트라에틸렌펜타아민, 펜타에틸렌헥사아민, 디에틸아민, 디프로필아민, 디부틸아민, 이소프로필아민, 디이소프로필아민, 디이소프로판올아민, 에탄올아민, 디에탄올아민, 및 디이소부틸렌아민으로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.On the other hand, according to another embodiment of the present invention, in the step (1), the amine compound may be a conventional compound containing an amine group without particular limitation, and preferably a primary amine compound or a secondary amine compound may be used. Can be. More preferably, the amine compound is ammonia, methylamine, ethylamine, propylamine, butylamine, ethylenediamine, aniline, piperazine, aminoethylpiperazine, diethylenetriamine, triethylenetetraamine, tetraethylenepentaamine , Pentaethylenehexaamine, diethylamine, dipropylamine, dibutylamine, isopropylamine, diisopropylamine, diisopropanolamine, ethanolamine, diethanolamine, and diisobutyleneamine It may be one or more compounds.

상기 단계 (1)에서 폴리프로필렌글리콜을 아민 화합물과 접촉시키는 단계에서, 반응물의 중량비는 일련의 반응이 충분히 이루어질 수 있는 범위 내에서 반응 효율 등을 고려하여 결정될 수 있으므로 특별히 한정되지 않는다. 다만, 본 발명에 따르면, 상기 단계는 폴리프로필렌글리콜 대 아민 화합물의 몰 비율 1:5 내지 1:30, 또는 1:10 내지 1:20, 및/또는 폴리프로필렌글리콜 대 수소의 몰 비율 1:0.1 내지 1:5 에서 수행되는 것이 반응 효율의 향상 측면에서 유리할 수 있다.In step (1), in the step of contacting the polypropylene glycol with an amine compound, the weight ratio of the reactants is not particularly limited as it can be determined in consideration of reaction efficiency and the like within a range in which a series of reactions can be sufficiently performed. However, according to the present invention, the step comprises a molar ratio of polypropylene glycol to amine compound 1:5 to 1:30, or 1:10 to 1:20, and/or a molar ratio of polypropylene glycol to hydrogen 1:0.1. It may be advantageous in that it is performed at 1:5 to improve the reaction efficiency.

상기 단계 (1)에서 폴리프로필렌글리콜의 분자량(Mw)은 200 내지 4000 일 수 있다.In step (1), the molecular weight (Mw) of the polypropylene glycol may be 200 to 4000.

그리고, 상기 단계 (1)은 20 ℃ 내지 350 ℃의 온도 및 1 bar 내지 300 bar의 압력 하에서, 또는 20 ℃ 내지 300 ℃의 온도 및 1 bar 내지 250 bar의 압력 하에서, 또는 20 ℃ 내지 250 ℃의 온도 및 1bar 내지 220 bar의 압력 하에서 수행되는 것이 반응 효율의 향상 측면에서 유리할 수 있다.And, the step (1) is at a temperature of 20 ℃ to 350 ℃ and a pressure of 1 bar to 300 bar, or at a temperature of 20 ℃ to 300 ℃ and a pressure of 1 bar to 250 bar, or 20 ℃ to 250 ℃ It can be advantageous in terms of improvement of reaction efficiency to be performed under temperature and pressure of 1 bar to 220 bar.

본 발명에 따른 일 구현예에 따르면, 상기 단계 (1)에서 생성된 폴리에테르아민은 99% 이상의 아민가(Amine Value)을 가질 수 있다. According to one embodiment according to the present invention, the polyetheramine produced in step (1) may have an amine value of 99% or more.

본 발명에 따른 일 구현예에서, 상기 단계 (1)에서 Batch 반응기를 이용할 수 있고, 반응기 내부에는 예컨대 SUS 재질의 바스켓을 활용해 촉매 충진 공간을 확보하여 교반에 의한 촉매 유실을 방지할 수 있다. 이 때, 바스켓 내부에 일정량의 촉매를 충전하고 원료(PPG)대비 암모니아는 5 내지 30몰비, 수소는 0.1 내지 5몰비로 투입하여 100bar 이상의 고압 조건에서 반응을 수행할 수 있다.In one embodiment according to the present invention, the batch reactor may be used in step (1), and a catalyst filling space may be secured by using, for example, a basket made of SUS material to prevent catalyst loss due to agitation. At this time, a certain amount of the catalyst is charged into the basket, and ammonia is added in a ratio of 5 to 30 moles, and hydrogen is added in a ratio of 0.1 to 5 moles compared to the raw material (PPG) to perform the reaction under a high pressure condition of 100 bar or more.

한편, 상기 단계 (2)는 하기 반응식 1로 예시될 수 있다.Meanwhile, the step (2) may be exemplified by the following scheme 1.

[반응식 1][Scheme 1]

Figure pat00001
Figure pat00001

본 발명에 따른 일 구현예에서, 상기 단계 (2)에서 가열 반응은 마이크로웨이브를 조사하면서 수행될 수 있고, 마이크로웨이브의 진동수는 1.0 내지 10 GHz 또는 2.0 내지 8.0 GHz 일 수 있다.In one embodiment according to the present invention, the heating reaction in step (2) may be performed while irradiating the microwave, and the frequency of the microwave may be 1.0 to 10 GHz or 2.0 to 8.0 GHz.

본 발명에 따른 일 구현예에서, 상기 단계 (2)에서 가열 반응은 30 내지 120℃에서 3 내지 70분간 수행될 수 있고, 또는 40 내지 100℃에서 5 내지 60분간 수행될 수 있다.In one embodiment according to the present invention, the heating reaction in step (2) may be performed at 30 to 120°C for 3 to 70 minutes, or at 40 to 100°C for 5 to 60 minutes.

상기 단계 (2)의 염기성 촉매는 피리딘(pyridine), 수산화나트륨(NaOH), 수산화바륨(Ba(OH)2), 나트륨에톡시드(Sodium ethoxide), 피퍼리딘(piperidine), 2,4,6-트리(디메틸아미오메틸)페놀(2,4,6-tris(dimethylaminomethyl)phenol, 트리페닐포스핀(triphenylphosphine)으로 이루어진 군에서 선택되는 하나 이상일 수 있다.The basic catalyst of step (2) is pyridine, sodium hydroxide (NaOH), barium hydroxide (Ba(OH) 2 ), sodium ethoxide, piperidine, 2,4,6 -Tri(dimethylamiomethyl)phenol (2,4,6-tris(dimethylaminomethyl)phenol, triphenylphosphine) may be one or more selected from the group consisting of.

본 발명에 따른 일 구현예에서, 상기 단계 (2)의 염기성 촉매는 폴리에테르아민의 총 중량에 대해 0.1% 이하로 존재할 수 있다. 본 발명에 따른 일 구현예에서, 상기 단계 (2)의 염기성 촉매는 폴리에테르아민의 총 중량에 대해 0.03 내지 0.1%의 함량으로 존재할 수 있다.In one embodiment according to the present invention, the basic catalyst of step (2) may be present in an amount of 0.1% or less based on the total weight of the polyetheramine. In one embodiment according to the present invention, the basic catalyst of step (2) may be present in an amount of 0.03 to 0.1% based on the total weight of polyetheramine.

본 발명에 따른 일 구현예에서, 상기 단계 (2)의 디(C1-6알킬)말레이트는 디에틸말레이트일 수 있다.In one embodiment according to the present invention, the di(C 1-6 alkyl) maleate in step (2) may be diethyl maleate.

또한, 본 발명에 따른 폴리아스파르틱 에스테르 화합물의 제조방법은 전술한 단계들 이외에도 상기 각 단계의 이전 또는 이후에 당업계에 공지된 통상적인 단계를 더욱 포함하여 수행될 수 있다.In addition, the method for preparing a polyaspartic ester compound according to the present invention may be performed by further including conventional steps known in the art before or after each step in addition to the above-described steps.

본 발명에 따른 일 구현예에 따른 마이크로웨이브 가열법을 사용한 폴레에테르아민 기반 폴리아스파르틱 에스테르의 제조방법은 종래 환류 장치를 이용한 가열법에 비해 시료를 신속히 가열하므로 전처리 시간이 짧고 용액 전체가 균일하게 가열되는 장점이 있어 반응시간을 단축할 수 있다는 장점이 있다. 또한 외부요인으로부터 단전된 독립적인 공간에서 반응을 일으키기 때문에 시료 오염과 실험자가 위험한 산에 노출되는 것을 막아주어 반응 중 발생할 수 있는 위험 요인을 배제할 수 있다. 나아가 마이크로웨이브를 이용한 반응은 용기 내부의 온도와 입력을 정확히 측정하여 반응조건을 제어하므로 재현성 및 회수율을 향상시킬 수 있다. The method for preparing a polyetheramine-based polyaspartic ester using a microwave heating method according to an embodiment of the present invention rapidly heats a sample compared to a heating method using a conventional reflux device, so that the pretreatment time is short and the entire solution is uniform It has the advantage of being heated so that the reaction time can be shortened. In addition, since it reacts in an independent space that is cut off from external factors, it can prevent contamination of the sample and exposure of the experimenter to dangerous acids, thereby excluding risk factors that may occur during the reaction. Furthermore, the reaction using microwave can accurately measure the temperature and input inside the container to control the reaction conditions, thereby improving reproducibility and recovery.

본 반응은 폴리에테르아민의 총 중량을 기준으로 0.1% 이하의 촉매 존재 하에 낮은 온도로 짧은 반응 시간 안에, 99% 이상의 높은 수득률로 폴레에테르아민 기반 폴리아스파르틱 에스테르를 제조할 수 있다. The present reaction can produce polyetheramine based polyaspartic esters with a high yield of 99% or more in a short reaction time at a low temperature in the presence of a catalyst of 0.1% or less based on the total weight of the polyetheramine.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나, 본 발명은 여러 가지 다양한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art to which the present invention pertains can easily practice. However, the present invention can be implemented in many different forms and is not limited to the embodiments described herein.

우선, 하기와 같은 방법으로 촉매(제조예 1)를 제조하였고, 실시예 1 내지 4에서 상기 촉매를 사용하여 폴리에테르아민을 제조한 후 폴리아스파르틱 에스테르를 제조하였다.First, a catalyst (Preparation Example 1) was prepared by the following method, and polyetheramines were prepared using the catalyst in Examples 1 to 4, and then polyaspartic esters were prepared.

제조예 1Preparation Example 1

촉매 담체로 600℃에서 6시간 동안 열처리 한 구형 γ-Al2O3 로서 235.5 m2/g의 비표면적과 산점을 갖고 메조 기공 분포가 총 담체기공 용적의 100%인 γ-Al2O3를 사용하였다.A spherical γ-Al 2 O 3 by heat treatment at 600 ℃ for 6 hours the catalyst support 235.5 m 2 / g of specific surface area and acid site to have mesopore distribution of the γ-Al 2 O 3 100% of the total carrier pore volume Used.

각 금속의 전구체들은 원하는 질량비로 다음과 같이 무게를 측정하였다. Cobalt(II) nitrate hexahydrate (Purity, 98%) 26g Yttrium nitrate hexahydrate (Purity, 99.999%) 는 Cobalt 전구체 중량비 100 기준으로 6 중량부, Palladium(II) nitrate dihydrate (Purity, 14.47%)는 Cobalt 전구체 중량비 100 기준 0.1 중량부를 포함하도록 각 전구체들을 준비하였다. 준비한 전구체들은 모두 혼화하여 1M HCl 용액 70g에 용해하였다. 혼합한 전구체 용액을 완전히 용해하기 위하여 2시간 동안 교반 한 후, γ-Al2O3 담체 100g에 함침하였다. 전구체가 담지 된 촉매의 수분을 제거하기 위하여 12시간 동안 130℃ 오븐에서 건조하였다. 건조한 촉매는 350℃에서 6시간 동안 열처리하여 최종 촉매를 완성하였다.The precursors of each metal were weighed as follows in a desired mass ratio. Cobalt(II) nitrate hexahydrate (Purity, 98%) 26 g Yttrium nitrate hexahydrate (Purity, 99.999%) is 6 parts by weight based on 100 Cobalt precursor weight ratio, Palladium(II) nitrate dihydrate (Purity, 14.47%) is Cobalt precursor weight ratio 100 Each precursor was prepared to contain 0.1 parts by weight of the reference. The prepared precursors were all mixed and dissolved in 70 g of 1M HCl solution. After stirring for 2 hours to completely dissolve the mixed precursor solution, it was impregnated with 100 g of γ-Al 2 O 3 carrier. The precursor was dried in a 130° C. oven for 12 hours to remove moisture from the supported catalyst. The dried catalyst was heat treated at 350° C. for 6 hours to complete the final catalyst.

실시예 1Example 1

교반기를 갖춘 고압반응기에 상기 제조예 1에서 얻어진 촉매 58.8g, 반응 원료인 폴리프로필렌글리콜(PPG) 294g을 충진하였다. 상기 고압반응기 내의 대기를 실온에서 질소로 대체한 후, 수소 기체를 약 50bar 고압반응기 내로 도입하고 고압반응기 내부 온도를 220℃로 상승시켜 2시간 동안 촉매 전처리 단계를 수행하였다. 이러한 촉매 전처리 단계를 통해 Cobalt oxide를 Cobalt 금속으로 환원시켜 폴리프로필렌글리콜로부터 폴리에테르아민(PEA)을 제조하는 데 활성을 갖도록 하였다. 촉매 전처리 단계 후에는 액체 상태의 암모니아를 100g 투입한 후, 고압 반응기 내부 압력이 50bar가 되도록 수소를 투입한 다음 고압 반응기 내부 온도를 220℃로 상승시켜 2시간 동안 반응시켜 폴리프로필렌글리콜로부터 폴리에테르아민을 제조하였다. 생성된 폴리에테르아민은 적정을 통해 생성물 내 아민 전환율(Total amine, %)을 측정하였다.A high pressure reactor equipped with a stirrer was charged with 58.8 g of the catalyst obtained in Preparation Example 1, and 294 g of polypropylene glycol (PPG) as a reaction raw material. After replacing the atmosphere in the high-pressure reactor with nitrogen at room temperature, hydrogen gas was introduced into the high-pressure reactor at about 50 bar and the internal temperature of the high-pressure reactor was increased to 220° C. to perform a catalyst pretreatment step for 2 hours. Through this catalyst pretreatment step, Cobalt oxide was reduced to Cobalt metal so as to have activity in preparing polyetheramine (PEA) from polypropylene glycol. After the catalyst pre-treatment step, 100 g of ammonia in the liquid state is added, then hydrogen is added so that the pressure inside the high-pressure reactor is 50 bar, and then the temperature inside the high-pressure reactor is increased to 220° C. and reacted for 2 hours to react polyetheramine from polypropylene glycol. Was prepared. The resulting polyetheramine was measured for amine conversion (Total amine, %) in the product through titration.

상기 제조한 폴리에테르아민 294g과 피리딘 0.58g과 디에틸말레이트 50.62g 혼합 용액에 마이크로웨이브를 2.4GHz의 진동수로 40℃ 에서 60분 동안 조사함으로써 상기 반응을 수행하여 폴리에테르아민 기반 폴리아스파르틱 에스테르 수득률(원료물질인 폴리에테르아민(PEA)로부터 목적물질인 폴리아스파르틱 에스테르(PAE)를 얻는 경우에 실제로 얻은 양의 이론양에 대한 비율)을 측정하였다. The above reaction was performed by irradiating microwaves to a mixture solution of 294 g of polyetheramine prepared above and 0.58 g of pyridine and 50.62 g of diethyl maleate at 40°C for 60 minutes at a frequency of 2.4 GHz, thereby performing polyetheramine-based polyaspartic The ester yield (the ratio to the theoretical amount of the amount actually obtained in the case of obtaining the target material polyaspartic ester (PAE) from the raw material polyetheramine (PEA)) was measured.

실시예 2Example 2

실시예 1에서 마이크로웨이브 조사 시 반응온도를 60℃, 반응시간을 40분으로 설정한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리아스파르틱 에스테르를 제조하였다.In Example 1, a polyaspartic ester was prepared in the same manner as in Example 1, except that the reaction temperature was set to 60°C and the reaction time to 40 minutes during microwave irradiation.

실시예 3Example 3

실시예 1에서 마이크로웨이브 조사 시 반응온도를 80℃, 반응시간을 20분으로 설정한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리아스파르틱 에스테르를 제조하였다.In Example 1, the polyaspartic ester was prepared in the same manner as in Example 1, except that the reaction temperature was set to 80°C and the reaction time to 20 minutes during microwave irradiation.

실시예 4Example 4

실시예 1에서 마이크로웨이브 조사 시 반응온도를 100℃, 반응시간을 5분으로 설정한 것을 제외하고는 실시예 1과 동일한 방법으로 폴리아스파르틱 에스테르를 제조하였다.In Example 1, a polyaspartic ester was prepared in the same manner as in Example 1, except that the reaction temperature was set to 100°C and the reaction time to 5 minutes during microwave irradiation.

상기 실시예 1 내지 4에 따른 결과를 표 1에 나타내었다.Table 1 shows the results according to Examples 1 to 4 above.

Figure pat00002
Figure pat00002

상기 실시예를 통해 알 수 있는 바와 같이, 본 발명에 따라 촉매 제조 방법을 단순화시키고, 반복 사용이 용이한 형태를 갖는 담체를 적용한 신규 촉매를 활용해 폴리프로필렌글리콜의 환원성 아민화 반응으로부터 99% 이상의 아민가(Amine Value)을 가지는 폴리에테르아민을 수득할 수 있으며, 이로부터 마이크로웨이브 가열법을 활용해 폴리에테르아민의 총중량을 기준으로 0.1% 이하의 염기성 촉매 존재 하에 100℃ 이하의 온도로 1 시간 내에, 99.7%이상의 높은 수득률로 폴리에테르아민 기반 폴리아스파르틱 에스테르를 제조할 수 있다.As can be seen from the above examples, the method for preparing a catalyst according to the present invention is simplified, and a 99% or more from the reductive amination reaction of polypropylene glycol is utilized by utilizing a new catalyst to which a carrier having a form that is easily used repeatedly is applied. It is possible to obtain a polyetheramine having an amine value (Amine Value), from which a microwave heating method is utilized within 1 hour at a temperature of 100°C or less in the presence of a basic catalyst of 0.1% or less based on the total weight of the polyetheramine. , It is possible to prepare a polyetheramine-based polyaspartic ester with a high yield of 99.7% or more.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since the specific parts of the present invention have been described in detail above, it is obvious to those skilled in the art that this specific technique is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (7)

(1) 환원성 아민화 반응용 촉매 및 수소의 존재 하에, 폴리프로필렌글리콜(PPG)을 아민 화합물과 접촉시켜 폴리에테르아민(PEA)을 생성하는 단계; 및
(2) 상기 단계 (1)에서 생성된 폴리에테르아민을 염기성 촉매의 존재 하에 디(C1-6알킬)말레이트와 혼합하여 가열 반응시키는 단계를 포함하며, 폴리에테르아민 투입 중량 대비 폴리아스파라틱 에스테르(polyaspartic ester, PAE) 수득률이 99.5% 이상에 도달하는 시간이 5 내지 60분인, 폴리아스파르틱 에스테르의 제조방법.
(1) in the presence of a catalyst for a reductive amination reaction and hydrogen, contacting polypropylene glycol (PPG) with an amine compound to produce polyetheramine (PEA); And
(2) mixing the polyetheramine produced in step (1) with a di(C 1-6 alkyl) maleate in the presence of a basic catalyst to heat react, and polyaspara to polyetheramine input weight. A method for producing a polyaspartic ester, wherein the time for the yield of the polyaspartic ester (PAE) to reach 99.5% or more is 5 to 60 minutes.
제1항에 있어서, 상기 환원성 아민화 반응용 촉매는 코발트(Co) 화합물, 이트륨(Y) 화합물 및 팔라듐(Pd) 화합물이 180 내지 250m2/g의 비표면적 및 330 내지 400m2/g 의 메조 기공 표면적을 갖는 구형의 γ-Al2O3 담체에 담지된 것인, 폴리아스파르틱 에스테르의 제조방법.According to claim 1, wherein the catalyst for the reductive amination reaction is a cobalt (Co) compound, a yttrium (Y) compound and a palladium (Pd) compound of 180 to 250 m 2 /g specific surface area and 330 to 400 m 2 / g meso A method for producing a polyaspartic ester, which is supported on a spherical γ-Al 2 O 3 carrier having a pore surface area. 제2항에 있어서, 상기 환원성 아민화 반응용 촉매 내 코발트 금속은 담체 중량을 기준으로 1 내지 12 중량%의 양으로 함유되고, 이트륨 금속은 코발트 금속의 중량을 기준으로 0.05 내지 30 중량%의 양으로 함유되고, 상기 팔라듐 금속은 코발트 금속의 중량을 기준으로 0.01 내지 50 중량%의 양으로 함유되는 것인, 폴리아스파르틱 에스테르의 제조방법.According to claim 2, Cobalt metal in the catalyst for the reductive amination reaction is contained in an amount of 1 to 12% by weight based on the weight of the carrier, yttrium metal is an amount of 0.05 to 30% by weight based on the weight of the cobalt metal It is contained, and the palladium metal is contained in an amount of 0.01 to 50% by weight based on the weight of the cobalt metal, a method for producing a polyaspartic ester. 제1항에 있어서, 상기 단계 (2)의 가열 반응은 2.0 내지 8.0 GHz의 마이크로웨이브를 조사하면서 수행되는 것인, 폴리아스파르틱 에스테르의 제조방법.The method of claim 1, wherein the heating reaction in step (2) is performed while irradiating a microwave of 2.0 to 8.0 GHz. 제1항에 있어서, 상기 단계 (2)의 염기성 촉매는 피리딘(pyridine), 수산화나트륨(NaOH), 수산화바륨(Ba(OH)2), 나트륨에톡시드(Sodium ethoxide), 피페리딘(piperidine), 2,4,6-트리(디메틸아미오메틸)페놀(2,4,6-tris(dimethylaminomethyl)phenol) 및 트리페닐포스핀(triphenylphosphine)으로 이루어진 군에서 선택되는 1종 이상이 폴리에테르아민의 총 중량을 기준으로 0.03% 내지 0.1%로 존재하는 것인, 폴리아스파르틱 에스테르의 제조방법.The method of claim 1, wherein the basic catalyst of step (2) is pyridine (pyridine), sodium hydroxide (NaOH), barium hydroxide (Ba(OH) 2 ), sodium ethoxide, sodium ethoxide, piperidine ), 2,4,6-tri(dimethylamiomethyl)phenol (2,4,6-tris(dimethylaminomethyl)phenol) and triphenylphosphine, at least one member selected from the group consisting of polyetheramine It is present in 0.03% to 0.1% based on the total weight of the method for producing a polyaspartic ester. 제1항에 있어서, 상기 단계 (2)의 디(C1-6알킬)말레이트는 디에틸말레이트인 것인, 폴리아스파르틱 에스테르의 제조방법.The method of claim 1, wherein the di(C 1-6 alkyl) maleate in step (2) is diethyl maleate. 제1항에 있어서, 상기 단계 (2)에 투입되는 폴리에테르아민의 토탈 아민가는 99% 이상인 것인, 폴리아스파르틱 에스테르의 제조방법.The method of claim 1, wherein the total amine value of the polyetheramine added to the step (2) is 99% or more.
KR1020180152957A 2018-11-30 2018-11-30 Method of preparing polyaspartic ester KR20200065977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180152957A KR20200065977A (en) 2018-11-30 2018-11-30 Method of preparing polyaspartic ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180152957A KR20200065977A (en) 2018-11-30 2018-11-30 Method of preparing polyaspartic ester

Publications (1)

Publication Number Publication Date
KR20200065977A true KR20200065977A (en) 2020-06-09

Family

ID=71082969

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180152957A KR20200065977A (en) 2018-11-30 2018-11-30 Method of preparing polyaspartic ester

Country Status (1)

Country Link
KR (1) KR20200065977A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110021513A (en) 2009-08-26 2011-03-04 주식회사 엘지화학 Carrier box for polarizer
KR20120108179A (en) 2011-03-23 2012-10-05 양승엽 Medicine searching method of donguibogam tangaekpyeon using reference number
CN103524700A (en) 2013-09-28 2014-01-22 贵阳神迪化工有限公司 Polyaspartic acid ester resin modified by castor oil and preparation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110021513A (en) 2009-08-26 2011-03-04 주식회사 엘지화학 Carrier box for polarizer
KR20120108179A (en) 2011-03-23 2012-10-05 양승엽 Medicine searching method of donguibogam tangaekpyeon using reference number
CN103524700A (en) 2013-09-28 2014-01-22 贵阳神迪化工有限公司 Polyaspartic acid ester resin modified by castor oil and preparation method

Similar Documents

Publication Publication Date Title
JP4610531B2 (en) Continuous production method of porous material and mixed metal oxide using continuous stirred reactor, and continuous production apparatus
Wang et al. Transformylating amine with DMF to formamide over CeO 2 catalyst
US4609761A (en) Continuous preparation of linear polyethylenepolyamines using novel catalysts derived from titania and a trialkyl phosphate or phosphite
JPS6377547A (en) Titania catalyst, manufacture thereof and said usage in manufacture of linear polyethylene polyamines
EP0315189A1 (en) Process for producing an alkylenamine by using a mixing oxide catalyst.
CN113061091B (en) Preparation method of N-alkylated derivative of primary amine compound
US4584406A (en) Preparation of linear polyethylenepolyamines with modified catalysts
US4578519A (en) Catalytic synthesis of linear polyethylenepolyamines (polyethylenepolyamine preparation and catalyst)
CN110078084B (en) High-silica-alumina-ratio small-grain NaY molecular sieve and preparation method thereof
CN102040229A (en) Synthetic method of MCM-22 (Multiple Chip Module 22) molecular sieve
JPH09510657A (en) Photocatalyst, method for producing the same, and method for producing hydrogen using the same
CN113717038B (en) Method for synthesizing diaryl ether by nickel/ketone double-catalysis reaction of halogenated aromatic hydrocarbon and aryl phenol
KR20110082623A (en) Processes for the preparation of arylamine compounds
KR20200065977A (en) Method of preparing polyaspartic ester
KR100693126B1 (en) Method and apparatus for continuous producing of porous materials and mixed metal oxides
CN112473674A (en) Composite oxide porous catalyst, preparation method thereof and application of composite oxide porous catalyst in direct preparation of methyl methacrylate from formaldehyde and methyl propionate
CN107522687A (en) The method of Catalyzed by Phosphotungstic Acid synthesis of lactide from lactic acid
EP1088790A1 (en) Preparation of zeolite
CN108299336B (en) Method for preparing N-methylpyrrolidine by catalysis
EP3560589B1 (en) Ferrite catalyst for oxidative dehydrogenation reaction, method for preparing same, and method for preparing butadiene by using same
KR20100124887A (en) Method and apparatus for continuous producing of porous materials or mixed metal oxides
KR101933480B1 (en) Catalyst for oxidative dehydrogenation and method of preparing the same
US9259718B1 (en) Method for preparing catalyst for glycerin dehydration, and method for preparing acrolein
US4900832A (en) Process for the catalytic animation of alcohols and diols using non-acidic hydroxyapatite catalysts
KR101293818B1 (en) METHOD FOR PREPARING α, β-UNSATURATED ALDEHYDE