KR20200065136A - Manufacturing method of Photovoltaic Thermal module with integrated process integration technology using jig - Google Patents

Manufacturing method of Photovoltaic Thermal module with integrated process integration technology using jig Download PDF

Info

Publication number
KR20200065136A
KR20200065136A KR1020180150641A KR20180150641A KR20200065136A KR 20200065136 A KR20200065136 A KR 20200065136A KR 1020180150641 A KR1020180150641 A KR 1020180150641A KR 20180150641 A KR20180150641 A KR 20180150641A KR 20200065136 A KR20200065136 A KR 20200065136A
Authority
KR
South Korea
Prior art keywords
jig
module
manufacturing
absorbing plate
heat absorbing
Prior art date
Application number
KR1020180150641A
Other languages
Korean (ko)
Other versions
KR102146849B1 (en
Inventor
이길송
양연원
Original Assignee
쏠라테크(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쏠라테크(주) filed Critical 쏠라테크(주)
Priority to KR1020180150641A priority Critical patent/KR102146849B1/en
Publication of KR20200065136A publication Critical patent/KR20200065136A/en
Application granted granted Critical
Publication of KR102146849B1 publication Critical patent/KR102146849B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/26Building materials integrated with PV modules, e.g. façade elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Abstract

The present invention relates to a photovoltaic thermal module including a photovoltaic module and a heat absorbing plate. A method of manufacturing a photovoltaic thermal module with a complex process integration technology using a jig comprises: a stack step (S10) of sequentially stacking a transparent file, a solar cell, an insulation film configuring a photovoltaic module, a heat absorbing plate installed therein with a water pipe, and a jig; a laminating step (S20) of melting an EVA between respective materials stacked by heat of a predetermined temperature or greater and pressure of the jig to integrally combining each constituent element of the photovoltaic module and the heat absorbing plate; a photovoltaic thermal module desorption step (S30) of separating the jig from an inner side of a laminating setting part (S) to separate the photovoltaic module and the photovoltaic thermal module coupled with the heat absorbing plate; and a casing step (S50) of adhering a protective glass to a front surface of the photovoltaic thermal module to couple an outer peripheral frame with an inclined surface. Therefore, a step of manufacturing the photovoltaic module and a step of manufacturing the heat absorbing plate are simultaneously performed by one process at an inner side of a laminating setting part using one jig so that respective materials may be integrally coupled. Accordingly, a manufacturing process and a manufacturing time may be significantly reduced to greatly reduce a manufacturing cost and a cost of a product, which is suitable for the mass production to be economical.

Description

지그를 이용한 복합공정 일체화기술이 적용된 태양광열 모듈의 제조방법{Manufacturing method of Photovoltaic Thermal module with integrated process integration technology using jig}Manufacturing method of photovoltaic thermal module with integrated process integration technology using jig using integrated jig technology

본 발명은 태양광열 모듈의 제조방법에 관한 것으로, 특히 쏠라셀로 태양광 모듈을 제작하는 공정과 태양광 모듈의 후면에 수관이 설치된 흡열판을 결합하는 공정을 하나의 공정에서 동시에 수행하여 대량생산에 적합하도록 개선한 지그를 이용한 복합공정 일체화기술이 적용된 태양광열 모듈의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a solar heat module, and in particular, a process of manufacturing a solar module with a solar cell and a process of combining a heat absorbing plate with a water pipe installed on the back of the solar module are simultaneously performed in one process to mass-produce It relates to a method of manufacturing a solar thermal module using a composite process integration technology using an improved jig to be suitable for.

일반적으로 태양전지를 이용한 태양광발전은 무한정, 무공해의 태양에너지를 이용함으로 연료비가 따로 들지 않고, 대기오염이나 폐기물 발생이 없으며, 발전 부위가 반도체 소자이고, 제어부가 전자부품임으로 기계적인 진동과 소음이 없다. 또한, 태양전지의 수명이 최소 20년 이상으로 길고, 발전 시스템을 자동화시키기에 용이하며, 운전 및 유지관리에 따른 비용을 최소화할 수 있는 장점을 지니고 있다.In general, photovoltaic power generation using solar cells uses infinite and pollution-free solar energy, so there is no fuel cost, there is no air pollution or waste, power generation is a semiconductor device, and the control part is an electronic part. There is no In addition, the lifetime of the solar cell is at least 20 years or longer, it is easy to automate the power generation system, and has the advantage of minimizing the cost of operation and maintenance.

최근 태양광 모듈(PV)을 건물 옥상이나 지붕 등에 설치하거나 BIPV용으로 사용하는 비중이 점차로 늘어나면서, 태양광 모듈의 무게를 줄이기 위한 연구개발이 진행 중이다. 특히, 각국의 태양광 발전 보조 정책과 맞물려 건물 지붕 등에 태양광 발전 시스템을 설치하려는 시도가 있으나 종래의 태양광 모듈 자체의 무게가 크기 때문에, 전체적인 태양광 발전 시스템의 무게가 커져 건물이 상기 태양광 발전 시스템의 하중을 견딜 수 없어 설치 부적합 판정을 받는 사례가 많다.Recently, as the proportion of PV modules installed on roofs or rooftops of buildings or used for BIPV is gradually increasing, research and development is underway to reduce the weight of PV modules. Particularly, there have been attempts to install a photovoltaic system on the roof of a building in line with each country's solar power sub-policy, but because the weight of the conventional photovoltaic module itself is large, the weight of the entire photovoltaic system increases, so that the building can receive the photovoltaic power. In many cases, installation loads are judged to be unsuitable because they cannot bear the load of the power generation system.

이러한 무게가 큰, 종래의 태양광 모듈은 대략 20Kg 중량 내외이며, 이 중 강화유리가 차지하는 무게가 13킬로그램 중량 내외이며, 상기 강화유리의 두께는 3.0 ~ 3.2mT이다. 즉, 강화유리가 태양광 모듈의 무게를 좌우하는데 큰 영향을 미치고 있다.The conventional solar module having such a large weight is about 20 kg in weight, and among them, the weight occupied by the tempered glass is about 13 kg in weight, and the thickness of the tempered glass is 3.0 to 3.2 mT. That is, tempered glass has a great influence on the weight of the solar module.

이러한 태양광 모듈의 무게를 줄이기 위한 선행기술과 관련하여, 공개특허공보 제10-2011-0076123호가 개시되어 있다. 상기 선행기술은 태양광 모듈에 사용되는 강화유리의 두께를 박막화하여 경량 태양광 모듈을 제조하는 방법에 관한 것으로, 더욱 상세하게는 태양광 모듈용 강화유리에 두께 0.5~2mmT, 광투과도 85% 이상의 박막 강화유리를 사용함으로써, 기존의 효율은 유지하면서도 태양광 모듈의 무게를 낮추고, 이를 태양광 발전소나 주택용 및 건물 일체형 태양광 모듈에 적용함으로써 설치 작업의 용이와 설치비용을 절감할 수 있는 경량 태양광 모듈의 제조방법에 관한 것이다.In connection with the prior art for reducing the weight of such a solar module, Patent Publication No. 10-2011-0076123 is disclosed. The prior art relates to a method of manufacturing a lightweight solar module by thinning the thickness of the tempered glass used in the solar module, and more specifically, the thickness of the tempered glass for the solar module is 0.5 to 2 mmT, and the light transmittance is 85% or more. By using thin-film tempered glass, while maintaining the existing efficiency, the weight of the solar module is reduced, and it is applied to a solar power plant, a solar module for residential and building use, and a lightweight solar that can reduce installation work and reduce installation cost. It relates to a method of manufacturing an optical module.

한편, 태양광, 태양열시스템은 똑같이 태양에너지를 이용하는 발전설비인 만큼 둘을 하나의 발전설비시스템으로 병합하는 제품이 PVT(PhotoVoltaic Thermal)이다. 기존의 태양광 모듈인 PV(Photo Voltaic)에 공기 혹은 액체 집열 모듈을 복합 구성한 시스템으로 PV 모듈은 본연의 기능인 전기를 생산하며, PV 후면에서 발생되는 열을 열원으로 이용하여 건물의 환기용 난방에너지 및 온수를 생산하는 열병합발전시스템이다. 이러한 PVT 시스템은 기존 PV 또는 BIPV(Building Integrated Photovoltaic System)에서 나타나는 과열 문제를 해결하여 PV의 발전효율을 높이는 기술로 PV모듈의 열전변환 성능을 기존 단위면적 PV모듈과 비교 시 최대 200%획기적으로 개선할 수 있는 시스템이다.On the other hand, photovoltaic and solar thermal systems are photovoltaic thermal (PVT) products that combine the two into one power generation facility system, as they are the same as solar power generation facilities. It is a system that combines an air or liquid collection module with PV (Photo Voltaic), an existing photovoltaic module.The PV module produces electricity, which is the original function, and uses the heat generated from the back of the PV as a heat source to heat the building for ventilation. And a cogeneration system that produces hot water. This PVT system solves the overheating problem that appears in existing PV or BIPV (Building Integrated Photovoltaic System) and improves the power generation efficiency of PV.It improves thermoelectric conversion performance of PV modules by up to 200% compared to existing unit area PV modules. It is a system that can do it.

상기 PVT 복합모듈은 태양열 집열기에 사용되는 유체에 따라 공기식과 액체식으로 분류할 수 있으며, 형태에 따라 평판형(flat plate)과 집광형(concentrating) 으로 분류할 수 있다. The PVT composite module may be classified into an air type and a liquid type according to a fluid used in a solar heat collector, and may be classified into a flat plate and a concentrating type according to the shape.

공기식 PVT 복합모듈은 PV 모듈 후면에 공기 층 및 채널을 두는 형태로 공기를 열매체로 이용하며, 액체식의 경우 태양광 모듈 후면에 흡수판과 열매체 도관이 부착된 형태로 열매체를 물이나 부동액 등의 액체를 이용하는 것이다.The pneumatic PVT composite module uses air as the heating medium in the form of an air layer and a channel on the back of the PV module. In the case of the liquid type, the absorption medium and the heating medium conduit are attached to the back of the solar module to heat the heating medium with water or antifreeze. Is to use liquid.

이러한 기술에 관심을 가지고 개발을 하는 국가로는 독일, 미국, 한국 등이 있다. 미국 Skyline Solar에서는 추적형 태양광과 집중형 태양열 발전의 장점만 모아 에너지 비용을 낮추고 높은 에너지 수율을 얻는 High Gain Solar(HGS)를 만들었고, 터키 Solimpeks Solar Energy는 Volther hybrid solar collector라고 부르는 기술을 이용하여 하이브리드화 시켰다. Germany, the United States, and Korea are countries that develop with interest in these technologies. Skyline Solar in the United States created the High Gain Solar (HGS), which lowers energy costs and obtains high energy yields by combining only the advantages of traceable solar and concentrated solar power generation, and Solimpeks Solar Energy in Turkey uses a technology called Volther hybrid solar collector. Hybridized.

즉, 상기 PVT는 도 1에 도시된 바와 같이, 태양광 모듈의 후면에 물이 채워진 수관이 설치된 흡열판을 결합함으로써 태양열에 의한 열기를 흡수하여 물의 순환에 의해 전달하게 된다.That is, as illustrated in FIG. 1, the PVT absorbs heat generated by solar heat and transmits it by circulation of water by combining a heat absorbing plate provided with a water-filled water pipe on the back of the solar module.

그러나 이러한 종래의 PVT는 태양광 모듈과 수관이 설치된 흡열판을 각각 별도로 제작한 후에 이들을 서로 결합하는 단계별 공정을 거쳐야 하기 때문에 불량률이 높고 분진이 많이 발생하는 등 제조공정이 용이하지 않으며, 제조공정 및 제조시간이 증가하는 등의 많은 문제점이 있었다.However, such a conventional PVT is not easy to manufacture, such as a high defect rate and a lot of dust, since a heat absorbing plate having a solar module and a water pipe must be separately manufactured and then subjected to a step-by-step process to combine them. There have been many problems such as an increase in manufacturing time.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 쏠라셀로 태양광 모듈을 제작하는 공정과 태양광 모듈의 후면에 수관이 설치된 흡열판 결합하는 공정을 일체화하여 대량생산에 적합하도록 개선한 지그를 이용한 복합공정 일체화기술이 적용된 태양광열 모듈의 제조방법을 제공함에 그 목적이 있다. The present invention is to solve the above problems, the jig is improved to be suitable for mass production by integrating the process of manufacturing solar modules with solar cells and the process of combining heat absorbing plates with water pipes installed on the back of the solar modules. The object of the present invention is to provide a method of manufacturing a solar heat module to which a combined process integration technology is applied.

본 발명에 의한 지그를 이용한 복합공정 일체화기술이 적용된 태양광열 모듈의 제조방법은 라미네이팅 세팅부(S)의 내측에 태양광 모듈(PV; PhotoVoltaic)을 구성하는 투명필름과 쏠라셀 및 절연필름과, 수관이 설치된 흡열판과, 지그를 순차적으로 적층하는 적층공정(S10); 일정 이상 온도의 열과 지그의 가압에 의해 적층된 각 재료 사이에 삽입된 EVA를 녹여 태양광 모듈(PV)의 각 구성요소와 흡열판을 하나의 공정에서 일체로 결합하는 라미네이팅 공정(S20); 라미네이팅 세팅부(S)의 내측에서 지그를 분리한 후에 태양광 모듈(PV)과 흡열판이 결합된 태양광열 모듈 (PVT; PhotoVoltaic Thermal)를 분리하는 태양광열 모듈 탈착공정(S30); 태양광열 모듈(PVT)의 전면에 보호유리를 밀착시키고, 사면에 외곽 프레임을 결합하는 케이싱 공정(S50)을 순차적으로 거치며 제조되는 것을 그 기술적 특징으로 한다. The manufacturing method of the solar thermal module to which the composite process integration technology using the jig according to the present invention is applied includes a transparent film, a solar cell and an insulating film constituting a solar module (PV; PhotoVoltaic) inside the laminating setting unit (S), A stacking step (S10) of sequentially stacking the heat absorbing plate on which the water pipe is installed and the jig; A laminating process (S20) of integrally combining each component of the solar module (PV) and a heat absorbing plate in one process by melting EVA inserted between each layer of materials stacked by heat of a predetermined temperature or higher and pressing of the jig; After removing the jig from the inside of the laminating setting unit (S), the solar module (PV) and the photovoltaic module (PVT; PhotoVoltaic Thermal) separating the photovoltaic module detaching process (S30); It is characterized by being manufactured by sequentially passing through a casing process (S50) in which a protective glass is adhered to the front surface of the PV module and the outer frame is coupled to the slope.

본 발명에 따른 지그를 이용한 복합공정 일체화기술이 적용된 태양광열 모듈의 제조방법은 태양광 모듈을 제조하는 공정과 태양광 모듈의 후면에 흡열판을 결합하는 공정을 지그를 이용하여 라미네이팅 세팅부의 내측에서 일체로 진행함으로써 제조공정 및 제조시간이 획기적으로 단축되어 제조비용 및 제품가격을 대폭 절감할 수 있으며, 대량생산에 적합하여 더욱 경제적인 효과가 있다.The manufacturing method of the solar heat module to which the composite process integration technology using the jig according to the present invention is applied is a process of manufacturing a solar module and a process of combining a heat absorbing plate on the back side of the solar module using a jig from the inside of the laminating setting unit. By proceeding integrally, the manufacturing process and manufacturing time can be drastically shortened, significantly reducing manufacturing costs and product prices, and it is more suitable for mass production, which is more economical.

도 1은 종래에 의한 태양광열 모듈에 대한 라미네이팅 공정의 개략도,
도 2는 본 발명에 의한 태양광열 모듈의 라미네이팅 공정의 개략도,
도 3은 본 발명에 의한 라미네이팅 과정을 나타낸 단면도,
도 4는 본 발명에 의한 흡열판의 사시도,
도 5는 본 발명에 의한 지그의 저면사진,
도 6은 본 발명에 의한 태양광열 모듈의 제조과정을 나타낸 블록도,
도 7은 본 발명에 의한 완성된 태양광열 모듈의 저면사진,
도 8은 본 발명에 의한 완성된 태양광열 모듈의 상면사진.
1 is a schematic diagram of a laminating process for a solar module according to the prior art,
Figure 2 is a schematic diagram of the laminating process of the solar thermal module according to the present invention,
3 is a cross-sectional view showing a laminating process according to the present invention,
Figure 4 is a perspective view of the heat absorbing plate according to the present invention,
5 is a bottom photo of the jig according to the present invention,
Figure 6 is a block diagram showing the manufacturing process of the solar thermal module according to the present invention,
7 is a bottom photo of a completed solar module according to the present invention,
Figure 8 is a top photo of the completed solar module according to the present invention.

본 발명의 바람직한 실시 예를 첨부된 도면을 통해 상세히 설명한다.A preferred embodiment of the present invention will be described in detail through the accompanying drawings.

본 발명의 지그를 이용한 복합공정 일체화기술이 적용된 태양광열 모듈은 도 2에서 나타낸 바와 같이 태양광 모듈(PV)과 흡열판(40)을 지그(60)를 이용하여 하나의 공정에서 동시에 결합하는 태양광열 모듈(PVT)의 제조방법을 제안한다. As shown in FIG. 2, the solar heat module to which the composite process integration technology using the jig of the present invention is applied is a sun that simultaneously combines the solar module (PV) and the heat absorbing plate 40 in one process using the jig 60. A method of manufacturing a photothermal module (PVT) is proposed.

이를 위하여 도 3에서 나타낸 바와 같이 라미네이팅 세팅부(S)의 내측에 투명필름(10), 쏠라셀(20), 절연필름(30), 수관(50)이 설치된 흡열판(40)을 하측에서부터 차례로 적층하고, 각각의 재료 사이에는 EVA를 삽입한다.To this end, as shown in FIG. 3, the heat absorbing plate 40 in which the transparent film 10, the solar cell 20, the insulating film 30, and the water pipe 50 are installed on the inside of the laminating setting part S is sequentially installed from the bottom. Laminate, and insert EVA between each material.

상기 EVA(Ethylene-Vinyl Acetate; 에틸렌초산비닐)는 에틸렌과 초산 비닐 모노머를 공중합시켜 얻어지는 중합체로, 저농도 EVA는 보통의 저밀도 폴리에틸렌과 같이 가공되어 내충격성(특히 저온시), 내스트레스 크랙킹성이 우수하여 중포장재, 라미네이트 필름의 접착제 등에 이용되며, 고농도의 EVA는 접착제의 원료로 사용된다.The EVA (Ethylene-Vinyl Acetate; vinyl ethylene acetate) is a polymer obtained by copolymerizing ethylene and vinyl acetate monomers. Low-concentration EVA is processed like ordinary low-density polyethylene and has excellent impact resistance (especially at low temperatures) and stress cracking resistance. Therefore, it is used for medium packaging materials, adhesives for laminate films, etc., and high concentration EVA is used as a raw material for adhesives.

상기 흡열판(40)은 도 4에서 나타낸 바와 같이 소정의 두께를 갖는 사각 형상의 금속판 상측에 지그재그 형상의 안착홈(41)을 형성하고, 상기 안착홈(41)에는 대응하는 형상의 동파이프 재질의 수관(50)을 삽입결합된 구조이다. The heat absorbing plate 40 forms a zigzag-shaped seating groove 41 on the upper side of a rectangular metal plate having a predetermined thickness, as shown in FIG. 4, and the seating groove 41 has a copper pipe material having a corresponding shape. The water pipe 50 is inserted and coupled.

이때, 상기 수관(50)은 내부에 저장된 물이 태양에서 전달된 열에 의해 상승하면, 외측으로 순환되는 구조로 구성되어 있다.At this time, the water pipe 50 is configured as a structure that circulates outward when water stored therein rises due to heat transmitted from the sun.

한편, 도 5에 도시된 바와 같이, 본 발명에 의한 지그(60)의 전면에는 수관(50)의 형상과 대응하는 밀착홈(61)이 형성되어, 최 상측에 결합된 지그(60)가 투명필름(10)과 쏠라셀(20) 및 절연필름(30)과, 수관(50)이 설치된 흡열판(40)을 밀착 가압하는 것이며, 지그(60)의 후면에는 지그(60)의 뒤틀어짐을 방지하기 위해 길이방향으로 복수의 보강대(62)가 결합된다. On the other hand, as shown in Figure 5, the front surface of the jig 60 according to the present invention is formed with a contact groove 61 corresponding to the shape of the water pipe 50, the jig 60 coupled to the uppermost is transparent The film 10, the solar cell 20, the insulating film 30, and the heat absorbing plate 40 on which the water pipe 50 is installed are pressed in close contact, and the back of the jig 60 is prevented from being distorted. In order to do so, a plurality of reinforcing bars 62 are combined in the longitudinal direction.

따라서, 라미네이팅 세팅부(S)의 내측에 투명필름(10), 쏠라셀(20), 절연필름(30), 수관(50)이 설치된 흡열판(40)을 하측에서부터 차례로 적층하고, 수관(50)이 노출된 상측부에서 도 3과 같이 수관(50)에 대응하는 형상의 홈이 형성된 지그(60)를 안착시킨 후에 상기 라미네이팅 세팅부(S)의 내측에 일정 이상의 온도(본 발명의 실시예로, 150℃)의 열을 가하면, 열에 의해 EVA가 녹으면서 지그(60)의 가압에 의해 지그(60)를 제외한 각각의 재료가 서로 견고하게 밀착 결합된다. Therefore, the transparent film 10, the solar cell 20, the insulating film 30, and the heat absorbing plate 40 on which the water pipe 50 is installed are stacked in order from the bottom, and the water pipe 50 is placed inside the laminating setting part S. 3) after seating the jig 60 having a groove corresponding to the water pipe 50 as shown in FIG. 3 in the exposed upper part, the temperature inside the laminating setting part S is a predetermined temperature or higher (an embodiment of the present invention Furnace, 150°C) is heated, the EVA melts by heat, and each material except for the jig 60 is firmly and tightly bonded to each other by pressing the jig 60.

이때, 상기 지그(60)를 별도의 가압수단에 의해 하방으로 압착하여 각 재료의 결합성을 향상시킬 수도 있다. At this time, the jig 60 may be compressed downward by a separate pressing means to improve the bonding property of each material.

본 발명은 도 6에서 나타낸 바와 같이 상술한 과정의 적층공정(S10)과, 라미네이팅 공정(S20), 태양광열 모듈 탈착공정(S30), 케이싱 공정(S50)의 단계를 순차적으로 거치며 제조된다.The present invention is manufactured by sequentially passing through the steps of the lamination process (S10), the laminating process (S20), the solar thermal module desorption process (S30), and the casing process (S50) as described in FIG. 6.

이때, 태양광열 모듈 탈착공정(S30)과 케이싱 공정(S50) 사이에는 흡열판 보강공정(S40)이 추가되는 것이 바람직하다. At this time, it is preferable that a heat absorbing plate reinforcement process (S40) is added between the solar thermal module desorption process (S30) and the casing process (S50).

상기 적층공정(S10)에서는 라미네이팅 세팅부(S)의 내측에 투명필름(10), 쏠라셀(20), 절연필름(30), 수관(50)이 안착된 흡열판(40), 지그(60)를 순차적으로 적층하며, 상기 투명필름(10), 쏠라셀(20), 절연필름(30), 흡열판(40)의 사이에는 각각 EVA를 삽입한다.In the lamination process (S10), a heat absorbing plate (40), a jig (60) having a transparent film (10), a solar cell (20), an insulating film (30), and a water pipe (50) mounted inside the laminating setting part (S) ) Are sequentially stacked, and EVA is inserted between the transparent film 10, the solar cell 20, the insulating film 30, and the heat absorbing plate 40.

상기 라미네이팅 공정(S20)에서는 적층공정(S10)에서 적층된 각각의 재료 및 EVA에 일정 이상의 열을 가함으로써 태양광 모듈(PV)에 흡열판(40)이 일체로 결합된 태양광열 모듈(PVT)을 제조하게 된다.In the laminating process (S20), the heat absorbing plate 40 is integrally coupled to the PV module PV by applying a predetermined amount of heat to each of the materials and EVA laminated in the lamination process (S10). To manufacture.

상기 태양광열 모듈 탈착공정(S30)에서는 라미네이팅 세팅부(S)의 내측에서 지그(60)를 분리한 후에 흡열판(40)이 일체로 결합된 태양광열 모듈(PVT)을 분리하게 되며, 상기 흡열판 보강공정(S40)에서는 도 7에서 나타낸 바와 같이 흡열판(40)에 안착된 수관(50)이 휘어지는 것을 방지하기 위해 길이방향으로 복수의 지지대(42)를 결합한다.In the photovoltaic module desorption process (S30), after removing the jig 60 from the inside of the laminating setting part S, the photovoltaic module PVP integrally coupled with the heat absorbing plate 40 is separated, and the heat absorption In the plate reinforcement process (S40), a plurality of supports 42 are coupled in the longitudinal direction to prevent the water pipe 50 seated on the heat absorbing plate 40 from bending as shown in FIG. 7.

상기 지지대(42)는 수관(50)의 상측부에 밀착되고, 수관(50)과 지지대(42)가 교차하는 부위에는 견고한 결합을 위해 복수의 결합부(43)를 형성하게 되는데, 상기 결합부(43)는 리벳팅 또는 고리결합 또는 스폿용접 등 다양한 결합수단에 의해 이루어질 수 있다. The support 42 is in close contact with the upper portion of the water pipe 50, and a portion where the water pipe 50 and the support 42 intersect forms a plurality of coupling parts 43 for solid coupling. (43) may be made by various coupling means such as riveting or ring coupling or spot welding.

상기 케이싱 공정(S50)에서는 도 8에서 나타낸 바와 같이 제조된 태양광열 모듈(PVT)의 전면에 보호유리를 결합하고, 사면에 외곽 프레임을 결합함으로써 본 발명의 태양광열 모듈을 완성한다.In the casing process (S50), a solar glass module of the present invention is completed by combining a protective glass on the front surface of the PV module manufactured as shown in FIG. 8 and combining an outer frame on the slope.

이와 같이 구성된 본 발명의 지그를 이용한 복합공정 일체화기술이 적용된 태양광열 모듈은 태양광 모듈을 제조하는 공정과 흡열판(40)을 제조하는 공정을 지그(60)를 이용하여 라미네이팅 세팅부(S)의 내측에서 하나의 공정에서 동시에 수행함으로써 각각의 재료를 일체로 결합할 수 있으며, 이에 따라 제조공정 및 제조시간이 획기적으로 단축되어 제조비용 및 제품가격을 대폭 절감할 수 있으며, 대량생산에 적합하여 더욱 경제적인 효과가 있다The solar module to which the composite process integration technology using the jig of the present invention configured as described above is applied is a laminating setting unit S using a jig 60 for the process of manufacturing the solar module and the process of manufacturing the heat absorbing plate 40 By performing simultaneously in one process from the inside, each material can be integrally combined, thereby significantly reducing manufacturing costs and product costs by dramatically reducing the manufacturing process and manufacturing time. It is more economical

10 : 투명필름 20 : 쏠라셀
30 : 절연필름 40 : 흡열판
41 : 안착홈 42 : 지지대
43 : 결합부 50 : 수관
60 : 지그 61 : 밀착홈
62 : 보강대
10: transparent film 20: solar cell
30: insulating film 40: heat absorbing plate
41: seating groove 42: support
43: coupling portion 50: water pipe
60: jig 61: close groove
62: reinforcement

Claims (4)

라미네이팅 세팅부(S)의 내측에 태양광 모듈(PV; PhotoVoltaic)을 구성하는 투명필름(10)과 쏠라셀(20) 및 절연필름(30)과, 수관(50)이 설치된 흡열판(40)과, 지그(60)를 순차적으로 적층하는 적층공정(S10);
일정 이상 온도의 열과 지그의 가압에 의해 적층된 각 재료 사이에 삽입된 EVA를 녹여 태양광 모듈(PV)의 각 구성요소와 흡열판(40)을 하나의 공정에서 일체로 결합하는 라미네이팅 공정(S20);
라미네이팅 세팅부(S)의 내측에서 지그(60)를 분리한 후에 태양광 모듈(PV)과 흡열판(40)이 결합된 태양광열 모듈 (PVT; PhotoVoltaic Thermal)를 분리하는 태양광열 모듈 탈착공정(S30);
태양광열 모듈(PVT)의 전면에 보호유리를 밀착시키고, 사면에 외곽 프레임을 결합하는 케이싱 공정(S50);
을 순차적으로 거치며 제조되는 것을 특징으로 하는 지그를 이용한 복합공정 일체화기술이 적용된 태양광열 모듈의 제조방법.
Transparent film 10 and solar cell 20 and insulating film 30 constituting a solar module (PV; PhotoVoltaic) inside the laminating setting unit (S), heat absorbing plate 40 with water pipe 50 installed And, a lamination process (S10) of sequentially stacking the jig 60;
Laminating process (S20) to integrally combine each component of the PV module (PV) and the heat absorbing plate (40) in one process by melting EVA inserted between each layer of materials stacked by heat and pressurizing the jig over a certain temperature. );
After removing the jig 60 from the inside of the laminating setting part S, the solar module detaching process (PVT; Photovoltaic Thermal) that separates the photovoltaic module (PVT) combined with the heat absorbing plate 40 ( S30);
A casing process (S50) in which a protective glass is adhered to the front surface of the PV module (PVT) and an outer frame is coupled to the slope;
A method of manufacturing a solar thermal module using a composite process integration technology using a jig, characterized in that it is manufactured sequentially.
제 1항에 있어서,
상기 탈착공정(S30)의 다음에는 흡열판(40)에 안착된 수관(50)이 이탈하지 않도록 수관(50)의 상측에 복수의 지지대(42)가 밀착되고, 수관(50)과 지지대(42)가 교차하는 부위에는 견고한 결합을 위해 리벳팅 또는 고리결합 또는 스폿용접을 포함하는 고정수단으로 이루어진 복수의 결합부(43)를 형성하는 흡열판 보강공정(S40)이 추가되는 것을 특징으로 하는 지그를 이용한 복합공정 일체화기술이 적용된 태양광열 모듈의 제조방법.
According to claim 1,
After the desorption process (S30), a plurality of supports 42 are closely attached to the upper side of the water pipe 50 so that the water pipe 50 seated on the heat absorbing plate 40 does not escape, and the water pipe 50 and the support 42 A jig characterized in that a heat absorbing plate reinforcing process (S40) is formed at a crossing part to form a plurality of coupling parts 43 composed of fixing means including riveting or ring coupling or spot welding for solid coupling. A method of manufacturing a solar heat module to which a complex process integration technology using a technology is applied.
제 1항에 있어서,
상기 지그(60)의 전면에는 수관(50)의 형상과 대응하는 밀착홈(61)이 형성되어, 최 상측에 결합된 지그(60)가 투명필름(10)과 쏠라셀(20) 및 절연필름(30)과, 수관(50)이 설치된 흡열판(40)을 밀착 가압하는 것을 특징으로 하는 지그를 이용한 복합공정 일체화기술이 적용된 태양광열 모듈의 제조방법.
According to claim 1,
A contact groove 61 corresponding to the shape of the water pipe 50 is formed on the front surface of the jig 60, so that the jig 60 coupled to the uppermost side is a transparent film 10, a solar cell 20, and an insulating film. (30), a method for manufacturing a solar heat module to which a composite process integration technology using a jig is applied, characterized in that the heat absorbing plate (40) on which the water pipe (50) is installed is pressed in close contact.
제 3항에 있어서,
상기 지그(60)의 후면에는 지그(60)의 뒤틀어짐을 방지하기 위해 길이방향으로 복수의 보강대(62)가 결합된 것을 특징으로 하는 지그를 이용한 복합공정 일체화기술이 적용된 태양광열 모듈의 제조방법.
According to claim 3,
A method of manufacturing a solar thermal module using a composite process integration technology using a jig, characterized in that a plurality of reinforcing bars 62 are combined in a longitudinal direction to prevent warping of the jig 60 on the rear surface of the jig 60.
KR1020180150641A 2018-11-29 2018-11-29 Manufacturing method of Photovoltaic Thermal module with integrated process integration technology using jig KR102146849B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180150641A KR102146849B1 (en) 2018-11-29 2018-11-29 Manufacturing method of Photovoltaic Thermal module with integrated process integration technology using jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180150641A KR102146849B1 (en) 2018-11-29 2018-11-29 Manufacturing method of Photovoltaic Thermal module with integrated process integration technology using jig

Publications (2)

Publication Number Publication Date
KR20200065136A true KR20200065136A (en) 2020-06-09
KR102146849B1 KR102146849B1 (en) 2020-08-24

Family

ID=71082455

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180150641A KR102146849B1 (en) 2018-11-29 2018-11-29 Manufacturing method of Photovoltaic Thermal module with integrated process integration technology using jig

Country Status (1)

Country Link
KR (1) KR102146849B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234491A (en) * 2002-02-06 2003-08-22 Sharp Corp Heat collecting apparatus built-in type solar battery module and its manufacturing method
KR20170091296A (en) * 2016-02-01 2017-08-09 공주대학교 산학협력단 Liquid Type Photohvoltaic-thermal Collector
KR20180013320A (en) * 2016-07-29 2018-02-07 (주)이맥스시스템 Flat plate type solar collector
KR20180024411A (en) * 2016-08-30 2018-03-08 한국에너지기술연구원 Photovoltaic thermal system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234491A (en) * 2002-02-06 2003-08-22 Sharp Corp Heat collecting apparatus built-in type solar battery module and its manufacturing method
KR20170091296A (en) * 2016-02-01 2017-08-09 공주대학교 산학협력단 Liquid Type Photohvoltaic-thermal Collector
KR20180013320A (en) * 2016-07-29 2018-02-07 (주)이맥스시스템 Flat plate type solar collector
KR20180024411A (en) * 2016-08-30 2018-03-08 한국에너지기술연구원 Photovoltaic thermal system and method

Also Published As

Publication number Publication date
KR102146849B1 (en) 2020-08-24

Similar Documents

Publication Publication Date Title
KR101215694B1 (en) Solar Cell Module And Manufacturing Method Thereof
EP2831922B1 (en) Photovoltaic modules comprising light directing mediums and methods of making the same
US20090272436A1 (en) Non-glass photovoltaic module and methods for manufacture
CN101866972A (en) Integral component of solar cell and radiator
US10594256B2 (en) Photovoltaic thermal collector
CN109417105B (en) Power generation method of sunlight and solar heat composite power generation system by utilizing light-gathering type and flat plate type hybrid solar cell
CN102569454A (en) Backplane material, photovoltaic module using backplane material and manufacture method of photovoltaic module
KR101891236B1 (en) Photovoltaic thermal system and method
JP2002039631A (en) Photothermal hybrid panel, hybrid panel main body using it, and method of manufacturing it
KR102168493B1 (en) Panel for Photovoltaic-Thermal Power Generation
US11879669B2 (en) Flat-plate water-heating photovoltaic/thermal module and production process thereof
EP3866335B1 (en) Hybrid solar panel for producing electrical energy and thermal energy
CN112532177A (en) High-efficient thermal-arrest photovoltaic module
KR102146849B1 (en) Manufacturing method of Photovoltaic Thermal module with integrated process integration technology using jig
JP2010129754A (en) Method of manufacturing solar cell
CN210349852U (en) Photovoltaic and photothermal integrated assembly
KR101477499B1 (en) Light Solar Module and Method for the Production thereof
CN201913849U (en) Back plate material and photovoltaic component adopting same
CN210778632U (en) Constant temperature solar cell system
JP6552893B2 (en) Hybrid solar cell module
CN217983362U (en) Photovoltaic module
KR20220001257A (en) Manufacturing method of Photovoltaic Thermal module
KR20230080575A (en) Connection Plate-Integrated Solar Cell Module And Laminating Method For Solar Cell Module
CN116032214A (en) Photovoltaic photo-thermal integrated assembly
KR101477500B1 (en) Light Solar Module and Method for the Production thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant