KR20200064227A - InP thin film and method of fabricating of the same - Google Patents

InP thin film and method of fabricating of the same Download PDF

Info

Publication number
KR20200064227A
KR20200064227A KR1020180149409A KR20180149409A KR20200064227A KR 20200064227 A KR20200064227 A KR 20200064227A KR 1020180149409 A KR1020180149409 A KR 1020180149409A KR 20180149409 A KR20180149409 A KR 20180149409A KR 20200064227 A KR20200064227 A KR 20200064227A
Authority
KR
South Korea
Prior art keywords
inp
quantum dot
tin
thin film
inp quantum
Prior art date
Application number
KR1020180149409A
Other languages
Korean (ko)
Other versions
KR102166557B1 (en
Inventor
방지원
손민지
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020180149409A priority Critical patent/KR102166557B1/en
Publication of KR20200064227A publication Critical patent/KR20200064227A/en
Application granted granted Critical
Publication of KR102166557B1 publication Critical patent/KR102166557B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

Provided is a fabrication method of a tin-doped InP thin film with improved photoelectric conversion efficiency. The fabrication method of an InP thin film may comprise the steps of: forming an InP quantum dot using an indium precursor and a phosphorus precursor; adding and stirring the InP quantum dot to a base solvent having a tin chalcogen anion to bind the tin chalcogen anion to the InP quantum dot; and coating a substrate with the tin chalcogen anion bound to the InP quantum dot to be treated with heat to fabricate the InP thin film having the tin-doped InP quantum dot.

Description

InP 박막 및 그 제조 방법{InP thin film and method of fabricating of the same}InP thin film and method of fabricating of the same}

본 발명은 양자점 태양 전지 및 그 제조 방법에 관련된 것으로, 보다 상세하게는, 도핑된 양자점을 포함하는 양자점 태양 전지 및 그 제조 방법에 관련된 것이다. The present invention relates to a quantum dot solar cell and a method for manufacturing the same, and more particularly, to a quantum dot solar cell including a doped quantum dot and a method for manufacturing the same.

양자점이란 스스로 빛을 내는 수 나노미터 크기의 반도체 결정체를 말한다. 반도체 양자점은 conduction band edge와 valence band edge 에서 불연속적인 에너지 준위를 나타내고 있으며, 그 크기가 작아짐에 따라 에너지 준위의 불연속성은 심화되며, 결과적으로 양자점의 에너지 밴드갭 (Energy Band-Gap)이 증가하는 결과를 나타낸다.A quantum dot is a semiconductor crystal of several nanometers that emits light on its own. Semiconductor quantum dots show discontinuous energy levels at the conduction band edge and the valence band edge, and as the size decreases, the discontinuity of the energy level increases, resulting in an increase in the energy band-gap of the quantum dots. Indicates.

크기 조절을 통한 광학적 특성의 자유로운 변환이나 좁은 발색 파장이 부여하는 높은 색 순도, 그리고 용매에 용해하여 공정을 진행할 수 있다는 장점이 있으며, 카드뮴(Cd)과 셀레늄(Se)로 대표되는 Ⅱ?-Ⅵ족 양자점들과 Cd의 독성 때문에 대안으로 활발하게 연구 되고 있는 양자점들 중 인화인듐(InP)은 Ⅲ?-Ⅴ족 양자점을 대표하며 그 외 구리(Cu), 인듐(In) 그리고 황(S)으로 구성되는 비Cd계 양자점에 대한 연구들이 진행되고 있다. Free conversion of optical properties through size adjustment, high color purity provided by a narrow color wavelength, and the advantage of being able to proceed with the process by dissolving in a solvent. Ⅱ?-Ⅵ, represented by cadmium (Cd) and selenium (Se) Among the quantum dots being actively studied as alternatives due to the toxicity of the group quantum dots and Cd, indium phosphide (InP) represents the III-V group quantum dots, and other copper (Cu), indium (In) and sulfur (S) Studies are being conducted on non-Cd-based quantum dots.

양자점은 디스플레이는 물론, 태양 전지의 광전 변환층, 바이오 센서, 광 센서, 조명 등 다양한 분야에 활용될 수 있어, 양자점을 이용한 많은 연구들이 진행되고 있다. Quantum dots can be utilized in various fields such as display, photoelectric conversion layer of solar cells, biosensors, optical sensors, lighting, and many studies using quantum dots have been conducted.

대한 민국 특허 공개 공보 10-2014-0091623Korean Patent Publication No. 10-2014-0091623

본 발명이 해결하고자 하는 일 기술적 과제는, 광전 변환 효율이 향상된 InP 박막 및 그 제조 방법을 제공하는 데 있다. One technical problem to be solved by the present invention is to provide an InP thin film with improved photoelectric conversion efficiency and a method for manufacturing the same.

본 발명이 해결하고자 하는 다른 기술적 과제는, 중금속을 포함하지 않는 InP 박막 및 그 제조 방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide an InP thin film containing no heavy metal and a method for manufacturing the same.

본 발명이 해결하고자 하는 또 다른 기술적 과제는, 제조 공정이 간소화된 InP 박막 및 그 제조 방법을 제공하는 데 있다.Another technical problem to be solved by the present invention is to provide an InP thin film having a simplified manufacturing process and a manufacturing method thereof.

본 발명이 해결하고자 하는 또 다른 기술적 과제는, 가시광선 대역의 흡수율이 향상된 InP 박막 및 그 제조 방법을 제공하는 데 있다.Another technical problem to be solved by the present invention is to provide an InP thin film with improved absorption of visible light bands and a method of manufacturing the same.

본 발명이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다.The technical problem to be solved by the present invention is not limited to the above.

상기 기술적 과제를 해결하기 위해, 본 발명은 InP 박막의 제조 방법을 제공한다. In order to solve the above technical problem, the present invention provides a method of manufacturing an InP thin film.

일 실시 예에 따르면, 상기 InP 박막의 제조 방법은, 인듐 전구체 및 인 전구체를 이용하여, InP 양자점을 형성하는 단계, 주석 칼코겐 음이온을 갖는 베이스 용매에 상기 InP 양자점을 첨가하고 교반하여, 상기 주석 칼코겐 음이온을 상기 InP 양자점에 결합시키는 단계, 및 상기 주석 칼코겐 음이온이 결합된 상기 InP 양자점을 기판에 코팅하고 열처리하여, 주석이 도핑된 상기InP 양자점을 갖는 InP 박막을 제조하는 단계를 포함할 수 있다. According to one embodiment, the method of manufacturing the InP thin film, using an indium precursor and a phosphorus precursor, forming an InP quantum dot, adding the InP quantum dot to a base solvent having a tin chalcogen anion and stirring the tin A step of bonding a chalcogen anion to the InP quantum dot, and coating the InP quantum dot to which the tin chalcogen anion is bonded to a substrate and heat-treating, thereby producing an InP thin film having the InP quantum dot doped with tin. Can be.

일 실시 예에 따르면, 상기 InP 양자점의 표면에 지방산이 제공되고, 상기 베이스 용매에 상기 InP 양자점을 첨가하고 교반하는 단계에서, 상기 지방산은 상기 주석 칼코겐 음이온으로 치환되어, 상기 주석 칼코겐 음이온이 상기 InP 양자점에 결합되는 것을 포함할 수 있다. According to one embodiment, a fatty acid is provided on the surface of the InP quantum dot, and in the step of adding and stirring the InP quantum dot to the base solvent, the fatty acid is substituted with the tin chalcogen anion, so that the tin chalcogen anion is It may include that coupled to the InP quantum dot.

일 실시 예에 따르면, 상기 주석 칼코겐 음이온은, SnS4 4-인 것을 포함할 수 있다. According to an embodiment, the tin chalcogen anion may include SnS 4 4- .

본 발명의 실시 예에 따른 InP 박막의 제조 방법은, 인듐 전구체 및 인 전구체를 이용하여, InP 양자점을 형성하는 단계, 주석 칼코겐 음이온을 갖는 베이스 용매에 상기 InP 양자점을 첨가하고 교반하여, 상기 주석 칼코겐 음이온을 상기 InP 양자점에 결합시키는 단계, 및 상기 주석 칼코겐 음이온이 결합된 상기 InP 양자점을 기판에 코팅하고 열처리하여, 주석이 도핑된 상기InP 양자점을 갖는 InP 박막을 제조하는 단계를 포함할 수 있다. Method of manufacturing an InP thin film according to an embodiment of the present invention, using an indium precursor and a phosphorus precursor, forming an InP quantum dot, adding the InP quantum dot to a base solvent having a tin chalcogen anion, and stirring the tin A step of bonding a chalcogen anion to the InP quantum dot, and coating the InP quantum dot to which the tin chalcogen anion is bonded to a substrate and heat-treating, thereby producing an InP thin film having the InP quantum dot doped with tin. Can be.

이에 따라, 중금속을 포함하지 않는 것은 물론, 가시광선 대역을 용이하게 흡수할 수 있는 주석이 도핑된 상기 InP 양자점을 갖는 상기 InP 박막이 제공될 수 있다. Accordingly, the InP thin film having the InP quantum dot doped with tin that can easily absorb the visible light band, as well as containing no heavy metal, can be provided.

또한, 간단한 용액 공정으로 플렉시블한 기판에 용이하게 상기 InP 박막의 제조 공정이 제공될 수 있으며, 태양 전지, 광 검출기, 광 센서 등 다양한 소자에 활용될 수 있다. In addition, the manufacturing process of the InP thin film can be easily provided to a flexible substrate with a simple solution process, and it can be utilized in various devices such as a solar cell, a photo detector, and an optical sensor.

도 1은 본 발명의 실시 예에 따른 InP 박막에 포함된 주석이 도핑된 InP 양자점의 제조 방법을 설명하기 위한 도면이다.
도 2는 본 발명의 실시 예에 따른 InP 박막의 제조 방법을 설명하기 위한 도면이다.
도 3은 본 발명의 실시 예에 따라 제조된 주석이 도핑된 InP 박막을 촬영한 SEM 사진이다.
1 is a view for explaining a method of manufacturing a tin-doped InP quantum dot included in the InP thin film according to an embodiment of the present invention.
2 is a view for explaining a method of manufacturing an InP thin film according to an embodiment of the present invention.
3 is a SEM photograph of an InP thin film doped with tin prepared according to an embodiment of the present invention.

이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical spirit of the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the disclosed contents are thorough and complete and that the spirit of the present invention is sufficiently conveyed to those skilled in the art.

본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.In the present specification, when a component is referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them. In addition, in the drawings, the thickness of the films and regions are exaggerated for effective description of the technical content.

또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.In addition, in various embodiments of the present specification, terms such as first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Therefore, what is referred to as the first component in one embodiment may be referred to as the second component in another embodiment. Each embodiment described and illustrated herein also includes its complementary embodiment. In addition, in this specification,'and/or' is used to mean including at least one of the components listed before and after.

명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. In the specification, a singular expression includes a plural expression unless the context clearly indicates otherwise. Also, terms such as “include” or “have” are intended to indicate the presence of features, numbers, steps, elements, or combinations thereof described in the specification, and one or more other features, numbers, steps, or configurations. It should not be understood as excluding the possibility of the presence or addition of elements or combinations thereof.

또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.

도 1은 본 발명의 실시 예에 따른 InP 박막에 포함된 주석이 도핑된 InP 양자점의 제조 방법을 설명하기 위한 도면이고, 도 2는 본 발명의 실시 예에 따른 InP 박막의 제조 방법을 설명하기 위한 도면이다. 1 is a view for explaining a method of manufacturing a tin-doped InP quantum dot included in the InP thin film according to an embodiment of the present invention, Figure 2 is a view for explaining the manufacturing method of the InP thin film according to an embodiment of the present invention It is a drawing.

도 1 및 도 2를 참조하면, 인듐 전구체 및 인 전구체를 이용하여, InP 양자점(110)이 형성될 수 있다. 예를 들어, 상기 인듐 전구체는, 인듐 아세테이트(Indium acetate)일 수 있고, 상기 인 전구체는 트리스(트리메틸실릴)포스핀(tris(trimethylsilyl)phosphine)일 수 있다. 1 and 2, an InP quantum dot 110 may be formed using an indium precursor and a phosphorus precursor. For example, the indium precursor may be indium acetate, and the phosphorus precursor may be tris(trimethylsilyl)phosphine.

주석 칼코겐 음이온(114)을 갖는 베이스 용매에 상기 InP 양자점(110)을 첨가하고 교반하여, 상기 주석 칼코겐 음이온(114)을 상기 InP 양자점(110)에 결합시킬 수 있다. The InP quantum dot 110 may be added to the base solvent having the tin chalcogen anion 114 and stirred, thereby binding the tin chalcogen anion 114 to the InP quantum dot 110.

일 실시 예에 따르면, 상기 주석 칼코겐 음이온(114)은, SnS44-일 수 있다.According to an embodiment, the tin chalcogen anion 114 may be SnS44-.

상술된 상기 InP 양자점(110)의 제조 단계에서, 상기 InP 양자점(110)이 형성된 후, 상기 InP 양자점(110)은 지방산(112)을 제공하는 소스 용액에 분산될 수 있다. 이에 따라, 상기 InP 양자점(110)의 표면에 상기 지방산(112)이 부착될 수 있다. 이후, 상기 주석 칼코겐 음이온(114)을 갖는 상기 베이스 용매에 상기 InP 양자점(110)이 분산된 상기 소스 용액을 첨가하고 교반하는 단계에서, 상기 지방산(112)은 상기 주석 칼코겐 음이온(114)으로 치환되어, 상기 주석 칼코겐 음이온(114)이 상기 InP 양자점(110)에 결합될 수 있다. In the manufacturing step of the InP quantum dot 110 described above, after the InP quantum dot 110 is formed, the InP quantum dot 110 may be dispersed in a source solution providing a fatty acid (112). Accordingly, the fatty acid 112 may be attached to the surface of the InP quantum dot 110. Then, in the step of adding and stirring the source solution in which the InP quantum dot 110 is dispersed in the base solvent having the tin chalcogen anion 114, the fatty acid 112 is the tin chalcogen anion 114 Substituted with, the tin chalcogen anion 114 may be coupled to the InP quantum dot 110.

일 변형 예에 따르면, 상기 InP 양자점(110)을 상기 지방산(112)을 제공하는 상기 소스 용액에 분산시키는 단계는, 상기 InP 양자점(110)을 상기 소스 용액에 분산하고 제1 온도에서 열처리를 수행하여 상기 지방산(112)이 결합된 상기 InP 양자점(110)을 제조하는 단계, 상기 지방산(112)이 결합된 상기 InP 양자점(110)을 수득하는 단계, 및 상기 지방산(112)이 결합된 상기 InP 양자점(110)을 다시 상기 소스 용액에 분산하고 제2 온도에서 열처리를 수행하여 상기 지방산(112)을 추가적으로 상기 InP 양자점(110)에 결합시키는 단계를 포함할 수 있다. 상기 지방산(112)이 추가적으로 결합된 상기 InP 양자점(110)이 포함된 상기 소스 용액은, 상술된 바와 같이, 상기 베이스 용매에 첨가 및 교반될 수 있다. 이 경우, 상기 제2 온도는 상기 제1 온도보다 높을 수 있고, 이에 따라, 상기 InP 양자점(110)에 다수의 상기 지방산(112)이 보다 용이하게 결합될 수 있고, 상기 지방산(112)이 상기 주석 칼코겐 음이온(114)으로 용이하게 치환될 수 있다. According to one variation, the step of dispersing the InP quantum dots 110 in the source solution providing the fatty acid 112, dispersing the InP quantum dots 110 in the source solution and performing heat treatment at a first temperature To prepare the InP quantum dot 110 to which the fatty acid 112 is bound, to obtain the InP quantum dot 110 to which the fatty acid 112 is bound, and the InP to which the fatty acid 112 is bound. The method may further include dispersing the quantum dot 110 in the source solution and performing heat treatment at a second temperature to additionally bond the fatty acid 112 to the InP quantum dot 110. The source solution containing the InP quantum dot 110 to which the fatty acid 112 is additionally bonded, as described above, may be added and stirred in the base solvent. In this case, the second temperature may be higher than the first temperature, and accordingly, a plurality of the fatty acids 112 may be more easily coupled to the InP quantum dots 110, and the fatty acids 112 may be It can be easily substituted with tin chalcogen anion 114.

상기 주석 칼코겐 음이온(114)이 결합된 상기 InP 양자점(110)을 기판(200)에 코팅하고 열처리하여, 주석이 도핑된 상기 InP 양자점(110)을 갖는 InP 박막(120)이 제조될 수 있다. The InP quantum dot 110 coated with the tin chalcogen anion 114 is coated on the substrate 200 and heat-treated, so that an InP thin film 120 having the InP quantum dot 110 doped with tin may be manufactured. .

주석이 도핑된 상기 InP 양자점(110)은 n-type 반도체 특성을 나타낼 수 있다. 이러한 n-type 박막형성을 위해, 상술된 본 발명의 실시 예에 따르지 않고 초크랄스키(Czochralski, Cz)법 또는 진공증착방법으로 Sn 도펀트와 InP 결정을 함께 성장시키는 경우, 제조단가가 비싸고, 유연기판에의 적용하기 용이하지 않다. The InP quantum dot 110 doped with tin may exhibit n-type semiconductor characteristics. For the formation of the n-type thin film, the Sn dopant and the InP crystal are grown together by the Czochralski (Cz) method or the vacuum deposition method, not according to the embodiment of the present invention described above. It is not easy to apply to a substrate.

하지만, 본 발명의 실시 예에 따르면, 콜로이드 상태의 상기 InP 양자점(110)을 합성한 뒤, 상기 지방산(112)로 둘러쌓인 상기 InP 양자점(110) 표면을 상기 주석 칼코겐 음이온(114)인 SnS4 4- 리간드로 치환하고, 상기 기판(200)에 코팅 후 열 처리하는 간소한 방법으로 상기 InP 양자점(110)-SnS4 4- 가 소결되면서 주석이 도핑된 InP 박막(120)이 제조될 수 있다. However, according to an embodiment of the present invention, after synthesizing the InP quantum dot 110 in a colloidal state, the surface of the InP quantum dot 110 surrounded by the fatty acid 112 is the tin chalcogen anion 114 SnS. 4 As a simple method of substituting with 4 - ligand and coating the substrate 200 and heat-treating it, tin-doped InP thin film 120 may be prepared as the InP quantum dots 110-SnS 4 4- are sintered. have.

상술된 본 발명의 실시 예에 따른 주석된 도핑된 InP 박막(120)은 태양 전지의 광 활성층으로 이용될 수 있다. The tin-doped InP thin film 120 according to the embodiment of the present invention described above may be used as a photoactive layer of a solar cell.

구체적으로, 제1 전극 상에 상기 주석이 도핑된 InP 박막(120), 전도성 고분자층, 제2 전극이 차례로 배치될 수 있다. 상기 제1 전극 및 상기 주석이 도핑된 InP 박막(120) 사이에 전자 전달층이 추가적으로 제공되거나, 또는 상기 제2 전극 및 상기 전도성 고분자층 사이에 정공 전달층이 추가적으로 제공될 수 있다. Specifically, the tin-doped InP thin film 120, the conductive polymer layer, and the second electrode may be sequentially disposed on the first electrode. An electron transport layer may be additionally provided between the first electrode and the tin-doped InP thin film 120, or a hole transport layer may be additionally provided between the second electrode and the conductive polymer layer.

또한, 일 실시 예에 따르면, 상기 제1 전극 상에, 상기 주석이 도핑된 InP 박막(120)이 복수의 층으로 형성될 수 있다. 구체적으로, 주석의 도핑 농도가 상대적으로 낮은 제1 InP 박막이 형성되고, 주석의 도핑 농도가 상대적으로 높은 제2 InP 박막이 상기 제1 InP 박막 상에 형성될 수 있다. 주석의 도핑 농도는 상기 주석 칼코겐 음이온(114)을 갖는 상기 베이스 용매에 상기 InP 양자점(110)을 첨가하고 교반하여, 상기 주석 칼코겐 음이온(114)을 상기 InP 양자점(110)에 결합시키는 단계에서 조절될 수 있다. Further, according to an embodiment, on the first electrode, the tin-doped InP thin film 120 may be formed of a plurality of layers. Specifically, a first InP thin film having a relatively low doping concentration of tin may be formed, and a second InP thin film having a relatively high doping concentration of tin may be formed on the first InP thin film. The doping concentration of tin is by adding and stirring the InP quantum dot 110 to the base solvent having the tin chalcogen anion 114, thereby binding the tin chalcogen anion 114 to the InP quantum dot 110. Can be adjusted in.

이하, 본 발명의 구체적인 실험 예에 따른 주석이 도핑된 InP 박막의 제조 방법이 설명된다. Hereinafter, a method of manufacturing an InP thin film doped with tin according to a specific experimental example of the present invention will be described.

실시 예에 따른 InP 양자점 제조InP quantum dot production according to the embodiment

InP 코어의 인듐(In) 전구체 물질로써 0.4mmol 인듐 아세테이트(Indium acetate)와 1.67mmol 아세트산아연(Zinc acetate), 3.7mmol 미리스트산(Myristic acid), 7ml의 1-옥타데센(1-octadecene)을 3-neck flask의 110℃ 진공 환경에서 2시간 동안 교반 가열하였다. As an indium precursor material for the InP core, 0.4mmol indium acetate, 1.67mmol zinc acetate, 3.7mmol myristic acid, and 7ml 1-octadecene were used. The 3-neck flask was heated under stirring in a vacuum environment at 110° C. for 2 hours.

질소 환경에서 상온으로 냉각시켜 인(P) 전구체인 0.317mmol 트리스(트리메틸실릴)포스핀(tris(trimethylsilyl)phosphine)을 주입한 뒤, 250℃로 승온시킨 뒤, 약 10분간 교반 가열하였다. After cooling to room temperature in a nitrogen environment, a phosphorus (P) precursor 0.317 mmol tris (trimethylsilyl) phosphine (tris (trimethylsilyl) phosphine) was injected, heated to 250° C., and stirred and heated for about 10 minutes.

상온으로 식힌 후, 과량의 acetone을 주입하고, 원심 분리 공정을 수행하여, InP 양자점을 침전시킨뒤, 이를 다시 hexane에 분산시켰다. After cooling to room temperature, excess acetone was injected, and centrifugation was performed to precipitate InP quantum dots, which were then dispersed again in hexane.

실시 예에 따른 주석 칼코겐 음이온이 결합된 InP 양자점 제조Preparation of InP quantum dots combined with tin chalcogen anions according to an embodiment

SnS4 4- 가 녹아있는 Dimethyl sulfoxide(DMSO) 에, 상술된 실시 예에 따라 제조된 InP 양자점 용액을 혼합한 뒤, 상온에서 교반하여 InP 양자점의 표면에 SnS4 4-를 결합시켜, InP 양자점을 hexane 층에서 DMSO 층으로 transfer 시켰다.After mixing the InP quantum dot solution prepared according to the above-described embodiment with Dimethyl sulfoxide (DMSO) in which SnS 4 4- is dissolved, and stirring at room temperature, SnS 4 4- is bound to the surface of the InP quantum dot to form an InP quantum dot. Transfer from hexane layer to DMSO layer.

실시 예에 따른 주석이 도핑된 InP 박막 제조Preparation of InP thin film doped with tin according to an embodiment

상술된 방법으로 제조된 SnS4 4-가 결합된 InP 양자점을 포함하는 용액을 유리 기판에 스핀 코팅 한 뒤, N2 gas 환경에서 250℃, 30분동안 열처리하여, 주석이 도핑된 InP 박막을 제조하였다. After spin coating a solution containing InP quantum dots in which SnS 4 4- is prepared by the above-described method on a glass substrate, and then heat-treating it in an N 2 gas environment for 250° C. for 30 minutes to prepare a tin-doped InP thin film. Did.

도 3은 본 발명의 실시 예에 따라 제조된 주석이 도핑된 InP 박막을 촬영한 SEM 사진이다.3 is an SEM photograph of an InP thin film doped with tin prepared according to an embodiment of the present invention.

이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As described above, the present invention has been described in detail using preferred embodiments, but the scope of the present invention is not limited to specific embodiments, and should be interpreted by the appended claims. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.

110: 양자점
112: 지방산
114: 주석 칼코겐 음이온
120: InP 박막
200: 기판
110: quantum dot
112: fatty acid
114: tin chalcogen anion
120: InP thin film
200: substrate

Claims (3)

인듐 전구체 및 인 전구체를 이용하여, InP 양자점을 형성하는 단계;
주석 칼코겐 음이온을 갖는 베이스 용매에 상기 InP 양자점을 첨가하고 교반하여, 상기 주석 칼코겐 음이온을 상기 InP 양자점에 결합시키는 단계; 및
상기 주석 칼코겐 음이온이 결합된 상기 InP 양자점을 기판에 코팅하고 열처리하여, 주석이 도핑된 상기InP 양자점을 갖는 InP 박막을 제조하는 단계를 포함하는 InP 박막의 제조 방법.
Forming an InP quantum dot using an indium precursor and a phosphorus precursor;
Adding and stirring the InP quantum dot to a base solvent having a tin chalcogen anion, thereby binding the tin chalcogen anion to the InP quantum dot; And
A method of manufacturing an InP thin film comprising the step of coating the InP quantum dot to which the tin chalcogen anion is bonded to a substrate and heat-treating, thereby producing an InP thin film having the InP quantum dot doped with tin.
제1 항에 있어서,
상기 InP 양자점의 표면에 지방산이 제공되고,
상기 베이스 용매에 상기 InP 양자점을 첨가하고 교반하는 단계에서, 상기 지방산은 상기 주석 칼코겐 음이온으로 치환되어, 상기 주석 칼코겐 음이온이 상기 InP 양자점에 결합되는 것을 포함하는 InP 박막의 제조 방법.
According to claim 1,
Fatty acid is provided on the surface of the InP quantum dot,
In the step of adding and stirring the InP quantum dot to the base solvent, the fatty acid is substituted with the tin chalcogen anion, so that the tin chalcogen anion is bonded to the InP quantum dot.
제1 항에 있어서,
상기 주석 칼코겐 음이온은, SnS4 4-인 것을 포함하는 InP 박막의 제조 방법.
According to claim 1,
The tin chalcogen anion, SnS 4 4- InP thin film production method comprising the.
KR1020180149409A 2018-11-28 2018-11-28 InP thin film and method of fabricating of the same KR102166557B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180149409A KR102166557B1 (en) 2018-11-28 2018-11-28 InP thin film and method of fabricating of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180149409A KR102166557B1 (en) 2018-11-28 2018-11-28 InP thin film and method of fabricating of the same

Publications (2)

Publication Number Publication Date
KR20200064227A true KR20200064227A (en) 2020-06-08
KR102166557B1 KR102166557B1 (en) 2020-10-19

Family

ID=71089480

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180149409A KR102166557B1 (en) 2018-11-28 2018-11-28 InP thin film and method of fabricating of the same

Country Status (1)

Country Link
KR (1) KR102166557B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140091623A (en) 2012-12-27 2014-07-22 에스케이이노베이션 주식회사 Quantum Dot Solar Cell and the Fabrication Method Thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140091623A (en) 2012-12-27 2014-07-22 에스케이이노베이션 주식회사 Quantum Dot Solar Cell and the Fabrication Method Thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED PHYSICS. VOLUME 89, NUMBER 4 *
Postigo et al.: "Characterization of SnTe-doped InP grown by solid-source atomic layer molecular beam epitaxy", 2001 American Institute of Physics. vol.89 No.4 p2447-p2451 (2001.02.15)* *

Also Published As

Publication number Publication date
KR102166557B1 (en) 2020-10-19

Similar Documents

Publication Publication Date Title
Zhang et al. PbS capped CsPbI3 nanocrystals for efficient and stable light-emitting devices using p–i–n structures
Zhu et al. Low‐dimensional metal halide perovskites and related optoelectronic applications
Wang et al. Perovskite nanocrystals: Synthesis, stability, and optoelectronic applications
Cai et al. Lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals
Li et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications
Ghosh et al. Lead‐free metal halide perovskite nanocrystals: challenges, applications, and future aspects
Zuo et al. Lead‐free perovskite materials (NH4) 3Sb2IxBr9− x
Ananthakumar et al. Cesium lead halide (CsPbX 3, X= Cl, Br, I) perovskite quantum dots-synthesis, properties, and applications: a review of their present status
US8361823B2 (en) Light-emitting nanocomposite particles
Jiang et al. Engineering green-to-blue emitting CsPbBr3 quantum-dot films with efficient ligand passivation
CN106784191B (en) QLED device and preparation method thereof
JP2019054251A (en) Core-shell nanoparticles for photovoltaic absorber films
Palazon Metal chalcohalides: next generation photovoltaic materials?
WO2007037882A1 (en) Quantum dot light emitting layer
Park et al. Electroluminescence of perovskite nanocrystals with ligand engineering
TWI534087B (en) Preparation of copper selenide nanoparticles
WO2017031021A1 (en) Perovskite solar cells including semiconductor nanomaterials
Fu et al. Green synthesis of CuInS2/ZnS nanocrystals with high photoluminescence and stability
Koh et al. Enhanced thermal stability of InP quantum dots coated with Al-doped ZnS shell
CN110819341A (en) Manufacturing method of lead sulfide quantum dots, photoelectric detector and manufacturing method of photoelectric detector
Yang et al. Lead-free perovskites: Growth, properties, and applications
Hu et al. Controlled Core/Crown Growth Enables Blue‐Emitting Colloidal Nanoplatelets with Efficient and Pure Photoluminescence
KR102166557B1 (en) InP thin film and method of fabricating of the same
Wang et al. Perovskite nanogels: synthesis, properties, and applications
CN111303864A (en) Method for synthesizing zinc oxide quantum dots with adjustable polarity

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant