KR20200063745A - Preventing method of leaning for vehicle - Google Patents

Preventing method of leaning for vehicle Download PDF

Info

Publication number
KR20200063745A
KR20200063745A KR1020180149848A KR20180149848A KR20200063745A KR 20200063745 A KR20200063745 A KR 20200063745A KR 1020180149848 A KR1020180149848 A KR 1020180149848A KR 20180149848 A KR20180149848 A KR 20180149848A KR 20200063745 A KR20200063745 A KR 20200063745A
Authority
KR
South Korea
Prior art keywords
vehicle
yaw
braking force
center
moment
Prior art date
Application number
KR1020180149848A
Other languages
Korean (ko)
Other versions
KR102663608B1 (en
Inventor
한욱현
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020180149848A priority Critical patent/KR102663608B1/en
Publication of KR20200063745A publication Critical patent/KR20200063745A/en
Application granted granted Critical
Publication of KR102663608B1 publication Critical patent/KR102663608B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/114Yaw movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/13
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1323Moment of inertia of the vehicle body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/02Control of vehicle driving stability

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Vehicle Body Suspensions (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Regulating Braking Force (AREA)

Abstract

The present invention relates to a vehicle tilt preventing method for preventing a vehicle from being tilted when braking by a logic which changes a braking force. According to the present invention, disclosed is a method for controlling a braking force of a vehicle including the steps of: determining whether a tilt occurs when braking the vehicle; detecting steering information of a driver when the tilt occurs; calculating a tilt amount of the vehicle in a state where the tilt due to the driver′s steering is excluded by reflecting the steering information; and distributing and controlling the braking force to both side wheel brakes in a direction to offset the tilt amount.

Description

차량의 쏠림 방지방법{PREVENTING METHOD OF LEANING FOR VEHICLE}Prevention of vehicle tilting{PREVENTING METHOD OF LEANING FOR VEHICLE}

본 발명은 브레이크 제동력을 가변하는 로직에 의해 제동시 쏠림을 방지하는 차량의 쏠림 방지방법에 관한 것이다.The present invention relates to a vehicle preventing method of preventing a vehicle from braking when braking by a logic that changes the braking force.

일체형 현가(리프스프링) 구조가 탑재된 상용차량의 경우, 조향 드래그링크의 궤적과, 리바운드 및 범프에 의한 휠 궤적의 차이가 발생하여 제동시, 차량이 한 쪽으로 쏠리는 문제가 발생되고 있다.In the case of a commercial vehicle equipped with an integral suspension (leaf spring) structure, a difference between the trajectory of the steering drag link and the wheel trajectory due to rebound and bump occurs, and thus, when braking, a problem occurs that the vehicle is tilted to one side.

이 같은 쏠림 발생 문제를 해소하기 위해, 현가 하드포인트를 최적화하거나 리프스프링의 구조를 보완하고 있는 실정에 있다.In order to solve the problem of such a shift, the current suspension hard point is optimized or the structure of the leaf spring is complemented.

그런데, 상용차의 경우 화물의 적차 수준이 다양하여 차량에 가해지는 중량부하가 매우 상이한데, 상기한 현가구조 보완방식의 경우 특정 하중조건에서는 쏠림 방지 효과가 있기는 하나, 화물의 적차상태 및 적차조건에 따른 다양한 하중조건에서 쏠림 방지 효과가 저하되는 문제가 있다.However, in the case of a commercial vehicle, the weight loading on the vehicle is very different due to the various loading levels of the cargo. In the case of the above-mentioned suspension structure complementary method, although there is an effect of preventing the tipping under certain load conditions, the loading condition and the loading condition of the cargo There is a problem that the anti-tilt effect is deteriorated under various load conditions.

특히, 브레이크 기구의 산포가 과다(라이닝 마찰계수 ±16%)하여, 양측 휠브레이크의 제동력이 비대칭적으로 발생시, 쏠림을 방지하는 것이 불가능해지는 문제가 있었다.In particular, when the dispersion of the brake mechanism is excessive (lining friction coefficient ±16%), when the braking force of both wheel brakes occurs asymmetrically, there is a problem that it is impossible to prevent the tipping.

상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The above descriptions as background arts are only for improving understanding of the background of the present invention, and should not be taken as an admission that they correspond to the prior arts already known to those skilled in the art.

KR 10-2018-0026913 AKR 10-2018-0026913 A

본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 안출한 것으로, 추가적인 구조물이나 중량의 증대 없이 브레이크 제동력을 가변하는 로직에 의해 제동시 쏠림을 방지하는 차량의 쏠림 방지방법을 제공하는 데 있다.The present invention has been devised to solve the above-described problems, and to provide a vehicle anti-tip method for preventing the vehicle from being biased during braking by a logic that changes the brake braking force without increasing an additional structure or weight.

상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 컨트롤러가, 차량의 제동시, 쏠림이 발생하는지 판단하는 단계; 컨트롤러가, 상기 쏠림 발생시, 운전자의 조향정보를 검출하는 단계; 컨트롤러가, 상기 조향정보를 반영하여 운전자 조향에 따른 쏠림이 배제된 상태의 차량의 쏠림량을 산출하는 단계; 및 컨트롤러가, 상기 쏠림량을 상쇄하는 방향으로 양측 휠브레이크에 제동력을 배분하여 제어하는 단계;를 포함하는 것을 특징으로 할 수 있다.The configuration of the present invention for achieving the above object, the controller, when braking of the vehicle, the step of determining whether the tilt occurs; The controller, when the tilt occurs, detecting the steering information of the driver; The controller, by reflecting the steering information, calculating the amount of tilt of the vehicle in a state in which the tilt due to the driver's steering is excluded; And a controller that distributes and controls the braking force to both side wheel brakes in a direction to offset the amount of tilt.

G센서의 측정값을 이용하여 차량의 쏠림 여부를 판단하고; 조향각센서의 측정값을 이용하여 운전자의 조향정보를 검출할 수 있다.Determining whether the vehicle is inclined using the measured value of the G sensor; The steering information of the driver can be detected using the measured value of the steering angle sensor.

G센서에 의해 차량의 요각속도를 산출하고; 조향각센서에 의해 조향각속도를 산출하며; 상기 요각속도에서 조향각속도를 감산하여 운전자 조향에 따른 쏠림을 배제할 수 있다.Calculating the yaw speed of the vehicle by the G sensor; Steering angle speed is calculated by the steering angle sensor; The steering angle speed may be subtracted from the yaw angle speed to exclude a shift due to driver steering.

차량의 무게중심 위치를 기반으로 요관성모멘트를 산출하고; 상기 요각속도에서 조향각속도를 감산한 값을 미분하여 요각가속도를 산출하며; 상기 요관성모멘트와 요각가속도를 곱하여 차량의 요토크를 산출함으로써, 산출된 요토크가 차량의 쏠림량으로 결정될 수 있다.Calculate the moment of inertia based on the position of the center of gravity of the vehicle; Calculating the yaw acceleration by differentiating the value obtained by subtracting the steering angle velocity from the yaw velocity; By calculating the yaw torque of the vehicle by multiplying the yaw moment of inertia and the yaw angle acceleration, the calculated yaw torque may be determined as the vehicle's tilt amount.

차량의 무게중심 위치를 기반으로 요관성모멘트를 산출하고; 상기 조향각속도가 일정값 초과인 경우, 상기 요각속도를 미분하여 요각가속도를 산출하며; 상기 조향각속도가 일정값 이하인 경우, 상기 요각속도에서 조향각속도를 감산한 값을 미분하여 요각가속도를 산출하고; 상기 요관성모멘트와 요각가속도를 곱하여 차량의 요토크를 산출함으로써, 산출된 요토크가 차량의 쏠림량으로 결정될 수 있다.Calculate the moment of inertia based on the position of the center of gravity of the vehicle; When the steering angular velocity exceeds a predetermined value, the yaw velocity is calculated by differentiating the yaw velocity; When the steering angular velocity is equal to or less than a predetermined value, calculate a yaw acceleration by differentiating a value obtained by subtracting the steering angular velocity from the yaw velocity; By calculating the yaw torque of the vehicle by multiplying the yaw moment of inertia and the yaw angle acceleration, the calculated yaw torque may be determined as the vehicle's tilt amount.

차량의 공차중량을 기준으로 차량의 초기 무게중심 위치를 산출하고; 상기 초기 무게중심 위치를 이용하여 차량의 초기 요관성모멘트를 확보하고; 차축별 축중과, 차량 중량과, 축간 거리를 이용하여 차량의 현재 무게중심 위치를 산출하며; 상기 초기 무게중심 위치와, 초기 요관성모멘트와, 차량의 현재 무게중심 위치를 이용한 하기의 수식에 의해 차량의 현재 요관성모멘트를 산출할 수 있다.Calculating an initial center of gravity position of the vehicle based on the vehicle's tolerance weight; Secure the initial moment of inertia of the vehicle using the initial center of gravity position; Calculating the current center of gravity position of the vehicle using the axle weight for each axle, the vehicle weight, and the distance between the axles; The current ureter moment of the vehicle can be calculated by the following equation using the initial center of gravity position, the initial ureter moment, and the current center of gravity position of the vehicle.

lzz = lzzo + Wa2 lzz = lzz o + Wa 2

lzz : 초기 요관성모멘트lzz: Initial ureter moment

lzzo : 현재 요관성모멘트lzz o : Current moment of inertia

W : 차량 중량W: Vehicle weight

a : 초기 무게중심 위치에서 현재 무게중심 위치로의 이동량a: amount of movement from the initial center of gravity position to the current center of gravity position

상기 요토크에 대응하는 역토크가 발생되도록 양측 휠브레이크의 제동력을 상이하게 배분할 수 있다.The braking force of the wheel brakes on both sides may be differently distributed so that a reverse torque corresponding to the yaw torque is generated.

상기 요토크에 의해 쏠림이 발생하는 방향의 휠브레이크 제동력을 반대방향의 휠브레이크 제동력보다 작게 배분할 수 있다.The braking force of the wheel brake in the direction in which the tilting is caused by the yaw torque may be distributed less than the braking force of the wheel brake in the opposite direction.

상기 요토크의 절대값과 역토크의 절대값이 동일해지도록 양측 휠브레이크의 제동력을 배분할 수 있다.The braking force of both wheel brakes can be distributed so that the absolute value of the yaw torque and the absolute value of the reverse torque are the same.

상기 양측 휠브레이크의 제동력은 하기의 수식에 의해 결정될 수 있다.The braking force of the two side wheel brakes can be determined by the following equation.

Figure pat00001
Figure pat00001

FL : 좌측 휠브레이크 제동력F L : Left wheel brake braking force

FR : 우측 휠브레이크 제동력F R : Right wheel brake braking force

F운전자 : 브레이크페달 답입에 따른 제동력F Driver : Braking force according to brake pedal entry

Wt : 무게중심과 휠센터 간의 거리W t : Distance between center of gravity and wheel center

T : 요토크T: Yotalk

상기한 과제 해결수단을 통해 본 발명은, 브레이크페달을 밟아 차량의 제동시, 차량의 쏠림이 발생하면, 쏠림이 상쇄되는 방향으로 양측 휠브레이크에 제동력을 차등 배분하게 된다. 따라서, 다양한 원인에 의해 발생되는 쏠림 현상을 소프트웨어적으로 개선하여 다양한 운전조건에서 발생하는 쏠림의 개선이 가능하고, 또한 추가 중량이나 구조물의 설치 없이 쏠림을 방지하는 효과가 있다.The present invention through the above-described problem solving means, when braking the vehicle by stepping on the brake pedal, if the vehicle is inclined, the braking force is differentially distributed to both wheel brakes in a direction in which the inclination is offset. Therefore, it is possible to improve the tilt caused by various reasons by software to improve the tilt caused by various causes, and also to prevent the tilt without installing additional weight or structure.

도 1은 본 발명에 따른 제동시스템의 구성도.
도 2는 본 발명에 따른 제동 제어과정의 흐름을 도시한 도면.
도 3는 본 발명에서 무게중심 위치를 구하는 원리를 설명하기 위한 도면.
도 4는 본 발명에서 태그액슬 추가시, 무게중심 위치를 구하는 원리를 설명하기 위한 도면.
도 5는 본 발명에 따른 제동력 배분 제어 작동을 예시하여 나타낸 도면.
1 is a block diagram of a braking system according to the present invention.
Figure 2 is a view showing the flow of the braking control process according to the present invention.
3 is a view for explaining the principle of obtaining the center of gravity position in the present invention.
4 is a view for explaining the principle of obtaining the position of the center of gravity when adding the tag axle in the present invention.
5 is a view showing an exemplary braking force distribution control operation according to the present invention.

본 발명의 바람직한 실시예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.If described in detail with reference to the accompanying drawings, preferred embodiments of the present invention.

도 1을 참조하여, 본 발명에 따른 차량의 쏠림 방지방법을 구현하기 위한 제동시스템의 구성을 살펴보면, 차량의 각 차축에 축중센서(1)가 마련되어, 각 차축의 축중을 측정한다. 그리고, G센서(3)가 마련되어 요레이트 및 기타 주행정보를 검출하고, 조향각센서(5)가 마련되어 스티어링휠의 조향각 정보를 검출한다. 여기서, 상기 축중센서(1)는 스트레인 게이지가 활용될 수 있다.Referring to Figure 1, looking at the configuration of the braking system for implementing a method for preventing the vehicle from tipping according to the present invention, an axle weight sensor 1 is provided on each axle of the vehicle to measure the axle weight of each axle. Then, a G sensor 3 is provided to detect yaw rate and other driving information, and a steering angle sensor 5 is provided to detect steering angle information of the steering wheel. Here, a strain gauge may be used as the load sensor 1.

아울러, 본 발명의 제동시스템은 에어탱크로부터 일정 공압을 제공받아 실제 휠브레이크에 제동력을 발생시키는 공압식 브레이크 드럼/디스크가 구비되고, 상기 운전자의 제동력에 따라 브레이크의 공압을 제어하도록 EBS 또는 ABS모듈레이터가 구비될 수 있다.In addition, the braking system of the present invention is provided with a pneumatic brake drum/disc that receives a certain amount of air pressure from the air tank and generates braking force on the actual wheel brake, and the EBS or ABS modulator controls the air pressure of the brake according to the braking force of the driver. It may be provided.

그리고, 상기 센서들에서 측정되는 신호들을 입력받아, 제동력 제어를 위한 신호를 계산하고, 이를 EBS 또는 ABS모듈레이터에 인가하는 컨트롤러(CLR)(ECU : 차량 제어기)가 마련될 수 있다.In addition, a controller (CLR) (ECU: vehicle controller) that receives signals measured by the sensors, calculates a signal for braking force control, and applies it to the EBS or ABS modulator may be provided.

한편, 본 발명은 상기 컨트롤러(CLR)를 통해 양측 휠브레이크의 제동력을 제어하여 쏠림을 방지하는 것으로, 도 1 및 도 2를 참조하여 제동력 제어방법의 구성을 살펴보면, 컨트롤러(CLR)가, 차량의 제동시, 쏠림이 발생하는지 판단하는 단계와, 컨트롤러(CLR)가, 상기 쏠림 발생시, 운전자의 조향정보를 검출하는 단계와, 컨트롤러(CLR)가, 상기 조향정보를 반영하여 운전자 조향에 따른 쏠림이 배제된 상태의 차량의 쏠림량을 산출하는 단계 및, 컨트롤러(CLR)가, 상기 쏠림량을 상쇄하는 방향으로 양측 휠브레이크에 제동력을 배분하여 제어하는 단계를 포함하여 구성이 된다.On the other hand, the present invention is to control the braking force of the wheel brakes on both sides through the controller (CLR) to prevent tipping. Referring to FIGS. 1 and 2, referring to the configuration of the braking force control method, the controller (CLR), the vehicle When braking, a step of determining whether a tilt occurs, a controller (CLR), detecting a driver's steering information when the tilt occurs, and a controller (CLR) reflecting the steering information to reflect the driver's steering Comprising the step of calculating the amount of the vehicle in the excluded state, and the controller (CLR), the step of distributing the braking force to both wheel brakes in a direction to offset the amount of control is configured.

즉, 브레이크페달을 밟아 차량의 제동시, 차량의 쏠림이 발생하면, 양측 휠에 인가되는 제동력을 쏠림이 상쇄되는 방향으로 차등 제어하게 된다. 따라서, 다양한 원인에 의해 발생되는 쏠림 현상을 소프트웨어적으로 개선하여 다양한 운전조건에서 발생하는 쏠림의 개선이 가능하고, 또한 추가 중량이나 구조물의 설치 없이 쏠림을 방지할 수 있게 된다.That is, when the vehicle is braked by stepping on the brake pedal, the braking force applied to both wheels is differentially controlled in a direction in which the steering is offset. Therefore, it is possible to improve the tilting caused by various causes by software to improve the tilting caused by various causes, and also to prevent the tilting without installing additional weights or structures.

아울러, 본 발명은 G센서(3)의 측정값을 이용하여 차량의 쏠림 여부를 판단하고, 조향각센서(5)의 측정값을 이용하여 운전자의 조향정보를 검출하게 된다.In addition, the present invention determines whether the vehicle is inclined using the measured value of the G sensor 3 and detects the steering information of the driver using the measured value of the steering angle sensor 5.

예컨대, G센서(3)에 의해 차량의 요각속도를 산출하게 되는바, 상기 요각속도가 일정값 이상시 차량의 쏠림이 발생한 것으로 판단하게 된다.For example, since the vehicle's yaw speed is calculated by the G sensor 3, it is determined that the vehicle is inclined when the yaw speed is greater than or equal to a predetermined value.

그리고, 조향각센서(5)에 의해 조향각 및 조향각속도를 산출하여 운전자의 조향의지를 판단하게 된다.Then, the steering angle and the steering angle speed are calculated by the steering angle sensor 5 to determine the driver's willingness to steer.

아울러, 본 발명에서는 쏠림 발생시, 운전자의 조향에 따른 쏠림을 배제하기 위해, 상기 요각속도에서 조향각속도를 감산하여 운전자 조향에 따른 쏠림을 배제하게 되고, 이처럼 운전자 조향에 따른 쏠림이 배제된 결과값을 이용하여 차량의 쏠림량을 산출하게 된다.In addition, in the present invention, in order to exclude the driver's steering due to steering, the steering angle speed is subtracted from the yaw angle to subtract the driver's steering. The vehicle is used to calculate the amount of tilt.

이에, 상기 쏠림량을 산출하는 과정에 대해 살펴보면, 먼저 차량의 무게중심 위치를 기반으로 요관성모멘트를 산출한다.Thus, when looking at the process of calculating the amount of tilt, first, the ureter moment is calculated based on the position of the center of gravity of the vehicle.

그리고, 상기 요각속도에서 조향각속도를 감산한 값을 미분하여 요각가속도를 산출한다.Then, the value obtained by subtracting the steering angle velocity from the yaw velocity is differentiated to calculate the yaw velocity.

다만, 운전자의 조향의지가 없는 경우에는, 조향각속도가 검출되지 않거나 미세하게 검출되므로, 조향각속도가 일정값 미만시, 하기의 수식과 같이 요각속도를 미분하여 요각가속도가 산출될 것이다.However, when there is no driver's willingness to steer, the steering angle speed is not detected or is finely detected. Therefore, when the steering angle speed is less than a predetermined value, the yaw speed is calculated by differentiating the yaw speed as in the following equation.

Figure pat00002
Figure pat00002

α : 요각가속도α: yaw acceleration

w : 요각속도w: yaw speed

반면, 운전자의 조향의지가 있는 경우에는, 조향각속도가 검출되므로, 조향각속도가 일정값 초과시, 하기의 수식과 같이 요각속도에서 조향각속도를 감산한 값을 미분하여 요각가속도가 산출될 것이다. 다만, 하기의 수식의 경우 조향의지가 없어 조향각속도가 검출되지 않으면 ωo 는 0이 되므로, 결과적으로 위의 수식과 동일한 수식으로 표현되는바, 하기의 수식만을 이용하여 요각가속도를 산출할 수 있다.On the other hand, when the driver has a willingness to steer, since the steering angle speed is detected, when the steering angle speed exceeds a predetermined value, the yaw angle acceleration will be calculated by differentiating the value obtained by subtracting the steering angle speed from the yaw speed as shown in the following equation. However, in the case of the following equation, since the steering angle velocity is not detected because there is no intention to steer, ωo becomes 0, and as a result, it can be calculated by using only the following equation.

Figure pat00003
Figure pat00003

α : 요각가속도α: yaw acceleration

ω : 요각속도ω: yaw speed

ωo : 조향각속도ωo: Steering angle speed

이어서, 하기의 수식과 같이 상기 요관성모멘트와 요각가속도를 곱하여 차량의 요토크를 산출함으로써, 산출된 요토크가 차량의 쏠림량으로 결정이 된다.Subsequently, by calculating the yaw torque of the vehicle by multiplying the yaw moment of inertia and the yaw acceleration as shown in the following equation, the calculated yaw torque is determined as the vehicle's tilt amount.

T = lzz × αT = lzz × α

T : 요토크T: Yotalk

lzz : 현재 요관성모멘트lzz: Current moment of inertia

아울러, 상기 현재 요관성모멘트를 산출하는 과정을 도 3을 참조하여 설명하면, 먼저 차량의 공차중량을 기준으로 차량의 초기 무게중심 위치(공차 및 쏠림 없는 현가사양)를 산출한다.In addition, when the process of calculating the current ureter moment is described with reference to FIG. 3, first, the initial center of gravity position of the vehicle (tolerance and suspension without suspension) is calculated based on the vehicle's tolerance weight.

그리고, 상기 초기 무게중심을 이용하여 차량의 초기 요관성모멘트를 확보하게 되는데, 이는 해석을 통해 계산하여 확보할 수 있다.Then, the initial inertia moment of the vehicle is secured by using the initial center of gravity, which can be secured by calculation through analysis.

이어서, 차축별 축중과, 차량 중량과, 축간 거리를 이용하여 차량의 현재 무게중심 위치를 산출하게 되는데, 예컨대 태그액슬이나 푸셔액슬이 없는 일반적인 상용차량에서는 하기의 수식을 이용하여 모멘트 평형이 이루어지는 lf를 산출할 수 있고, 이를 통해 차량의 현재 무게중심 위치를 산출할 수 있다.Subsequently, the current center of gravity position of the vehicle is calculated using the axle weight for each axle, the vehicle weight, and the distance between the axles. For example, in a typical commercial vehicle without a tag axle or a pusher axle, the moment equilibrium is achieved by using the following equation. f can be calculated, and through this, the current center of gravity position of the vehicle can be calculated.

Figure pat00004
Figure pat00004

L : 휠베이스L: wheel base

lf : 무게중심과 프런트액슬 축중 측정위치 사이의 전후방향 거리l f : Distance in the front-rear direction between the center of gravity and the measuring position of the front axle

FzR : 리어액슬 축중FzR: Rear axle load

FzF : 프런트액슬 축중FzF: Front axle load

W : 차량 중량W: Vehicle weight

CG : 무게중심CG: center of gravity

다른 예시로서, 도 4와 같이 태그액슬이 구비된 상용차량에서는 하기의 수식을 이용하여 차량의 현재 무게중심 위치를 산출할 수 있고, 이 외에도 푸셔액슬이 구비된 차량이나 차축이 더 증가되면 이에 맞추어 무게중심을 산출하여 요관성모멘트를 산출하는 데에 활용할 수 있다.As another example, in a commercial vehicle equipped with a tag axle as shown in FIG. 4, the current center of gravity position of the vehicle may be calculated using the following formula. In addition, if the vehicle or the axle equipped with the pusher axle is further increased, it is adjusted accordingly. It can be used to calculate the inertia moment by calculating the center of gravity.

참고로, 태그액슬은 리어액슬의 후방에 위치하는 것으로, 태그액슬 대비 약 0.9배의 축중을 갖도록 설계할 수 있는데, 이는 구동축보다 태그액슬의 축중이 과다하게 설계되면 구동력이 상실되는 현상이 발생할 수 있기 때문이다.For reference, the tag axle is located at the rear of the rear axle, and can be designed to have about 0.9 times the axial load compared to the tag axle, which may cause a loss of driving force when the axial load of the tag axle is designed more than the drive axis. Because there is.

Figure pat00005
Figure pat00005

a : 전후방향 무게중심 위치(무게중심과 프런트액슬 축중 측정위치 사이의 전후방향 거리)a: Weight center position in front-rear direction (distance between front-rear direction between the center of gravity and the measurement position of the front axle)

b : 무게중심과 리어액슬 축중 측정위치 사이의 전후방향 거리b: Distance in the front-rear direction between the center of gravity and the measuring position on the rear axle axis

c : 리어액슬 축중 측정위치와 태그액슬 축중 측정위치 사이의 전후방향 거리c: Distance in the front-rear direction between the measurement position on the rear axle axis and the measurement position on the tag axle axis

FzF : 프런트액슬 축중FzF: Front axle load

FzR : 리어액슬 축중FzR: Rear axle load

FzT : 태그액슬 축중FzT: Tag axle load

W : 차량 중량W: Vehicle weight

CG : 무게중심CG: center of gravity

이어서, 상기 초기 무게중심 위치와, 초기 요관성모멘트와, 차량의 현재 무게중심 위치를 이용한 하기의 수식에 의해 차량의 현재 요관성모멘트를 산출하게 된다. 즉, 중심축 정리로부터 현재 요관성모멘트를 산출할 수 있다.Subsequently, the current inertia moment of the vehicle is calculated by the following equation using the initial center of gravity position, the initial inertia moment, and the current center of gravity position of the vehicle. That is, the current inertia moment can be calculated from the central axis theorem.

lzz = lzzo + Wa2 lzz = lzz o + Wa 2

lzz : 현재 요관성모멘트lzz: Current moment of inertia

lzzo : 초기 요관성모멘트lzz o : initial ureter moment

W : 차량 중량W: Vehicle weight

a : 초기 무게중심 위치에서 현재 무게중심 위치로의 이동량a: amount of movement from the initial center of gravity position to the current center of gravity position

아울러, 본 발명에서 제동력을 배분 제어하는 단계에서는, 상기 요토크에 대응하는 역토크가 발생되도록 양측 휠브레이크의 제동력을 상이하게 배분하게 된다.In addition, in the step of distributing and controlling the braking force in the present invention, the braking force of both wheel brakes is differently distributed so that a reverse torque corresponding to the yaw torque is generated.

바람직하게는, 상기 요토크에 의해 쏠림이 발생하는 방향의 휠브레이크 제동력을 반대방향의 휠브레이크 제동력보다 작게 배분하게 된다.Preferably, the braking force of the wheel brake in the direction in which the displacement is caused by the yaw torque is distributed smaller than the braking force of the wheel brake in the opposite direction.

그리고, 상기 요토크의 절대값과 역토크의 절대값이 동일해지도록 양측 휠브레이크의 제동력을 배분 제어하게 된다.In addition, the braking force of both wheel brakes is distributedly controlled so that the absolute value of the yaw torque and the absolute value of the reverse torque become the same.

이때에, 상기 양측 휠브레이크의 제동력은 하기의 수식에 의해 산출될 수 있다.At this time, the braking force of both side wheel brakes can be calculated by the following equation.

Figure pat00006
Figure pat00006

FL : 좌측 휠브레이크 제동력F L : Left wheel brake braking force

FR : 우측 휠브레이크 제동력F R : Right wheel brake braking force

F운전자 : 브레이크페달 답입에 따른 제동력F Driver : Braking force according to brake pedal entry

Wt : 무게중심과 휠센터 간의 거리W t : Distance between center of gravity and wheel center

T : 요토크T: Yotalk

예컨대, 도 5와 같이 상기 요토크가 우측 회전방향으로 작용하여 차량이 우측으로 쏠림 발생시, 역토크는 이에 대응하여 차량의 좌측 회전방향으로 생성되어야 한다.For example, when the yaw torque acts in the right rotational direction as shown in FIG. 5 and the vehicle is tilted to the right, reverse torque should be generated in the corresponding direction in the left rotation of the vehicle.

이에, 좌측 휠브레이크의 제동력과 우측 휠브레이크의 제동력이 하기의 수식에 의해 산출이 된다.Accordingly, the braking force of the left wheel brake and the braking force of the right wheel brake are calculated by the following equation.

Figure pat00007
Figure pat00007

Figure pat00008
Figure pat00008

이처럼, 계산된 휠브레이크별 제동력에 맞추어 좌측 휠브레이크의 제동력이 우측 휠브레이크의 제동력보다 크게 적용됨으로써, 차량의 우측 방향 쏠림현상을 제거할 수 있게 된다.As described above, according to the calculated braking force for each wheel brake, the braking force of the left wheel brake is applied to be larger than the braking force of the right wheel brake, so that the vehicle can be removed from the right side of the vehicle.

도 1 및 도 2를 참조하여, 본 발명에 따른 차량의 제동력 제어과정을 설명하면, 차량의 무게중심 위치를 기반으로 차량의 현재 요관성모멘트를 산출한다(S10).Referring to FIGS. 1 and 2, when the braking force control process of the vehicle according to the present invention is described, the current inertia moment of the vehicle is calculated based on the position of the center of gravity of the vehicle (S10 ).

이에, 상기 현재 요관성모멘트를 산출하는 과정을 설명하면, 차량의 공차중량을 기준으로 차량의 초기 무게중심 위치를 산출하고, 상기 초기 무게중심 위치를 이용하여 차량의 초기 요관성모멘트를 확보한다. 그리고, 차축별 축중과, 차량 중량과, 축간 거리를 이용하여 차량의 현재 무게중심 위치를 산출하고, 상기 초기 무게중심 위치와, 초기 요관성모멘트와, 차량의 현재 무게중심 위치를 이용하여 차량의 현재 요관성모멘트를 산출하게 된다.Thus, when the process of calculating the current ureter moment is calculated, the initial center of gravity position of the vehicle is calculated based on the tolerance weight of the vehicle, and the initial ureter moment of the vehicle is secured using the initial center of gravity position. Then, the current center of gravity position of the vehicle is calculated using the axle weight for each axle, the vehicle weight, and the distance between the axes, and the initial center of gravity position, the initial inertia moment, and the current center of gravity position of the vehicle are calculated. The current ureter moment is calculated.

S1O단계 이후에, 차량의 제동력이 인가되면, 요각속도가 a를 초과하는지 판단하고(S20), a 초과시 차량의 쏠림이 있는 것으로 판단한다.After the step S1O, if the braking force of the vehicle is applied, it is determined whether the yaw speed exceeds a (S20), and if it exceeds a, it is determined that there is a vehicle shift.

이어서, 조향각속도를 검출하여, 검출된 조향각속도가 b를 초과하는지 판단하고(S30), b초과시 요각속도에서 조향각속도를 감산한 값을 미분하여 요각가속도를 산출한다(S40).Subsequently, the steering angular velocity is detected, and it is determined whether the detected steering angular velocity exceeds b (S30), and the value obtained by subtracting the steering angular velocity from the yaw velocity when b is exceeded is calculated (S40).

반면, 검출된 조향각속도가 b 이하인 경우에는, 요각속도만을 미분하여 요각가속도를 산출한다(S50).On the other hand, if the detected steering angle velocity is less than or equal to b, only the yaw velocity is differentiated to calculate the yaw velocity (S50).

이어서, 앞서 산출된 요관성모멘트와 요각가속도를 곱하여 차량의 요토크를 산출한다(S60).Subsequently, the yaw torque of the vehicle is calculated by multiplying the yaw moment of inertia calculated by the yaw moment (S60).

이에, 상기 요토크를 상쇄하는 방향으로 차량에 역토크를 제공함으로써, 상기 요토크에 의한 차량의 쏠림을 제거하게 된다(S70). 즉, 운전자의 제동력을 좌측 휠브레이크와 우측 휠브레이크에 상이하게 배분함으로써, 차량에 상기 요토크를 상쇄하는 역토크를 제공할 수 있게 되고, 이를 통해 차량의 쏠림을 방지하게 된다.Thus, by providing the vehicle with a reverse torque in a direction to offset the yoke, the vehicle is prevented from being moved by the yaw torque (S70). That is, by distributing the braking force of the driver differently between the left wheel brake and the right wheel brake, it is possible to provide the vehicle with a reverse torque that offsets the yaw torque, thereby preventing the vehicle from tipping.

상술한 바와 같이, 본 발명은 브레이크페달을 밟아 차량의 제동시, 차량의 쏠림이 발생하면, 쏠림이 상쇄되는 방향으로 양측 휠브레이크에 제동력을 차등 배분하게 된다. 따라서, 다양한 원인에 의해 발생되는 쏠림 현상을 소프트웨어적으로 개선하여 다양한 운전조건에서 발생하는 쏠림의 개선이 가능하고, 또한 추가 중량이나 구조물의 설치 없이 쏠림을 방지할 수 있게 된다.As described above, according to the present invention, when a vehicle is braked by stepping on a brake pedal, when the vehicle is inclined, the braking force is differentially distributed to both wheel brakes in a direction in which the inclination is offset. Therefore, it is possible to improve the tilting caused by various causes by software to improve the tilting caused by various causes, and also to prevent the tilting without installing additional weights or structures.

한편, 본 발명은 상기한 구체적인 예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.On the other hand, the present invention has been described only in detail with respect to the specific examples described above, but it is obvious to those skilled in the art that various modifications and variations are possible within the technical scope of the present invention, and it is natural that such modifications and modifications belong to the appended claims. .

1 : 축중센서
3 : G센서
5 : 조향각센서
CLR : 컨트롤러
1: Axle load sensor
3: G sensor
5: Steering angle sensor
CLR: Controller

Claims (10)

컨트롤러가, 차량의 제동시, 쏠림이 발생하는지 판단하는 단계;
컨트롤러가, 상기 쏠림 발생시, 운전자의 조향정보를 검출하는 단계;
컨트롤러가, 상기 조향정보를 반영하여 운전자 조향에 따른 쏠림이 배제된 상태의 차량의 쏠림량을 산출하는 단계; 및
컨트롤러가, 상기 쏠림량을 상쇄하는 방향으로 양측 휠브레이크에 제동력을 배분하여 제어하는 단계;를 포함하는 차량의 쏠림 방지방법.
The controller, when braking the vehicle, determining whether the tilt occurs;
A controller, when the tilt occurs, detecting the steering information of the driver;
A controller, by reflecting the steering information, calculating the amount of tilt of the vehicle in a state in which the tilt due to the driver's steering is excluded; And
And controlling, by the controller, distributing and controlling braking force to both side wheel brakes in a direction to offset the amount of tilt.
청구항 1에 있어서,
G센서의 측정값을 이용하여 차량의 쏠림 여부를 판단하고;
조향각센서의 측정값을 이용하여 운전자의 조향정보를 검출하는 것을 특징으로 하는 차량의 쏠림 방지방법.
The method according to claim 1,
Determining whether the vehicle is inclined using the measured value of the G sensor;
A method for preventing the vehicle from slipping, characterized by detecting steering information of a driver using a measurement value of a steering angle sensor.
청구항 1에 있어서,
G센서에 의해 차량의 요각속도를 산출하고;
조향각센서에 의해 조향각속도를 산출하며;
상기 요각속도에서 조향각속도를 감산하여 운전자 조향에 따른 쏠림을 배제하는 것을 특징으로 하는 차량의 쏠림 방지방법.
The method according to claim 1,
Calculating the yaw speed of the vehicle by the G sensor;
Steering angle speed is calculated by the steering angle sensor;
A method for preventing the vehicle from being tilted, characterized by subtracting the steering angular velocity from the yaw velocity to exclude the tilt due to the driver's steering.
청구항 3에 있어서,
차량의 무게중심 위치를 기반으로 요관성모멘트를 산출하고;
상기 요각속도에서 조향각속도를 감산한 값을 미분하여 요각가속도를 산출하며;
상기 요관성모멘트와 요각가속도를 곱하여 차량의 요토크를 산출함으로써, 산출된 요토크가 차량의 쏠림량으로 결정되는 것을 특징으로 하는 차량의 쏠림 방지방법.
The method according to claim 3,
Calculate the moment of inertia based on the position of the center of gravity of the vehicle;
Calculating the yaw acceleration by differentiating the value obtained by subtracting the steering angle velocity from the yaw velocity;
A method for preventing the vehicle from slipping, wherein the yaw torque of the vehicle is determined by multiplying the yaw moment of inertia and the yaw angle acceleration to determine the calculated yaw torque as the vehicle's tilt amount.
청구항 3에 있어서,
차량의 무게중심 위치를 기반으로 요관성모멘트를 산출하고;
상기 조향각속도가 일정값 초과인 경우, 상기 요각속도를 미분하여 요각가속도를 산출하며;
상기 조향각속도가 일정값 이하인 경우, 상기 요각속도에서 조향각속도를 감산한 값을 미분하여 요각가속도를 산출하고;
상기 요관성모멘트와 요각가속도를 곱하여 차량의 요토크를 산출함으로써, 산출된 요토크가 차량의 쏠림량으로 결정되는 것을 특징으로 하는 차량의 쏠림 방지방법.
The method according to claim 3,
Calculate the moment of inertia based on the position of the center of gravity of the vehicle;
When the steering angular velocity exceeds a predetermined value, the yaw velocity is calculated by differentiating the yaw velocity;
When the steering angular velocity is equal to or less than a predetermined value, calculate a yaw acceleration by differentiating a value obtained by subtracting the steering angular velocity from the yaw velocity;
A method for preventing the vehicle from slipping, wherein the yaw torque of the vehicle is determined by multiplying the yaw moment of inertia and the yaw angle acceleration to determine the calculated yaw torque as the vehicle's tilt amount.
청구항 3에 있어서,
차량의 공차중량을 기준으로 차량의 초기 무게중심 위치를 산출하고;
상기 초기 무게중심 위치를 이용하여 차량의 초기 요관성모멘트를 확보하고;
차축별 축중과, 차량 중량과, 축간 거리를 이용하여 차량의 현재 무게중심 위치를 산출하며;
상기 초기 무게중심 위치와, 초기 요관성모멘트와, 차량의 현재 무게중심 위치를 이용한 하기의 수식에 의해 차량의 현재 요관성모멘트를 산출하는 것을 특징으로 하는 차량의 쏠림 방지방법.
lzz = lzzo + Wa2
lzz : 초기 요관성모멘트
lzzo : 현재 요관성모멘트
W : 차량 중량
a : 초기 무게중심 위치에서 현재 무게중심 위치로의 이동량
The method according to claim 3,
Calculating an initial center of gravity position of the vehicle based on the vehicle's tolerance weight;
Secure the initial moment of inertia of the vehicle using the initial center of gravity position;
Calculating the current center of gravity position of the vehicle using the axle weight for each axle, the vehicle weight, and the distance between the axles;
A method for preventing the vehicle from slipping, wherein the current yaw moment of inertia of the vehicle is calculated by the following equation using the initial center of gravity position, the initial moment of inertia, and the current center of gravity position of the vehicle.
lzz = lzz o + Wa 2
lzz: Initial ureter moment
lzz o : Current moment of inertia
W: Vehicle weight
a: amount of movement from the initial center of gravity position to the current center of gravity position
청구항 4에 있어서,
상기 요토크에 대응하는 역토크가 발생되도록 양측 휠브레이크의 제동력을 상이하게 배분하는 것을 특징으로 하는 차량의 쏠림 방지방법.
The method according to claim 4,
A method for preventing the vehicle from slipping, characterized in that the braking force of the wheel brakes on both sides is differently distributed so that a reverse torque corresponding to the yaw torque is generated.
청구항 4에 있어서,
상기 요토크에 의해 쏠림이 발생하는 방향의 휠브레이크 제동력을 반대방향의 휠브레이크 제동력보다 작게 배분하는 것을 특징으로 하는 차량의 쏠림 방지방법.
The method according to claim 4,
A method for preventing the vehicle from slipping, characterized in that the wheel brake braking force in the direction in which the tipping is caused by the yaw torque is distributed smaller than the wheel braking force in the opposite direction.
청구항 4에 있어서,
상기 요토크의 절대값과 역토크의 절대값이 동일해지도록 양측 휠브레이크의 제동력을 배분하는 것을 특징으로 하는 차량의 쏠림 방지방법.
The method according to claim 4,
A method for preventing the vehicle from tipping, wherein the braking force of both wheel brakes is distributed so that the absolute value of the yaw torque and the absolute value of the reverse torque are equal.
청구항 4에 있어서,
상기 양측 휠브레이크의 제동력은 하기의 수식에 의해 결정되는 것을 특징으로 하는 차량의 쏠림 방지방법.
Figure pat00009

FL : 좌측 휠브레이크 제동력
FR : 우측 휠브레이크 제동력
F운전자 : 브레이크페달 답입에 따른 제동력
Wt : 무게중심과 휠센터 간의 거리
T : 요토크
The method according to claim 4,
A method for preventing the vehicle from tipping, wherein the braking force of the two wheel brakes is determined by the following equation.
Figure pat00009

F L : Left wheel brake braking force
F R : Right wheel brake braking force
F Driver : Braking force according to brake pedal entry
W t : Distance between center of gravity and wheel center
T: Yotalk
KR1020180149848A 2018-11-28 2018-11-28 Preventing method of leaning for vehicle KR102663608B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180149848A KR102663608B1 (en) 2018-11-28 2018-11-28 Preventing method of leaning for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180149848A KR102663608B1 (en) 2018-11-28 2018-11-28 Preventing method of leaning for vehicle

Publications (2)

Publication Number Publication Date
KR20200063745A true KR20200063745A (en) 2020-06-05
KR102663608B1 KR102663608B1 (en) 2024-05-03

Family

ID=71089118

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180149848A KR102663608B1 (en) 2018-11-28 2018-11-28 Preventing method of leaning for vehicle

Country Status (1)

Country Link
KR (1) KR102663608B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000318590A (en) * 1999-05-14 2000-11-21 Toyota Motor Corp Behavior control device for vehicle
KR20120061413A (en) * 2010-12-03 2012-06-13 현대모비스 주식회사 Method and Apparatus for braking and steering applying compensation for change of vehicle weight and centroid
KR20140063168A (en) * 2012-11-16 2014-05-27 현대모비스 주식회사 Electronic stability control apparatus for vehicle and control method therfor
KR20140081484A (en) * 2012-12-21 2014-07-01 현대자동차주식회사 System for prevent pulling of vehicle and method thereof
KR20180026913A (en) 2016-09-05 2018-03-14 주식회사 만도 Electronic control brake system in a vehicle and control method thereof
KR20180117746A (en) * 2017-04-19 2018-10-30 현대자동차주식회사 Control apparatus and method of motor driven power steering system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000318590A (en) * 1999-05-14 2000-11-21 Toyota Motor Corp Behavior control device for vehicle
KR20120061413A (en) * 2010-12-03 2012-06-13 현대모비스 주식회사 Method and Apparatus for braking and steering applying compensation for change of vehicle weight and centroid
KR20140063168A (en) * 2012-11-16 2014-05-27 현대모비스 주식회사 Electronic stability control apparatus for vehicle and control method therfor
KR20140081484A (en) * 2012-12-21 2014-07-01 현대자동차주식회사 System for prevent pulling of vehicle and method thereof
KR20180026913A (en) 2016-09-05 2018-03-14 주식회사 만도 Electronic control brake system in a vehicle and control method thereof
KR20180117746A (en) * 2017-04-19 2018-10-30 현대자동차주식회사 Control apparatus and method of motor driven power steering system

Also Published As

Publication number Publication date
KR102663608B1 (en) 2024-05-03

Similar Documents

Publication Publication Date Title
US6374171B2 (en) Apparatus and method for determining vehicle operating and dynamic parameters
US6418369B2 (en) Road surface friction coefficient estimating apparatus
EP2626264B1 (en) Motion control system for vehicle based on jerk information
US7881850B2 (en) Wheel lifted and grounded identification for an automotive vehicle
US7233236B2 (en) Passive wheel lift identification for an automotive vehicle using operating input torque to wheel
US6904350B2 (en) System for dynamically determining the wheel grounding and wheel lifting conditions and their applications in roll stability control
JPH02216355A (en) Anti-lock brake system
US20040064246A1 (en) Wheel lift identification for an automotive vehicle using passive and active detection
US20120185142A1 (en) Vehicle stability control system and method
US20040019418A1 (en) Wheel lifted and grounded identification for an automotive vehicle
US6862512B2 (en) Method and system for controlling the performance of a motor vehicle
US20080255744A1 (en) Brake Control Apparatus for Vehicle
GB2367044A (en) Vehicle wheel lift detection system
JP2008503389A (en) Apparatus and method for stabilizing a vehicle
US6035693A (en) System for detecting abnormality of yaw rate sensor and lateral acceleration sensor
WO2002020318A1 (en) Lateral acceleration sensor compensation for an inclined measurement plane
TW201630764A (en) Method for determining the angle of inclination of a two-wheeled vehicle
HUT69196A (en) Method for controlling brake pressure of vehicles
KR102533560B1 (en) Vehicle motion state estimation device, vehicle motion state estimation method, and vehicle
US8204667B2 (en) Method for compensating for normal forces in antilock control
KR20200063745A (en) Preventing method of leaning for vehicle
JP2002104158A (en) Road surface frictional state calculating device, tire type determining device, tire abrasion determining device, road surface gradient estimating device, and offset correcting device of acceleration sensor
JP6003494B2 (en) Vehicle behavior control apparatus and vehicle behavior control method
JP5949362B2 (en) Friction detection device for vehicle and friction detection method for vehicle
JP2020060434A (en) Vehicle center-of-gravity position estimation device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant