KR20200061672A - Intergrated controller for EV battery - Google Patents

Intergrated controller for EV battery Download PDF

Info

Publication number
KR20200061672A
KR20200061672A KR1020180147242A KR20180147242A KR20200061672A KR 20200061672 A KR20200061672 A KR 20200061672A KR 1020180147242 A KR1020180147242 A KR 1020180147242A KR 20180147242 A KR20180147242 A KR 20180147242A KR 20200061672 A KR20200061672 A KR 20200061672A
Authority
KR
South Korea
Prior art keywords
obc
ldc
connector
voltage
primary
Prior art date
Application number
KR1020180147242A
Other languages
Korean (ko)
Other versions
KR102174516B1 (en
Inventor
강철하
김선호
한형민
Original Assignee
대우전자부품(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우전자부품(주) filed Critical 대우전자부품(주)
Priority to KR1020180147242A priority Critical patent/KR102174516B1/en
Publication of KR20200061672A publication Critical patent/KR20200061672A/en
Application granted granted Critical
Publication of KR102174516B1 publication Critical patent/KR102174516B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention relates to an integrated charging controller for an electric vehicle battery to implement a system miniaturization and a low cost. The integrated charging controller includes: a transformer having primary to tertiary coils and inducing power according to the turns ratio of the coils; an on-board charger (OBC) primary circuit for converting AC voltage into primary power and applying it to the primary coil; an OBC/LDC integrated circuit; an LDC secondary circuit for converting the fourth power into a DC voltage and outputting it to a low voltage connector; an inverter; a processor that controls the operations as a whole in which the OBC/LDC integrated circuit is operated in a rectification mode when the vehicle is parked and in a converting mode when the vehicle is driven; and a PCB circuit board.

Description

전기자동차용 배터리 통합 충전 제어 장치{Intergrated controller for EV battery}Electric vehicle battery integrated charge control device {Intergrated controller for EV battery}

본 발명은 시스템 소형화 및 저비용화가 가능하도록 하는 전기자동차용 배터리 통합 충전 제어 장치에 관한 것이다. The present invention relates to a battery integrated charging control device for an electric vehicle that enables system miniaturization and cost reduction.

지금까지의 자동차시장은 가솔린 엔진이 절대적 우위를 점하고 있었으나, 화석연료가 고갈되고 환경오염이 심해지면서 이산화탄소 배출이 적고 연료를 덜 소모하는 친환경 고효율의 그린카 시장으로 전환되고 있다. In the automobile market so far, gasoline engines have had an absolute advantage, but as fossil fuels are depleted and environmental pollution is getting worse, it is being converted into an eco-friendly, high-efficiency green car market with less carbon dioxide emissions and less fuel consumption.

전 세계적으로 미국, 일본, 유럽 등 선진국들을 중심으로 전기자동차 시장 활성화를 위한 충전 인프라 보급 확대사업을 적극적으로 지원하고 있으며, 특히 신재생에너지 자원을 활용해 전력 공급의 안정성을 높이고 전력 수급의 분산화를 유도하기 위한 연구들의 필요성이 대두된다. In the United States, Japan and Europe, developed countries such as the United States are actively supporting the expansion of charging infrastructure to promote the electric vehicle market. In particular, they utilize new and renewable energy resources to increase the stability of power supply and decentralize power supply and demand. The need for research to induce emerges.

또한 다양한 통신 서비스 및 지능형 전력망(Smart Grid)의 IT 기술을 활용해 전기자동차 충전소의 접근성과 편의성을 높이기 위한 연구들이 요구되고 있다.In addition, research is needed to improve accessibility and convenience of electric vehicle charging stations by utilizing various communication services and IT technologies of smart grids.

전기자동차 부품 기술방향으로는 "고성능, 경량화, 안전성"이며 이 가운데 핵심은 배터리기술(고성능, 고밀도 에너지 저장 기술) 및 전기구동 시스템(고전압용 전장 부품, 고출력 구동모터, 모터제어 등) 등이 있다.The technical direction of electric vehicle parts is "high performance, light weight, safety", and the core of these are battery technology (high performance, high density energy storage technology) and electric drive system (high voltage electric components, high power drive motor, motor control, etc.) .

이러한 전기자동차 시스템(부품) 중 배터리 충전 뿐 아니라 V2G(Vehicle to Grid)모드로 동작이 가능한 전기자동차용 양방향 배터리 충전 시스템인 OBC(On Board Charger) 개발이 필요하다. Among these electric vehicle systems (parts), it is necessary to develop an on-board charger (OBC), an interactive battery charging system for electric vehicles that can operate in V2G (Vehicle to Grid) mode as well as charging the battery.

또한 시스템의 간략화와 높은 가격경쟁에서 살아남기 위해 부품단위를 하나로 통합하여 하나의 부품이 두 가지 기능을 동시에 수행하는 모듈 개발이 요구되는 상황이다. In addition, in order to survive the simplification of the system and high price competition, it is necessary to develop a module in which one component performs two functions simultaneously by integrating parts units into one.

전기자동차의 보조 전원격인 저전압 배터리(12VDC) 충전 전용 충전기인 LDC(Low Voltage DC/DC Converter)와 OBC의 통합형 모듈 개발이 필요하다. It is necessary to develop an integrated module of low voltage DC/DC converter (LCD) and OBC, which are chargers for charging low voltage batteries (12VDC), an auxiliary power source for electric vehicles.

도 1은 종래의 기술에 따른 전기 자동차의 충전 시스템의 구조를 설명하기 위한 도면이다.1 is a view for explaining the structure of a charging system of an electric vehicle according to the prior art.

도 1을 참고하면, 종래의 전기 자동차의 충전 시스템(10)은 EVSE(Electric Vehicle Supply Equipment))(10)를 통해 공급되는 AC 전압을 통해 고압 배터리(21)를 충전하는 탑재형 충전기(OBC : On-Board Charger)(11), 고압 배터리(21)에서 나오는 고전압(예를 들어, 330V)을 저전압(예를 들어, 12V)으로 변환하여 저전압 배터리(22)와 차량 전장부하(예를 들어, BMS(Battery Management System)(41), EWP(Electric Water Pump)(42), ECU(Electronic Control Unit)(43) 등)에 공급하는 LDC(Low Voltage DC/DC Converter)(12), 전기자동차의 주 동력모터(50)를 구동하기 위해 고전압 배터리(21)의 전압을 AC로 출력하여 제어하는 인버터(Inverter)(13) 등을 포함한다. Referring to FIG. 1, the charging system 10 of a conventional electric vehicle is a built-in charger (OBC) that charges the high voltage battery 21 through an AC voltage supplied through an EVSE (Electric Vehicle Supply Equipment) 10. On-Board Charger (11), the high voltage (for example, 330V) from the high voltage battery 21 is converted to a low voltage (for example, 12V) to convert the low voltage battery 22 and the vehicle electric load (for example, BMS (Battery Management System) (41), EWP (Electric Water Pump) (42), ECU (Electronic Control Unit) (43), etc. And an inverter 13 for controlling the output of the voltage of the high voltage battery 21 to AC to drive the main power motor 50.

다만, 도 1에서와 같이 OBC(11), LDC(12), 인버터(13)가 각각의 개별적 부품으로 존재할 경우, 외부 부품들과 연결되기 위한 각각의 입력출력 커넥터와 통신을 위한 시그널 커넥터 등 각 부품마다 3종의 커넥터가 사용되어야만 하고, 이로 인해 OBC(11), LDC(12), 인버터(13)이 3 가지의 부품은 총 9개의 커넥터를 가지게 된다. However, when the OBC 11, the LDC 12, and the inverter 13 are present as separate components, as shown in FIG. 1, each input output connector for connection with external components and a signal connector for communication, etc. Three types of connectors must be used for each part, and as a result, the three parts of the OBC 11, LDC 12, and inverter 13 have a total of nine connectors.

보다 구체적으로, OBC(11)의 경우, AC 상용전원을 입력받아 전기차 고전압배터리를 충전하는 장치이므로, AC를 입력 받기 위해 AC 입력 커넥터, DC로 변환된 출력을 내보내기 위한 DC 출력 커넥터, 배터리 정보를 입력받고 제어부 전원을 공급받기 위한 시그널 커넥터 등 총 3종의 커넥터로 이루어져 있고, 이와 마찬가지로 LDC도 저전압 배터리를 충전하기 위한 장치이므로 고전압을 입력 받기 위한 고전압 입력 커넥터, 저전압으로 변환하여 출력되는 저전압 출력 커넥터, CAN 통신을 위한 시그널 커넥터로 이루어져 있다. 인버터도 전기차 DC 고전압을 입력 받아 모터 전압인 AC전압으로 변경시켜 제어하기 위한 장치로 DC입력 커넥터, AC 출력 커넥터, CAN 통신을 위한 시그널 커넥터로 이루어져 있다.More specifically, in the case of OBC (11), since it is a device that charges an electric vehicle high voltage battery by receiving AC commercial power, an AC input connector for receiving AC, a DC output connector for exporting the output converted to DC, and battery information It consists of a total of three types of connectors, such as a signal connector for receiving input and receiving power from a control unit. Likewise, since the LDC is a device for charging a low voltage battery, a high voltage input connector for receiving high voltage and a low voltage output connector converted to low voltage and output. , It consists of a signal connector for CAN communication. The inverter is also a device for controlling by changing the motor voltage to AC voltage by receiving DC high voltage of an electric vehicle, and consists of a DC input connector, AC output connector, and signal connector for CAN communication.

또한, 고전압 커넥터의 경우 높은 IP 등급만족과 고 절연전압 특성을 가져야 하기 때문에 특수 제작되는 커스텀 제품이 많으며, 이에 따른 단가 상승은 무시할 수 없다. In addition, in the case of a high voltage connector, there are many custom products that are specially manufactured because it must have high IP rating satisfaction and high insulation voltage characteristics, and thus the unit price increase cannot be ignored.

이에 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명은 OBC, LDC, 인버터를 기구적, 회로적으로 통합함으로써, 시스템 소형화 및 저비용화가 가능하도록 하는 전기자동차용 배터리 통합 충전 제어 장치를 제공하고자 한다.In order to solve the above problems, the present invention is to provide a battery integrated charging control device for an electric vehicle that enables mechanical miniaturization and low cost by integrating OBC, LDC, and inverter mechanically and circuitly.

본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.

상기 과제를 해결하기 위한 수단으로서, 본 발명의 일 실시 형태에 따르면 1차 내지 3차 코일을 구비하고, 상기 1차 코일과 상기 2차 코일의 권선비에 따라 1차 전원으로부터 2차 전원을 유도하고, 상기 2차 코일과 상기 3차 코일의 권선비에 따라 3차 전원으로부터 4차 전원을 유도하는 트랜스포머; AC 입력 커넥터를 통해 입력되는 AC 전압을 상기 1차 전원으로 변환하여 상기 1차 코일에 인가하는 OBC(On-Board Charger) 1차측 회로; 정류 모드시에는 상기 2차 코일에 인가된 상기 2차 전원을 DC 전압으로 변환하여 고전압 배터리가 연결된 고전압 커넥터로 출력하고, 컨버팅 모드시에는 상기 고전압 커넥터를 통해 입력되는 배터리 전압을 상기 3차 전원으로 변환하여 상기 2차 코일에 인가하는 OBC/LDC 통합 회로; 상기 3차 코일에 인가되는 상기 4차 전원을 DC 전압으로 변환하여 저전압 배터리가 연결된 저전압 커넥터로 출력하는 LDC 2차측 회로; 상기 고전압 커넥터를 통해 입력되는 배터리 전압을 모터 구동 전압으로 변환하여 모터가 연결된 AC 출력 커넥터로 출력하는 인버터; 상기 OBC 1차 회로, 상기 OBC/LDC 통합 회로, 상기 LDC 2차 회로, 상기 인버터의 동작을 전반적으로 제어하되, 상기 OBC/LDC 통합 회로를 차량 주차시에는 정류 모드로 동작시키고, 차량 주행시에는 컨버팅 모드로 동작시키는 프로세서; 및 상기 트랜스포머, 상기 OBC 1차측 회로, 상기 OBC/LDC 통합 회로, 상기 LDC 2차측 회로, 상기 인버터, 상기 프로세서, 상기 AC 입력 커넥터, 상기 AC 출력 커넥터, 상기 고전압 커넥터, 상기 저전압 커넥터, 상기 신호 커넥터를 실장하고, 회로간 또는 회로와 커넥터간을 신호라인을 통해 서로 연결하는 PCB 회로 기판을 포함하는 전기자동차용 배터리 통합 충전 제어 장치를 제공한다. As a means for solving the above problems, according to an embodiment of the present invention, a primary to tertiary coil is provided, and a secondary power source is derived from the primary power source according to the winding ratio of the primary coil and the secondary coil. , A transformer for inducing a fourth power from a third power supply according to the winding ratio of the secondary coil and the third coil; An on-board charger (OBC) primary side circuit that converts AC voltage input through an AC input connector to the primary power and applies it to the primary coil; In the rectifying mode, the secondary power applied to the secondary coil is converted into a DC voltage and output to a high voltage connector to which a high voltage battery is connected. In the converting mode, the battery voltage input through the high voltage connector is converted into the third power. An OBC/LDC integrated circuit that is converted and applied to the secondary coil; An LDC secondary side circuit that converts the fourth power applied to the tertiary coil into a DC voltage and outputs it to a low voltage connector to which a low voltage battery is connected; An inverter that converts a battery voltage input through the high voltage connector into a motor driving voltage and outputs it to an AC output connector to which a motor is connected; Overall operation of the OBC primary circuit, the OBC/LDC integrated circuit, the LDC secondary circuit, and the inverter is controlled, but the OBC/LDC integrated circuit is operated in a rectifying mode when parking the vehicle, and converted when the vehicle is driving. A processor operating in a mode; And the transformer, the OBC primary side circuit, the OBC/LDC integrated circuit, the LDC secondary side circuit, the inverter, the processor, the AC input connector, the AC output connector, the high voltage connector, the low voltage connector, and the signal connector. It provides a battery integrated charging control device for an electric vehicle, including a PCB circuit board for mounting, and connecting circuits or circuits and connectors to each other through a signal line.

상기 OBC/LDC 통합 회로는 바디 다이오드를 가지는 4개의 트랜지스터가 풀 브릿지 방식으로 연결된 스위칭부를 구비하는 것을 특징으로 한다. The OBC/LDC integrated circuit is characterized in that four transistors having a body diode are provided with a switching unit connected in a full bridge manner.

상기 OBC/LDC 통합 회로는 정류 모드시에는 4개의 트랜지스터를 턴 오프시켜, 상기 4개의 트랜지스터의 바디 다이오드를 통해 상기 2차 코일에 유도된 2차 전원을 동기 정류하는 것을 특징으로 한다.The OBC/LDC integrated circuit is characterized in that four transistors are turned off in the rectifying mode to synchronously rectify the secondary power induced in the secondary coil through the body diodes of the four transistors.

상기 OBC/LDC 통합 회로는 컨버팅 모드시에는 상기 4개의 트랜지스터의 오버랩 타임을 스위칭하여, 상기 2차 코일에 인가되는 평균전압을 조정하는 것을 특징으로 한다. The OBC/LDC integrated circuit is characterized in that, in converting mode, the overlapping times of the four transistors are switched to adjust the average voltage applied to the secondary coil.

상기 트랜스포머는 하나의 철심에 제1 내지 제3 코일이 적층 방식으로 권선된 구조를 가지는 것을 특징으로 한다. The transformer has a structure in which the first to third coils are wound on one iron core in a stacked manner.

본 발명은 하나의 PCB 회로 기판에 OBC, LDC, 인버터 모두가 실장되도록 하고, 또한 PCB 회로 기판에 패터닝되는 신호 라인을 통해 기존의 커넥터를 대체하여 커넥터를 총 5개로 줄임으로써, 시스템 소형화 및 저비용화가 가능하도록 하는 효과를 제공한다. The present invention allows OBC, LDC, and inverter to be mounted on one PCB circuit board, and replaces the existing connector through a signal line patterned on the PCB circuit board to reduce the number of connectors to a total of 5, thereby minimizing system and reducing cost. It provides an effect that makes it possible.

또한 트랜스포머가 하나의 철심에 제1 내지 제3 코일(N1~N3)이 적층 방식으로 권선된 구조를 가지도록 함으로써, 트랜스포머로 인한 부피가 최소화될 수 있도록 한다. In addition, the transformer has a structure in which the first to third coils N1 to N3 are wound on one iron core in a stacked manner, so that the volume due to the transformer can be minimized.

도 1은 종래의 기술에 따른 전기 자동차의 충전 시스템의 구조를 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시예에 따른 전기 자동차용 통합 충전 시스템을 설명하기 위한 도시한 개념도이다.
도 3 및 도 4는 본 발명의 일 실시예에 따른 전기자동차용 배터리 통합 충전 제어 장치를 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시예에 따른 OBC/LDC 통합 회로의 컨버팅 동작을 설명하기 위한 신호 파형도이다.
도 6은 본 발명의 일 실시예에 따른 트랜스포머를 도시한 도면이다.
1 is a view for explaining the structure of a charging system of an electric vehicle according to the prior art.
2 is a conceptual diagram illustrating an integrated charging system for an electric vehicle according to an embodiment of the present invention.
3 and 4 are views for explaining a battery integrated charge control device for an electric vehicle according to an embodiment of the present invention.
5 is a signal waveform diagram illustrating a converting operation of the OBC/LDC integrated circuit according to an embodiment of the present invention.
6 is a view showing a transformer according to an embodiment of the present invention.

본 발명의 목적 및 효과, 그리고 그것들을 달성하기 위한 기술적 구성들은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.The objectives and effects of the present invention, and technical configurations for achieving them, will be clarified with reference to embodiments described below in detail together with the accompanying drawings. In describing the present invention, when it is determined that a detailed description of known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.

그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다.In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to a user's or operator's intention or practice.

그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms. Only the present embodiments are provided to make the disclosure of the present invention complete, and to fully inform the person of ordinary skill in the art to which the present invention pertains, the scope of the present invention being defined by the scope of the claims. It just works. Therefore, the definition should be made based on the contents throughout this specification.

도 2는 본 발명의 일 실시예에 따른 전기 자동차용 통합 충전 시스템을 설명하기 위한 도시한 개념도이다. 2 is a conceptual diagram illustrating an integrated charging system for an electric vehicle according to an embodiment of the present invention.

도 2에 도시된 바와 같이, 본 발명의 전기 자동차용 통합 충전 시스템은 OBC, LDC, 인버터가 하나의 PCB 회로 기판에 실장된 전기자동차용 배터리 통합 충전 제어 장치(100)를 구비함으로써, 종래에 개별 3개이던 방열 구조 및 케이스를 하나의 하우징으로 대체할 수 있도록 한다. As shown in FIG. 2, the integrated charging system for an electric vehicle according to the present invention includes a battery integrated charging control device 100 for an electric vehicle in which OBC, LDC, and inverter are mounted on one PCB circuit board. It is possible to replace the three heat dissipation structures and cases with one housing.

또한, PCB 회로 기판에 패터닝되는 신호 라인을 통해 기존의 커넥터를 대체하여 커넥터를 총 5개로 줄일 수 있도록 하고, 이를 통해 단가 저감을 이룰 수 있게 된다.In addition, it is possible to reduce the total number of connectors to 5 by replacing the existing connector through the signal line patterned on the PCB circuit board, thereby achieving cost reduction.

도 3 및 도 4는 본 발명의 일 실시예에 따른 전기자동차용 배터리 통합 충전 제어 장치를 설명하기 위한 도면이다. 3 and 4 are views for explaining a battery integrated charge control device for an electric vehicle according to an embodiment of the present invention.

도 3 및 도 4를 참고하면, 본 발명의 배터리 통합 충전 제어 장치(100)는 AC 입력 커넥터(C_ACIN), AC 출력 커넥터(C_ACOUT), 고전압 커넥터(C_HV), 저전압 커넥터(C_LV), 신호 커넥터(C_SIG)를 실장하고, 회로간 또는 회로와 커넥터간을 신호라인을 통해 서로 연결하는 PCB 회로 기판(110)과, PCB 회로 기판(110)에 실장되는 트랜스포머(120), OBC 1차 회로(130), 및 OBC/LDC 통합 회로(140), LDC 2차 회로(140), 인버터(160), 및 프로세서(170) 등을 포함할 수 있다. 3 and 4, the battery integrated charge control device 100 of the present invention includes an AC input connector (C_ACIN), an AC output connector (C_ACOUT), a high voltage connector (C_HV), a low voltage connector (C_LV), and a signal connector ( C_SIG), PCB circuit board 110 for connecting circuits or circuits and connectors to each other through signal lines, transformer 120 mounted on PCB circuit board 110, and OBC primary circuit 130 , And the OBC/LDC integrated circuit 140, the LDC secondary circuit 140, the inverter 160, and the processor 170.

트랜스포머(120)는 1차 내지 3차 코일(N1,N2,N3)을 구비하고, 1차 코일(N1)에 인가되는 1차 전원에 의해 2차 코일(N2)에 2차 전원을 유도되거나, 2차 코일(N2)에 인가되는 3차 전원에 따라 3차 코일(N3)에 4차 전원이 유도되도록 한다.The transformer 120 includes primary to tertiary coils N1, N2, and N3, and a secondary power is induced to the secondary coil N2 by the primary power applied to the primary coil N1, The fourth power is induced to the third coil N3 according to the third power applied to the second coil N2.

이때, 1차 내지 3차 코일(N1,N2,N3)의 권선 수는 N2,N1,N3 순으로 감소될 수 있으며, 이의 권선수는 승압율, 강압율에 따라 임의 조정될 수 있음은 물론 당연할 것이다. At this time, the number of windings of the primary to tertiary coils N1, N2, N3 may be reduced in the order of N2, N1, N3, and the number of windings thereof may be arbitrarily adjusted according to the step-up ratio and step-down ratio, of course. will be.

참고로, 트랜스포머는 매우 큰 부피를 차지하는 부품으로, 장치 크기는 트랜스포머의 개수 및 부피에 크게 영향을 받게 된다. 이에 본 발명은 하나의 트랜스포머를 통해 OBC와 LDC 모두를 구현할 수 있도록 함으로써, 트랜스포머에 따른 부피 증가를 최소화하도록 한다. For reference, the transformer is a part that occupies a very large volume, and the device size is greatly affected by the number and volume of the transformers. Accordingly, the present invention allows to implement both OBC and LDC through one transformer, thereby minimizing the increase in volume according to the transformer.

OBC 1차 회로(130)는 AC 입력 커넥터(C_ACIN)를 통해 입력되는 AC 전압을 브릿지 다이오드를 이용하여 전파로 정류 및 승압한 후, 승압된 직류(DC)를 브릿지 컨버터를 통해 고주파의 AC 전원으로 변환하여 트랜스포머(120)의 1차 코일(N1)에 인가하도록 한다. The OBC primary circuit 130 rectifies and boosts the AC voltage input through the AC input connector (C_ACIN) into a radio wave using a bridge diode, and then converts the boosted direct current (DC) into high frequency AC power through the bridge converter. Convert to apply to the primary coil (N1) of the transformer (120).

이러한 OBC 1차 회로(130)는 AC 전압을 브릿지 다이오드를 이용하여 전파로 정류하는 정류기(121), 전파로 정류된 DC 전압을 승압함과 동시에 역률을 보상하는 PFC(Power Factor Correction) 회로(122), 승압된 직류(DC)를 브릿지 컨버터를 통해 고주파의 AC 전압으로 변환하는 풀 브릿지 컨버터(123) 등을 포함하여 구현될 수 있다. The OBC primary circuit 130 includes a rectifier 121 that rectifies AC voltage into a radio wave using a bridge diode, and a power factor correction (PFC) circuit 122 that boosts a DC voltage rectified by the radio wave and compensates for power factor. ), a full bridge converter 123 for converting the boosted direct current (DC) into a high-frequency AC voltage through the bridge converter, and the like.

OBC/LDC 통합 회로(140)는 바디 다이오드를 가지는 트랜지스터(Q1~Q4) 4개가 풀 브릿지 방식으로 연결된 스위칭부(141)와 스위칭부(141)의 양단에 연결된 커패시터(C)로 구현되며, 정류 모드와 컨버팅 모드의 두 가지 모드로 구동하도록 한다. The OBC/LDC integrated circuit 140 is implemented by a switching unit 141 in which four transistors Q1 to Q4 having a body diode are connected in a full bridge manner and a capacitor C connected to both ends of the switching unit 141, and is rectified. It operates in two modes: mode and converting mode.

즉, 정류 모드시에는 4개의 트랜지스터(Q1~Q4)를 턴 오프시켜, 4개의 트랜지스터(Q1~Q4)의 바디 다이오드를 통해 2차 코일(N2)에 유도된 2차 전원을 DC 전압으로 동기 정류하여 고전압 배터리가 연결된 고전압 커넥터(C_HV)로 출력하도록 한다. That is, in the rectifying mode, the four transistors Q1 to Q4 are turned off to synchronously rectify the secondary power induced in the secondary coil N2 through the body diodes of the four transistors Q1 to Q4 to the DC voltage. To output to the high voltage connector (C_HV) to which the high voltage battery is connected.

컨버팅 모드시에는 고전압 커넥터(C_HV)를 통해 입력되는 배터리 전압을 3차 전압으로 강하하여 2차 코일(N2)에 인가하도록 한다. 이를 위해, 본 발명은 도 5에서와 같이, 4개의 트랜지스터(Q1~Q4)를 오버랩 타임을 스위칭하도록 한다. 즉, (Q2, Q4) 1쌍 (Q1, Q3) 1쌍의 듀티 폭을 50%를 고정으로 두고 각 쌍들의 위상을 조절하여, 2차 코일(N2)에 걸리는 평균전압을 제어하는 위상 천이형 풀 브리지 컨버터로 구동하도록 한다. 그리고 2차 코일(N2)로의 전압 인가는 P 구간에서와 같이, Q1, Q2가 동시에 턴온되거나, Q4, Q3가 동시 턴온될 때에 가능하며, Q1,Q4가 동시에 턴온되거나 Q3, Q2가 동시에 턴온될 때에는 2차 코일(N2) 양단의 전압이 제로가 되어, 2차 코일(N2)에 전압이 인가되지 못한다. In the converting mode, the battery voltage input through the high voltage connector C_HV is dropped to the third voltage to be applied to the secondary coil N2. To this end, the present invention, as shown in Figure 5, the four transistors (Q1 ~ Q4) to switch the overlap time. That is, (Q2, Q4) 1 pair (Q1, Q3) Phase shift type to control the average voltage across the secondary coil (N2) by adjusting the phase of each pair with 50% fixed duty width Drive with a full bridge converter. And the voltage application to the secondary coil N2 is possible when Q1 and Q2 are turned on at the same time, or Q4 and Q3 are turned on at the same time, as in the P section, and Q1 and Q4 are turned on at the same time or Q3 and Q2 are turned on at the same time. At this time, the voltage at both ends of the secondary coil N2 becomes zero, so that no voltage is applied to the secondary coil N2.

LDC 2차측 회로(150)는 3차 코일(N3)에 인가되는 4차 전원을 DC 전압으로 변환하여 저전압 배터리가 연결된 저전압 커넥터(C_LV)로 출력하도록 한다. The LDC secondary-side circuit 150 converts the fourth power applied to the third coil N3 into DC voltage to output to the low-voltage connector C_LV to which the low-voltage battery is connected.

이러한 LDC 2차측 회로(150)는 3차 코일(N3)에 인가되는 4차 전원을 브릿지 다이오드를 이용하여 DC 전압으로 정류하는 정류기(151), 정류기(121)의 출력을 필터링하여 저전압 커넥터(C_LV)에 인가하는 필터(152) 등을 포함할 수 있다. The LDC secondary-side circuit 150 filters the outputs of the rectifier 151 and rectifier 121 that rectify the fourth power applied to the third coil N3 to a DC voltage using a bridge diode, and thus a low voltage connector (C_LV) ) May include a filter 152 to be applied.

인버터(160)는 고전압 커넥터(C_HV)를 통해 입력되는 배터리 전압을 모터 구동 전압으로 변환하여 모터가 연결된 AC 출력 커넥터(C_ACOUT)로 출력하도록 한다 The inverter 160 converts the battery voltage input through the high voltage connector C_HV into a motor driving voltage to output to the AC output connector C_ACOUT to which the motor is connected.

프로세서(170)는 CAN 버스를 통해 ECU(43)와 통신하여 차량 주행 여부를 확인하도록 한다. 그리고 차량 주차시에는 OBC 1차 회로, 트랜스포머(120) 및 OBC/LDC 통합 회로를 통해 고전압 배터리를 충전하고, 차량 주행시에는 LDC 2차 회로, 상기 OBC/LDC 통합 회로, 및 상기 인버터를 동작 제어하는 프로세서The processor 170 communicates with the ECU 43 through a CAN bus to check whether the vehicle is driving. And when the vehicle is parked, the high voltage battery is charged through the OBC primary circuit, the transformer 120 and the OBC/LDC integrated circuit, and when the vehicle is driving, the LDC secondary circuit, the OBC/LDC integrated circuit, and the inverter are operated and controlled. Processor

이와 같이, 본 발명은 OBC, LDC, 인버터를 하나의 PCB 회로 기판에 실장하고, PCB 회로 기판에 구비되는 커넥터의 개수를 감소시켜 줌으로써, 시스템 소형화 및 저비용화가 가능하도록 한다. As described above, the present invention is to mount the OBC, LDC, inverter on one PCB circuit board, and reduce the number of connectors provided on the PCB circuit board, thereby enabling system miniaturization and cost reduction.

뿐만 아니라, OBC와 LDC 각각에 구비되던 트랜스포머를 하나로 감소시킬 수 있도록 하고, 이를 통해 시스템 소형화 효과가 더욱 증대될 수 있도록 한다. In addition, it is possible to reduce the transformers provided in each of the OBC and LDC to one, thereby enabling the system miniaturization effect to be further increased.

도 6은 본 발명의 일 실시예에 따른 트랜스포머를 도시한 도면이다. 6 is a view showing a transformer according to an embodiment of the present invention.

도 6에 도시된 바와 같이, 본 발명에서는 트랜스포머(120)가 하나의 철심에 제1 내지 제3 코일(N1~N3)이 적층 방식으로 권선된 구조를 가지도록 한다. 즉, 제1 코일(N1), 제2 코일(N2), 제 3 코일(N3)이 순차적으로 적층된 구조를 가짐으로써, 트랜스포머로 인한 부피가 최소화될 수 있도록 한다. As shown in FIG. 6, in the present invention, the transformer 120 has a structure in which the first to third coils N1 to N3 are wound in a stacked manner on one iron core. That is, by having a structure in which the first coil N1, the second coil N2, and the third coil N3 are sequentially stacked, the volume due to the transformer can be minimized.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and variations without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. The scope of protection of the present invention should be interpreted by the claims below, and all technical spirits within the equivalent range should be interpreted as being included in the scope of the present invention.

Claims (5)

1차 내지 3차 코일을 구비하고, 상기 1차 코일과 상기 2차 코일의 권선비에 따라 1차 전원으로부터 2차 전원을 유도하고, 상기 2차 코일과 상기 3차 코일의 권선비에 따라 3차 전원으로부터 4차 전원을 유도하는 트랜스포머;
AC 입력 커넥터를 통해 입력되는 AC 전압을 상기 1차 전원으로 변환하여 상기 1차 코일에 인가하는 OBC(On-Board Charger) 1차측 회로;
정류 모드시에는 상기 2차 코일에 인가된 상기 2차 전원을 DC 전압으로 변환하여 고전압 배터리가 연결된 고전압 커넥터로 출력하고, 컨버팅 모드시에는 상기 고전압 커넥터를 통해 입력되는 배터리 전압을 상기 3차 전원으로 변환하여 상기 2차 코일에 인가하는 OBC/LDC 통합 회로;
상기 3차 코일에 인가되는 상기 4차 전원을 DC 전압으로 변환하여 저전압 배터리가 연결된 저전압 커넥터로 출력하는 LDC 2차측 회로;
상기 고전압 커넥터를 통해 입력되는 배터리 전압을 모터 구동 전압으로 변환하여 모터가 연결된 AC 출력 커넥터로 출력하는 인버터;
상기 OBC 1차 회로, 상기 OBC/LDC 통합 회로, 상기 LDC 2차 회로, 상기 인버터의 동작을 전반적으로 제어하되, 상기 OBC/LDC 통합 회로를 차량 주차시에는 정류 모드로 동작시키고, 차량 주행시에는 컨버팅 모드로 동작시키는 프로세서; 및
상기 트랜스포머, 상기 OBC 1차측 회로, 상기 OBC/LDC 통합 회로, 상기 LDC 2차측 회로, 상기 인버터, 상기 프로세서, 상기 AC 입력 커넥터, 상기 AC 출력 커넥터, 상기 고전압 커넥터, 상기 저전압 커넥터, 상기 신호 커넥터를 실장하고, 회로간 또는 회로와 커넥터간을 신호라인을 통해 서로 연결하는 PCB 회로 기판을 포함하는 전기자동차용 배터리 통합 충전 제어 장치.
A primary to tertiary coil is provided, and a secondary power source is derived from a primary power source according to the winding ratio of the primary coil and the secondary coil, and a tertiary power source according to the winding ratio of the secondary coil and the tertiary coil. A transformer that induces a fourth power source from;
An on-board charger (OBC) primary circuit for converting AC voltage input through an AC input connector to the primary power and applying it to the primary coil;
In the rectifying mode, the secondary power applied to the secondary coil is converted into a DC voltage and output to a high voltage connector to which a high voltage battery is connected. In the converting mode, the battery voltage input through the high voltage connector is converted into the third power. An OBC/LDC integrated circuit that is converted and applied to the secondary coil;
An LDC secondary-side circuit that converts the fourth power applied to the tertiary coil into a DC voltage and outputs it to a low voltage connector to which a low voltage battery is connected;
An inverter that converts a battery voltage input through the high voltage connector into a motor driving voltage and outputs it to an AC output connector to which a motor is connected;
Overall operation of the OBC primary circuit, the OBC/LDC integrated circuit, the LDC secondary circuit, and the inverter is controlled, but the OBC/LDC integrated circuit is operated in a rectifying mode when parking the vehicle, and converted when the vehicle is driving. A processor operating in a mode; And
The transformer, the OBC primary side circuit, the OBC/LDC integrated circuit, the LDC secondary side circuit, the inverter, the processor, the AC input connector, the AC output connector, the high voltage connector, the low voltage connector, the signal connector An integrated battery charge control device for an electric vehicle including a PCB circuit board mounted and connecting circuits or circuits and connectors to each other through a signal line.
제1항에 있어서, 상기 OBC/LDC 통합 회로는
바디 다이오드를 가지는 4개의 트랜지스터가 풀 브릿지 방식으로 연결된 스위칭부를 구비하는 것을 특징으로 하는 전기자동차용 배터리 통합 충전 제어 장치.
The OBC/LDC integrated circuit of claim 1,
A battery integrated charge control device for an electric vehicle, characterized in that four transistors having a body diode have a switching unit connected in a full bridge manner.
제2항에 있어서, 상기 OBC/LDC 통합 회로는
정류 모드시에는 4개의 트랜지스터를 턴 오프시켜, 상기 4개의 트랜지스터의 바디 다이오드를 통해 상기 2차 코일에 유도된 2차 전원을 동기 정류하는 것을 특징으로 하는 전기자동차용 배터리 통합 충전 제어 장치.
The OBC/LDC integrated circuit of claim 2,
In the rectifying mode, the four transistors are turned off to synchronously rectify the secondary power induced in the secondary coil through the body diodes of the four transistors.
제2항에 있어서, 상기 OBC/LDC 통합 회로는
컨버팅 모드시에는 상기 4개의 트랜지스터의 오버랩 타임을 스위칭하여, 상기 2차 코일에 인가되는 평균전압을 조정하는 것을 특징으로 하는 전기자동차용 배터리 통합 충전 제어 장치.
The OBC/LDC integrated circuit of claim 2,
In the converting mode, the overlapping time of the four transistors is switched to adjust the average voltage applied to the secondary coil.
제1항에 있어서, 상기 트랜스포머는
하나의 철심에 제1 내지 제3 코일이 적층 방식으로 권선된 구조를 가지는 것을 특징으로 하는 전기자동차용 배터리 통합 충전 제어 장치.
The method of claim 1, wherein the transformer
A battery integrated charge control device for an electric vehicle, characterized in that the first to third coils are wound on one iron core in a stacked manner.
KR1020180147242A 2018-11-26 2018-11-26 Intergrated controller for EV battery KR102174516B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180147242A KR102174516B1 (en) 2018-11-26 2018-11-26 Intergrated controller for EV battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180147242A KR102174516B1 (en) 2018-11-26 2018-11-26 Intergrated controller for EV battery

Publications (2)

Publication Number Publication Date
KR20200061672A true KR20200061672A (en) 2020-06-03
KR102174516B1 KR102174516B1 (en) 2020-11-05

Family

ID=71087982

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180147242A KR102174516B1 (en) 2018-11-26 2018-11-26 Intergrated controller for EV battery

Country Status (1)

Country Link
KR (1) KR102174516B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210158499A (en) 2020-06-24 2021-12-31 주식회사 코엔시스 Remote battery-monitoring system for electric vehicle
KR20210158493A (en) 2020-06-24 2021-12-31 주식회사 코엔시스 Remote battery-monitoring system for electric vehicle using portable terminal
CN114336905A (en) * 2021-09-14 2022-04-12 华为数字能源技术有限公司 Charging and discharging device and vehicle
WO2022133793A1 (en) * 2020-12-23 2022-06-30 深圳欣锐科技股份有限公司 Charging system and vehicle
KR20220155452A (en) * 2021-05-13 2022-11-23 주식회사 일진정공 Battery charging system for an electric special vehicle and method of charging an electric special vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130117210A (en) * 2012-04-18 2013-10-25 현대모비스 주식회사 Vehicle battery charging system
KR20140084369A (en) * 2012-12-21 2014-07-07 주식회사 만도 An all in one onboard battery charger for electric vehicle, electric vehicle having the function of the charge, and the system and method for controlling a battery charger for electric vehicle including the on board battery charger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130117210A (en) * 2012-04-18 2013-10-25 현대모비스 주식회사 Vehicle battery charging system
KR20140084369A (en) * 2012-12-21 2014-07-07 주식회사 만도 An all in one onboard battery charger for electric vehicle, electric vehicle having the function of the charge, and the system and method for controlling a battery charger for electric vehicle including the on board battery charger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210158499A (en) 2020-06-24 2021-12-31 주식회사 코엔시스 Remote battery-monitoring system for electric vehicle
KR20210158493A (en) 2020-06-24 2021-12-31 주식회사 코엔시스 Remote battery-monitoring system for electric vehicle using portable terminal
WO2022133793A1 (en) * 2020-12-23 2022-06-30 深圳欣锐科技股份有限公司 Charging system and vehicle
KR20220155452A (en) * 2021-05-13 2022-11-23 주식회사 일진정공 Battery charging system for an electric special vehicle and method of charging an electric special vehicle
CN114336905A (en) * 2021-09-14 2022-04-12 华为数字能源技术有限公司 Charging and discharging device and vehicle

Also Published As

Publication number Publication date
KR102174516B1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
KR102174516B1 (en) Intergrated controller for EV battery
KR101263463B1 (en) Apparatus for charging battery
Kim et al. Multifunctional onboard battery charger for plug-in electric vehicles
KR101229441B1 (en) Apparatus for charging battery
KR101971157B1 (en) A electric vehicle on-board charger with a high power capacity
KR101903121B1 (en) OBC and LDC for electric vehicle
US20040179381A1 (en) Two-way DC-DC converter
KR20190010786A (en) Electric vehicle
US20120229088A1 (en) Charger for electric vehicle
KR101936462B1 (en) Battery charger for an electric vehicle
US11349386B2 (en) Apparatus and method for charging battery of vehicle
KR20160050953A (en) Apparatus for converting power of electric vehicle
KR20200122033A (en) united converter apparatus
KR20150053452A (en) Power Modular On-board Charger for Electric Vehicle or Plug-In Hybrid Electric Vehicle and charging method thereof
KR20170110866A (en) Primary coil circuit for wireless power transfer and ground assembly and manufacturing method therefor using the same
CN111108016A (en) Hybrid charging system
JP5461113B2 (en) Bi-directional converter and electric vehicle control apparatus using the same
KR20170093014A (en) A pfc circuit device for high-power, high-power density ev on-board charger
US20190275905A1 (en) Charging device for a motor vehicle
KR20130117210A (en) Vehicle battery charging system
CN115280658A (en) Bidirectional DC-DC converter
KR20130016874A (en) Battery charger for green car
KR101316125B1 (en) Apparatus for charging battery of vehicle
KR102008751B1 (en) Vehicle power control device
KR20190070784A (en) Vehicle power control device

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right