KR20200058204A - A Vertical take off and landing three surface aircraft with distributed propulsion system - Google Patents

A Vertical take off and landing three surface aircraft with distributed propulsion system Download PDF

Info

Publication number
KR20200058204A
KR20200058204A KR1020180142931A KR20180142931A KR20200058204A KR 20200058204 A KR20200058204 A KR 20200058204A KR 1020180142931 A KR1020180142931 A KR 1020180142931A KR 20180142931 A KR20180142931 A KR 20180142931A KR 20200058204 A KR20200058204 A KR 20200058204A
Authority
KR
South Korea
Prior art keywords
wing
tilt
aircraft
dispersion
tilt rotor
Prior art date
Application number
KR1020180142931A
Other languages
Korean (ko)
Other versions
KR102218586B1 (en
Inventor
김응태
정기훈
차명진
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Priority to KR1020180142931A priority Critical patent/KR102218586B1/en
Publication of KR20200058204A publication Critical patent/KR20200058204A/en
Application granted granted Critical
Publication of KR102218586B1 publication Critical patent/KR102218586B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/02Tailplanes

Abstract

The present invention relates to a combined vertical take-off and landing aircraft with a three-surface distributed propulsion system which includes: a front wing; a main wing including an inner wing and a tilt wing; a tail wing; an end tilt rotor which is provided in the direction parallel to an aircraft body and installed on the outer end of the tilt wing; and a center tilt rotor which is provided in the direction parallel to the aircraft body and installed between the inner wing and the tilt wing. The present invention is characterized in that the center tilt rotor and the end tilt rotor rotate simultaneously to distribute thrust and only the tilt wing is tilted so that the aircraft is less affected by stall.

Description

복합형 삼중 날개 분산추진 수직이착륙 항공기 {A Vertical take off and landing three surface aircraft with distributed propulsion system}{A Vertical take off and landing three surface aircraft with distributed propulsion system}

본 발명은 복합형 삼중 날개 분산추진 수직이착륙 항공기에 관한 것으로, 더욱 상세하게는 삼중 날개를 가진 항공기가 추력을 분산하여 발생시키는 복합형 삼중 날개 분산추진 수직이착륙 항공기에 관한 것이다.The present invention relates to a hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft, and more particularly to a hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft generated by dispersing thrust by an aircraft having triple wings.

항공기는 크게 고정익 항공기와 회전익 항공기로 구분할 수 있다. 고정익 항공기는 항공기 동체에 날개가 고정되어 있으며, 모든 비행상태에서 고정된 날개면을 갖고, 그 날개면에서 발생하는 양력으로 비행하는 항공기를 말한다. 이 고정익 항공기는 크게 프로펠러나 엔진의 전진추력으로 고정날개의 양력을 얻어 비행한다. 회전익 항공기는 회전하는 날개에 의하여 비행에 필요한 양력의 전부 또는 일부를 발생케 하는 항공기를 지칭한다. 회전익 항공기는 헬리콥터, 쿼드콥터형 드론 등 다양한 종류가 있으며 로터 회전에 의해 양력 및 조타력을 얻어 비행한다.Aircraft can be roughly divided into fixed-wing and rotary-wing aircraft. A fixed-wing aircraft is an aircraft that has wings fixed to the fuselage of the aircraft, has a fixed wing surface in all flight conditions, and flies with lift generated by the wing surface. This fixed-wing aircraft flies with the lift of a fixed wing with a large propeller or engine forward thrust. A rotorcraft aircraft refers to an aircraft that generates all or part of lift required for flight by a rotating wing. There are various types of rotorcraft, such as helicopters and quadcopter-type drones, and fly by obtaining lift and steering force by rotor rotation.

일반적으로 고정익 항공기는 고속으로 비행이 가능하지만, 수직이착륙이 불가능하므로 일정거리 이상의 활주로가 필요하다. 반면 회전익 항공기는 수직이착륙이 가능하여 활주로가 필요하지 않지만 일정속도 이상의 고속을 낼 수 없으므로 고정익 항공기에 비해 속도가 느린 단점이 있다. 그래서 최근에는 고정익 항공기와 회전익 항공기의 장점을 결합한 수직이착륙 항공기와 관련된 기술이 많이 개시되고 있다. In general, fixed-wing aircraft can fly at high speeds, but vertical takeoff and landing are not possible, so a runway of a certain distance or more is required. On the other hand, a rotary wing aircraft can take off and land vertically, so there is no need for a runway, but it has a disadvantage in that it is slower than a fixed wing aircraft because it cannot produce a high speed above a certain speed. So, recently, many technologies related to vertical take-off and landing aircraft that combine the advantages of fixed-wing and rotary-wing aircraft have been disclosed.

수직이착륙 항공기는 이착륙할 때 활주하지 않고 수직으로 상승 또는 하강할 수 있는 비행기를 의미한다. 수직이착륙 항공기는 틸트로터(틸트프롭) 항공기, 틸트날개 항공기의 순서로 발전해왔다. 선행기술문헌 1에 개시된 바와 같이, 틸트로터(틸트프롭) 항공기는 고정익(주날개)에 2개의 틸트로터를 장착하여 순항시에는 날개에서 발생하는 양력이 비행체를 들어올리고, 틸트로터는 이착륙을 위해서만 사용되기 때문에 비행속도가 상대적으로 빠르고 비행시간이 길다. 하지만, 고정익(주날개)의 끝단에 틸트로터를 장착하면 날개에 처짐현상이 생기고, 고정익(주날개)의 중앙에 틸트로터를 부착하면, 틸트로터 전체를 회전하는 것이 힘들뿐만 아니라, 틸트로터 전체의 회전이 가능하도록 장치를 설치해야 한다. 이렇듯 틸트로터(틸트프롭)항공기에 복수개의 틸트로터를 부착하는 것이 어려운 문제점이 있다. 그래서 이를 보완한 틸트날개 항공기에 대한 기술이 개시되었다.A vertical takeoff and landing aircraft means an airplane that can vertically ascend or descend without sliding when taking off and landing. Vertical take-off and landing aircraft have been developed in the order of tilt-rotor (tilt-prop) and tilt-wing aircraft. As disclosed in the prior art document 1, the tilt rotor (tilt prop) aircraft is equipped with two tilt rotors on a fixed wing (main wing), so that the lift generated by the wing lifts the aircraft when cruising, and the tilt rotor is used only for takeoff and landing. The flight speed is relatively fast and the flight time is long. However, if the tilt rotor is attached to the end of the stator blade (main wing), a sagging phenomenon occurs on the wing, and if the tilt rotor is attached to the center of the stator blade (main wing), it is not only difficult to rotate the entire tilt rotor, but also the entire tilt rotor can be rotated. Device. As such, it is difficult to attach a plurality of tilt rotors to a tilt rotor (tilt prop) aircraft. Thus, a technology for tilt wing aircraft that complements this has been disclosed.

틸트날개 항공기는 로터를 틸트시키는 것이 아닌 로터가 장착된 날개를 틸트시키는 항공기이다. 틸트날개 항공기의 비행속도가 증가하면 틸트날개가 회전할 때 틸트날개가 실속에 들어가게 되어서 심한 진동이 발생하는 문제가 생긴다. 특히, 실속이란 비행기의 날개 표면을 흐르는 기류의 흐름이 날개 윗면으로부터 박리되어, 양력이 감소되고, 항력이 증가하여 비행을 유지하지 못하는 현상으로, 비행기가 실속에 들어가면 심한 진동이 발생할 뿐만 아니라 비행기의 조종자체가 어려워지므로 매우 심각한 문제를 야기한다. The tilt-wing aircraft are not tilting rotors, but rather tilting rotor-equipped wings. When the flight speed of the tilt-wing aircraft increases, a severe vibration occurs because the tilt-wing enters the stall when the tilt-wing rotates. In particular, stall is a phenomenon in which the flow of airflow through the wing surface of an airplane is detached from the top surface of the wing, lifting force is reduced, and drag is not maintained to maintain flight. The control itself becomes difficult, which causes very serious problems.

상기 틸트로터(틸트프롭) 항공기나 틸트날개 항공기는 기본적으로 고정익(주날개)과 꼬리날개, 즉 두 개의 날개로 구성되어 있다. 두 개의 날개로 이루어진 수직 이착륙 항공기의 날개에 부착된 2개 또는 4개의 틸트로터에서는 발생하는 모멘트를 서로 상쇄시킨다. 하지만, 4개의 틸트로터가 부착된 경우에는 하나의 틸트로터라도 고장나면 나머지 3개에 대한 모멘트를 대신 상쇄할 수 있는 여유분의 틸트로터가 구비되지 않으므로, 모멘트를 상쇄할 수 없게된다. 그러면 비행기가 조종성을 잃게 되고 이로 인하여 사고가 발생하게 된다. 그러므로 틸트로터가 고장나더라도 작동중인 틸트로터끼리 발생하는 모멘트를 상쇄시켜 조종할 수 있는 수직이착륙 항공기에 대한 기술의 개시가 필요하다.The tilt rotor (tilt prop) aircraft or tilt wing aircraft basically consists of a fixed wing (main wing) and a tail wing, that is, two wings. Two or four tilt rotors attached to the wings of a two-wing vertical takeoff and landing aircraft cancel each other's moments. However, when four tilt rotors are attached, if one of the tilt rotors fails, a momentary tilt rotor is not provided to compensate for the remaining three moments, so the moment cannot be offset. Then the airplane loses controllability and an accident occurs. Therefore, it is necessary to disclose a technique for a vertical take-off and landing aircraft capable of offsetting and controlling the moments occurring between the tilting rotors in operation even if the tilting rotor fails.

1. 대한민국등록특허공보 제 10-1849246 호 ("틸트프롭 항공기", 2018.04.10.)1. Republic of Korea Registered Patent Publication No. 10-1849246 ("Tilt prop aircraft", 2018.04.10.)

따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 수직이착륙이 가능하면서 소음저감이 가능한 복합형 삼중 날개 분산추진 수직이착륙 항공기를 제공함에 있다. 보다 상세하게는, 수직이착륙이 가능하면서 높은 비행속도와 긴 비행시간을 가지며 소음저감 및 고정시 안전성의 확보가 가능한 복합형 삼중 날개 분산추진 수직이착륙 항공기를 제공함에 있다.Therefore, the present invention was devised to solve the problems of the prior art as described above, and an object of the present invention is to provide a hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft capable of vertical takeoff and landing while reducing noise. In more detail, it is to provide a hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft capable of vertical takeoff and landing, having a high flight speed and a long flight time, and ensuring noise reduction and safety during fixing.

상기한 바와 같은 목적을 달성하기 위한 본 발명의 복합형 삼중 날개 분산추진 수직이착륙 항공기는, 항공기 동체에 수직이며 지표면과는 수평으로 구비되는 전방날개; 상기 전방날개의 후방에 상기 항공기 동체에 수직이며 지표면과는 수평으로 구비되는 안쪽날개와 상기 안쪽날개의 외측끝단에 상기 안쪽날개의 길이방향으로 연장되어 형성되는 틸트날개를 포함하는 주날개; 상기 항공기 동체의 후방 끝단에 구비되는 꼬리날개; 상기 항공기 동체와 나란한 방향으로 구비되어 상기 주날개의 연장방향을 중심으로 회전이 가능하고 전방일단에 프로펠러가 고정설치되며, 상기 틸트날개의 외측끝단에 설치되는 끝단 틸트로터; 상기 항공기 동체와 나란한 방향으로 구비되어 상기 주날개의 연장방향을 중심으로 회전이 가능하고 전방일단에 프로펠러가 고정설치되며, 상기 안쪽날개와 상기 틸트날개 사이에 설치되는 중앙 틸트로터; 를 포함하고, 상기 중앙 틸트로터와 상기 끝단 틸트로터는 상기 틸트날개와 동시에 회전하는 것을 특징으로 한다.The composite triple wing dispersion propulsion vertical take-off and landing aircraft of the present invention for achieving the above object is vertical to the aircraft body and is provided with a horizontal surface to the ground surface; A main wing including an inner wing which is perpendicular to the aircraft fuselage at the rear of the front wing and is provided horizontally to the ground surface and a tilt wing which is formed to extend in the longitudinal direction of the inner wing at the outer end of the inner wing; A tail wing provided at a rear end of the aircraft body; It is provided in a direction parallel to the aircraft body is rotatable about the extension direction of the main wing, a propeller is fixedly installed at one front end, an end tilt rotor installed at the outer end of the tilt wing; A central tilt rotor provided in a direction parallel to the aircraft body, rotatable around an extension direction of the main wing, a propeller fixedly installed at one front end, and installed between the inner wing and the tilt wing; Including, the central tilt rotor and the end tilt rotor is characterized in that it rotates simultaneously with the tilt blade.

또한, 상기 중앙 틸트로터와 상기 끝단 틸트로터는 콜렉티브 제어, 피치축과 롤축 싸이클릭 제어가 가능한 것을 특징으로 한다. In addition, the central tilt rotor and the end tilt rotor is characterized in that it is possible to control the collective, cyclic control of the pitch axis and the roll axis.

또한, 상기 항공기 동체와 나란한 방향으로 구비되어 상기 전방날개의 연장방향을 중심으로 회전이 가능하고 전방일단에는 프로펠러가 고정설치되며, 상기 전방날개의 외측끝단에 설치되는 전방 틸트로터; 상기 항공기 동체와 나란한 방향으로 구비되어 상기 꼬리날개의 연장방향을 중심으로 회전이 가능하고 전방일단에는 프로펠러가 고정설치되며, 상기 꼬리날개의 외측끝단에 설치되는 꼬리 틸트로터; 를 더 포함하는 것을 특징으로 한다.In addition, it is provided in a direction parallel to the aircraft body and can be rotated around the extending direction of the front wing, a propeller is fixedly installed at one front end, and a front tilt rotor installed at the outer end of the front wing; A tail tilt rotor provided in a direction parallel to the aircraft body and rotatable about an extension direction of the tail wing, a propeller is fixedly installed at one front end, and installed at an outer end of the tail wing; Characterized in that it further comprises.

또한, 상기 끝단 틸트로터, 상기 중앙 틸트로터, 상기 전방 틸트로터 및 상기 꼬리 틸트로터는, 상기 복합형 삼중 날개 분산추진 수직이착륙 항공기가 이착륙시 지면에 수직방향으로 각도조절이 가능한 것을 특징으로 한다. In addition, the tip tilt rotor, the center tilt rotor, the front tilt rotor and the tail tilt rotor, the composite triple wing dispersion propulsion vertical take-off and landing aircraft when the take-off and landing is characterized in that the angle can be adjusted in the vertical direction.

또한, 상기 전방 틸트로터와 상기 꼬리 틸트로터는, 지표면에 수직방향으로 고정설치 되는 것을 특징으로 한다.In addition, the front tilt rotor and the tail tilt rotor, it is characterized in that the fixed installation in the vertical direction on the ground surface.

또한, 상기 전방 틸트로터와 상기 꼬리 틸트로터는, 콜렉티브 제어만 하는 것을 특징으로 한다.In addition, the front tilt rotor and the tail tilt rotor are characterized in that only the collective control.

또한, 상기 주날개는, 상기 전방 날개에서 발생된 후류의 영향을 받지 않도록 고익으로 상기 항공기 동체에 고정 형성되는 것을 특징으로 한다.In addition, the main wing is characterized in that fixed to the aircraft body with a high wing so as not to be affected by the wake generated in the front wing.

또한, 상기 꼬리날개는, 상기 전방 날개에서 발생된 후류 영향을 받지 않도록 T형 또는 V형으로 구비되는 것을 특징으로 한다.In addition, the tail wing is characterized in that provided with a T-shape or V-shape so as not to be affected by the wake generated from the front wing.

본 발명에 의하면, 전방날개, 주날개 및 꼬리날개 즉, 세 개의 날개에 복수개의 틸트로터를 부착하므로 효율적으로 추력을 분산할 수 있는 효과가 있다.According to the present invention, the front wing, the main wing and the tail wing, that is, attaching a plurality of tilt rotors to the three wings, there is an effect that can effectively disperse the thrust.

또한, 틸트로터가 8개가 구비되므로 하나의 틸트로터가 고장나더라도 다른 틸트로터들을 이용하여 모멘트를 상쇄시키거나, 모멘트를 조절하여 안정적인 조종이 가능한 효과가 있다.In addition, since eight tilt rotors are provided, even if one tilt rotor is broken, there is an effect capable of stably manipulating by offsetting the moment using other tilt rotors or adjusting the moment.

또한, 틸트날개만 기울어지므로 항공기가 실속 영향을 적게 받고, 진동의 발생이 줄어드는 효과가 있다. In addition, since only the tilt blades are inclined, the aircraft is less affected by stall, and vibration is reduced.

또한, 복수개의 틸트로터가 있기 때문에 틸트로터의 고장이 발생하더라도 다른 틸트로터들로 모멘트를 상쇄시켜 안정적으로 제어할 수 있는 효과가 있다.In addition, since there is a plurality of tilt rotors, even if a failure of the tilt rotor occurs, there is an effect of stably controlling the moment by canceling the moments with other tilt rotors.

또한, 복수개의 틸트로터가 있기 때문에 프로펠러 직경이 작고, 전기모터를 사용하므로 기존의 틸트로터 항공기보다 소음을 저감시킬 수 있는 효과가 있다.In addition, since there are a plurality of tilt rotors, the propeller diameter is small, and since an electric motor is used, there is an effect of reducing noise compared to a conventional tilt rotor aircraft.

도 1은 종래기술 사시도
도 2는 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기의 제 1 실시예 사시도
도 3은 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기의 제 2 실시예 사시도
도 4는 본 발명에 의한 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기의 제 2 실시예 정면도
도 5는 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기의 제 2 실시예의 작동 사시도
도 6은 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기의 주날개 제 1 확대도
도 7은 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기의 주날개 제 2 확대도
도 8은 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기의 제 3 실시예 사시도
1 is a perspective view of a prior art
Figure 2 is a perspective view of a first embodiment of a vertical flight take-off and landing propulsion of a hybrid triple wing according to the present invention
Figure 3 is a perspective view of a second embodiment of the hybrid triple wing dispersion propulsion vertical take-off and landing aircraft according to the present invention
Figure 4 is a front view of the second embodiment of the hybrid triple-wing dispersion propulsion vertical take-off and landing aircraft according to the present invention according to the present invention
Figure 5 is a perspective view of the operation of the second embodiment of the hybrid triple wing dispersion propulsion vertical take-off and landing aircraft according to the present invention
6 is a first enlarged view of the main wing of the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft according to the present invention
7 is a second enlarged view of the main wing of the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft according to the present invention
Figure 8 is a perspective view of a third embodiment of a vertical flight take-off and landing propulsion of a hybrid triple wing according to the present invention

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명을 하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention can be applied to various changes and can have various embodiments, and specific embodiments will be illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.When an element is said to be "connected" or "connected" to another component, it is understood that other components may be directly connected to or connected to the other component, but there may be other components in between. It should be.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains.

일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms such as those defined in a commonly used dictionary should be interpreted as having meanings consistent with meanings in the context of related technologies, and should not be interpreted as ideal or excessively formal meanings unless explicitly defined in the present application. Does not.

이하, 본 발명의 기술적 사상을 첨부된 도면을 사용하여 더욱 구체적으로 설명한다. 첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일예에 불과하므로 본 발명의 기술적 사상이 첨부된 도면의 형태에 한정되는 것은 아니다.Hereinafter, the technical spirit of the present invention will be described in more detail with reference to the accompanying drawings. The accompanying drawings are only examples shown in order to explain the technical spirit of the present invention in more detail, so the technical spirit of the present invention is not limited to the form of the accompanying drawings.

이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)를 첨부된 도면을 참고하여 상세하게 설명한다.Hereinafter, a composite triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention having the above-described configuration will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 제 1 실시예 사시도를 도시한다. 본 발명에 따른 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)는 전방날개(100), 주날개(200), 꼬리날개(300), 항공기 동체(400), 착륙장치(500)를 포함하여 구성된다. 즉, 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)는 전방날개(100), 주날개(200), 꼬리날개(300) 이렇게 3개의 날개를 포함하여 구성된다. 전방날개(100)는 항공기 동체(400)에 수직이며 지표면과는 수평으로 구비되고 주날개(200)는 안쪽날개(210)와 틸트날개를 포함하여 구성된다. 안쪽날개(210)는 상기 전방날개(100)의 후방에 상기 항공기 동체(400)에 수직이며 지표면과는 수평으로 구비되고, 틸트날개(220)는 안쪽날개(210)의 외측끝단에 상기 안쪽날개(210)의 길이방향으로 연장되어 형성된다. 꼬리날개(300)는 상기 항공기 동체(400)의 후방 끝단에 구비된다. 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)는 전방날개(100), 주날개(200), 꼬리날개(300) 즉, 3개의 날개에 효율적으로 틸트로터를 부착하여 추력을 분산시켜 안정적인 비행이 가능하도록 한다. 이하에서 더욱 상세히 서술하도록 한다.Figure 2 shows a perspective view of a first embodiment of the hybrid triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention. The hybrid triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention includes a front wing 100, a main wing 200, a tail wing 300, an aircraft body 400, and a landing device 500 do. That is, the composite triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention includes three wings: a front wing 100, a main wing 200, and a tail wing 300. The front wing 100 is perpendicular to the aircraft fuselage 400 and is provided horizontally with the ground surface, and the main wing 200 includes an inner wing 210 and a tilt wing. The inner wing 210 is vertical to the aircraft body 400 at the rear of the front wing 100 and is provided horizontally with the ground surface, and the tilt wing 220 is provided with the inner wing at the outer end of the inner wing 210. It is formed to extend in the longitudinal direction of (210). The tail wing 300 is provided at the rear end of the aircraft body 400. The hybrid triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention disperses thrust by efficiently attaching a tilt rotor to the front wing 100, the main wing 200, and the tail wing 300, that is, the three wings Ensure stable flight. It will be described in more detail below.

본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)처럼 틸트날개(220)를 구비하지 않으면, 주날개(200)에 4개의 틸트로터를 구비하는 것이 매우 어렵다. 상세히 설명하자면, 4개의 틸트로터를 주날개(200)에 구비하기 위해서는 주날개(200)의 끝단에 틸트로터를 2개씩 구비하는 방법과, 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)처럼 양쪽 주날개(200)의 중앙과 끝단에 한 개씩 부착하는 방법이 있다, 첫 번째 방법은 틸트로터의 무게 때문에 날개의 처짐현상이 생기고, 항공기 동체(400)와 주날개(200)의 연결부위에 피로가 축적되고, 틸트로터의 무게와 무게중심과의 거리 때문에 항공기 전체의 무게중심이 흔들리는 문제가 생긴다. If the tilt wing 220 is not provided as in the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention, it is very difficult to provide four tilt rotors on the main wing 200. In detail, in order to provide four tilt rotors to the main wing 200, a method of providing two tilt rotors at the ends of the main wing 200, and a hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention There is a method of attaching one to the center and the ends of both main wings 200, as in the first method, the deflection of the wings occurs due to the weight of the tilt rotor, and the aircraft fuselage 400 and the main wing 200 are connected to each other. Fatigue accumulates, and the distance between the center of gravity and the center of the tilt rotor causes the entire center of gravity to shake.

두 번째 방법인 항공기처럼 양쪽 주날개(200)의 중앙과 끝단에 한 개씩 부착하는 방법은 본 발명처럼 틸트날개(220)가 없다면, 중앙 틸트로터(620b, 620c)와 끝단 틸트로터(620a, 620d)를 각각 동작시키기 위한 별도의 장치가 필요하므로 시스템이 복잡해 질 뿐만 아니라, 항공기의 무게도 증가되는 문제가 있다. 그러므로 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)처럼 틸트날개(220)를 형성해야 주날개(200)에 4개의 틸트로터를 구비할 수 있다. As the second method, the method of attaching one by one to the center and end of both main wings 200 like the aircraft, if there is no tilt wing 220 as in the present invention, the center tilt rotors 620b, 620c and the end tilt rotors 620a, 620d are used. Since a separate device is required for each operation, the system is not only complicated, but also increases the weight of the aircraft. Therefore, it is possible to provide four tilt rotors on the main wing 200 only when the tilt wing 220 is formed as in the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention.

또한, 중앙 틸트로터(620b, 620c)에 틸트날개(220)를 고정하고, 틸트날개(220)에 끝단 틸트로터(620a, 620d)를 고정하므로, 중앙 틸트로터(620b, 620c)가 회전하면, 틸트날개(220)와 끝단 틸트로터(620a, 620d)도 한 번에 회전할 수 있다. 즉, 틸트날개(220)와 끝단 틸트로터(620a, 620d)를 회전하기 위한 별도의 장치가 필요하지 않으므로 구성 및 시스템을 단순화 할 수 있다.In addition, since the tilt blades 220 are fixed to the center tilt rotors 620b and 620c, and the end tilt rotors 620a and 620d are fixed to the tilt blades 220, when the center tilt rotors 620b and 620c rotate, the tilt blades ( 220) and the end tilt rotors 620a and 620d can also be rotated at once. That is, since a separate device for rotating the tilt blade 220 and the end tilt rotors 620a and 620d is not required, the configuration and system can be simplified.

본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 전방날개(100), 주날개(200), 꼬리날개(300)에 틸트로터가 구비된다. 3개의 날개에 복수개의 틸트로터를 부착하므로 효율적으로 추력을 분산할 수 있는 효과가 있다. 우선, 주날개(200)에는 끝단 틸트로터(620a, 620d)와 중앙 틸트로터(620b, 620c)가 구비된다. 끝단 틸트로터(620a, 620d)는 상기 항공기 동체(400)와 나란한 방향으로 구비되어 상기 주날개(200)의 연장방향을 중심으로 회전이 가능하고 전방일단에 프로펠러가 고정설치되며, 상기 틸트날개(220)의 외측끝단에 설치된다. 중앙 틸트로터(620b, 620c)도 끝단 틸트로터(620a, 620d)와 마찬가지로 상기 항공기 동체(400)와 나란한 방향으로 구비되어 상기 주날개(200)의 연장방향을 중심으로 회전이 가능하고 전방일단에 프로펠러가 고정설치되지만, 중앙 틸트로터(620b, 620c)는 상기 안쪽날개(210)와 상기 틸트날개(220) 사이에 설치된다. 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)는 상기 중앙 틸트로터(620b, 620c)와 상기 끝단 틸트로터(620a, 620d)가 상기 틸트날개(220)와 동시에 회전한다. A tilt rotor is provided in the front wing 100, the main wing 200, and the tail wing 300 of the composite triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention. Since multiple tilt rotors are attached to the three wings, there is an effect of efficiently dispersing thrust. First, the main wing 200 is provided with end tilt rotors 620a and 620d and central tilt rotors 620b and 620c. The end tilt rotors 620a and 620d are provided in a direction parallel to the aircraft fuselage 400 so that rotation is possible around the extension direction of the main wing 200 and a propeller is fixedly installed at the front end, and the tilt wing 220 ) Is installed at the outer end. The center tilt rotors 620b and 620c are also provided in a direction parallel to the aircraft fuselage 400 like the end tilt rotors 620a and 620d, so that they can rotate around the extension direction of the main wing 200 and have a propeller at the front end. Although fixed, the central tilt rotors 620b and 620c are installed between the inner wing 210 and the tilt wing 220. In the hybrid triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention, the central tilt rotors 620b and 620c and the end tilt rotors 620a and 620d rotate simultaneously with the tilt wing 220.

본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 틸트날개(220) 면적은 전체 날개 면적에 비해 작아 틸트날개(220)가 실속의 영향을 받더라도, 틸트날개(220)의 실속이 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)에 미치는 영향을 작아진다. 그러므로 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000) 실속으로 인해 발생되는 진동의 문제나, 조종성이 떨어지는 문제 등이 거의 발생하지 않는다. 실속이란 앞서 언급했듯이, 비행기의 날개 표면을 흐르는 기류의 흐름이 날개 윗면으로부터 박리되어, 양력이 감소되고, 항력이 증가하여 비행을 유지하지 못하는 현상으로, 비행기가 실속에 들어가면 심한 진동이 발생할 뿐만 아니라 비행기의 조종자체가 어려워지는 매우 심각한 문제를 야기한다. 상세히 설명하자면 주날개(200)가 실속에 들어가는 현상에 의하여 항공기에 진동이 발생하게 되고, 이러한 진동은 항공기의 조종성과 안정성을 저하시키는 문제를 야기한다. 그러므로 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)는 틸트날개(220)가 실속에 의한 들어가서 발생하는 진동을 줄일 수 있다. Although the area of the tilt wing 220 of the composite triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention is small compared to the total wing area, even if the tilt wing 220 is affected by stall, the stall of the tilt wing 220 The effect of the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention is reduced. Therefore, the problem of vibration generated due to stalling of the hybrid triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention, or the problem of poor maneuverability, is rarely generated. Stalling is a phenomenon that, as mentioned earlier, the flow of airflow through the wing surface of an airplane is detached from the upper surface of the wing, lifting force is reduced, and drag is not maintained to maintain flight. This causes a very serious problem that makes the plane's control itself difficult. In detail, vibration occurs in the aircraft due to a phenomenon in which the main wing 200 enters stall, and such vibration causes a problem that degrades the maneuverability and stability of the aircraft. Therefore, in the hybrid triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention, the vibration generated by the tilt wing 220 entering the stall can be reduced.

도 3은 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 제 2 실시예 사시도를 도시한다. 제 2 실시예의 틸트로터들은 전방을 향하도록 구비되어, 회전하지 않은 형상이다. 이는 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)가 순항중인 모습이다. 또한, 제 2 실시예는 주날개(200)에 부착되는 끝단 틸트로터(620a, 620d)와 중앙 틸트로터(620b, 620c) 뿐만 아니라 전방날개(100)에 구비되는 전방 틸트로터(610a, 610b)와 꼬리날개(300)에 구비되는 꼬리 틸트로터(630a, 630b)를 더 포함하여 구성된다. 전방 틸트로터(610a, 610b)와 꼬리 틸트로터(630a, 630b)는 상기 항공기 동체(400)와 나란한 방향으로 구비되어 상기 전방날개(100)의 연장방향을 중심으로 회전이 가능하고 전방일단에는 프로펠러가 고정설치되며, 전방 틸트로터(610a, 610b)는 상기 전방날개(100)의 외측끝단에 설치되고, 꼬리 틸트로터(630a, 630b)는 상기 꼬리날개(300)의 외측끝단에 설치된다. 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)는 전방 틸트로터(610a, 610b), 중앙 틸트로터(620b, 620c), 끝단 틸트로터(620a, 620d), 꼬리 틸트로터(630a, 630b)를 포함하여 구성됨에 따라 추력을 효율적으로 분배할 수 있다.Figure 3 shows a perspective view of a second embodiment of the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention. The tilt rotors of the second embodiment are provided to face forward, and are not rotated. This is a state in which the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention is cruising. In addition, in the second embodiment, the front end tilt rotors 610a, 610b and the tail wing provided in the front wing 100 as well as the end tilt rotors 620a, 620d and the center tilt rotors 620b, 620c attached to the main wing 200 It is configured to further include the tail tilt rotors 630a and 630b provided in the 300. The front tilt rotors 610a, 610b and the tail tilt rotors 630a, 630b are provided in a direction parallel to the aircraft fuselage 400 so that rotation is possible around the extending direction of the front wing 100, and a propeller is fixed at the front end. Is installed, the front tilt rotor (610a, 610b) is installed at the outer end of the front wing 100, the tail tilt rotor (630a, 630b) is installed at the outer end of the tail wing (300). The hybrid triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention includes front tilt rotors 610a, 610b, central tilt rotors 620b, 620c, end tilt rotors 620a, 620d, tail tilt rotors 630a, 630b As it is constructed, thrust can be efficiently distributed.

전방 틸트로터(610a, 610b), 중앙 틸트로터(620b, 620c), 끝단 틸트로터(620a, 620d), 꼬리 틸트로터(630a, 630b)가 전방날개(100), 주날개(200), 꼬리날개(300)에 분산되어 부착되므로 한 개의 틸트로터가 고장났을 시 다른 틸트로터들을 이용하여 안정성의 확보가 가능하다. 기존의 수직이착륙 항공기처럼 전방날개 없이, 주날개와 꼬리날개에만 틸트로터를 부착하면 하나의 틸트로터가 고장났을시 다른 로터들에 의해 발생하는 모멘트를 상쇄할 수 없어서 모멘트로 인하여 조종이 어렵다는 문제점이 있었다. 그래서 틸트로터가 고장났을 때에 조종성 및 안정성의 확보가 어려웠다. 하지만, 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)는 하나의 틸트로터가 고장나더라도 좌우대칭이 되는 반대쪽 날개에 장착된 틸트로터를 정지시켜 자세유지를 가능하도록 한다.The front tilt rotors 610a, 610b, the center tilt rotors 620b, 620c, the end tilt rotors 620a, 620d, the tail tilt rotors 630a, 630b, the front wing 100, the main wing 200, and the tail wing 300 Since it is distributed and attached, it is possible to secure stability by using other tilt rotors when one tilt rotor fails. As in the case of a conventional vertical takeoff and landing aircraft, if a tilt rotor is attached only to the main wing and tail wing without a front wing, there is a problem that the moment caused by other rotors cannot be compensated for when one tilt rotor fails, making it difficult to control due to the moment. Therefore, it was difficult to secure maneuverability and stability when the tilt rotor failed. However, the composite triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention enables the posture to be maintained by stopping the tilt rotor mounted on the opposite wing which is symmetrical even if one tilt rotor is broken.

상세히 설명하자면, 전방 틸트로터(610a, 610b)와 꼬리 틸트로터(630a, 630b)가 동작한다는 전제하에 항공기 동체(400)를 기준으로, 왼쪽 주익에 부착된 중앙 틸트로터(620c)나 끝단 틸트로터(620d)가 고장났을 시, 오른쪽 주익에 부착된 중앙 틸트로터(620b)나 끝단 틸트로터(620a)를 정지시키면 양쪽 날개에서 발생하는 모멘트는 없어지지만, 전방날개(100)에 부착된 전방 틸트로터(610a, 610b)와 꼬리날개(300)에 부착된 꼬리 틸트로터(630a, 630b)는 여전히 조종이 가능하므로 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 안정적인 조종이 가능하다. In detail, based on the premise that the front tilt rotors 610a, 610b and the tail tilt rotors 630a, 630b operate, the central tilt rotor 620c or the end tilt rotor 620d attached to the left wing is based on the aircraft fuselage 400. In the event of a malfunction, if the center tilt rotor 620b or the end tilt rotor 620a attached to the right main wing is stopped, the moment generated from both wings disappears, but the front tilt rotors 610a, 610b and the tail attached to the front wing 100 disappear. The tail tilt rotors 630a and 630b attached to the wings 300 are still capable of maneuvering, so stable manipulation of the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention is possible.

또 다른 경우인 오른쪽 전방날개(100)에 장착된 전방 틸트로터(610a)가 고장났을 때에는 왼쪽 꼬리날개(300)에 장착된 꼬리 틸트로터(630b)를 정지시켜 롤 모멘트와 피치 모멘트의 발생을 최소화 할 수 있다. 즉, 틸트로터 1개가 고장났을 시에는 앞뒤, 좌우가 대칭이 되는 반대쪽 날개에 장착된 틸트로터를 함께 정지시키거나, 다른 틸트로터들을 이용하여 모멘트를 상쇄시켜 자세유지 및 조종이 가능하도록 할 수 있는 효과가 있다. 또한, 본 발명에 의한 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)는 3개의 날개에 8개의 틸트로터가 구비되므로, 각각의 틸트로터가 발생해야되는 추력이 작아지고, 이에 따라 프로펠러의 직경이 작아지므로 프로펠러 소음을 줄일 수 있는 효과가 있다.In another case, when the front tilt rotor 610a mounted on the right front wing 100 is broken, the tail tilt rotor 630b mounted on the left tail wing 300 is stopped to minimize the occurrence of roll moment and pitch moment. have. That is, when one of the tilt rotors is broken, the front and rear, left and right symmetrical tilt rotors mounted on opposite wings are stopped together, or other tilt rotors can be used to offset moments to maintain and control posture. . In addition, since the composite triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention according to the present invention is provided with eight tilt rotors on three wings, the thrust that each tilt rotor must generate is reduced, and accordingly the propeller Since the diameter becomes small, it has the effect of reducing the propeller noise.

도 4는 본 발명에 의한 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 제 2 실시예 정면도를 도시한다. 제 2 실시예의 정면도처럼 틸트로터와 틸트날개(220)들이 회전하지 않고 정면을 바라볼 때에는 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)가 순항 중 인 경우이다. 도시된 바와 같이 전방날개(100)에서 발생된 후류가 주날개(200)에 영향을 미치지 않도록 주날개(200)는 고익으로 상기 항공기 동체(400)에 고정 형성되고, 전방날개(100)는 저익으로 항공기 동체(400)에 고정 형성되어 있다. 4 shows a front view of a second embodiment of the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention according to the present invention. As in the front view of the second embodiment, when the tilt rotor and the tilt wings 220 do not rotate and look at the front, the composite triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention is in the case of cruising. As shown, the main wing 200 is fixed to the aircraft body 400 with a high wing so that the wake generated from the front wing 100 does not affect the main wing 200, and the front wing 100 is a low wing As it is fixed to the aircraft fuselage 400.

이와 마찬가지로 꼬리날개(300)는 전방날개(100)와 주날개(200)의 후류에 영향을 받지 않기 위하여 T형으로 도시되어 있다. 이는 전방날개(100)와 주날개(200)에서 발생되는 후류의 영향을 최소화하기 위함이다. 여기서 저익은 항공기 동체의 아래쪽에 날개가 붙어있는 형태를 말하며, 고익은 날개가 항공기 동체 위쪽에 붙어있는 형태를 말한다.Likewise, the tail wing 300 is shown in a T-shape so as not to be affected by the wakes of the front wing 100 and the main wing 200. This is to minimize the influence of the wake generated from the front wing 100 and the main wing 200. Here, the low wing refers to the shape of the wing attached to the lower part of the aircraft body, and the high wing refers to the shape of the wing attached to the upper part of the aircraft body.

도 5는 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 제 2 실시예의 작동 사시도를 도시한다. 제 2 실시예는 전방 틸트로터(610a, 610b), 중앙 틸트로터(620b, 620c), 끝단 틸트로터(620a, 620d), 꼬리 틸트로터(630a, 630b)에 구비된 프로펠러들이 하늘을 향하여 회전되어 있는 것을 도시한다. 이는 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)가 이착륙시 지면에 수직방향으로 각도조절이 가능하여 추력을 분산시켜서 이착륙이 가능한 것을 나타낸다. 특히 안쪽날개(210)는 항공기 동체(400)에 고정되어 있으므로 회전되지 않고, 틸트날개(220)와 주날개(200)에 구비된 중앙 틸트로터(620b, 620c), 끝단 틸트로터(620a, 620d)가 회전되어 있다. 상기 전방 틸트로터(610a, 610b)와 상기 꼬리 틸트로터(630a, 630b)는 지표면에 수직방향으로, 즉 틸트로터가 항상 위를 향하도록 고정설치될 수도 있다. 이는 항공기의 시스템을 단순화하기 위한 것으로 상세한 내용은 이하에서 서술하도록 한다.Figure 5 shows an operational perspective view of a second embodiment of a hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention. The second embodiment shows that the propellers provided in the front tilt rotors 610a, 610b, the center tilt rotors 620b, 620c, the end tilt rotors 620a, 620d, and the tail tilt rotors 630a, 630b are rotated toward the sky. . This represents that the composite triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention is capable of angle adjustment in the vertical direction to the ground during take-off and landing, so that it is possible to take-off and land by dispersing thrust. In particular, since the inner wing 210 is fixed to the aircraft body 400, it is not rotated, and the central tilt rotors 620b, 620c provided at the tilt wing 220 and the main wing 200, and the end tilt rotors 620a, 620d are provided. It is rotated. The front tilt rotors 610a, 610b and the tail tilt rotors 630a, 630b may be fixedly installed in a vertical direction to the ground surface, that is, the tilt rotor always faces upward. This is to simplify the system of the aircraft and will be described in detail below.

본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)는 총 8개의 로터를 이용하여 효율적으로 추력을 분산추진해야 하므로 시스템을 단순화하여 오류발생 확률을 적게 하는 것이 바람직하다. 상세히 설명하자면, 항공기가 측풍 등에 영향을 받을 때 효과적인 자세 제어를 위하여 콜렉티브 제어와 피치 축과 롤 축은 싸이클릭 제어를 하는 것이 바람직한데 주날개(200)에 장착되어 있는 중앙 틸트로터(620b, 620c)와 끝단 틸트로터(620a, 620d)는 피치 축과 롤 축의 싸이클릭 제어만으로도 항공기 자세 제어가 가능하다. 그러므로 시스템의 단순화를 위하여 주날개(200)에 부착되지 않는 전방 틸트로터(610a, 610b)와 꼬리날개(300)에 장착되는 꼬리 틸트로터(630a, 630b)는 콜렉티브 제어만 하는 것이 바람직하다. The hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention needs to efficiently disperse the thrust using a total of eight rotors, so it is preferable to simplify the system to reduce the probability of an error. In detail, for effective posture control when the aircraft is affected by a sidewind, it is preferable to perform cyclic control of the collective control, the pitch axis, and the roll axis. The central tilt rotors 620b and 620c mounted on the main wing 200 and The end tilt rotors 620a and 620d can control the aircraft posture only by cyclic control of the pitch axis and the roll axis. Therefore, for simplicity of the system, it is preferable that only the front tilt rotors 610a and 610b that are not attached to the main wing 200 and the tail tilt rotors 630a and 630b mounted on the tail wing 300 perform only collective control.

여기서 콜렉티브 제어란 틸트로터의 블레이드 각도를 변화시켜서 틸트로터에 발생하는 추력을 변화시키는 것을 의미하고, 싸이클릭 제어란 틸트로터면을 기울여 모멘트를 발생시켜 자세를 제어하는 것을 의미한다. 즉 틸트로터면을 앞뒤 방향으로 기울이면 피치축 자세를 제어하고, 로터면을 좌우 방향으로 기울이면 롤축 자세를 제어할 수 있다. 여기서 피치 축이란 항공기의 기수가 주날개(200)의 연장방향을 말하며, 롤축은 항공기 동체(400)의 길이방향을 지칭한다. Here, the collective control means changing the thrust force generated in the tilt rotor by changing the blade angle of the tilt rotor, and the cyclic control means controlling the posture by generating a moment by tilting the tilt rotor surface. That is, when the tilt rotor surface is tilted in the front-rear direction, the pitch axis posture can be controlled, and when the rotor surface is tilted in the left-right direction, the roll shaft posture can be controlled. Here, the pitch axis refers to the extension direction of the main wing 200 of the nose of the aircraft, and the roll axis refers to the longitudinal direction of the aircraft body 400.

또한, 시스템 복잡도를 줄이기 위한 또 다른 방법으로서 전방날개(100)에 구비되는 전방 틸트로터(610a, 610b)와 꼬리날개(300)에 구비되는 꼬리 틸트로터(630a, 630b)는 프로펠러가 하늘을 바라보도록 회전된 상태로 고정설치 할 수 있다. 전방 틸트로터(610a, 610b)와 꼬리 틸트로터(630a, 630b)가 고정설치 되어 있으면, 주날개(200)에 구비되는 중앙 틸트로터(620b, 620c)와 끝단 틸트로터(620a, 620d)만 제어하면 되므로 시스템을 단순화하여 오류의 발생을 줄일 수 있다. In addition, as another method for reducing system complexity, the front tilt rotors 610a and 610b provided in the front wing 100 and the tail tilt rotors 630a and 630b provided in the tail wing 300 rotate so that the propellers face the sky. It can be fixedly installed. If the front tilt rotors 610a, 610b and the tail tilt rotors 630a, 630b are fixedly installed, only the central tilt rotors 620b, 620c provided on the main wing 200 and the end tilt rotors 620a, 620d need to be controlled to control the system. Simplification can reduce the occurrence of errors.

도 6은 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 주날개(200) 제 1 확대도를 도시한다. 도 6은 주날개(200)의 왼쪽날개를 앞에서 본 모습을 확대해서 도시하였다. 항공기 동체(400)에 고정된 안쪽날개(210)와, 안쪽날개(210)의 길이방향으로 연장되어 형성되는 틸트날개(220), 안쪽날개(210)와 틸트날개(220)의 사이에 구비되는 중앙 틸트로터(620b, 620c)와 틸트날개(220)의 외측끝단에 설치되는 끝단 틸트로터(620a, 620d)가 도시되어 있다. FIG. 6 shows a first enlarged view of the main wing 200 of the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention. 6 is an enlarged view of the left wing of the main wing 200 seen from the front. It is provided between the inner wing 210 fixed to the aircraft fuselage 400, the tilt wing 220 formed in the longitudinal direction of the inner wing 210, the inner wing 210 and the tilt wing 220 The center tilt rotors 620b and 620c and the end tilt rotors 620a and 620d installed at the outer ends of the tilt blades 220 are shown.

틸트날개(220)가 회전시에 발생하는 실속에 의한 진동의 크기는 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)에 구비되는 전체 날개면적과 틸트날개(220)의 면적비에 좌우된다. 상세히 설명하자면, 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)에 구비되는 전방날개(100), 주날개(200), 꼬리날개(300) 전체 면적에 대한 틸트날개(220)의 면적비에 의하여 결정된다. 즉, 틸트날개(220)의 면적이 전체 날개의 면적에 비하여 작을수록 진동이 줄어든다. 그러므로 틸트날개(220)의 면적이 작을수록 좋다. The magnitude of the vibration due to stall generated when the tilt wing 220 rotates depends on the total wing area provided on the vertical triple takeoff and landing aircraft 1000 and the area ratio of the tilt wing 220. In more detail, it is determined by the area ratio of the tilt blade 220 to the total area of the front wing 100, the main wing 200, and the tail wing 300 provided in the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000. do. That is, as the area of the tilt blade 220 is smaller than the area of the entire wing, vibration is reduced. Therefore, the smaller the area of the tilt blade 220 is, the better.

다만, 주날개(200)에 구비되어 있는 중앙 틸트로터(620b, 620c)와 끝단 틸트로터(620a, 620d)의 앞쪽 끝단에 구비되는 프로펠러가 회전하며 중앙 틸트로터(620b, 620c)와 끝단 틸트로터(620a, 620d)의 간섭이 발생하면 프로펠러끼리 충돌하여 파손되는 사고가 생겨 위험하므로, 중앙 틸트로터(620b, 620c)와 끝단 틸트로터(620a, 620d)의 간섭이 발생하지 않도록 틸트날개(220)의 스팬길이(L1)는 프로펠러의 직경(L2)보다 더 커야한다. 여기서 틸트날개(220)의 스팬길이(L1)란, 중앙 틸트로터(620b, 620c)와 끝단 틸트로터(620a, 620d) 사이의 길이를 일컫는다. 만약, 중앙 틸트로터(620b, 620c)와 끝단 틸트로터(620a, 620d)에 구비된 프로펠러의 직경이 다르다면, 중앙 틸트로터(620b, 620c)와 끝단 틸트로터(620a, 620d)의 간섭을 방지하기 위하여 중앙 틸트로터(620b, 620c)와 끝단 틸트로터(620a, 620d)의 반지름의 합보다 틸트날개(220) 스팬 길이(L1)가 더 길어야 한다. However, the central tilt rotors 620b, 620c provided on the main wing 200 and the propellers provided at the front ends of the end tilt rotors 620a, 620d rotate, and the center tilt rotors 620b, 620c and the end tilt rotors 620a, 620d ) Occurs when the propellers collide with each other to cause damage, and thus, the span length L1 of the tilt blade 220 is prevented so that the center tilt rotors 620b and 620c and the end tilt rotors 620a and 620d do not interfere. Should be larger than the diameter (L2) of the propeller. Here, the span length (L1) of the tilt blade 220 refers to the length between the center tilt rotors 620b and 620c and the end tilt rotors 620a and 620d. If the diameters of the propellers provided at the center tilt rotors 620b and 620c and the end tilt rotors 620a and 620d are different, the center tilt rotor is used to prevent interference between the center tilt rotors 620b and 620c and the end tilt rotors 620a and 620d. The span length (L1) of the tilt blade 220 should be longer than the sum of the radii of the (620b, 620c) and the end tilt rotors (620a, 620d).

도 7은 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 주날개(200) 제 2 확대도를 도시한다. 도 7은 도 6과 마찬가지로 왼쪽 주날개(200)를 확대도시하고 있다. 상세히 설명하자면 안쪽날개(210)가 항공기 동체(400)에 고정되어 있고, 중앙 틸트로터(620b, 620c), 틸트날개(220), 끝단 틸트로터(620a, 620d)가 회전하는 것을 도시하고 있다. 안쪽날개(210)는 항공기 동체(400)에 고정되어 있고, 틸트날개(220), 중앙 틸트로터(620b, 620c), 끝단 틸트로터(620a, 620d)가 회전되어, 중앙 틸트로터(620b, 620c)와 끝단 틸트로터(620a, 620d)에 끝단에 부착된 프로펠러가 하늘을 향하도록 회전되어 있다. 즉, 안쪽날개(210)는 항공기 동체(400)에 고정되어 회전하지 않고, 중앙 틸트로터(620b, 620c), 끝단 틸트로터(620a, 620d), 틸트날개(220)가 회전한다. 이렇게 주날개(200)에 중간부분에 장착된 중앙 틸트로터(620b, 620c)가 회전하면 중앙 틸트로터(620b, 620c)에 고정설치된 틸트날개(220)가 함께 회전하게 된다. 또한, 틸트날개(220)가 회전함에 따라 틸트날개(220)의 외측 끝단에 고정된 끝단 틸트로터(620a, 620d)가 회전하게 된다. 7 shows a second enlarged view of the main wing 200 of the vertical take-off and landing aircraft 1000 of a hybrid triple wing dispersion according to the present invention. 7 is an enlarged view of the left main wing 200 as in FIG. 6. In detail, the inner wing 210 is fixed to the aircraft fuselage 400, and shows that the center tilt rotors 620b, 620c, the tilt wing 220, and the end tilt rotors 620a, 620d rotate. The inner wing 210 is fixed to the aircraft fuselage 400, and the tilt wing 220, the center tilt rotors 620b, 620c, and the end tilt rotors 620a, 620d are rotated to rotate the center tilt rotors 620b, 620c and the end. Propellers attached to the ends of the tilt rotors 620a and 620d are rotated to face the sky. That is, the inner wing 210 is fixed to the aircraft fuselage 400 and does not rotate, and the center tilt rotors 620b and 620c, the end tilt rotors 620a and 620d, and the tilt wing 220 rotate. When the central tilt rotors 620b and 620c mounted in the middle portion of the main wing 200 rotate, the tilt blades 220 fixed to the central tilt rotors 620b and 620c rotate together. In addition, as the tilt blade 220 rotates, the end tilt rotors 620a and 620d fixed to the outer end of the tilt blade 220 rotate.

도 8은 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 제 3 실시예 사시도를 도시한다. 꼬리날개(300)의 형상을 살펴보면 꼬리날개(300)는 V형으로 도시되어 있다. 이는 앞서 언급했듯이 전방날개(100)와 주날개(200)의 후류로 인한 영향을 최소화하기 위함이다. 그러므로 꼬리날개(300)는 후류로 인한 영향을 최소화하기 위하여 T형 또는 V형 인 것을 특징으로 한다. 8 shows a perspective view of a third embodiment of the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention. Looking at the shape of the tail wing 300, the tail wing 300 is shown in a V-shape. This is to minimize the effect of the front wing 100 and the main wing 200, as mentioned above. Therefore, the tail wing 300 is characterized in that the T-type or V-type in order to minimize the effect of the wake.

또한, 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 착륙장치(500)는 중량을 줄이기 위하여 스키드를 장착하거나, 지상에서 이동이 수월하도록 바퀴를 장착할 수 있다. In addition, the landing device 500 of the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention may be equipped with skids to reduce weight or wheels to facilitate movement on the ground.

또한, 지상에서 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 이동을 더욱 수월하게 하기 위하여 좌측과 우측날개에 각각 구비된 프로펠러의 추력차이로 인하여 이동할 수 있도록 제어할 수 있다.In addition, in order to further facilitate the movement of the composite triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention from the ground, it can be controlled to move due to the thrust difference of the propellers respectively provided on the left and right wings.

또한, 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)는 앞서 언급했듯이 3개의 날개에 8개의 틸트로터(610,620,630)를 부착하므로, 각각의 틸트로터가 발생해야되는 추력이 작아지고, 이에 따라 프로펠러의 직경이 작아질 수 있다. 그러므로 프로펠러 소음을 줄일 수 있다. 더 나아가 전기모터를 이용하여 8개의 틸트로터를 구동시키면, 소음을 더 줄일 수 있는 효과가 발생한다. 그러므로 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)에 부착되는 틸트로터들은 전기모터인 것이 바람직하다. In addition, the composite triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention attaches 8 tilt rotors 610,620,630 to 3 wings as mentioned above, so that the thrust that each tilt rotor should generate is reduced, and accordingly The diameter of the propeller can be reduced. Therefore, propeller noise can be reduced. Further, when eight tilt rotors are driven using an electric motor, an effect of further reducing noise occurs. Therefore, it is preferable that the tilt rotors attached to the hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention are electric motors.

또한, 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)에 포함된 전방 틸트로터(610a, 610b), 중앙 틸트로터(620b, 620c), 끝단 틸트로터(620a, 620d), 꼬리 틸트로터(630a, 630b)는 전자적 제어에 의하여 동작한다. 그러므로 예기치 못한 오류나 고장의 발생으로 여러개의 틸트로터가 고장나는 등의 상황으로 비행 지속이 불가능한 상황이 올 수 있다. 이러한 상황을 대비하여 비상낙하산을 장착할 수 있다. In addition, the front and rear tilt rotors 610a and 610b included in the composite triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention, the central tilt rotors 620b and 620c, the end tilt rotors 620a and 620d, and the tail tilt rotors 630a, 630b) operates by electronic control. Therefore, a situation in which flight cannot be continued may occur due to a situation in which multiple tilt rotors fail due to an unexpected error or failure. For this situation, an emergency parachute can be installed.

상세히 설명하자면, 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)가 수직이착륙 비행시 2개 이상의 틸트로터 고장으로 자세유지가 불가능한 경우에는 비상낙하산을 펴서 지상 충격을 최소화할 수 있다. 전진비행시에는 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)가 고정익 항공기 형태를 갖게 되므로 여러 개의 틸트로터 고장이 발생한 경우에는 비상착륙이 가능한 위치까지 이동한 후 활주로에 착륙하거나 이것이 어려우면 비상 낙하산을 펴서 지상 충격을 최소화할 수 있다. In detail, if the composite triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention is unable to maintain posture due to failure of two or more tilt rotors during vertical takeoff and landing, an emergency parachute can be extended to minimize ground impact. In the case of forward flight, since the composite triple wing dispersion propulsion vertical take-off and landing aircraft 1000 according to the present invention has a fixed-wing aircraft type, in case of multiple tilt rotor failures, it is difficult to land on the runway after moving to a position where emergency landing is possible. If you do, you can spread the emergency parachute to minimize ground impact.

또한, 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)에 구비된 틸트로터 중 고장난 틸트로터의 개수에 따라서 본 발명에 의한 복합형 삼중 날개 분산추진 수직이착륙 항공기(1000)의 제어방법이 달라진다. 총 8개의 틸트로터 중 1개의 틸트로터가 고장나면 앞서 언급했듯이, 모멘트를 상쇄시키는 방법이나, 반대쪽에 구비된 틸트로터의 추력을 줄이는 방법으로 비행을 지속할 수 있다.In addition, the control method of the composite triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention varies according to the number of failed tilt rotors among the tilt rotors provided in the composite triple wing dispersion propulsion vertical takeoff and landing aircraft 1000 according to the present invention. . If one of the eight tilt rotors fails, as mentioned earlier, the flight can be continued by either offsetting the moment or by reducing the thrust of the tilt rotor provided on the other side.

본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.The present invention is not limited to the above-described embodiments, and of course, the scope of application is diverse, and anyone who has ordinary knowledge in the field to which the present invention pertains without departing from the gist of the present invention as claimed in the claims. Of course, various modifications are possible.

1000: 복합형 삼중 날개 분산추진 수직이착륙 항공기
100 : 전방날개
200 : 주날개
210 : 안쪽날개 220 : 틸트날개
300 : 꼬리날개
400 : 항공기 동체
500 : 착륙장치
610a, 610b : 전방 틸트로터
620a, 620d : 끝단 틸트로터
620b, 620c : 중앙 틸트로터
630a, 630b : 꼬리 틸트로터
1000: Hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft
100: front wing
200: main wing
210: inner wing 220: tilt wing
300: tail wing
400: aircraft fuselage
500: landing gear
610a, 610b: Front tilt rotor
620a, 620d: Tip tilt rotor
620b, 620c: central tilt rotor
630a, 630b: tail tilt rotor

Claims (8)

항공기 동체에 수직이며 지표면과는 수평으로 구비되는 전방날개;
상기 전방날개의 후방에 위치하며, 상기 항공기 동체에 수직이며 지표면과는 수평으로 구비되는 안쪽날개와 상기 안쪽날개의 외측끝단에 상기 안쪽날개의 길이방향으로 연장되어 형성되는 틸트날개를 포함하는 주날개;
상기 항공기 동체의 후방 끝단에 구비되는 꼬리날개;
상기 항공기 동체와 나란한 방향으로 구비되어 상기 주날개의 연장방향을 중심으로 회전이 가능하고 전방일단에 프로펠러가 고정설치되며, 상기 틸트날개의 외측끝단에 설치되는 끝단 틸트로터;
상기 항공기 동체와 나란한 방향으로 구비되어 상기 주날개의 연장방향을 중심으로 회전이 가능하고 전방일단에 프로펠러가 고정설치되며, 상기 안쪽날개와 상기 틸트날개 사이에 설치되는 중앙 틸트로터;
를 포함하고,
상기 중앙 틸트로터와 상기 끝단 틸트로터는 상기 틸트날개와 동시에 회전하는 것을 특징으로 하는 복합형 삼중 날개 분산추진 수직이착륙 항공기.
A front wing perpendicular to the aircraft body and provided horizontally with the ground surface;
The main wing which is located at the rear of the front wing, is perpendicular to the aircraft body and is provided horizontally with the ground surface and a tilt wing which is formed to extend in the longitudinal direction of the inner wing at the outer end of the inner wing. ;
A tail wing provided at a rear end of the aircraft body;
It is provided in a direction parallel to the aircraft body is rotatable about the extension direction of the main wing, a propeller is fixedly installed at one front end, an end tilt rotor installed at the outer end of the tilt wing;
A central tilt rotor provided in a direction parallel to the aircraft body, rotatable around an extension direction of the main wing, a propeller fixedly installed at one front end, and installed between the inner wing and the tilt wing;
Including,
The central tilt rotor and the tip tilt rotor is a composite triple wing dispersion propulsion vertical takeoff and landing aircraft, characterized in that it rotates simultaneously with the tilt wing.
제 1항에 있어서,
상기 중앙 틸트로터와 상기 끝단 틸트로터는 콜렉티브 제어 및 피치 축과 롤 축의 싸이클릭 제어가 가능한 것을 특징으로 하는 복합형 삼중 날개 분산추진 수직이착륙 항공기.
According to claim 1,
The central tilt rotor and the tip tilt rotor are a composite type triple wing dispersion propulsion vertical takeoff and landing aircraft, characterized in that it is possible to perform collective control and cyclic control of a pitch axis and a roll axis.
제 1항에 있어서,
상기 항공기 동체와 나란한 방향으로 구비되어 상기 전방날개의 연장방향을 중심으로 회전이 가능하고 전방일단에는 프로펠러가 고정설치되며, 상기 전방날개의 외측끝단에 설치되는 전방틸트로터;
상기 항공기 동체와 나란한 방향으로 구비되어 상기 꼬리날개의 연장방향을 중심으로 회전이 가능하고 전방일단에는 프로펠러가 고정설치되며, 상기 꼬리날개의 외측끝단에 설치되는 꼬리틸트로터;
를 더 포함하는 것을 특징으로 하는 복합형 삼중 날개 분산추진 수직이착륙 항공기.
According to claim 1,
It is provided in a direction parallel to the aircraft body and can be rotated around the extending direction of the front wing, a propeller is fixedly installed at one front end, and a front tilt rotor installed at the outer end of the front wing;
A tail tilt rotor provided in a direction parallel to the aircraft body and rotatable about an extension direction of the tail wing, a propeller is fixedly installed at one front end, and installed at an outer end of the tail wing;
A composite triple wing dispersion propulsion vertical takeoff and landing aircraft further comprising a.
제 3항에 있어서,
상기 끝단 틸트로터, 상기 중앙 틸트로터, 상기 전방 틸트로터 및 상기 꼬리 틸트로터는,
상기 복합형 삼중 날개 분산추진 수직이착륙 항공기가 이착륙시 지면에 수직방향으로 각도조절이 가능한 것을 특징으로 하는 복합형 삼중 날개 분산추진 수직이착륙 항공기.
According to claim 3,
The end tilt rotor, the center tilt rotor, the front tilt rotor and the tail tilt rotor,
The hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft is a hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft characterized in that the angle can be adjusted vertically to the ground during takeoff and landing.
제 3항에 있어서, 상기 전방 틸트로터와 상기 꼬리 틸트로터는,
지표면에 수직방향으로 고정설치 되는 것을 특징으로 하는 복합형 삼중 날개 분산추진 수직이착륙 항공기.
According to claim 3, The front tilt rotor and the tail tilt rotor,
A hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft characterized in that it is fixedly installed in the vertical direction on the ground surface.
제 3항에 있어서, 상기 전방 틸트로터와 상기 꼬리 틸트로터는,
콜렉티브 제어만 하는 것을 특징으로 하는 복합형 삼중 날개 분산추진 수직이착륙 항공기.
According to claim 3, The front tilt rotor and the tail tilt rotor,
A hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft characterized by only collective control.
제 1항에 있어서, 상기 주날개는,
상기 전방 날개에서 발생된 후류의 영향을 받지 않도록 고익으로 상기 항공기 동체에 고정 형성되는 것을 특징으로 하는 복합형 삼중 날개 분산추진 수직이착륙 항공기.
The method of claim 1, wherein the main wing,
A hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft, characterized in that it is fixed to the aircraft body with a high wing so as not to be affected by the wake generated from the front wing.
제 7항에 있어서, 상기 꼬리날개는,
상기 전방 날개에서 발생된 후류 영향을 받지 않도록 T형 또는 V형으로 구비되는 것을 특징으로 하는 복합형 삼중 날개 분산추진 수직이착륙 항공기.
The method of claim 7, wherein the tail wing,
The hybrid triple wing dispersion propulsion vertical takeoff and landing aircraft, characterized in that it is provided in a T-shape or a V-shape so as not to be affected by the wake generated from the front wing.
KR1020180142931A 2018-11-19 2018-11-19 A Vertical take off and landing three surface aircraft with distributed propulsion system KR102218586B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180142931A KR102218586B1 (en) 2018-11-19 2018-11-19 A Vertical take off and landing three surface aircraft with distributed propulsion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180142931A KR102218586B1 (en) 2018-11-19 2018-11-19 A Vertical take off and landing three surface aircraft with distributed propulsion system

Publications (2)

Publication Number Publication Date
KR20200058204A true KR20200058204A (en) 2020-05-27
KR102218586B1 KR102218586B1 (en) 2021-02-22

Family

ID=70911194

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180142931A KR102218586B1 (en) 2018-11-19 2018-11-19 A Vertical take off and landing three surface aircraft with distributed propulsion system

Country Status (1)

Country Link
KR (1) KR102218586B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112027080A (en) * 2020-07-22 2020-12-04 北京航空航天大学 Hybrid electric propulsion vertical take-off and landing unmanned aerial vehicle using bimodal power cabin
CN112572785A (en) * 2020-12-09 2021-03-30 中国空气动力研究与发展中心 High-efficiency front edge distributed propeller aircraft power layout
KR20220021317A (en) * 2020-08-13 2022-02-22 한국항공우주연구원 Air vehicle and flight control method
KR20220154389A (en) 2021-05-13 2022-11-22 한국항공우주연구원 Aircraft distributed electric propulsion system
WO2024035711A1 (en) * 2022-08-08 2024-02-15 Advanced Aircraft Company Aircraft with hybrid parallel and series propulsion system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4134301A1 (en) * 2021-08-12 2023-02-15 Zuri.com SE Vertical takeoff and landing aircraft

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563931B1 (en) * 2005-03-31 2006-03-23 한국항공우주연구원 Reconfiguration controlling method for a rotorcraft having left and right side rotors, and reconfiguration controlling method for a tilt rotor aircraft in the fixed-wing mode
KR100822366B1 (en) * 2007-05-15 2008-04-16 한국항공우주연구원 Tiltrotor aircraft
US20090266942A1 (en) * 2005-08-15 2009-10-29 Abe Karem Tilt outboard wing for tilt rotor aircraft
US20110168835A1 (en) * 2009-10-09 2011-07-14 Richard David Oliver Three Wing, Six Tilt-Propulsion Units, VTOL Aircraft
US20120261523A1 (en) * 2010-10-06 2012-10-18 Donald Orval Shaw Aircraft with Wings and Movable Propellers
KR20130126756A (en) * 2010-07-19 2013-11-20 지.에어로 아이엔씨. Personal aircraft
KR20170135577A (en) * 2016-05-31 2017-12-08 김성남 Unmanned aerial vehicle with tilting and controllable pitch system
US20180065741A1 (en) * 2016-09-08 2018-03-08 General Electric Company Tiltrotor propulsion system for an aircraft
KR101849246B1 (en) 2016-11-28 2018-04-16 한국항공우주연구원 Tilt-prop aircraft

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563931B1 (en) * 2005-03-31 2006-03-23 한국항공우주연구원 Reconfiguration controlling method for a rotorcraft having left and right side rotors, and reconfiguration controlling method for a tilt rotor aircraft in the fixed-wing mode
US20090266942A1 (en) * 2005-08-15 2009-10-29 Abe Karem Tilt outboard wing for tilt rotor aircraft
KR100822366B1 (en) * 2007-05-15 2008-04-16 한국항공우주연구원 Tiltrotor aircraft
US20110168835A1 (en) * 2009-10-09 2011-07-14 Richard David Oliver Three Wing, Six Tilt-Propulsion Units, VTOL Aircraft
KR20130126756A (en) * 2010-07-19 2013-11-20 지.에어로 아이엔씨. Personal aircraft
US20120261523A1 (en) * 2010-10-06 2012-10-18 Donald Orval Shaw Aircraft with Wings and Movable Propellers
KR20170135577A (en) * 2016-05-31 2017-12-08 김성남 Unmanned aerial vehicle with tilting and controllable pitch system
US20180065741A1 (en) * 2016-09-08 2018-03-08 General Electric Company Tiltrotor propulsion system for an aircraft
KR101849246B1 (en) 2016-11-28 2018-04-16 한국항공우주연구원 Tilt-prop aircraft

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112027080A (en) * 2020-07-22 2020-12-04 北京航空航天大学 Hybrid electric propulsion vertical take-off and landing unmanned aerial vehicle using bimodal power cabin
KR20220021317A (en) * 2020-08-13 2022-02-22 한국항공우주연구원 Air vehicle and flight control method
CN112572785A (en) * 2020-12-09 2021-03-30 中国空气动力研究与发展中心 High-efficiency front edge distributed propeller aircraft power layout
KR20220154389A (en) 2021-05-13 2022-11-22 한국항공우주연구원 Aircraft distributed electric propulsion system
WO2024035711A1 (en) * 2022-08-08 2024-02-15 Advanced Aircraft Company Aircraft with hybrid parallel and series propulsion system

Also Published As

Publication number Publication date
KR102218586B1 (en) 2021-02-22

Similar Documents

Publication Publication Date Title
KR102218586B1 (en) A Vertical take off and landing three surface aircraft with distributed propulsion system
AU2018337666B2 (en) Wing tilt actuation system for electric vertical take-off and landing (VTOL) aircraft
EP3354560B1 (en) A thrust producing unit with at least two rotor assemblies and a shrouding
EP4153483B1 (en) Vertical take-off and landing aircraft
US8256704B2 (en) Vertical/short take-off and landing aircraft
KR102093374B1 (en) A multirotor aircraft with an airframe and at least one wing
US10807707B1 (en) Vertical take-off and landing (VTOL) aircraft having variable center of gravity
US8979015B2 (en) Anti-torque device with longitudinal thrust for a rotorcraft
EP1999016B1 (en) Convertible aircraft
US8857755B2 (en) Vertical/short take-off and landing passenger aircraft
EP2690012A1 (en) Semi-convertible rotorcraft
EP2738091A1 (en) Vertical take-off and landing (VTOL) aerial vehicle and method of operating such a VTOL aerial vehicle
EP3728028B1 (en) Wing and rotor vectoring system for aircraft
EP3768592B1 (en) A structure construction for an aircraft and aircraft comprising the structure construction
US10112697B2 (en) Aircraft with thrust vectoring tail
US11472545B2 (en) Propulsion system and aircraft with vertical take-off and landing-VTOL
US20220297822A1 (en) Systems and Methods for Efficient Cruise and Hover in VTOL
US20220363376A1 (en) Free Wing Multirotor Transitional S/VTOL Aircraft
US11718396B2 (en) Active sail blade
CN116323391A (en) Aircraft rotor arrangement
WO2010005390A1 (en) Rotor wing concept for vtol aircraft
US11383830B2 (en) Vertical take-off and landing (VTOL) aircraft with rotor configurations tolerant to rotor failure
CN113492965A (en) Aircraft with a flight control device
CN114945510A (en) Thrust reversing type airplane
US11926443B2 (en) Rotorcraft

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant