KR20200056759A - Photocatalyst material with titanium dioxide nanoparticles fixed to internal space of multi-walled carbon nanotube - Google Patents
Photocatalyst material with titanium dioxide nanoparticles fixed to internal space of multi-walled carbon nanotube Download PDFInfo
- Publication number
- KR20200056759A KR20200056759A KR1020180140825A KR20180140825A KR20200056759A KR 20200056759 A KR20200056759 A KR 20200056759A KR 1020180140825 A KR1020180140825 A KR 1020180140825A KR 20180140825 A KR20180140825 A KR 20180140825A KR 20200056759 A KR20200056759 A KR 20200056759A
- Authority
- KR
- South Korea
- Prior art keywords
- titanium dioxide
- carbon nanotubes
- carbon nanotube
- dioxide nanoparticles
- inner space
- Prior art date
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 254
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 124
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 68
- 239000000463 material Substances 0.000 title claims abstract description 49
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 18
- 239000002048 multi walled nanotube Substances 0.000 title 1
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 158
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 155
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 154
- 239000002243 precursor Substances 0.000 claims abstract description 40
- 230000001699 photocatalysis Effects 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 26
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 22
- 125000000524 functional group Chemical group 0.000 claims abstract description 22
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 18
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000011259 mixed solution Substances 0.000 claims abstract description 9
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 238000009283 thermal hydrolysis Methods 0.000 claims abstract description 7
- 238000010298 pulverizing process Methods 0.000 claims abstract description 3
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 12
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 230000003100 immobilizing effect Effects 0.000 claims description 7
- 125000003700 epoxy group Chemical group 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical group [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 claims description 5
- 229910000349 titanium oxysulfate Inorganic materials 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 4
- 230000005660 hydrophilic surface Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 238000010306 acid treatment Methods 0.000 abstract description 5
- 230000007547 defect Effects 0.000 abstract 2
- 238000007598 dipping method Methods 0.000 abstract 1
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 241000588724 Escherichia coli Species 0.000 description 12
- 238000010304 firing Methods 0.000 description 9
- 239000012153 distilled water Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 4
- 229960000907 methylthioninium chloride Drugs 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000004627 transmission electron microscopy Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000002079 double walled nanotube Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002109 single walled nanotube Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000011852 carbon nanoparticle Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000006303 photolysis reaction Methods 0.000 description 2
- 230000015843 photosynthesis, light reaction Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 235000003976 Ruta Nutrition 0.000 description 1
- 240000005746 Ruta graveolens Species 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 235000005806 ruta Nutrition 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B01J35/004—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
- B01J21/185—Carbon nanotubes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Catalysts (AREA)
Abstract
Description
본 발명은 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재 및 그 제조방법에 관한 것으로서, 보다 상세하게는 탄소나노튜브의 내부공간에 이산화티타늄 나노입자를 고정화시킴으로써 이산화티타늄의 광촉매 특성을 발현함과 함께 탄소나노튜브의 제반 특성을 활용하고, 이산화티타늄 나노입자의 탈락을 억제시켜 광촉매 소재의 내구성을 향상시킬 수 있는 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재 및 그 제조방법에 관한 것이다. The present invention relates to a photocatalytic material in which titanium dioxide nanoparticles are immobilized in an interior space of a carbon nanotube, and more particularly, to a photocatalytic property of titanium dioxide by immobilizing titanium dioxide nanoparticles in an interior space of a carbon nanotube. A photocatalyst material in which titanium dioxide nanoparticles are immobilized in an interior space of a carbon nanotube that can improve the durability of the photocatalytic material by utilizing the properties of carbon nanotubes and suppressing the fall of titanium dioxide nanoparticles. It relates to a manufacturing method.
자외선 조사 하에 초과산화물(O2·-), 수산화래디컬(·OH) 등의 다양한 활성산소를 발생시키는 이산화티타늄(TiO2)의 광촉매 특성은 수처리 기술에 널리 이용되고 있다. 이산화티타늄의 광촉매 반응에 의해 생성되는 활성산소를 통해 수계에 존재하는 악취물질, 바이러스, 박테리아 등의 미생물 및 휘발성유기화합물(VOCs)을 효과적으로 제거할 수 있다. Photocatalytic properties of titanium dioxide (TiO 2 ), which generate various active oxygen such as superoxide (O 2 · - ) and radical radical (· OH) under ultraviolet irradiation, are widely used in water treatment technology. Microorganisms and volatile organic compounds (VOCs) such as malodorous substances, viruses, bacteria, and the like, which are present in the water system, can be effectively removed through active oxygen generated by the photocatalytic reaction of titanium dioxide.
이와 같은 이산화티타늄의 광촉매 특성을 수처리 공정에 이용하기 위해서는 이산화티타늄이 담체에 고정될 필요가 있다. 이산화티타늄을 분말 형태로 그대로 수처리 공정에 이용하게 되면 별도의 분리막을 통해 이산화티타늄 입자를 회수해야 하는 문제점이 있기 때문이다. In order to use such photocatalytic properties of titanium dioxide in a water treatment process, titanium dioxide needs to be fixed to a carrier. This is because when titanium dioxide is used as a powder in a water treatment process, titanium dioxide particles must be recovered through a separate separator.
이산화티타늄 입자가 고정화되는 담체로 기판을 고려할 수 있다. 기판에 이산화티타늄 입자를 고정화시키는 경우 상대적으로 적은 양의 이산화티타늄이 소요되고 재사용이 가능하다는 장점이 있다. 이산화티타늄 입자를 기판에 고정시키는 기술로 한국등록특허 제0503233호 '광촉매 박막의 제조 방법 및 이를 이용한 수처리 장치', 한국등록특허 제0643096호 '폴리카보네이트 멤브레인을 이용한 이산화티타늄 나노구조체 제조 방법 및 이에 의해 제조된 광촉매용 이산화티타늄 나노구조체', 한국등록특허 제0886906호 '나노 다공성 광촉매 티타니아 표면을 구비한 티타늄 분리막의 제조 방법' 등이 있다. The substrate can be considered as a carrier on which titanium dioxide particles are immobilized. When the titanium dioxide particles are immobilized on the substrate, a relatively small amount of titanium dioxide is consumed and can be reused. As a technology for fixing titanium dioxide particles to a substrate, Korean Patent Registration No. 0503233 'Method for manufacturing photocatalytic thin film and water treatment device using it', Korean Patent Registration No. 0643096 'Method for producing titanium dioxide nanostructure using polycarbonate membrane and thereby Manufactured titanium dioxide nanostructures for photocatalysts', Korean Patent Registration No. 0886906, 'Method for manufacturing titanium separator having nanoporous photocatalyst titania surface', and the like.
이와 관련하여, 본 출원인은 열압착 통해 분리막 상에 이산화티타늄 나노구조체를 고정시키는 기술(한국등록특허 제10-1370006호 참조). 이산화티타늄 나노입자를 전기방사하여 PVDF 나노섬유층에 고정화시키는 기술(한국공개특허 제10-2016-9893호 참조)을 제시한 바 있다. In this regard, the present applicant is a technology for fixing titanium dioxide nanostructures on a separator through thermal compression (see Korean Patent Registration No. 10-1370006). A technique for fixing titanium dioxide nanoparticles to the PVDF nanofiber layer by electrospinning has been proposed (see Korean Patent Publication No. 10-2016-9893).
본 발명은 탄소나노튜브의 내부공간에 이산화티타늄 나노입자를 고정화시킴으로써 이산화티타늄의 광촉매 특성을 발현함과 함께 탄소나노튜브의 제반 특성을 활용하고, 이산화티타늄 나노입자의 탈락을 억제시켜 광촉매 소재의 내구성을 향상시킬 수 있는 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재 및 그 제조방법을 제공하는데 그 목적이 있다. The present invention expresses the photocatalytic properties of titanium dioxide by immobilizing titanium dioxide nanoparticles in the inner space of the carbon nanotubes, utilizes all the properties of carbon nanotubes, and suppresses the fall of titanium dioxide nanoparticles, thereby preventing the durability of the photocatalyst material. An object of the present invention is to provide a photocatalytic material in which titanium dioxide nanoparticles are immobilized in an inner space of a carbon nanotube capable of improving the and a method of manufacturing the same.
상기의 목적을 달성하기 위한 본 발명에 따른 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재는 탄소나노튜브를 구성하는 벽 안쪽의 내부공간을 구비하며, 친수성 기능기에 의해 친수성 표면을 갖는 탄소나노튜브; 및 탄소나노튜브의 내부공간에 고정화된 이산화티타늄 나노입자;를 포함하여 이루어지는 것을 특징으로 한다. The photocatalytic material in which titanium dioxide nanoparticles are immobilized in the inner space of the carbon nanotube according to the present invention for achieving the above object has an inner space inside the wall constituting the carbon nanotube, and a hydrophilic surface is formed by a hydrophilic functional group. Carbon nanotubes; And titanium dioxide nanoparticles immobilized in the inner space of the carbon nanotubes.
상기 탄소나노튜브는 단일벽 탄소나노튜브(single-walled CNT), 이중벽 탄소나노튜브(double-walled CNT), 탄소나노튜브(multi-walled CNT) 중 어느 하나이다. The carbon nanotube is any one of a single-walled CNT, a double-walled CNT, and a multi-walled CNT.
상기 친수성 기능기는 하이드록시기(-OH), 카르복시기(-COOH), 에폭시기 중 어느 하나 또는 이들의 조합이다. The hydrophilic functional group is either a hydroxyl group (-OH), a carboxy group (-COOH), an epoxy group, or a combination thereof.
본 발명에 따른 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재의 제조방법은 탄소나노튜브를 준비하는 단계; 탄소나노튜브를 전처리하여 비결정질 탄소 및 잔존 금속을 제거하는 단계; 질산과 황산의 혼합용액에 탄소나노튜브를 침지시켜 내부공간 주변을 포함한 탄소나노튜브의 표면에 친수성 기능기를 형성하여 탄소나노튜브를 친수성으로 개질하는 단계; 친수성의 탄소나노튜브와 이산화티타늄 전구체를 혼합한 후 분쇄하여 탄소나노튜브의 표면에 이산화티타늄 전구체를 결합시키는 단계; 및 이산화티타늄 전구체가 결합된 탄소나노튜브에 대해 열가수분해를 실시하여, 이산화티타늄 나노입자를 생성시킴과 함께 탄소나노튜브의 내부공간에 이산화티타늄 나노입자를 고정화시키는 단계;를 포함하여 이루어지는 것을 특징으로 한다. A method of manufacturing a photocatalytic material in which titanium dioxide nanoparticles are immobilized in an inner space of a carbon nanotube according to the present invention includes preparing a carbon nanotube; Pre-treating the carbon nanotubes to remove amorphous carbon and residual metal; Immersing the carbon nanotubes in a mixed solution of nitric acid and sulfuric acid to form a hydrophilic functional group on the surface of the carbon nanotubes including the interior space to modify the carbon nanotubes to hydrophilicity; Combining the hydrophilic carbon nanotube and the titanium dioxide precursor and pulverizing to bond the titanium dioxide precursor to the surface of the carbon nanotube; And performing thermal hydrolysis on the carbon nanotubes to which the titanium dioxide precursor is bound, generating titanium dioxide nanoparticles, and immobilizing the titanium dioxide nanoparticles in the inner space of the carbon nanotubes. Is done.
이산화티타늄 전구체와 탄소나노튜브의 혼합시, 이산화티타늄 전구체는 탄소나노튜브 대비 10∼50mol%의 비율로 혼합될 수 있다. 상기 이산화티타늄 전구체는 옥시황산티탄(TiOSO4·xH2O)을 이용할 수 있다. When mixing the titanium dioxide precursor and the carbon nanotube, the titanium dioxide precursor may be mixed at a ratio of 10 to 50 mol% compared to the carbon nanotube. The titanium dioxide precursor may use titanium oxysulfate (TiOSO 4 xH 2 O).
상기 탄소나노튜브는 단일벽 탄소나노튜브(single-walled CNT), 이중벽 탄소나노튜브(double-walled CNT), 탄소나노튜브(multi-walled CNT) 중 어느 하나이며, 상기 내부공간은 탄소나노튜브의 벽 내부공간이다. The carbon nanotube is any one of a single-walled CNT, a double-walled CNT, and a multi-walled CNT, and the internal space is a carbon nanotube. It is a space inside the wall.
세척 공정을 실시하여 탄소나노튜브의 겉보기 표면에 존재하는 이산화티타늄 나노입자를 제거하는 단계;를 더 포함할 수 있다. A step of removing the titanium dioxide nanoparticles present on the apparent surface of the carbon nanotubes by performing a washing process may be further included.
탄소나노튜브를 전처리하여 비결정질 탄소 및 잔존 금속을 제거하는 단계;는 탄소나노튜브를 열처리하여 비결정질 탄소를 포함한 불순물을 제거하는 과정과, 비결정질 탄소를 포함한 불순물이 제거된 탄소나노튜브를 염산에 침지시켜 탄소나노튜브의 잔존 금속을 제거하는 과정을 포함할 수 있다. Pre-treating the carbon nanotubes to remove the amorphous carbon and the remaining metal; heat treatment of the carbon nanotubes to remove impurities including amorphous carbon, and immersing the carbon nanotubes in which impurities including amorphous carbon are removed in hydrochloric acid It may include a process of removing the residual metal of the carbon nanotube.
상기 열가수분해의 온도는 500∼600℃로 설정할 수 있다. The temperature of the hydrolysis may be set to 500 to 600 ° C.
본 발명에 따른 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재 및 그 제조방법은 다음과 같은 효과가 있다. The photocatalytic material in which titanium dioxide nanoparticles are immobilized in the inner space of the carbon nanotube according to the present invention and a method of manufacturing the same have the following effects.
탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화되는 구조임에 따라, 이산화티타늄 나노입자가 탈착되는 것을 최소화할 수 있어 광촉매 소재의 사용연한을 증가시킬 수 있다. Since the structure of the titanium dioxide nanoparticles immobilized in the inner space of the carbon nanotubes, it is possible to minimize the detachment of the titanium dioxide nanoparticles, thereby increasing the service life of the photocatalytic material.
또한, 다중벽 탄소나노입자와 이산화티타늄 전구체의 결합시 별도의 용매를 적용하지 않는 바, 용매 성분에 의해 수질이 오염되는 것을 미연에 방지할 수 있다. In addition, since a separate solvent is not applied when the multi-walled carbon nanoparticles and the titanium dioxide precursor are combined, it is possible to prevent the water quality from being contaminated by the solvent component.
이와 함께, 이산화티타늄의 광촉매 특성이 발현되도록 함과 함께 탄소나노튜브를 이산화티타늄 나노입자의 담체로 사용함에 따라, 탄소나노튜브의 우수한 전기전도도, 비표면적, 수소저장능력 및 물리적, 화학적 내구성을 활용할 수 있다. Along with this, as the photocatalytic properties of titanium dioxide are expressed and carbon nanotubes are used as carriers for titanium dioxide nanoparticles, the carbon nanotubes have excellent electrical conductivity, specific surface area, hydrogen storage capacity, and physical and chemical durability. Can be.
도 1은 본 발명의 일 실시예에 따른 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재의 제조방법을 설명하기 위한 순서도.
도 2는 본 발명의 일 실시예에 따른 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재의 제조방법을 설명하기 위한 모식도.
도 3 및 도 4는 실험예 1을 통해 제조된 광촉매 소재의 TEM 사진.
도 5는 실험예 1을 통해 제조된 광촉매 소재의 EDS 분석결과.
도 6은 실험예 1에 따라 서로 다른 소성온도로 제조된 광촉매 소재의 XRD 결과.
도 7은 실험예 1을 통해 제조된 광촉매 소재의 메틸렌블루 흡착특성을 나타낸 실험결과.
도 8은 실험예 1을 통해 제조된 광촉매 소재의 메틸렌블루 제거특성을 나타낸 실험결과.
도 9은 실험예 1을 통해 제조된 광촉매 소재의 대장균 제거특성을 나타낸 실험결과.
도 10 및 도 11은 이산화티타늄 전구체의 혼합비율에 따른 이산화티타늄 나노입자 생성 양상을 나타낸 TEM 사진 및 STEM 사진.
도 12는 소성온도에 따른 이산화티타늄 나노입자의 결정상을 나타낸 XRD 결과.
도 13은 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 및 탄소나노튜브에 대한 모식도. 1 is a flow chart for explaining a method of manufacturing a photocatalytic material in which titanium dioxide nanoparticles are immobilized in an inner space of a carbon nanotube according to an embodiment of the present invention.
2 is a schematic diagram for explaining a method of manufacturing a photocatalytic material in which titanium dioxide nanoparticles are immobilized in an inner space of a carbon nanotube according to an embodiment of the present invention.
3 and 4 is a TEM photo of the photocatalyst material prepared through Experimental Example 1.
5 is an EDS analysis result of the photocatalytic material prepared through Experimental Example 1.
6 is an XRD result of a photocatalyst material prepared at different firing temperatures according to Experimental Example 1.
7 is an experimental result showing the methylene blue adsorption characteristics of the photocatalytic material prepared through Experimental Example 1.
8 is an experimental result showing the methylene blue removal characteristics of the photocatalytic material prepared through Experimental Example 1.
9 is an experimental result showing the E. coli removal characteristics of the photocatalytic material prepared through Experimental Example 1.
10 and 11 are TEM photographs and STEM photographs showing titanium dioxide nanoparticle generation according to the mixing ratio of the titanium dioxide precursor.
12 is an XRD result showing the crystal phase of titanium dioxide nanoparticles according to the firing temperature.
13 is a schematic diagram of a single-walled carbon nanotube, a double-walled carbon nanotube, and a carbon nanotube.
본 발명은 탄소나노튜브의 내부공간에 이산화티타늄 나노입자를 고정화시키는 기술을 제시한다. The present invention proposes a technique for immobilizing titanium dioxide nanoparticles in the inner space of a carbon nanotube.
탄소나노튜브(carbon nanotube, CNT)는 전기전도도, 비표면적, 수소저장능력 및 물리적, 화학적 내구성이 우수하여 다양한 분야에 응용된다. 탄소나노튜브는 흑연면(graphite sheet)이 벽(wall) 형태로 나노 크기의 직경으로 둥글게 말린 것을 일컬으며, 탄소나노튜브를 구성하는 벽(wall)의 결합수에 따라 단일벽 탄소나노튜브(single-walled CNT), 이중벽 탄소나노튜브(double-walled CNT), 탄소나노튜브(multi-walled CNT)로 구분된다(도 13 참조). Carbon nanotubes (CNTs) have excellent electrical conductivity, specific surface area, hydrogen storage capacity, and physical and chemical durability, and are thus applied to various fields. Carbon nanotube refers to a graphite sheet rolled into a nano-scale diameter in the form of a wall, and a single-walled carbon nanotube (single) according to the number of bonds of the walls constituting the carbon nanotube. -walled CNT), double-walled carbon nanotubes (double-walled CNT), carbon nanotubes (multi-walled CNT) is divided into (see Figure 13).
본 발명에서 탄소나노튜브라 함은 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 탄소나노튜브 중 어느 하나를 의미하며, 탄소나노튜브를 구성하는 벽(wall)의 빈 공간을 탄소나노튜브의 내부공간이라 칭하기로 한다. In the present invention, the carbon nanotube means any one of a single-walled carbon nanotube, a double-walled carbon nanotube, and a carbon nanotube, and an empty space of a wall constituting the carbon nanotube is an internal space of the carbon nanotube. We will call this.
탄소나노튜브에 이산화티타늄 나노입자가 결합됨에 따라 이산화티타늄의 광촉매 특성 뿐만 아니라 우수한 전기전도도, 비표면적, 수소저장능력, 내구성 등의 탄소나노튜브의 고유 특성을 활용할 수 있으며, 탄소나노튜브의 내부공간에 이산화티타늄 나노입자를 고정화시킴으로써 이산화티타늄 나노입자가 탈착되는 것을 최소화할 수 있어 광촉매 소재의 내구연한을 증가시킬 수 있다. As titanium dioxide nanoparticles are combined with carbon nanotubes, it is possible to take advantage of the unique properties of carbon nanotubes such as excellent electrical conductivity, specific surface area, hydrogen storage capacity, and durability, as well as photocatalytic properties of titanium dioxide, and the internal space of carbon nanotubes. By immobilizing the titanium dioxide nanoparticles on to minimize the desorption of the titanium dioxide nanoparticles can increase the durability of the photocatalytic material.
탄소나노튜브의 내부공간에 이산화티타늄 나노입자를 고정화시키기 위해서는 내부공간 주변의 탄소나노튜브와 이산화티타늄 전구체의 결합효율이 높아야 되며, 이산화티타늄 전구체의 결합효율이 증가되기 위해서는 소수성(hydrophobic)인 탄소나노튜브의 표면을 친수성(hydrophilic)으로 개질할 필요가 있다. 탄소나노튜브의 표면에 친수성 기능기를 형성시킴으로써 탄소나노튜브의 표면을 친수성으로 변환시킬 수 있다. In order to immobilize the titanium dioxide nanoparticles in the inner space of the carbon nanotubes, the binding efficiency of the carbon nanotubes around the inner space and the titanium dioxide precursor must be high, and to increase the binding efficiency of the titanium dioxide precursor, the hydrophobic carbon nanoparticles The surface of the tube needs to be modified hydrophilicly. By forming a hydrophilic functional group on the surface of the carbon nanotube, the surface of the carbon nanotube can be converted to hydrophilicity.
본 발명은 탄소나노튜브의 표면 및 내부공간에 이산화티타늄 전구체와 결합되는 친수성 기능기를 고르게 구비시키고, 친수성 기능기와 이산화티타늄 전구체가 결합된 상태에서 열가수분해를 실시하여 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화되는 기술을 제시한다. The present invention evenly equips the surface and interior space of the carbon nanotube with a hydrophilic functional group that is combined with a titanium dioxide precursor, and performs hydrolysis in a state in which the hydrophilic functional group and the titanium dioxide precursor are combined to discretize the interior space of the carbon nanotube. A technique for immobilizing titanium nanoparticles is proposed.
이하, 도면을 참조하여 본 발명의 일 실시예에 따른 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재 및 그 제조방법을 상세히 설명하기로 한다. Hereinafter, a photocatalytic material in which titanium dioxide nanoparticles are immobilized in an inner space of a carbon nanotube according to an embodiment of the present invention with reference to the drawings and a method of manufacturing the same will be described in detail.
먼저, 도 1에 도시한 바와 같이 탄소나노튜브를 준비한다(S101). 상기 탄소나노튜브는 단일벽 탄소나노튜브(single-walled CNT), 이중벽 탄소나노튜브(double-walled CNT), 탄소나노튜브(multi-walled CNT) 중 어느 하나이다. 또한, 탄소나노튜브를 구성하는 벽(wall)의 빈 공간은 탄소나노튜브의 내부공간(internal space)로 명명되며, 후술하는 제조공정을 통해 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된다. First, as shown in FIG. 1, a carbon nanotube is prepared (S101). The carbon nanotube is any one of a single-walled CNT, a double-walled CNT, and a multi-walled CNT. In addition, the empty space of the wall constituting the carbon nanotube is referred to as an internal space of the carbon nanotube, and titanium dioxide nanoparticles are immobilized in the internal space of the carbon nanotube through a manufacturing process described below. .
탄소나노튜브가 준비된 상태에서, 비결정질 탄소를 포함한 불순물을 제거함과 함께 탄소나노튜브의 표면에 친수성 기능기를 형성시키는 탄소나노튜브 전처리 공정을 실시한다(S103). 상기 친수성 기능기는 이산화티타늄 전구체와의 화학적 결합을 유도하는 것으로서, 하이드록시기(-OH), 카르복시기(-COOH), 에폭시기 중 어느 하나 또는 이들의 조합인 것을 의미한다. 또한, 상기 친수성 기능기는 탄소나노튜브의 겉보기 표면 뿐만 아니라 내부공간 주변의 탄소나노튜브의 표면 상에 형성되며, 이에 따라 내부공간 주변이 친수성으로 변환되어 이산화티타늄 전구체와 탄소나노튜브의 결합력을 상승시키며, 궁극적으로 이산화티타늄 전구체의 소성을 통해 탄소나노튜브의 내부공간에 이산화티타늄 나노입자를 생성시킬 수 있다. In the state where the carbon nanotube is prepared, a carbon nanotube pretreatment process is performed to remove impurities including amorphous carbon and to form hydrophilic functional groups on the surface of the carbon nanotube (S103). The hydrophilic functional group is to induce a chemical bond with the titanium dioxide precursor, and means that it is any one of a hydroxyl group (-OH), a carboxy group (-COOH), an epoxy group, or a combination thereof. In addition, the hydrophilic functional group is formed on the surface of the carbon nanotubes around the inner space as well as the apparent surface of the carbon nanotubes, whereby the inner space surroundings are converted to hydrophilicity, thereby increasing the binding force between the titanium dioxide precursor and the carbon nanotubes. , Ultimately, through the firing of the titanium dioxide precursor, titanium dioxide nanoparticles can be generated in the inner space of the carbon nanotube.
비결정질 탄소를 포함한 불순물의 제거를 위해 먼저, 탄소나노튜브를 산소 분위기의 400℃ 이상의 온도에서 열처리한다. 상기 열처리를 통해 탄소나노튜브에 존재하는 비결정질 탄소가 제거된다. 이어, 열처리된 탄소나노튜브를 염산에 침지시켜 탄소나노튜브 제조시 사용된 잔존 금속을 제거한다. 상기 열처리 및 염산처리를 통해 비결정질 탄소 및 잔존 금속이 제거됨과 함께 탄소나노튜브의 비표면적이 증가된다. 여기서, 염산처리시 염산은 60℃의 온도로 유지시키고 24시간 동안 진행할 수 있다. 상기 열처리 및 염산처리 후 증류수 세척 및 건조과정을 실시할 수 있다. In order to remove impurities including amorphous carbon, carbon nanotubes are first heat-treated at a temperature of 400 ° C. or higher in an oxygen atmosphere. Amorphous carbon present in the carbon nanotube is removed through the heat treatment. Subsequently, the heat-treated carbon nanotubes are immersed in hydrochloric acid to remove residual metal used in the production of the carbon nanotubes. The amorphous carbon and residual metal are removed through the heat treatment and hydrochloric acid treatment, and the specific surface area of the carbon nanotube is increased. Here, during hydrochloric acid treatment, hydrochloric acid may be maintained at a temperature of 60 ° C. and proceed for 24 hours. After the heat treatment and hydrochloric acid treatment, distilled water washing and drying may be performed.
상기 열처리 및 염산처리가 완료된 상태에서, 질산과 황산의 혼합용액을 준비하고, 상기 질산과 황산의 혼합용액에 탄소나노튜브를 침지시킨다. 이에 따라, 탄소나노튜브의 표면에 하이드록시기(-OH), 카르복시기(-COOH), 에폭시기 중 어느 하나 또는 이들의 조합이 형성되며, 이에 따라 탄소나노튜브의 표면은 소수성에서 친수성으로 변환된다. 내부공간 주변을 포함한 탄소나노튜브의 제반 표면에 구비된 친수성 기능기 즉, 하이드록시기(-OH), 카르복시기(-COOH), 에폭시기 중 어느 하나 또는 이들의 조합은 후술하는 이산화티타늄 전구체와의 결합을 유도한다. 여기서, 상기 질산과 황산의 혼합용액은 질산과 황산을 1 : 3의 부피비로 혼합하여 준비할 수 있으며, 탄소나노튜브의 표면에 친수성 기능기가 충분히 부착되도록 혼합용액의 온도를 80℃로 유지시키고 4시간 정도 교반시킬 수 있다. 질산과 황산의 혼합용액을 이용한 친수성 기능기 생성 유도 후, 증류수 세척 및 건조과정을 실시할 수 있다. In the state in which the heat treatment and hydrochloric acid treatment are completed, a mixed solution of nitric acid and sulfuric acid is prepared, and carbon nanotubes are immersed in the mixed solution of nitric acid and sulfuric acid. Accordingly, any one or a combination of hydroxy group (-OH), carboxy group (-COOH), and epoxy group is formed on the surface of the carbon nanotube, and accordingly, the surface of the carbon nanotube is converted from hydrophobic to hydrophilic. Hydrophilic functional groups provided on various surfaces of the carbon nanotubes including the surroundings of the inner space, that is, hydroxy group (-OH), carboxy group (-COOH), any one of the epoxy groups, or a combination thereof, with a titanium dioxide precursor described later Induces Here, the mixed solution of nitric acid and sulfuric acid can be prepared by mixing nitric acid and sulfuric acid in a volume ratio of 1: 3, and the temperature of the mixed solution is maintained at 80 ° C. so that hydrophilic functional groups are sufficiently attached to the surface of the carbon nanotubes. It can be stirred for an hour. After induction of hydrophilic functional groups using a mixed solution of nitric acid and sulfuric acid, distilled water washing and drying may be performed.
탄소나노튜브의 친수성 기능기 형성을 통해 탄소나노튜브의 표면을 친수성으로 개질한 상태에서, 이산화티타늄 전구체 결합과정을 진행하여 친수성의 탄소나노튜브와 이산화티타늄 전구체의 결합을 유도한다(S104). In the state in which the surface of the carbon nanotube is modified to be hydrophilic through the formation of the hydrophilic functional group of the carbon nanotube, the process of binding the titanium dioxide precursor is conducted to induce the binding of the hydrophilic carbon nanotube and the titanium dioxide precursor (S104).
먼저, 이산화티타늄 전구체를 준비한다. 이산화티타늄 전구체로 옥시황산티탄(titanium oxysulfate, TiOSO4·H2O)을 이용할 수 있다. 이어, 이산화티타늄 전구체와 탄소나노튜브를 혼합한 후, 분쇄한다. 이와 같은 혼합, 분쇄과정을 통해 탄소나노튜브의 친수성 기능기에 이산화티타늄 전구체가 결합되는 것을 유도할 수 있다. 옥시황산티탄(TiOSO4·H2O)이 수화물임에 따라 친수성의 탄소나노튜브와의 결합력이 증가된다. First, a titanium dioxide precursor is prepared. Titanium oxysulfate (TiOSO 4 · H 2 O) can be used as the titanium dioxide precursor. Subsequently, the titanium dioxide precursor and the carbon nanotube are mixed and then pulverized. Through this mixing and grinding process, it is possible to induce the binding of the titanium dioxide precursor to the hydrophilic functional group of the carbon nanotube. As titanium oxysulfate (TiOSO 4 · H 2 O) is a hydrate, the binding force with hydrophilic carbon nanotubes is increased.
또한, 이산화티타늄 전구체와 탄소나노튜브의 혼합시, 이산화티타늄 전구체는 탄소나노튜브 대비 10∼50mol%의 비율로 혼합되는 것이 바람직하다. 이산화티타늄 전구체의 혼합비율이 10mol%에서 50mol%로 증가함에 따라 내부공간에 생성되는 이산화티타늄 나노입자의 양이 증가한다(도 10 및 도 11 참조). 이산화티타늄 전구체의 혼합비율이 50mol%를 초과하면, 내부공간에 생성되는 이산화티타늄 나노입자 양이 더 이상 증가하지도 않을 뿐더러, 탄소나노튜브의 겉보기 표면에도 나노입자가 과도하게 많이 생기게 된다.In addition, when the titanium dioxide precursor and the carbon nanotube are mixed, the titanium dioxide precursor is preferably mixed at a ratio of 10 to 50 mol% compared to the carbon nanotube. As the mixing ratio of the titanium dioxide precursor increases from 10 mol% to 50 mol%, the amount of titanium dioxide nanoparticles generated in the internal space increases (see FIGS. 10 and 11). When the mixing ratio of the titanium dioxide precursor exceeds 50 mol%, the amount of titanium dioxide nanoparticles generated in the internal space is no longer increased, and the nanoparticles are excessively formed on the apparent surface of the carbon nanotubes.
친수성 기능기에 의해 친수성으로 개질된 탄소나노튜브에 이산화티타늄 전구체가 결합된 상태에서, 이산화티타늄 전구체가 결합된 탄소나노튜브를 열가수분해(thermal decomposition)를 실시하여 이산화티타늄 전구체를 이산화티타늄 나노입자로 변환시킴과 함께 이산화티타늄 나노입자를 탄소나노튜브의 내부공간에 고정화시킨다(S105). In a state in which a titanium dioxide precursor is bound to a carbon nanotube modified hydrophilically by a hydrophilic functional group, the carbon dioxide tube bound with the titanium dioxide precursor is subjected to thermal decomposition to convert the titanium dioxide precursor into titanium dioxide nanoparticles. Upon conversion, the titanium dioxide nanoparticles are immobilized in the inner space of the carbon nanotube (S105).
상기 열가수분해는 불활성가스 분위기 하에서 400∼600℃의 온도에서 진행된다. 상기 열가수분해에 의해 이산화티타늄 전구체는 이산화티타늄 나노입자로 가수분해되며(식 1 참조), 열가수분해에 의해 생성된 이산화티타늄 나노입자는 탄소나노튜브의 겉보기 표면 및 탄소나노튜브의 내부공간에 고정화된 상태를 이룬다. The thermal hydrolysis proceeds at an inert gas atmosphere at a temperature of 400 to 600 ° C. The titanium dioxide precursor is hydrolyzed to titanium dioxide nanoparticles by thermal hydrolysis (see Equation 1), and the titanium dioxide nanoparticles produced by thermal hydrolysis are formed on the apparent surface of the carbon nanotubes and the internal space of the carbon nanotubes. It achieves a fixed state.
(식 1) CNT + TiOSO4·(x+1)H2O → CNT + TiO2·xH2O + H2SO4 (Equation 1) CNT + TiOSO 4 · (x + 1) H 2 O → CNT + TiO 2 · xH 2 O + H 2 SO 4
이와 같은 상태에서, 증류수 세척을 실시하면 탄소나노튜브의 표면에 존재하는 이산화티타늄 나노입자는 제거되고, 탄소나노튜브의 내부공간에만 이산화티타늄 나노입자가 고정화된 상태를 유지하게 된다. 이상의 과정을 통해 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재를 제조할 수 있다. In this state, when distilled water is washed, the titanium dioxide nanoparticles present on the surface of the carbon nanotubes are removed, and the titanium dioxide nanoparticles are fixed in the inner space of the carbon nanotubes. Through the above process, a photocatalytic material in which titanium dioxide nanoparticles are immobilized in the inner space of the carbon nanotube can be manufactured.
이상, 본 발명의 일 실시예에 따른 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재 및 그 제조방법을 설명하였다. 이하에서는, 실험예를 통해 본 발명을 보다 구체적으로 설명하기로 한다. As described above, the photocatalytic material in which titanium dioxide nanoparticles are immobilized in the inner space of the carbon nanotube according to an embodiment of the present invention and a method of manufacturing the same are described. Hereinafter, the present invention will be described in more detail through experimental examples.
<실험예 1 : 광촉매 소재의 제조><Experimental Example 1: Preparation of photocatalyst material>
탄소나노튜브를 공기조건 하 전기로에서 400∼500℃ 이상의 고온에서 열처리하였다. 열처리한 탄소나노튜브를 60℃의 염산에 침지시킨 후 24시간 동안 교반시켰다. 염산처리된 탄소나노튜브를 증류수로 수 회 세척 및 여과시키고 오븐에서 건조시켰다. 이어, 질산과 황산을 1:3의 부피비로 혼합시킨 혼합용액에 탄소나노튜브를 침지시키고 80℃를 유지시키며 4시간 정도 교반시켰다. 그런 다음, 탄소나노튜브를 증류수로 수 회 세척 및 여과시키며 오븐에서 건조시켰다. The carbon nanotubes were heat treated at 400 to 500 ° C or higher in an electric furnace under air conditions. The heat-treated carbon nanotube was immersed in hydrochloric acid at 60 ° C. and then stirred for 24 hours. The hydrochloric acid treated carbon nanotube was washed several times with distilled water, filtered and dried in an oven. Subsequently, the carbon nanotube was immersed in a mixed solution in which nitric acid and sulfuric acid were mixed at a volume ratio of 1: 3, and maintained at 80 ° C and stirred for about 4 hours. Then, the carbon nanotube was washed several times with distilled water, filtered and dried in an oven.
옥시황산티탄(TiOSO4·H2O)을 탄소나노튜브 대비 10∼50mol%의 비율로 탄소나노튜브에 혼합한 후 분쇄하였다. 이어, 전기로에서 아르곤 가스 조건 하 400∼600℃의 온도로 소성시켜 광촉매 소재를 제조하였다. 소성 후, 광촉매 소재에 대해 증류수 세척을 실시하였다. Titanium oxysulfate (TiOSO 4 · H 2 O) was mixed in a carbon nanotube at a ratio of 10 to 50 mol% compared to a carbon nanotube, and then pulverized. Subsequently, the photocatalyst material was prepared by firing in an electric furnace at a temperature of 400 to 600 ° C under argon gas conditions. After firing, distilled water was washed on the photocatalytic material.
도 3 및 도 4는 실험예 1을 통해 제조된 광촉매 소재의 TEM(transmission electron microscopy) 사진이다. 도 3 및 도 4를 참조하면, 탄소나노튜브의 내부공간에만 이산화티타늄 나노입자가 고정화되어 존재하는 것을 확인할 수 있다. 또한, 탄소나노튜브의 내부공간은 직경이 약 5nm이며, 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 일정한 크기로 고정화되어 있음을 확인할 수 있다. 이와 함께, 실험예 1을 통해 제조된 광촉매 소재의 EDS(energy dispersive spectrometer) 분석결과를 나타낸 도 5를 참조하면, 탄소나노튜브의 내부공간에 존재하는 물질이 이산화티타늄 나노입자임을 확인할 수 있다. 3 and 4 are TEM (transmission electron microscopy) pictures of the photocatalytic material prepared through Experimental Example 1. 3 and 4, it can be seen that titanium dioxide nanoparticles are immobilized and exist only in the inner space of the carbon nanotube. In addition, it can be seen that the inner space of the carbon nanotube is about 5 nm in diameter, and the titanium dioxide nanoparticles are fixed in a certain size in the inner space of the carbon nanotube. Along with this, referring to FIG. 5 showing EDS (energy dispersive spectrometer) analysis results of the photocatalytic material prepared through Experimental Example 1, it can be confirmed that the material present in the inner space of the carbon nanotube is titanium dioxide nanoparticles.
한편, 티타늄 전구체의 소성온도에 따라 생성되는 이산화티타늄 나노입자의 결정상이 달라짐을 확인하였다. 도 6의 XRD 결과를 참조하면, 소성온도가 400℃ 정도에서는 생성된 이산화티타늄에 특별한 양상이 나타나지 않으나, 500℃에서는 아나타제(anatase) 형태로만 존재하고, 소성온도가 600℃로 높아질수록 아나타제와 루타일(rutile) 형태가 공존하는 것을 확인할 수 있다(도 12 참조). On the other hand, it was confirmed that the crystal phase of the titanium dioxide nanoparticles produced varies according to the firing temperature of the titanium precursor. Referring to the XRD results of FIG. 6, when the calcination temperature is about 400 ° C, there is no particular aspect of the titanium dioxide produced, but at 500 ° C, it exists only in the form of an anatase, and as the calcination temperature increases to 600 ° C, anatase and ruta It can be confirmed that the rutile forms coexist (see FIG. 12).
<실험예 2 : 광촉매 소재의 광분해 특성><Experimental Example 2: Photocatalytic properties of photocatalyst materials>
실험예 1을 통해 제조된 광촉매 소재의 광분해 특성을 확인하였다. The photocatalytic properties of the photocatalytic material prepared through Experimental Example 1 were confirmed.
20μM 농도의 메틸렌블루를 제조한 후 400μg/mL의 농도로 광활성 소재를 첨가시킨 후 빛을 차단시킨 상태에서 30분 동안 교반시켰다. 이후 UVA 24W를 노출시키며, 3시간 30분간 광활성 반응을 진행하였다. 메틸렌블루의 흡광도를 분석한 결과 도 7에 나타낸 바와 같이 흡착능은 약 30% 가량으로 가장 흡착능이 뛰어난 소성온도는 600℃로 확인되었다. 도 8은 소성온도별 광분해를 이용한 제거능을 알아보는 결과로 소성온도가 500℃로 유지되었을 때 광분해를 이용한 제거능이 가장 뛰어난 것으로 나타났다.After preparing methylene blue at a concentration of 20 μM, a photoactive material was added at a concentration of 400 μg / mL and stirred for 30 minutes while blocking light. Thereafter, UVA 24W was exposed, and a photoactive reaction was performed for 3 hours and 30 minutes. As a result of analyzing the absorbance of methylene blue, as shown in FIG. 7, the adsorption capacity was about 30%, and the firing temperature with the most adsorption capacity was found to be 600 ° C. 8 shows the removal ability using photolysis by firing temperature. As a result, when the firing temperature was maintained at 500 ° C, the removal ability using photolysis was the best.
<실험예 3 : 광촉매 소재의 소독 특성><Experimental Example 3: Photocatalytic material disinfection properties>
실험예 2를 통해 광분해 특성이 가장 뛰어났던 500℃에서 제조된 광촉매 소재로 대장균 제거실험을 진행하였다. 멸균 증류수 40mL에 100uL 가량(107cfu/mL)을 주입시키고 1000μg/mL의 농도로 광활성 소재를 첨가시킨 후 UVA 24W를 30분 동안 노출 시켰다. 반응 시작 전 대장균 수와 반응 시작 30분 후 생존한 대장균 수를 비교함으로써 대장균 사멸율을 확인해 보았다. E. coli removal experiments were conducted with the photocatalytic material prepared at 500 ° C, which had the best photodegradation properties through Experimental Example 2. About 100 uL (10 7 cfu / mL) was injected into 40 mL of sterile distilled water, and photoactive material was added at a concentration of 1000 μg / mL, and then UVA 24W was exposed for 30 minutes. E. coli mortality was confirmed by comparing the number of E. coli before the start of the reaction and the number of E. coli surviving 30 minutes after the start of the reaction.
도 9에 도시된 바와 같이 거의 99% 이상의 대장균 제거 효율을 나타냈다. UV를 노출시키지 않고 광활성 소재 자체만의 대장균 사멸율은 약 68% 정도에 불과하였으며, 실험예 1을 통해 제조된 광활성 소재(소성온도-500℃)와 탄소나노튜브 자체의 광활성 성능을 비교하고자, 멸균 증류수 40mL에 100uL 가량(107cfu/mL)을 주입시키고 1000μg/mL의 농도로 탄소나노튜브를 첨가시킨 후 UVA 24W를 30분 동안 노출시켰다. 반응 시작 전 대장균 수와 반응 시작 30분 후 생존한 대장균 수를 비교함으로써 대장균 사멸율을 확인해 보았다. 탄소나노튜브 자체만의 대장균 사멸율은 약 77.8% 정도로 확인되었다. 도 9를 참조하면, 탄소나노튜브 내부 내부공간에만 이산화티타늄이 증착된 광활성 소재의 대장균 제거효율이 가장 우수함을 확인할 수 있다.As shown in FIG. 9, it showed an efficiency of removing E. coli of more than 99%. The E. coli killing rate of only the photoactive material itself without exposure to UV was only about 68%. About 100 uL (10 7 cfu / mL) was injected into 40 mL of sterile distilled water, and carbon nanotubes were added at a concentration of 1000 μg / mL, followed by exposing UVA 24W for 30 minutes. E. coli mortality was confirmed by comparing the number of E. coli before the start of the reaction and the number of E. coli surviving 30 minutes after the start of the reaction. E. coli mortality rate of the carbon nanotube itself was confirmed to be about 77.8%. Referring to FIG. 9, it can be seen that E. coli removal efficiency of the photoactive material in which titanium dioxide is deposited only in the interior space of the carbon nanotube is the best.
Claims (11)
탄소나노튜브의 내부공간에 고정화된 이산화티타늄 나노입자;를 포함하여 이루어지는 것을 특징으로 하는 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재.
A carbon nanotube having an inner space inside the wall constituting the carbon nanotube and having a hydrophilic surface by a hydrophilic functional group; And
Titanium dioxide nanoparticles immobilized in the inner space of the carbon nanotubes; Photocatalyst material wherein the titanium dioxide nanoparticles are immobilized in the inner space of the carbon nanotube, characterized in that it comprises a.
The method according to claim 1, wherein the carbon nanotube is any one of a single-walled CNT, a double-walled CNT, and a multi-walled CNT. A photocatalyst material in which titanium dioxide nanoparticles are immobilized in the inner space of a carbon nanotube.
The method of claim 1, wherein the hydrophilic functional group is hydroxy group (-OH), carboxy group (-COOH), any one or a combination of epoxy groups Titanium dioxide nanoparticles immobilized in the inner space of the carbon nanotubes Photocatalyst material.
탄소나노튜브를 전처리하여 비결정질 탄소 및 잔존 금속을 제거하는 단계;
질산과 황산의 혼합용액에 탄소나노튜브를 침지시켜 내부공간 주변을 포함한 탄소나노튜브의 표면에 친수성 기능기를 형성하여 탄소나노튜브를 친수성으로 개질하는 단계;
친수성의 탄소나노튜브와 이산화티타늄 전구체를 혼합한 후 분쇄하여 탄소나노튜브의 표면에 이산화티타늄 전구체를 결합시키는 단계; 및
이산화티타늄 전구체가 결합된 탄소나노튜브에 대해 열가수분해를 실시하여, 이산화티타늄 나노입자를 생성시킴과 함께 탄소나노튜브의 내부공간에 이산화티타늄 나노입자를 고정화시키는 단계;를 포함하여 이루어지는 것을 특징으로 하는 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재의 제조방법.
Preparing a carbon nanotube;
Pre-treating the carbon nanotubes to remove amorphous carbon and residual metal;
Immersing the carbon nanotubes in a mixed solution of nitric acid and sulfuric acid to form a hydrophilic functional group on the surface of the carbon nanotubes including the interior space to modify the carbon nanotubes to hydrophilicity;
Combining the hydrophilic carbon nanotube and the titanium dioxide precursor and pulverizing to bond the titanium dioxide precursor to the surface of the carbon nanotube; And
It is characterized in that it comprises; a step of immobilizing the titanium dioxide nanoparticles in the inner space of the carbon nanotubes while performing thermal hydrolysis on the carbon nanotubes to which the titanium dioxide precursor is bound to produce titanium dioxide nanoparticles. A method for manufacturing a photocatalytic material in which titanium dioxide nanoparticles are immobilized in an inner space of a carbon nanotube.
The method of claim 4, wherein the hydrophilic functional group is hydroxy group (-OH), carboxyl group (-COOH), any one or a combination of epoxy groups Titanium dioxide nanoparticles immobilized in the inner space of the carbon nanotubes Manufacturing method of photocatalytic material.
According to claim 4, When mixing the titanium dioxide precursor and the carbon nanotube, the titanium dioxide precursor is titanium dioxide nanoparticles in the inner space of the carbon nanotube, characterized in that the carbon nanotubes are mixed at a ratio of 10 to 50 mol% compared to Method for manufacturing immobilized photocatalyst material.
The method of claim 4, wherein the titanium dioxide precursor is titanium oxysulfate (TiOSO 4 · H 2 O), characterized in that the titanium dioxide nanoparticles are immobilized in the inner space of the carbon nanotube.
상기 내부공간은 탄소나노튜브의 벽 내부공간인 것을 특징으로 하는 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재의 제조방법.
The method of claim 4, wherein the carbon nanotubes are any of single-walled CNTs, double-walled CNTs, and multi-walled CNTs.
The inner space is a method for manufacturing a photocatalytic material in which titanium dioxide nanoparticles are immobilized in the inner space of a carbon nanotube, characterized in that it is a wall inner space of the carbon nanotube.
The method according to claim 4, further comprising the step of removing the titanium dioxide nanoparticles present on the apparent surface of the carbon nanotubes by performing a washing process. The titanium dioxide nanoparticles are immobilized in the inner space of the carbon nanotubes. Manufacturing method of photocatalytic material.
탄소나노튜브를 열처리하여 비결정질 탄소를 포함한 불순물을 제거하는 과정과,
비결정질 탄소를 포함한 불순물이 제거된 탄소나노튜브를 염산에 침지시켜 탄소나노튜브의 잔존 금속을 제거하는 과정을 포함하는 것을 특징으로 하는 탄소나노튜브의 내부공간에 이산화티타늄 나노입자가 고정화된 광촉매 소재의 제조방법.
According to claim 4, Pre-treating the carbon nanotubes to remove the amorphous carbon and residual metal;
The process of removing impurities including amorphous carbon by heat-treating the carbon nanotubes,
Of the photocatalytic material in which titanium dioxide nanoparticles are immobilized in the inner space of the carbon nanotube, characterized in that it comprises a process of removing the residual metal of the carbon nanotube by immersing the carbon nanotube in which impurities including amorphous carbon are removed in hydrochloric acid. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180140825A KR102188852B1 (en) | 2018-11-15 | 2018-11-15 | Photocatalyst material with titanium dioxide nanoparticles fixed to internal space of multi-walled carbon nanotube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180140825A KR102188852B1 (en) | 2018-11-15 | 2018-11-15 | Photocatalyst material with titanium dioxide nanoparticles fixed to internal space of multi-walled carbon nanotube |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200056759A true KR20200056759A (en) | 2020-05-25 |
KR102188852B1 KR102188852B1 (en) | 2020-12-11 |
Family
ID=70914555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180140825A KR102188852B1 (en) | 2018-11-15 | 2018-11-15 | Photocatalyst material with titanium dioxide nanoparticles fixed to internal space of multi-walled carbon nanotube |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102188852B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114474651A (en) * | 2021-12-30 | 2022-05-13 | 大禾科技发展(南京)有限公司 | Preparation method of rice mildew-proof freshness protection package |
CN116983953A (en) * | 2023-07-07 | 2023-11-03 | 江苏珈云新材料有限公司 | Preparation method of aerogel microspheres |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100503233B1 (en) | 2002-10-21 | 2005-07-22 | (주)킵솔 | Preparation of photocatalytic thin film and water-treatment apparatus using thereof |
KR100643096B1 (en) | 2003-06-20 | 2006-11-10 | 학교법인 성균관대학 | The producing method of Photocatalyst of nanostructural titanium dioxide using polycarbonate membrane |
KR20080085368A (en) * | 2007-03-19 | 2008-09-24 | 한국전자통신연구원 | Method of fabrication for carbon nanotubes uniformly coated with titanium dioxide |
KR100886906B1 (en) | 2007-03-23 | 2009-03-05 | 강릉대학교산학협력단 | Manufacturing method of titanium membrane having nano-porous photocatalytic titania surface |
KR101370006B1 (en) | 2012-06-27 | 2014-03-06 | 한국과학기술연구원 | Membrane with titanium oxide nanostructure and method for fabricating the same |
KR101495124B1 (en) * | 2014-06-26 | 2015-02-24 | 한양대학교 산학협력단 | Carbon Nanoparticle for Photocatalyst |
KR20160009893A (en) | 2014-07-17 | 2016-01-27 | 한국과학기술연구원 | Flexible nanostructure photocatalyst of TiO2 nanoparticles-immobilized PVDF nanofabric and method for fabricating the same |
-
2018
- 2018-11-15 KR KR1020180140825A patent/KR102188852B1/en active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100503233B1 (en) | 2002-10-21 | 2005-07-22 | (주)킵솔 | Preparation of photocatalytic thin film and water-treatment apparatus using thereof |
KR100643096B1 (en) | 2003-06-20 | 2006-11-10 | 학교법인 성균관대학 | The producing method of Photocatalyst of nanostructural titanium dioxide using polycarbonate membrane |
KR20080085368A (en) * | 2007-03-19 | 2008-09-24 | 한국전자통신연구원 | Method of fabrication for carbon nanotubes uniformly coated with titanium dioxide |
KR100886906B1 (en) | 2007-03-23 | 2009-03-05 | 강릉대학교산학협력단 | Manufacturing method of titanium membrane having nano-porous photocatalytic titania surface |
KR101370006B1 (en) | 2012-06-27 | 2014-03-06 | 한국과학기술연구원 | Membrane with titanium oxide nanostructure and method for fabricating the same |
KR101495124B1 (en) * | 2014-06-26 | 2015-02-24 | 한양대학교 산학협력단 | Carbon Nanoparticle for Photocatalyst |
KR20160009893A (en) | 2014-07-17 | 2016-01-27 | 한국과학기술연구원 | Flexible nanostructure photocatalyst of TiO2 nanoparticles-immobilized PVDF nanofabric and method for fabricating the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114474651A (en) * | 2021-12-30 | 2022-05-13 | 大禾科技发展(南京)有限公司 | Preparation method of rice mildew-proof freshness protection package |
CN116983953A (en) * | 2023-07-07 | 2023-11-03 | 江苏珈云新材料有限公司 | Preparation method of aerogel microspheres |
CN116983953B (en) * | 2023-07-07 | 2024-02-02 | 江苏珈云新材料有限公司 | Preparation method of aerogel microspheres |
Also Published As
Publication number | Publication date |
---|---|
KR102188852B1 (en) | 2020-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101437592B1 (en) | Graphene composite membrane for water treatment | |
Mishra et al. | TiO2 decorated functionalized halloysite nanotubes (TiO2@ HNTs) and photocatalytic PVC membranes synthesis, characterization and its application in water treatment | |
Aghasiloo et al. | Highly porous TiO2 nanofibers by humid-electrospinning with enhanced photocatalytic properties | |
Zhang et al. | Calcination of reduced graphene oxide decorated TiO2 composites for recovery and reuse in photocatalytic applications | |
Zhang et al. | Au nanoparticle modified three-dimensional network PVA/RGO/TiO2 composite for enhancing visible light photocatalytic performance | |
Zhang et al. | A facile one-step synthesis of TiO 2/graphene composites for photodegradation of methyl orange | |
Khojasteh et al. | Photocatalytic evaluation of RGO/TiO2NWs/Pd-Ag nanocomposite as an improved catalyst for efficient dye degradation | |
Zhang et al. | Fabrication of TiO2 nanofiber membranes by a simple dip-coating technique for water treatment | |
Jung et al. | Synthesis and photocatalytic performance of PVA/TiO2/graphene‐MWCNT nanocomposites for dye removal | |
Lavanya et al. | Graphene wrapped porous tubular rutile TiO2 nanofibers with superior interfacial contact for highly efficient photocatalytic performance for water treatment | |
Zhang et al. | Facet engineered TiO2 hollow sphere for the visible-light-mediated degradation of antibiotics via ligand-to-metal charge transfer | |
Hosseinzadeh et al. | TiO2/graphene nanocomposite supported on clinoptilolite nanoplate and its enhanced visible light photocatalytic activity | |
Lee et al. | Efficient visible-light responsive TiO2 nanoparticles incorporated magnetic carbon photocatalysts | |
CN113164867B (en) | Application of fullerene and fullerene derivative composite material in degrading formaldehyde and indoor VOCs or inhibiting bacteria | |
Martín et al. | An efficient method for the carboxylation of few-wall carbon nanotubes with little damage to their sidewalls | |
Huang et al. | Photocatalytic degradation of methylene blue by UV‐assistant TiO2 and natural sericite composites | |
Zhao et al. | Yolk-shell CdS@ void@ TiO2 composite particles with photocorrosion resistance for enhanced dye removal and hydrogen evolution | |
Yu et al. | A new fabrication of AgX (X= Br, I)–TiO 2 nanoparticles immobilized on polyacrylonitrile (PAN) nanofibers with high photocatalytic activity and renewable property | |
KR102188852B1 (en) | Photocatalyst material with titanium dioxide nanoparticles fixed to internal space of multi-walled carbon nanotube | |
Arutanti et al. | Design and application of homogeneous-structured TiO2/activated carbon nanocomposite for adsorption–photocatalytic degradation of MO | |
He et al. | Tunable nanostructure of TiO 2/reduced graphene oxide composite for high photocatalysis | |
Sui et al. | Carbonaceous–TiO2 materials: unique morphologies for photocatalytic applications | |
Yoon et al. | Effects of hydrothermal treatment of cellulose nanocrystal templated TiO2 films on their photodegradation activity of methylene blue, methyl orange, and rhodamine B | |
Huang et al. | A biomimetic approach towards the synthesis of TiO2/carbon-clay as a highly recoverable photocatalyst | |
Wang et al. | A Review on TiO2 Nanotube Film Photocatalysts Prepared by Liquid‐Phase Deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |