KR20200056106A - 심근 이미지 분석 방법 및 장치 - Google Patents
심근 이미지 분석 방법 및 장치 Download PDFInfo
- Publication number
- KR20200056106A KR20200056106A KR1020180140025A KR20180140025A KR20200056106A KR 20200056106 A KR20200056106 A KR 20200056106A KR 1020180140025 A KR1020180140025 A KR 1020180140025A KR 20180140025 A KR20180140025 A KR 20180140025A KR 20200056106 A KR20200056106 A KR 20200056106A
- Authority
- KR
- South Korea
- Prior art keywords
- myocardium
- coronary artery
- artery
- image
- myocardial
- Prior art date
Links
- 210000004165 myocardium Anatomy 0.000 title claims abstract description 197
- 238000000034 method Methods 0.000 title claims abstract description 23
- 210000004351 coronary vessel Anatomy 0.000 claims abstract description 154
- 238000010801 machine learning Methods 0.000 claims abstract description 37
- 230000002107 myocardial effect Effects 0.000 claims description 61
- 210000001367 artery Anatomy 0.000 claims description 58
- 238000010191 image analysis Methods 0.000 claims description 16
- 238000002591 computed tomography Methods 0.000 claims description 12
- 230000003416 augmentation Effects 0.000 claims description 4
- 230000006870 function Effects 0.000 description 9
- 210000000056 organ Anatomy 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002872 contrast media Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000003703 image analysis method Methods 0.000 description 3
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/481—Diagnostic techniques involving the use of contrast agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/503—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/504—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/2163—Partitioning the feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Optics & Photonics (AREA)
- Veterinary Medicine (AREA)
- High Energy & Nuclear Physics (AREA)
- Surgery (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Physiology (AREA)
- Evolutionary Biology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Vascular Medicine (AREA)
- Databases & Information Systems (AREA)
Abstract
본 발명의 일 실시예에 따른 심근 이미지 분석 방법은, 조영증강 전의 심근에 대한 대상 이미지를 획득하는 단계와, 기계 학습 알고리즘을 이용하여 상기 심근과 관련된 관상동맥의 종류에 기초하여 상기 대상 이미지에 포함되는 상기 심근을 구분하는 단계와, 상기 구분된 심근에 대한 정보를 제공하는 단계를 포함하고, 상기 기계 학습 알고리즘은 기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지의 정합에 의해 생성된 학습 데이터 베이스에 기초하여 학습이 수행된다.
Description
본 발명은 기계 학습 알고리즘을 이용하여 심근의 이미지를 분석하는 장치 및 방법에 관한 것이다.
관상동맥(coronary artery)은 심장을 둘러싸는 동맥으로 심장의 근육인 심근에 산소와 영양을 공급한다. 관상동맥으로부터 산소와 영양이 심근에 제속적으로 공급됨에 의해 심장은 기능을 수행하게 된다. 만약, 관상동맥에 질환이 발병하여 심근에 산소와 영양이 공급되지 않으면, 심근경색과 같은 심혈관질환의 발병에 의해 사람을 사망에 이르게까지 할 수 있다.
관상동맥은 심장을 관상(冠狀)으로 둘러싸는 형태로 위치된다. 이에 따라, 관상동맥은 심장 상에서의 관상동맥의 위치를 기준으로 세부적인 종류로 구분될 수 있다. 예를 들어, 관상동맥의 종류는 좌관상동맥(Left Coronary Artery, LCA), 좌주관상동맥(Left Main Coronary Artery, LMCA), 좌전하행(관상)동맥(Left Anterior Descending coronary artery, LAD), 근위부(proximal) 좌전하행동맥, 중간부(middle) 좌전하행동맥, 원위부(distal) 좌전하행동맥, 우관상동맥(Right Coronary Artery, RCA), 근위부 우관상동맥, 중간부 우관상동맥, 원위부 우관상동맥, 후하행동맥(posterior descending artery, PDA)이 있을 수 있다.
이처럼 관상동맥이 위치되는 형태에 의해, 관상동맥은 그와 인접하여 위치된 심근에 산소와 영양을 공급하게 된다. 이에 따라, 관상동맥의 일부에 질환이 발생한 경우, 관상동맥 중 어느 영역에 질환이 발생하였는지를 판단하고, 나아가 질환이 발생한 관상동맥의 영역과 관련된 심근의 영역을 식별하여 보다 정밀하게 치료를 수행하거나, 심혈관질환을 진단할 수 있다.
다만, 이러한 심근의 영역의 구분에 대한 효과에도 불구하고, 현재까지는 관상동맥 별로 연관된 심근의 영역을 구분하는 것은 의사 또는 분석가의 경험에 의존해야 하기 때문에 정확성이나 객관성이 다소 낮다는 문제가 존재한다.
본 발명이 해결하고자 하는 과제는, 기계 학습 알고리즘을 이용하여 심근 이미지에서 관상동맥의 종류에 따라 관련된 심근의 영역을 분석하는 장치 및 방법을 제공하는 것이다.
다만, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 바로 제한되지 않으며, 언급되지는 않았으나 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있는 목적을 포함할 수 있다.
본 발명의 일 실시예에 따른 심근 이미지 분석 방법은, 조영증강 전의 심근에 대한 대상 이미지를 획득하는 단계와, 기계 학습 알고리즘을 이용하여 상기 심근과 관련된 관상동맥의 종류에 기초하여 상기 대상 이미지에 포함되는 상기 심근을 구분하는 단계와, 상기 구분된 심근에 대한 정보를 제공하는 단계를 포함하고, 상기 기계 학습 알고리즘은 기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지의 정합에 의해 생성된 학습 데이터 베이스에 기초하여 학습이 수행된다.
상기 관상동맥의 종류는 좌관상동맥(Left Coronary Artery, LCA), 좌주관상동맥(Left Main Coronary Artery, LMCA), 좌전하행동맥(Left Anterior Descending coronary artery, LAD), 근위부(proximal) 좌전하행동맥, 중간부(middle) 좌전하행동맥, 원위부(distal) 좌전하행동맥, 우관상동맥(Right Coronary Artery, RCA), 근위부 우관상동맥, 중간부 우관상동맥, 원위부 우관상동맥, 후하행동맥(posterior descending artery, PDA)를 포함한다.
또한, 상기 심근을 구분하는 단계는, 상기 심근에 인접하여 상기 심근에 영향을 미치는 상기 관상동맥의 종류에 따라 상기 심근을 구분하는 단계를 포함한다.
또한, 상기 학습 데이터 베이스는 상기 관상동맥의 종류별로 관련된 심근의 영역의 크기, 위치, 형태 및 길이 중 적어도 하나에 대한 정보를 포함하고, 상기 기계 학습 알고리즘은 FCN(Fully Convolutional Network)를 포함하고, 상기 구분된 심근은, 좌관상동맥과 연결된 심근, 좌주관상동맥과 연결된 심근, 좌전하행동맥과 연결된 심근, 근위부 좌전하행동맥과 연결된 심근, 중간부 좌전하행동맥과 연결된 심근, 원위부 좌전하행동맥과 연결된 심근, 우관상동맥과 연결된 심근, 근위부 우관상동맥과 연결된 심근, 중간부 우관상동맥과 연결된 심근, 원위부 우관상동맥과 연결된 심근 및 후하행동맥과 연결된 심근을 포함한다.
또한, 상기 기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 상기 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지는 동일한 대상에 대한 이미지이다.
또한, 상기 대상 이미지는 컴퓨터 단층촬영(Computed Tomography, CT) 이미지이다.
본 발명의 일 실시예에 따른 심근 이미지 분석 장치는, 조영증강 전의 심근에 대한 대상 이미지를 획득하는 대상 이미지 획득부와, 기계 학습 알고리즘을 이용하여 상기 심근과 관련된 관상동맥의 종류에 기초하여 상기 대상 이미지에 포함되는 상기 심근을 구분하는 심근 구분부와, 상기 구분된 심근에 대한 정보를 제공하는 정보 제공부를 포함하고, 상기 기계 학습 알고리즘은 기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지의 정합에 의해 생성된 학습 데이터 베이스에 기초하여 학습이 수행된다.
또한, 상기 관상동맥의 종류는 좌관상동맥(Left Coronary Artery, LCA), 좌주관상동맥(Left Main Coronary Artery, LMCA), 좌전하행동맥(Left Anterior Descending coronary artery, LAD), 근위부(proximal) 좌전하행동맥, 중간부(middle) 좌전하행동맥, 원위부(distal) 좌전하행동맥, 우관상동맥(Right Coronary Artery, RCA), 근위부 우관상동맥, 중간부 우관상동맥, 원위부 우관상동맥, 후하행동맥(posterior descending artery, PDA)를 포함한다.
또한, 상기 심근 구분부는, 상기 심근에 인접하여 상기 심근에 영향을 미치는 상기 관상동맥의 종류에 따라 상기 심근을 구분한다.
또한, 상기 학습 데이터 베이스는 상기 관상동맥의 종류별로 관련된 심근의 영역의 크기, 위치, 형태 및 길이 중 적어도 하나에 대한 정보를 포함하고, 상기 기계 학습 알고리즘은 FCN(Fully Convolutional Network)를 포함하고, 상기 구분된 심근은, 좌관상동맥과 연결된 심근, 좌주관상동맥과 연결된 심근, 좌전하행동맥과 연결된 심근, 근위부 좌전하행동맥과 연결된 심근, 중간부 좌전하행동맥과 연결된 심근, 원위부 좌전하행동맥과 연결된 심근, 우관상동맥과 연결된 심근, 근위부 우관상동맥과 연결된 심근, 중간부 우관상동맥과 연결된 심근, 원위부 우관상동맥과 연결된 심근 및 후하행동맥과 연결된 심근을 포함한다.
또한, 상기 기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 상기 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지는 동일한 대상에 대한 이미지이다.
또한, 상기 대상 이미지는 컴퓨터 단층촬영(Computed Tomography, CT) 이미지이다.
본 발명의 실시예에 따른 심근 이미지 분석 장치 및 방법은, 기계 학습 알고리즘을 이용하여 심근 이미지 내의 심근의 영역을 관상동맥 별로 관련된 영역으로 구분함으로써 정확성, 신뢰성 및 객관성을 가지는 심근에 대한 정보를 제공할 수 있다.
다만, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 기계 학습 알고리즘을 이용한 심근 이미지 분석 방법을 개념적으로 도시한다.
도 2는 본 발명의 일 실시예에 따른 심근 이미지 분석 장치의 기능적 구성의 예를 도시한다.
도 3은 본 발명의 일 실시예에 따른 심근 이미지 분석 방법의 각 단계의 흐름을 도시한다.
도 4는 본 발명의 일 실시예에 따른 심근 이미지 분석 장치의 출력 영상의 예를 도시한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범주는 청구항에 의해 정의될 뿐이다.
본 발명의 실시예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명은 본 발명의 실시예들을 설명함에 있어 실제로 필요한 경우 외에는 생략될 것이다. 그리고 후술되는 용어들은 본 발명의 실시예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예들을 포함할 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로서 이해되어야 한다.
제 1, 제 2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 해당 구성요소들은 이와 같은 용어들에 의해 한정되지는 않는다. 이 용어들은 하나의 구성요소들을 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 '연결되어' 있다거나 '접속되어' 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 일 실시예에 따른 기계 학습 알고리즘을 이용한 심근 이미지 분석 방법을 개념적으로 도시한다.
도 1을 참조하면, 입력 영상(101)은 심근을 포함하는 심장 영역에 대한 이미지(이하 '심근 이미지')일 수 있다. 보다 구체적으로, 입력 영상(101)은 조영증강 전의 심근 이미지일 수 있다. 조영증강 전의 심근 이미지는 이미지 내에 포함되는 각각의 기관의 구분이 모호한 영상일 수 있다.
입력 영상(101) 내에 포함되는 심근의 영역은 기계 학습 알고리즘(102)에 의해 식별될 수 있다. 예를 들면, 도 1에 도시된 바와 같이, 식별된 심근의 영역이 다른 부분들과 구분되도록 하이라이트(hightlight)되어 출력 영상(103)으로 제공될 수 있다.
도 1의 출력 영상(103)의 하이라이트된 부분(111, 112, 113)은 둥근 띠 모양의 심근으로, 출력 영상(103)의 심근 영역은 다른 기관에 대한 영역들과 구분되어 표시될 수 있다. 한편, 심근 영역은 연관된 관상동맥의 종류에 따라 세부적으로 분할될 수 있다. 이에 따라, 출력 영상(103)의 심근 영역은 제1 심근 영역(111), 제2 심근 영역(112), 제3 심근 영역(113)으로 분할될 수 있다. 여기서, 각각의 심근 영역은 서로 다른 관상동맥에 의해 산소와 영양이 공급되는 영역일 수 있다.
한편, 관상동맥은 좌관상동맥(Left Coronary Artery, LCA), 좌주관상동맥(Left Main Coronary Artery, LMCA), 좌전하행(관상)동맥(Left Anterior Descending coronary artery, LAD), 근위부(proximal) 좌전하행동맥, 중간부(middle) 좌전하행동맥, 원위부(distal) 좌전하행동맥, 우관상동맥(Right Coronary Artery, RCA), 근위부 우관상동맥, 중간부 우관상동맥, 원위부 우관상동맥, 후하행동맥(posterior descending artery, PDA)으로 구분될 수 있다. 즉, 관상동맥의 종류는 관상동맥의 위치에 따라 상술한 바와 같이 나뉠 수 있다. 후술되는 본 발명의 일 실시예에 따른 심근 이미지 분석 장치는 심근 이미지에 포함되는 심근을 이와 같은 관상동맥의 종류 각각과 관련된 영역으로 구분할 수 있다.
도 2는 본 발명의 일 실시예에 따른 심근 이미지 분석 장치의 기능적 구성의 예를 도시한다.
도 2를 참조하면, 심근 이미지 분석 장치(10)는 대상 이미지 획득부(210), 심근 구분부(220), 정보 제공부(230)를 포함할 수 있다.
대상 이미지 획득부(210)는 조영증강 전의 심근에 대한 대상 이미지를 획득할 수 있다. 대상 이미지는 의학용 영상을 포함할 수 있다. 예를 들어, 대상 이미지는 컴퓨터 단층촬영(Computed Tomography, CT) 이미지를 포함할 수 있지만, 이에 제한되는 것은 아니다.
경우에 따라, 대상 이미지에는 심근 이외의 다른 기관을 포함할 수도 있음은 물론이다. 다만, 대상 이미지는 조영제가 투여되기 전의 이미지이기 때문에, 각 기관들의 경계가 명확히 드러나지 않은 모호한 상태의 이미지일 수 있다.
심근 구분부(220)는 기계 학습 알고리즘(102)을 이용하여 대상 이미지에 포함되는 관상동맥을 식별할 수 있다. 여기서, 기계 학습 알고리즘(102)은 기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지의 정합에 의해 생성된 학습 데이터 베이스에 기초하여 학습이 수행된 것일 수 있다. 학습 데이터 베이스에는 관상동맥의 종류별로 관련된 심근의 영역의 크기, 위치, 형태 및 길이 중 적어도 하나에 대한 정보가 포함되어 있을 수 있다.
기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 상기 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지는 동일한 대상, 즉 동일한 환자에 대한 이미지로서, 미리 저장되어 있는 방대한 양의 데이터일 수 있다.
한편, 기계 학습 알고리즘(102)의 학습에 이용된 조영증강 전과 조영증강 후의 이미지는 복수개가 있을 수 있으며, 정합되는 조영증강 전과 후의 이미지는 동일한 대상에 대한 이미지일 수 있다. 동일한 대상에 대한 이미지의 정합은 통상의 기술자에게 용이한 바 이와 관련된 보다 자세한 설명은 생략될 수 있다.
한편, 환자에 조영제가 투여됨에 기초하여 조영증강 후의 의학용 영상이 획득될 수 있는데, 이러한 조영증강 후의 의학용 영상에서의 각 기관들은 보다 명확히 구별되게 된다. 상술한 기계 학습 알고리즘(102)은 이러한 조영증강 후의 의학용 영상을 이용하여 학습되어 추후 입력 영상으로서 조영증강 전의 이미지를 제공받으면, 조영증강 전의 이미지에 포함되는 각 기관들을 정확하게 구분하도록 학습된 알고리즘일 수 있다.
기계 학습 알고리즘(102)의 학습에 이용된 조영증강 후의 의학용 영상에는 관상동맥의 종류에 따라 심근의 영역이 구분되어 있을 수 있다. 이에 따라, 기계 학습 알고리즘(102)은 심근 이미지에서 심근을 구분하는 것에서 나아가 심근을 관상동맥의 종류에 따라 세부적으로 구분하도록 학습될 수 있다.
기계 학습 알고리즘(102)은 FCN(Fully Convolutional Network)를 포함할 수 있다. 다만, 이에 제한되지는 않으며, 기계 학습 알고리즘(102)은 영상의 식별과 관련된 다양한 기계 학습 알고리즘(또는 딥러닝 알고리즘, 또는 인공지능 알고리즘)으로 구성될 수 있다.
심근 구분부(220)는 기계 학습 알고리즘(102)을 이용하여, 대상 이미지에서 심근을 구분하고, 구분된 심근을 관상동맥의 종류에 기초해 연관된 심근의 영역을 세부적으로 구분할 수 있다.
보다 구체적으로, 심근 구분부(220)는 심근에 인접하여 위치하고, 심근에 영향을 미치는 관상동맥의 종류에 따라 심근을 구분할 수 있다. 이러한 구분은 관상동맥의 종류 별로 관련된 심근의 영역의 크기, 위치, 형태 및 길이 중 적어도 하나에 대한 정보에 기초하여 수행될 수 있다.
구분된 심근은 예를 들면, 좌관상동맥과 연결된 심근, 좌주관상동맥과 연결된 심근, 좌전하행동맥과 연결된 심근, 근위부 좌전하행동맥과 연결된 심근, 중간부 좌전하행동맥과 연결된 심근, 원위부 좌전하행동맥과 연결된 심근, 우관상동맥과 연결된 심근, 근위부 우관상동맥과 연결된 심근, 중간부 우관상동맥과 연결된 심근, 원위부 우관상동맥과 연결된 심근 및 후하행동맥과 연결된 심근을 포함할 수 있다.
정보 제공부(230)는 구분된 심근에 대한 정보를 제공할 수 있다. 정보 제공부(230)는 심근 구분부(220)에 의해 구분된 심근에 대한 정보를 제공할 수 있다. 정보 제공부(230)는 구분된 심근에 대한 정보를 다양한 방법으로 제공할 수 있다. 정보 제공부(230)는 색, 패턴, 효과 등의 다양한 방법으로 구분된 심근의 영역이 출력 영상(103)에 드러나도록 하여 심근에 대한 정보를 제공할 수 있다.
정보 제공부(230)는 입력 영상(101)으로서 획득한 심근에 대한 대상 이미지에 구분된 심근에 대한 정보가 드러나도록 표시하여 출력 영상(103)으로서 정보를 제공할 수 있다. 보다 구체적으로, 정보 제공부(230)는 입력 영상(101)에 심근이 다른 기관과 구분되도록 표시하고, 관상동맥의 종류 별로 연관된 심근의 영역이 드러나도록 하여 출력 영상(103)으로 제공할 수 있다.
경우에 따라, 정보 제공부(230)는 입력 영상(101)에 기초하여, 관상동맥의 종류별로 연관된 심근의 영역이 표시되는 출력 영상(103)을 생성하여 제공할 수 있다.
도 3은 본 발명의 일 실시예에 따른 심근 이미지 분석 방법의 각 단계의 흐름을 도시한다. 이하 도 3에서는 도 2의 심근 이미지 분석 장치(10)의 각 구성을 중심으로 설명하겠다. 또한, 도 3에 도시된 방법의 각 단계는 경우에 따라 도면에 도시된 바와 그 순서를 달리하여 수행될 수 있음은 물론이다.
도 3을 참조하면, 대상 이미지 획득부(210)는 조영증강 전의 심근에 대한 대상 이미지를 획득할 수 있다(S110). 보다 구체적으로, 대상 이미지 획득부(210)는 조영제가 투여되지 않은 환자의 관상동맥과 심근을 포함하는 의학용 영상을 대상 이미지로 획득할 수 있다. 의학용 영상은 의학적으로 이용되는 다양한 영상의 종류를 포함할 수 있으며, 예를 들어 컴퓨터 단층촬영(CT)을 포함할 수 있다.
한편, 대상 이미지 획득부(210)에 의해 획득된 대상 이미지는 조영증강 전의 의학용 영상으로서, 일반적으로 관상동맥과 다른 기관에 대한 구분이 모호한 이미지일 수 있다.
심근 구분부(220)는 기계 학습 알고리즘(102)을 이용하여 심근을 구분할 수 있다(S120). 심근 구분부(220)는 기계 학습 알고리즘(102)을 이용하여 대상 이미지 내의 심근을 식별하고, 나아가 심근과 관련된 관상동맥의 종류에 기초하여 대상 이미지에 포함되는 심근을 구분할 수 있다. 예를 들어, 구분된 심근은, 좌관상동맥과 연결된 심근, 좌주관상동맥과 연결된 심근, 좌전하행동맥과 연결된 심근, 근위부 좌전하행동맥과 연결된 심근, 중간부 좌전하행동맥과 연결된 심근, 원위부 좌전하행동맥과 연결된 심근, 우관상동맥과 연결된 심근, 근위부 우관상동맥과 연결된 심근, 중간부 우관상동맥과 연결된 심근, 원위부 우관상동맥과 연결된 심근 및 후하행동맥과 연결된 심근을 포함할 수 있다.
기계 학습 알고리즘(102)은 조영증강 전의 관상동맥과 심근에 대한 이미지와 조영증강 후의 관상동맥과 심근에 대한 이미지를 정합시켜 획득된 학습 데이터 베이스를 이용하여 학습된 알고리즘일 수 있다.
여기서, 학습 데이터 베이스는 상기 관상동맥의 종류별로 관련된 심근의 영역의 크기, 위치, 형태 및 길이 중 적어도 하나에 대한 정보를 포함할 수 있다. 정합에 이용되는 조영증강 전과 후의 이미지는 동일한 대상, 즉 동일 환자에 대한 이미지일 수 있다. 심근 구분부(220)는 이러한 기계 학습 알고리즘(102)에 기초하여 대상 이미지에서 심근을 관상동맥의 종류에 기초하여 세부적으로 식별할 수 있다.
정보 제공부(230)는 구분된 심근에 대한 정보를 제공할 수 있다(S130). 보다 구체적으로, 정보 제공부(230)는 대상 이미지에서 심근 부분이 드러나도록 표시하고 심근의 영역을 관상동맥의 종류 별로 관련된 부분으로 나누어 이에 대한 정보를 제공할 수 있다.
도 4는 본 발명의 일 실시예에 따른 심근 이미지 분석 장치의 출력 영상의 예를 도시한다. 심근 이미지 분석 장치(10)는 심근에 대한 이미지, 즉 심근 이미지를 입력받아 분석을 수행할 수 있다.
도 4를 참조하면, 심근 이미지 분석 장치(10)는 기계 학습 알고리즘(102)에 기초하여 심근 이미지에서 심근이 명확히 드러나도록 표시되는 출력 영상을 제공할 수 있다.
도 4는 출력 영상의 3가지 예시를 도시하고 있으며, 각 출력 영상에는 심근 부분이 하이라이트되어 드러남을 확인할 수 있다. 도시된 바와 같이, 출력 영상에서 심근 부분은 관련된 관상동맥의 종류에 따라 그 색이 다르게 표시될 수 있다. 다만, 이에 제한되지 않으며, 패턴이 다르게 표시되거나 텍스트가 입력되어 표시되는 등 다양한 방식으로 구분된 심근의 영역에 대한 정보가 출력 영상의 형태로 제공될 수 있다.
본 발명의 실시예에 따른 심근 이미지 분석 장치(10)는 기계 학습 알고리즘(102)에 의해 심근의 영역이 자동으로 분석되기 때문에, 사람의 개입 없이, 즉 의사나 분석가의 주관적인 판단에 의존하지 않고 객관적이고 정확한 정보를 제공할 수 있다.
또한, 본 발명의 실시예에 따른 심근 이미지 분석 장치(10)는 심근이 모호하게 나타나는 조영증강 전의 심장 이미지에 대해, 심근에 대한 부분을 식별하고, 심근에 대한 구체적이며 정확한 정보를 제공할 수 있기 때문에, 조영증강 없이도 심근에 대한 정보를 획득할 수 있어 불필요한 조영증강을 최소화할 수 있다.
본 명세서에 첨부된 블록도의 각 블록과 흐름도의 각 단계의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수도 있다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 블록도의 각 블록 또는 흐름도의 각 단계에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 블록도의 각 블록 또는 흐름도 각 단계에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 블록도의 각 블록 및 흐름도의 각 단계에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록 또는 각 단계는 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시예들에서는 블록들 또는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들 또는 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들 또는 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 품질에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 균등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
도 2는 본 발명의 일 실시예에 따른 심근 이미지 분석 장치의 기능적 구성의 예를 도시한다.
도 3은 본 발명의 일 실시예에 따른 심근 이미지 분석 방법의 각 단계의 흐름을 도시한다.
도 4는 본 발명의 일 실시예에 따른 심근 이미지 분석 장치의 출력 영상의 예를 도시한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범주는 청구항에 의해 정의될 뿐이다.
본 발명의 실시예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명은 본 발명의 실시예들을 설명함에 있어 실제로 필요한 경우 외에는 생략될 것이다. 그리고 후술되는 용어들은 본 발명의 실시예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예들을 포함할 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로서 이해되어야 한다.
제 1, 제 2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 해당 구성요소들은 이와 같은 용어들에 의해 한정되지는 않는다. 이 용어들은 하나의 구성요소들을 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 '연결되어' 있다거나 '접속되어' 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 일 실시예에 따른 기계 학습 알고리즘을 이용한 심근 이미지 분석 방법을 개념적으로 도시한다.
도 1을 참조하면, 입력 영상(101)은 심근을 포함하는 심장 영역에 대한 이미지(이하 '심근 이미지')일 수 있다. 보다 구체적으로, 입력 영상(101)은 조영증강 전의 심근 이미지일 수 있다. 조영증강 전의 심근 이미지는 이미지 내에 포함되는 각각의 기관의 구분이 모호한 영상일 수 있다.
입력 영상(101) 내에 포함되는 심근의 영역은 기계 학습 알고리즘(102)에 의해 식별될 수 있다. 예를 들면, 도 1에 도시된 바와 같이, 식별된 심근의 영역이 다른 부분들과 구분되도록 하이라이트(hightlight)되어 출력 영상(103)으로 제공될 수 있다.
도 1의 출력 영상(103)의 하이라이트된 부분(111, 112, 113)은 둥근 띠 모양의 심근으로, 출력 영상(103)의 심근 영역은 다른 기관에 대한 영역들과 구분되어 표시될 수 있다. 한편, 심근 영역은 연관된 관상동맥의 종류에 따라 세부적으로 분할될 수 있다. 이에 따라, 출력 영상(103)의 심근 영역은 제1 심근 영역(111), 제2 심근 영역(112), 제3 심근 영역(113)으로 분할될 수 있다. 여기서, 각각의 심근 영역은 서로 다른 관상동맥에 의해 산소와 영양이 공급되는 영역일 수 있다.
한편, 관상동맥은 좌관상동맥(Left Coronary Artery, LCA), 좌주관상동맥(Left Main Coronary Artery, LMCA), 좌전하행(관상)동맥(Left Anterior Descending coronary artery, LAD), 근위부(proximal) 좌전하행동맥, 중간부(middle) 좌전하행동맥, 원위부(distal) 좌전하행동맥, 우관상동맥(Right Coronary Artery, RCA), 근위부 우관상동맥, 중간부 우관상동맥, 원위부 우관상동맥, 후하행동맥(posterior descending artery, PDA)으로 구분될 수 있다. 즉, 관상동맥의 종류는 관상동맥의 위치에 따라 상술한 바와 같이 나뉠 수 있다. 후술되는 본 발명의 일 실시예에 따른 심근 이미지 분석 장치는 심근 이미지에 포함되는 심근을 이와 같은 관상동맥의 종류 각각과 관련된 영역으로 구분할 수 있다.
도 2는 본 발명의 일 실시예에 따른 심근 이미지 분석 장치의 기능적 구성의 예를 도시한다.
도 2를 참조하면, 심근 이미지 분석 장치(10)는 대상 이미지 획득부(210), 심근 구분부(220), 정보 제공부(230)를 포함할 수 있다.
대상 이미지 획득부(210)는 조영증강 전의 심근에 대한 대상 이미지를 획득할 수 있다. 대상 이미지는 의학용 영상을 포함할 수 있다. 예를 들어, 대상 이미지는 컴퓨터 단층촬영(Computed Tomography, CT) 이미지를 포함할 수 있지만, 이에 제한되는 것은 아니다.
경우에 따라, 대상 이미지에는 심근 이외의 다른 기관을 포함할 수도 있음은 물론이다. 다만, 대상 이미지는 조영제가 투여되기 전의 이미지이기 때문에, 각 기관들의 경계가 명확히 드러나지 않은 모호한 상태의 이미지일 수 있다.
심근 구분부(220)는 기계 학습 알고리즘(102)을 이용하여 대상 이미지에 포함되는 관상동맥을 식별할 수 있다. 여기서, 기계 학습 알고리즘(102)은 기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지의 정합에 의해 생성된 학습 데이터 베이스에 기초하여 학습이 수행된 것일 수 있다. 학습 데이터 베이스에는 관상동맥의 종류별로 관련된 심근의 영역의 크기, 위치, 형태 및 길이 중 적어도 하나에 대한 정보가 포함되어 있을 수 있다.
기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 상기 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지는 동일한 대상, 즉 동일한 환자에 대한 이미지로서, 미리 저장되어 있는 방대한 양의 데이터일 수 있다.
한편, 기계 학습 알고리즘(102)의 학습에 이용된 조영증강 전과 조영증강 후의 이미지는 복수개가 있을 수 있으며, 정합되는 조영증강 전과 후의 이미지는 동일한 대상에 대한 이미지일 수 있다. 동일한 대상에 대한 이미지의 정합은 통상의 기술자에게 용이한 바 이와 관련된 보다 자세한 설명은 생략될 수 있다.
한편, 환자에 조영제가 투여됨에 기초하여 조영증강 후의 의학용 영상이 획득될 수 있는데, 이러한 조영증강 후의 의학용 영상에서의 각 기관들은 보다 명확히 구별되게 된다. 상술한 기계 학습 알고리즘(102)은 이러한 조영증강 후의 의학용 영상을 이용하여 학습되어 추후 입력 영상으로서 조영증강 전의 이미지를 제공받으면, 조영증강 전의 이미지에 포함되는 각 기관들을 정확하게 구분하도록 학습된 알고리즘일 수 있다.
기계 학습 알고리즘(102)의 학습에 이용된 조영증강 후의 의학용 영상에는 관상동맥의 종류에 따라 심근의 영역이 구분되어 있을 수 있다. 이에 따라, 기계 학습 알고리즘(102)은 심근 이미지에서 심근을 구분하는 것에서 나아가 심근을 관상동맥의 종류에 따라 세부적으로 구분하도록 학습될 수 있다.
기계 학습 알고리즘(102)은 FCN(Fully Convolutional Network)를 포함할 수 있다. 다만, 이에 제한되지는 않으며, 기계 학습 알고리즘(102)은 영상의 식별과 관련된 다양한 기계 학습 알고리즘(또는 딥러닝 알고리즘, 또는 인공지능 알고리즘)으로 구성될 수 있다.
심근 구분부(220)는 기계 학습 알고리즘(102)을 이용하여, 대상 이미지에서 심근을 구분하고, 구분된 심근을 관상동맥의 종류에 기초해 연관된 심근의 영역을 세부적으로 구분할 수 있다.
보다 구체적으로, 심근 구분부(220)는 심근에 인접하여 위치하고, 심근에 영향을 미치는 관상동맥의 종류에 따라 심근을 구분할 수 있다. 이러한 구분은 관상동맥의 종류 별로 관련된 심근의 영역의 크기, 위치, 형태 및 길이 중 적어도 하나에 대한 정보에 기초하여 수행될 수 있다.
구분된 심근은 예를 들면, 좌관상동맥과 연결된 심근, 좌주관상동맥과 연결된 심근, 좌전하행동맥과 연결된 심근, 근위부 좌전하행동맥과 연결된 심근, 중간부 좌전하행동맥과 연결된 심근, 원위부 좌전하행동맥과 연결된 심근, 우관상동맥과 연결된 심근, 근위부 우관상동맥과 연결된 심근, 중간부 우관상동맥과 연결된 심근, 원위부 우관상동맥과 연결된 심근 및 후하행동맥과 연결된 심근을 포함할 수 있다.
정보 제공부(230)는 구분된 심근에 대한 정보를 제공할 수 있다. 정보 제공부(230)는 심근 구분부(220)에 의해 구분된 심근에 대한 정보를 제공할 수 있다. 정보 제공부(230)는 구분된 심근에 대한 정보를 다양한 방법으로 제공할 수 있다. 정보 제공부(230)는 색, 패턴, 효과 등의 다양한 방법으로 구분된 심근의 영역이 출력 영상(103)에 드러나도록 하여 심근에 대한 정보를 제공할 수 있다.
정보 제공부(230)는 입력 영상(101)으로서 획득한 심근에 대한 대상 이미지에 구분된 심근에 대한 정보가 드러나도록 표시하여 출력 영상(103)으로서 정보를 제공할 수 있다. 보다 구체적으로, 정보 제공부(230)는 입력 영상(101)에 심근이 다른 기관과 구분되도록 표시하고, 관상동맥의 종류 별로 연관된 심근의 영역이 드러나도록 하여 출력 영상(103)으로 제공할 수 있다.
경우에 따라, 정보 제공부(230)는 입력 영상(101)에 기초하여, 관상동맥의 종류별로 연관된 심근의 영역이 표시되는 출력 영상(103)을 생성하여 제공할 수 있다.
도 3은 본 발명의 일 실시예에 따른 심근 이미지 분석 방법의 각 단계의 흐름을 도시한다. 이하 도 3에서는 도 2의 심근 이미지 분석 장치(10)의 각 구성을 중심으로 설명하겠다. 또한, 도 3에 도시된 방법의 각 단계는 경우에 따라 도면에 도시된 바와 그 순서를 달리하여 수행될 수 있음은 물론이다.
도 3을 참조하면, 대상 이미지 획득부(210)는 조영증강 전의 심근에 대한 대상 이미지를 획득할 수 있다(S110). 보다 구체적으로, 대상 이미지 획득부(210)는 조영제가 투여되지 않은 환자의 관상동맥과 심근을 포함하는 의학용 영상을 대상 이미지로 획득할 수 있다. 의학용 영상은 의학적으로 이용되는 다양한 영상의 종류를 포함할 수 있으며, 예를 들어 컴퓨터 단층촬영(CT)을 포함할 수 있다.
한편, 대상 이미지 획득부(210)에 의해 획득된 대상 이미지는 조영증강 전의 의학용 영상으로서, 일반적으로 관상동맥과 다른 기관에 대한 구분이 모호한 이미지일 수 있다.
심근 구분부(220)는 기계 학습 알고리즘(102)을 이용하여 심근을 구분할 수 있다(S120). 심근 구분부(220)는 기계 학습 알고리즘(102)을 이용하여 대상 이미지 내의 심근을 식별하고, 나아가 심근과 관련된 관상동맥의 종류에 기초하여 대상 이미지에 포함되는 심근을 구분할 수 있다. 예를 들어, 구분된 심근은, 좌관상동맥과 연결된 심근, 좌주관상동맥과 연결된 심근, 좌전하행동맥과 연결된 심근, 근위부 좌전하행동맥과 연결된 심근, 중간부 좌전하행동맥과 연결된 심근, 원위부 좌전하행동맥과 연결된 심근, 우관상동맥과 연결된 심근, 근위부 우관상동맥과 연결된 심근, 중간부 우관상동맥과 연결된 심근, 원위부 우관상동맥과 연결된 심근 및 후하행동맥과 연결된 심근을 포함할 수 있다.
기계 학습 알고리즘(102)은 조영증강 전의 관상동맥과 심근에 대한 이미지와 조영증강 후의 관상동맥과 심근에 대한 이미지를 정합시켜 획득된 학습 데이터 베이스를 이용하여 학습된 알고리즘일 수 있다.
여기서, 학습 데이터 베이스는 상기 관상동맥의 종류별로 관련된 심근의 영역의 크기, 위치, 형태 및 길이 중 적어도 하나에 대한 정보를 포함할 수 있다. 정합에 이용되는 조영증강 전과 후의 이미지는 동일한 대상, 즉 동일 환자에 대한 이미지일 수 있다. 심근 구분부(220)는 이러한 기계 학습 알고리즘(102)에 기초하여 대상 이미지에서 심근을 관상동맥의 종류에 기초하여 세부적으로 식별할 수 있다.
정보 제공부(230)는 구분된 심근에 대한 정보를 제공할 수 있다(S130). 보다 구체적으로, 정보 제공부(230)는 대상 이미지에서 심근 부분이 드러나도록 표시하고 심근의 영역을 관상동맥의 종류 별로 관련된 부분으로 나누어 이에 대한 정보를 제공할 수 있다.
도 4는 본 발명의 일 실시예에 따른 심근 이미지 분석 장치의 출력 영상의 예를 도시한다. 심근 이미지 분석 장치(10)는 심근에 대한 이미지, 즉 심근 이미지를 입력받아 분석을 수행할 수 있다.
도 4를 참조하면, 심근 이미지 분석 장치(10)는 기계 학습 알고리즘(102)에 기초하여 심근 이미지에서 심근이 명확히 드러나도록 표시되는 출력 영상을 제공할 수 있다.
도 4는 출력 영상의 3가지 예시를 도시하고 있으며, 각 출력 영상에는 심근 부분이 하이라이트되어 드러남을 확인할 수 있다. 도시된 바와 같이, 출력 영상에서 심근 부분은 관련된 관상동맥의 종류에 따라 그 색이 다르게 표시될 수 있다. 다만, 이에 제한되지 않으며, 패턴이 다르게 표시되거나 텍스트가 입력되어 표시되는 등 다양한 방식으로 구분된 심근의 영역에 대한 정보가 출력 영상의 형태로 제공될 수 있다.
본 발명의 실시예에 따른 심근 이미지 분석 장치(10)는 기계 학습 알고리즘(102)에 의해 심근의 영역이 자동으로 분석되기 때문에, 사람의 개입 없이, 즉 의사나 분석가의 주관적인 판단에 의존하지 않고 객관적이고 정확한 정보를 제공할 수 있다.
또한, 본 발명의 실시예에 따른 심근 이미지 분석 장치(10)는 심근이 모호하게 나타나는 조영증강 전의 심장 이미지에 대해, 심근에 대한 부분을 식별하고, 심근에 대한 구체적이며 정확한 정보를 제공할 수 있기 때문에, 조영증강 없이도 심근에 대한 정보를 획득할 수 있어 불필요한 조영증강을 최소화할 수 있다.
본 명세서에 첨부된 블록도의 각 블록과 흐름도의 각 단계의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수도 있다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 블록도의 각 블록 또는 흐름도의 각 단계에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 블록도의 각 블록 또는 흐름도 각 단계에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 블록도의 각 블록 및 흐름도의 각 단계에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록 또는 각 단계는 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시예들에서는 블록들 또는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들 또는 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들 또는 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 품질에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 균등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
10: 심근 이미지 분석 장치
101: 입력 영상
102: 기계 학습 알고리즘
103: 출력 영상
111: 제1 심근 영역
112: 제2 심근 영역
113: 제3 심근 영역
210: 대상 이미지 획득부
220: 심근 구분부
230: 정보 제공부
101: 입력 영상
102: 기계 학습 알고리즘
103: 출력 영상
111: 제1 심근 영역
112: 제2 심근 영역
113: 제3 심근 영역
210: 대상 이미지 획득부
220: 심근 구분부
230: 정보 제공부
Claims (12)
- 조영증강 전의 심근에 대한 대상 이미지를 획득하는 단계와,
기계 학습 알고리즘을 이용하여 상기 심근과 관련된 관상동맥의 종류에 기초하여 상기 대상 이미지에 포함되는 상기 심근을 구분하는 단계와,
상기 구분된 심근에 대한 정보를 제공하는 단계를 포함하고,
상기 기계 학습 알고리즘은 기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지의 정합에 의해 생성된 학습 데이터 베이스에 기초하여 학습이 수행된
심근 이미지 분석 방법.
- 제1항에 있어서,
상기 관상동맥의 종류는 좌관상동맥(Left Coronary Artery, LCA), 좌주관상동맥(Left Main Coronary Artery, LMCA), 좌전하행동맥(Left Anterior Descending coronary artery, LAD), 근위부(proximal) 좌전하행동맥, 중간부(middle) 좌전하행동맥, 원위부(distal) 좌전하행동맥, 우관상동맥(Right Coronary Artery, RCA), 근위부 우관상동맥, 중간부 우관상동맥, 원위부 우관상동맥, 후하행동맥(posterior descending artery, PDA)를 포함하는
심근 이미지 분석 방법.
- 제1항에 있어서,
상기 심근을 구분하는 단계는,
상기 심근에 인접하여 상기 심근에 영향을 미치는 상기 관상동맥의 종류에 따라 상기 심근을 구분하는 단계를 포함하는
심근 이미지 분석 방법.
- 제1항에 있어서,
상기 학습 데이터 베이스는 상기 관상동맥의 종류별로 관련된 심근의 영역의 크기, 위치, 형태 및 길이 중 적어도 하나에 대한 정보를 포함하고,
상기 기계 학습 알고리즘은 FCN(Fully Convolutional Network)를 포함하고,
상기 구분된 심근은, 좌관상동맥과 연결된 심근, 좌주관상동맥과 연결된 심근, 좌전하행동맥과 연결된 심근, 근위부 좌전하행동맥과 연결된 심근, 중간부 좌전하행동맥과 연결된 심근, 원위부 좌전하행동맥과 연결된 심근, 우관상동맥과 연결된 심근, 근위부 우관상동맥과 연결된 심근, 중간부 우관상동맥과 연결된 심근, 원위부 우관상동맥과 연결된 심근 및 후하행동맥과 연결된 심근을 포함하는
심근 이미지 분석 방법.
- 제1항에 있어서,
상기 기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 상기 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지는 동일한 대상에 대한 이미지인
심근 이미지 분석 방법.
- 제1항에 있어서,
상기 대상 이미지는 컴퓨터 단층촬영(Computed Tomography, CT) 이미지인
심근 이미지 분석 방법.
- 조영증강 전의 심근에 대한 대상 이미지를 획득하는 대상 이미지 획득부와,
기계 학습 알고리즘을 이용하여 상기 심근과 관련된 관상동맥의 종류에 기초하여 상기 대상 이미지에 포함되는 상기 심근을 구분하는 심근 구분부와,
상기 구분된 심근에 대한 정보를 제공하는 정보 제공부를 포함하고,
상기 기계 학습 알고리즘은 기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지의 정합에 의해 생성된 학습 데이터 베이스에 기초하여 학습이 수행된
심근 이미지 분석 장치.
- 제7항에 있어서,
상기 관상동맥의 종류는 좌관상동맥(Left Coronary Artery, LCA), 좌주관상동맥(Left Main Coronary Artery, LMCA), 좌전하행동맥(Left Anterior Descending coronary artery, LAD), 근위부(proximal) 좌전하행동맥, 중간부(middle) 좌전하행동맥, 원위부(distal) 좌전하행동맥, 우관상동맥(Right Coronary Artery, RCA), 근위부 우관상동맥, 중간부 우관상동맥, 원위부 우관상동맥, 후하행동맥(posterior descending artery, PDA)를 포함하는
심근 이미지 분석 장치.
- 제7항에 있어서,
상기 심근 구분부는,
상기 심근에 인접하여 상기 심근에 영향을 미치는 상기 관상동맥의 종류에 따라 상기 심근을 구분하는
심근 이미지 분석 장치.
- 제7항에 있어서,
상기 학습 데이터 베이스는 상기 관상동맥의 종류별로 관련된 심근의 영역의 크기, 위치, 형태 및 길이 중 적어도 하나에 대한 정보를 포함하고,
상기 기계 학습 알고리즘은 FCN(Fully Convolutional Network)를 포함하고,
상기 구분된 심근은, 좌관상동맥과 연결된 심근, 좌주관상동맥과 연결된 심근, 좌전하행동맥과 연결된 심근, 근위부 좌전하행동맥과 연결된 심근, 중간부 좌전하행동맥과 연결된 심근, 원위부 좌전하행동맥과 연결된 심근, 우관상동맥과 연결된 심근, 근위부 우관상동맥과 연결된 심근, 중간부 우관상동맥과 연결된 심근, 원위부 우관상동맥과 연결된 심근 및 후하행동맥과 연결된 심근을 포함하는
심근 이미지 분석 장치.
- 제7항에 있어서,
상기 기획득된 조영증강 전의 관상동맥과 심근에 대한 이미지와 상기 기획득된 조영증강 후의 관상동맥과 심근에 대한 이미지는 동일한 대상에 대한 이미지인
심근 이미지 분석 장치.
- 제7항에 있어서,
상기 대상 이미지는 컴퓨터 단층촬영(Computed Tomography, CT) 이미지인
심근 이미지 분석 장치.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180140025A KR102187842B1 (ko) | 2018-11-14 | 2018-11-14 | 심근 이미지 분석 방법 및 장치 |
US17/293,638 US12008073B2 (en) | 2018-11-14 | 2019-11-07 | Myocardium image analysis method and device |
PCT/KR2019/015059 WO2020101265A1 (ko) | 2018-11-14 | 2019-11-07 | 심근 이미지 분석 방법 및 장치 |
DE112019005655.7T DE112019005655T5 (de) | 2018-11-14 | 2019-11-07 | Myokardbildanalyseverfahren und -vorrichtung |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180140025A KR102187842B1 (ko) | 2018-11-14 | 2018-11-14 | 심근 이미지 분석 방법 및 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200056106A true KR20200056106A (ko) | 2020-05-22 |
KR102187842B1 KR102187842B1 (ko) | 2020-12-08 |
Family
ID=70730868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180140025A KR102187842B1 (ko) | 2018-11-14 | 2018-11-14 | 심근 이미지 분석 방법 및 장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12008073B2 (ko) |
KR (1) | KR102187842B1 (ko) |
DE (1) | DE112019005655T5 (ko) |
WO (1) | WO2020101265A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112862835A (zh) * | 2021-01-19 | 2021-05-28 | 杭州深睿博联科技有限公司 | 冠脉血管分割方法、装置、设备及计算机可读存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140015984A (ko) * | 2012-07-27 | 2014-02-07 | 삼성전자주식회사 | 필요 혈류량 결정 방법 및 장치, 혈류 영상 생성 방법 및 장치, 심근 관류 영상 처리 방법 및 장치 |
KR20160045916A (ko) * | 2012-10-19 | 2016-04-27 | 하트플로우, 인크. | 맥관구조를 수치 평가하는 시스템들 및 방법들 |
KR20160064562A (ko) * | 2014-11-28 | 2016-06-08 | 삼성전자주식회사 | 3d cta영상으로부터 관상동맥의 구조를 모델링하는 방법 및 장치 |
KR101703564B1 (ko) * | 2015-01-28 | 2017-02-08 | 주식회사 인피니트헬스케어 | 혈관 정보를 포함하는 의료 영상을 디스플레이하는 장치 및 방법 |
KR101865275B1 (ko) | 2016-12-27 | 2018-06-08 | 아주대학교 산학협력단 | 질환 중심 의료 영상을 위한 템플릿 기반 정보 제공 방법 및 그 장치 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5325047A (en) * | 1976-08-19 | 1978-03-08 | Fuji Satsushi Kogyo Kk | Device for preventing sliding doors from rubbing each other and for pulling together |
WO2009020687A2 (en) * | 2007-05-18 | 2009-02-12 | Henry Ford Health System | Mri estimation of contrast agent concentration using a neural network approach |
JP5641792B2 (ja) | 2010-06-24 | 2014-12-17 | 株式会社東芝 | 医用画像診断装置及び医用画像診断装置の制御方法 |
US20130072790A1 (en) * | 2011-09-19 | 2013-03-21 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Selection and optimization for cardiac resynchronization therapy |
US10624597B2 (en) | 2015-02-24 | 2020-04-21 | Samsung Electronics Co., Ltd. | Medical imaging device and medical image processing method |
KR102367133B1 (ko) * | 2015-02-24 | 2022-02-24 | 삼성전자주식회사 | 의료 영상 장치 및 의료 영상 처리 방법 |
US9990712B2 (en) * | 2015-04-08 | 2018-06-05 | Algotec Systems Ltd. | Organ detection and segmentation |
WO2018172990A1 (en) * | 2017-03-24 | 2018-09-27 | Pie Medical Imaging B.V. | Method and system for assessing vessel obstruction based on machine learning |
US10521908B2 (en) * | 2017-12-20 | 2019-12-31 | International Business Machines Corporation | User interface for displaying simulated anatomical photographs |
US11633146B2 (en) * | 2019-01-04 | 2023-04-25 | Regents Of The University Of Minnesota | Automated co-registration of prostate MRI data |
US11501436B2 (en) * | 2020-01-07 | 2022-11-15 | Cleerly, Inc. | Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking |
-
2018
- 2018-11-14 KR KR1020180140025A patent/KR102187842B1/ko active IP Right Grant
-
2019
- 2019-11-07 US US17/293,638 patent/US12008073B2/en active Active
- 2019-11-07 DE DE112019005655.7T patent/DE112019005655T5/de active Pending
- 2019-11-07 WO PCT/KR2019/015059 patent/WO2020101265A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140015984A (ko) * | 2012-07-27 | 2014-02-07 | 삼성전자주식회사 | 필요 혈류량 결정 방법 및 장치, 혈류 영상 생성 방법 및 장치, 심근 관류 영상 처리 방법 및 장치 |
KR20160045916A (ko) * | 2012-10-19 | 2016-04-27 | 하트플로우, 인크. | 맥관구조를 수치 평가하는 시스템들 및 방법들 |
KR20160064562A (ko) * | 2014-11-28 | 2016-06-08 | 삼성전자주식회사 | 3d cta영상으로부터 관상동맥의 구조를 모델링하는 방법 및 장치 |
KR101703564B1 (ko) * | 2015-01-28 | 2017-02-08 | 주식회사 인피니트헬스케어 | 혈관 정보를 포함하는 의료 영상을 디스플레이하는 장치 및 방법 |
KR101865275B1 (ko) | 2016-12-27 | 2018-06-08 | 아주대학교 산학협력단 | 질환 중심 의료 영상을 위한 템플릿 기반 정보 제공 방법 및 그 장치 |
Also Published As
Publication number | Publication date |
---|---|
WO2020101265A1 (ko) | 2020-05-22 |
KR102187842B1 (ko) | 2020-12-08 |
DE112019005655T5 (de) | 2021-09-09 |
US20220012532A1 (en) | 2022-01-13 |
US12008073B2 (en) | 2024-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12040079B2 (en) | Medical image processing apparatus, medical image processing method and computer-readable medium | |
EP3373798B1 (en) | Method and system for classifying optic nerve head | |
US20210390696A1 (en) | Medical image processing apparatus, medical image processing method and computer-readable storage medium | |
US11922601B2 (en) | Medical image processing apparatus, medical image processing method and computer-readable medium | |
CN104644202B (zh) | 医用图像数据处理装置、医用图像数据处理方法以及医用图像数据处理程序 | |
KR102354396B1 (ko) | 관상동맥석회화점수 산정 방법 및 장치 | |
EP3937753A1 (en) | Supervised machine learning based multi-task artificial intelligence classification of retinopathies | |
EP3923190A1 (en) | A system and method for evaluating a performance of explainability methods used with artificial neural networks | |
Trucco et al. | Morphometric measurements of the retinal vasculature in fundus images with VAMPIRE | |
KR101611488B1 (ko) | 의료 영상에서 아티팩트와 병변을 구분하는 방법 | |
Abràmoff | Image processing | |
CN114723739B (zh) | 一种基于cta影像的血管分段模型训练数据标注方法及装置 | |
Sirazitdinova et al. | Validation of computerized quantification of ocular redness | |
Ervin et al. | Fast automated stereo-EEG electrode contact identification and labeling ensemble | |
KR20200056106A (ko) | 심근 이미지 분석 방법 및 장치 | |
DE102021117759A1 (de) | Medizinische Bildverarbeitungsvorrichtung, System und Verfahren | |
US20120207268A1 (en) | System and methods for functional analysis of soft organ segments in spect-ct images | |
JP2022117177A (ja) | 情報処理装置、情報処理方法及び情報処理プログラム | |
CN115049655A (zh) | 一种小鼠模型视网膜病灶分布分析方法 | |
de Moura et al. | Fully automated identification and clinical classification of macular edema using optical coherence tomography images | |
de Moura et al. | Artery/vein vessel tree identification in near-infrared reflectance retinographies | |
EP4197442A1 (en) | Peripheral perfusion analysis | |
EP4024331A1 (en) | Peripheral perfusion | |
DE112022005797T5 (de) | Perfusionsanalyse | |
JP2024034265A (ja) | 医用画像処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |