KR20200053308A - Drug delivery system comprising enzyme-responsive amphiphilic peptide - Google Patents

Drug delivery system comprising enzyme-responsive amphiphilic peptide Download PDF

Info

Publication number
KR20200053308A
KR20200053308A KR1020180136764A KR20180136764A KR20200053308A KR 20200053308 A KR20200053308 A KR 20200053308A KR 1020180136764 A KR1020180136764 A KR 1020180136764A KR 20180136764 A KR20180136764 A KR 20180136764A KR 20200053308 A KR20200053308 A KR 20200053308A
Authority
KR
South Korea
Prior art keywords
peptide
nanoparticles
drug delivery
delivery system
doxorubicin
Prior art date
Application number
KR1020180136764A
Other languages
Korean (ko)
Other versions
KR102156649B1 (en
Inventor
최준식
송수정
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020180136764A priority Critical patent/KR102156649B1/en
Publication of KR20200053308A publication Critical patent/KR20200053308A/en
Application granted granted Critical
Publication of KR102156649B1 publication Critical patent/KR102156649B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers

Abstract

The present invention relates to a drug delivery system including an enzyme-responsive amphiphilic peptide. Particularly, the enzyme-responsive amphiphilic peptide is a peptide including a sequence of arginine (R)- histidine (H)- [glycine (G)- leucine (L)- phenylalanine (F)- glycine (G)]_n. The peptide forms nanoparticles through self-assembly, and is characterized in that the hydrophilic sequence RH faces outwards and the hydrophobic sequence GLFG is positioned inwards, and can move into cells while including a hydrophobic drug, such as an anticancer agent, therein. In addition, GLFC is characteristically cleaved by cathepsin-B enzyme. Thus, when the nanoparticles permeate a cell membrane and come into cells, they are cleaved by cathepsin-B to release the drug.

Description

효소 반응 양친매성 펩티드를 포함하는 약물전달 시스템{Drug delivery system comprising enzyme-responsive amphiphilic peptide}Drug delivery system comprising enzyme-responsive amphiphilic peptide

본 발명은 효소 반응 양친매성 펩티드를 포함하는 약물전달 시스템에 관한 것이다.The present invention relates to a drug delivery system comprising an enzyme reaction amphiphilic peptide.

펩티드는 우수한 생체 적합성과 생분해성으로 인해 약물전달 시스템으로 연구되고 있을 뿐만 아니라, 펩티드는 중요한 생물학적 메커니즘에 관여하여, 전략적이고 효율적인 펩티드 기반 시스템으로 제공될 수 있다. 예를 들어, 세포-투과성 펩티드(cell-penetrating peptides; CPP)는 세포 유입을 증진시키는데 적용할 수 있다. 라이신(lysine)과 아르기닌(arginine)은 세포막과의 상호 작용을 유도하고 나노 입자, 작은 분자 및 유전자와 같은 물질을 전달할 수 있다. Peptides are not only being studied as drug delivery systems due to their excellent biocompatibility and biodegradability, but peptides can also be provided as strategic and efficient peptide-based systems by engaging in important biological mechanisms. For example, cell-penetrating peptides (CPP) can be applied to enhance cell influx. Lysine and arginine can induce interactions with cell membranes and deliver substances such as nanoparticles, small molecules and genes.

유전자 전달 시스템은 효과적인 유전자 발현을 위해서는 핵막의 침투를 요구하기 때문에, 핵 위치 서열(nuclear localization sequence; NLS)은 핵 전달에 의해 세포 핵으로 단백질을 도입하는데 사용될 수 있다. 따라서 NLS는 유전자 전달에 유용하게 사용될 수 있다. 한편, 미토콘드리아 표적 펩티드도 전달 시스템에 유용한 도구로 사용될 수 있다는 것이 보고되어, 새로운 전달 시스템으로서 연구되어왔다.Since gene delivery systems require penetration of the nuclear membrane for effective gene expression, the nuclear localization sequence (NLS) can be used to introduce proteins into the cell nucleus by nuclear transfer. Therefore, NLS can be useful for gene delivery. On the other hand, it has been reported that mitochondrial target peptides can also be used as a useful tool in delivery systems, and has been studied as a new delivery system.

양친매성 펩티드(AP)의 자가조립 나노 구조는 아미노산 디자인에 의해 유도된 자가조립 능력으로 인해 약물 전달 시스템으로 많은 주목을 받고 있다. 최근 연구에서 coiled-coil helix bundle에 기반한 AP는 계층적 어셈블리를 형성하는 것으로 나타났다. 칼슘 채널에서 유래한 폴리펩티드를 약물 전달 시스템으로 적용하는 것에 대한 연구가 진행되고 있고, siRNA 전달 시스템에서 아르기닌과 발린을 함유한 AP가 보고된 바 있으며, AP를 기반으로 하는 나노 구조는 자기-보조(self-adjuvant) 특성을 나타내기도 하였다. 분지된 양친매성 펩티드 캡슐은 캡슐화된 용질의 세포 흡수 및 보유에 대해 연구가 보고된 바 있다. The self-assembled nanostructure of the amphipathic peptide (AP) has attracted much attention as a drug delivery system due to the self-assembly ability induced by amino acid design. A recent study showed that APs based on coiled-coil helix bundles form a hierarchical assembly. Research into the application of a polypeptide derived from a calcium channel as a drug delivery system has been conducted, and APs containing arginine and valine have been reported in siRNA delivery systems, and nanostructures based on AP are self-assisted ( self-adjuvant). Branched amphipathic peptide capsules have been studied for cell uptake and retention of encapsulated solutes.

양친매성 펩티드를 이용하는 약물 전달 시스템(DDS)은 생체 적합성 및 효율적인 전달 캐리어로서의 가능성을 갖는다. 대부분의 치료제는 소수성이며, 수용액에서의 용해도가 낮아 치료 효능이 낮은 문제점이 있다. 따라서 캡슐화를 통해 약물의 용해도를 향상시킬 필요가 있다. 친수성 헤드와 소수성 코어를 함유한 AP는 소수성 약물을 캡슐화할 수 있으므로 치료 효능을 증가시킬 수 있다. 상기 펩티드는 생체 적합성 및 생분해성이 우수하여 약물 전달 시스템에서 유리하다. 실제로, 중합체에 기초한 전달 시스템은 낮은 분해성 및 과량의 세포 내 축적 때문에 현저한 세포 독성을 갖는 것으로 보고되었다. Drug delivery systems (DDS) using amphipathic peptides have the potential as biocompatibility and efficient delivery carriers. Most therapeutic agents are hydrophobic and have low solubility in aqueous solutions, resulting in low therapeutic efficacy. Therefore, it is necessary to improve the solubility of the drug through encapsulation. The AP containing the hydrophilic head and the hydrophobic core can encapsulate the hydrophobic drug, thereby increasing therapeutic efficacy. The peptide is excellent in biocompatibility and biodegradability and is advantageous in drug delivery systems. Indeed, polymer-based delivery systems have been reported to have significant cytotoxicity due to low degradability and excessive intracellular accumulation.

그러나 AP를 이용한 약물 전달 시스템은 아직 폴리머 기반의 약물 전달 시스템에 비해 만족스러운 결과를 얻지 못한 실정이다. 그러므로 전달 시스템의 효율을 높이려면 약물 방출의 안정성과 제어가 개선되어야 할 것이다. .However, the drug delivery system using the AP has not yet achieved satisfactory results compared to the polymer-based drug delivery system. Therefore, to improve the efficiency of the delivery system, the stability and control of drug release should be improved. .

한편, 본 발명 관련 기술로, 한국등록특허 제1647178호에 효소 절단성 링커 또는 올리고 라이신을 포함하는 폴리에틸렌 글리콜-리피드를 이용한 안정화된 플라스미드-지질 입자에 관한 기술이 개시되어 있고, 한국등록특허 제0857389호에 AP-GRR 펩티드 또는 AP-GRR 펩티드를 포함하는 펩티드 사슬 및 이를 포함하는 약물 전달 담체에 관한 기술이 개시되어 있으나, 본 발명의 효소 반응 양친매성 펩티드를 포함하는 약물전달 시스템에 관하여 개시된 바 없다. On the other hand, as a technology related to the present invention, Korean Patent No. 1647178 discloses a technique related to stabilized plasmid-lipid particles using an enzyme cleavable linker or a polyethylene glycol-lipid containing oligolysine, and Korean Patent No. 0857389 Although the description of AP-GRR peptides or peptide chains comprising AP-GRR peptides and drug delivery carriers comprising the same is disclosed, no drug delivery systems comprising the enzymatically reactive amphipathic peptides of the present invention have been disclosed. .

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명은 일반식 1로 표시되는 아미노산 서열로 이루어진 펩티드를 포함하는 약물 전달체를 제공하고, 본 발명의 펩티드 나노입자는 자가조립하여 약물을 봉합할 수 있으며, 세포독성이 없고, 타겟 약물을 봉합한 펩티드 나노입자가 세포 내로 약물을 전달하여 우수한 항암 효과를 나타낼 수 있다는 것을 확인함으로써, 본 발명을 완성하였다.The present invention has been derived by the above-described needs, the present invention provides a drug delivery system comprising a peptide consisting of the amino acid sequence represented by Formula 1, and the peptide nanoparticles of the present invention are self-assembled to seal the drug. The present invention was completed by confirming that there is no cytotoxicity and that the peptide nanoparticles encapsulating the target drug can deliver the drug into the cell and exhibit excellent anticancer effects.

상기 목적을 달성하기 위하여, 본 발명은 하기 일반식 1로 표시되는 아미노산 서열로 이루어진 펩티드를 포함하는 약물 전달체를 제공한다.In order to achieve the above object, the present invention provides a drug delivery system comprising a peptide consisting of an amino acid sequence represented by the following general formula (1).

[일반식 1][Formula 1]

아르기닌(R)-히스티딘(H)-[글리신(G)-류신(L)-페닐알라닌(F)-글리신(G)]n Arginine (R) -histidine (H)-[glycine (G) -leucine (L) -phenylalanine (F) -glycine (G)] n

상기 일반식 1에서, n은 1~10인 정수이다. In the general formula 1, n is an integer from 1 to 10.

본 발명은 효소 반응 양친매성 펩티드를 포함하는 약물전달 시스템에 관한 것으로, 상기 효소 반응 양친매성 펩티드는 구체적으로 아르기닌(R)-히스티딘(H)-[글리신(G)-류신(L)-페닐알라닌(F)-글리신(G)]n의 서열로 이루어진 펩티드로, 상기 펩티드는 자가조립(self-assembly)에 의해 나노입자를 형성하는데, 친수성 서열인 RH가 바깥쪽으로 향하고, 소수성 서열인 GLFG는 안쪽으로 위치하는 특징이 있으며, 항암제 등의 소수성의 약물을 내부에 품은 채로 세포 안으로 이동할 수 있는 특징이 있다. 또한, GLFG는 카텝신-B 효소에 의해 절단되는 특징이 있어 본 발명에 따른 나노입자가 세포막을 투과하여 세포 안으로 들어오면 카텝신-B에 의해 절단되어 약물이 방출되는 것이다. 따라서 본 발명의 약물 전달 시스템은 소수성 약물인 항암제 등의 전달체로 유용하게 사용될 수 있다.The present invention relates to a drug delivery system comprising an enzymatically reactive amphipathic peptide, wherein the enzymatically reactive amphipathic peptide is specifically arginine (R) -histidine (H)-[glycine (G) -leucine (L) -phenylalanine ( F) -glycine (G)] A peptide consisting of the sequence of n , wherein the peptide forms nanoparticles by self-assembly, the hydrophilic sequence RH is directed outward, and the hydrophobic sequence GLFG is inward. It has the characteristic of being located, and it has the characteristic of being able to move into the cell while holding a hydrophobic drug such as an anti-cancer agent inside. In addition, GLFG is characterized by being cut by the cathepsin-B enzyme, so that when the nanoparticles according to the present invention penetrate the cell membrane and enter the cell, the drug is cleaved by cathepsin-B to release the drug. Therefore, the drug delivery system of the present invention can be usefully used as a delivery agent for anti-cancer drugs, which are hydrophobic drugs.

도 1은 약물전달체의 일례로, RH-(GFLG)3 나노입자를 도식화한 것이다.
도 2는 RH-(GFLG)3 나노입자의 물리적 특성을 확인한 결과이다. (A)는 LL 나노입자의 크기 분포를 나타낸 히스토그램이고, (B)는 LL 펩티드 나노입자의 필드 방사 주사 전자 현미경으로 측정한 이미지이고, (C)는 LL 및 DD 나노입자의 저장기간에 따른 크기 변화를 나타낸 그래프이고, (D)는 LL 및 DD 나노입자의 CD(Circular dichroism) 스펙트럼이고, (E)는 LL 펩티드 나노입자의 최저미셀형성농도(Critical micelle concentration; CMC)를 확인한 결과이다.
도 3은 RH-(GFLG)3 나노입자의의 세포독성을 확인한 결과이다. (A)는 MTT 어세이 결과이고, (B)는 LDH 어세이 결과이며, (C)는 용혈작용(Hemolysis) 어세이 결과이고, (D) 제브라피쉬(Zebra fish) 배아 발생 테스트 결과이다. LL은 LRH-L(GFLG)3이고, LD는 LRH-D(GFLG)3이며, DD는 DRH-D(GFLG)3이고, DL은 DRH-L(GFLG)3이며, PEI 25KD는 양성 대조군으로 양이온성 폴리머이다.
도 4는 나일 레드가 결합된 RH-(GFLG)3 나노입자의 세포 유입 어세이 결과이다. (A)는 공초점 현미경으로 확인한 이미지이고, (B)는 FACS(Fluorescence-activated cell sorting) 분석 결과이다.
도 5는 MALDI-TOF 질량분석을 이용한 효소 민감도 어세이 결과이다. (A) LL 펩티드(control), (B) 카텝신 B(cathepsin B)를 처리한 LL 펩티드; (C) LD 펩티드(control) (D) 카텝신 B(cathepsin B)를 처리한 LD 펩티드; (E) DL 펩티드(control) (F) 카텝신 B(cathepsin B)를 처리한 DL 펩티드; (G) DD 펩티드(control) (H) 카텝신 B(cathepsin B)를 처리한 DD 펩티드.
도 6은 효소 처리에 의한 LL-Dox 및 DD-Dox로부터 방출된 약물(독소루비신)의 누적 방출량을 나타낸 결과이다.
도 7은 HeLa 세포에서, 독소루비신(Dox)이 봉합된 RH-(GFLG)3 나노입자의 세포 유입 어세이 결과이다.
도 8은 HeLa 및 SW480 세포에서, Dox-RH-(GFLG)3 나노입자의 항암활성을 확인한 결과이다. (A)는 SW480 세포에서 48시간 동안 인큐베이션 한 후의 세포 생존율이고, (B)는 HeLa 세포에서 72시간 동안 인큐베이션 한 후의 세포생존율이다. ** 및 ***은 독소루비신 단독을 처리한 것에 대비하여 본 발명의 Dox-RH-(GFLG)3 나노입자의 세포 생존율이 통계적으로 유의미하게 감소하였다는 것으로, **는 p<0.01이며, ***는 p<0.001이다.
도 9는 Dox-RH-(GFLG)3 나노입자의 항암 활성을 확인한 결과이다.
1 is an example of a drug delivery system, which is a schematic diagram of RH- (GFLG) 3 nanoparticles.
2 is a result confirming the physical properties of the RH- (GFLG) 3 nanoparticles. (A) is a histogram showing the size distribution of LL nanoparticles, (B) is an image measured by field emission scanning electron microscopy of LL peptide nanoparticles, and (C) is the size according to the storage period of LL and DD nanoparticles A graph showing the change, (D) is a CD (Circular dichroism) spectrum of LL and DD nanoparticles, (E) is a result of confirming the minimum micelle concentration (CMC) of the LL peptide nanoparticles.
3 is a result confirming the cytotoxicity of the RH- (GFLG) 3 nanoparticles. (A) is the MTT assay result, (B) is the LDH assay result, (C) is the hemolysis assay result, and (D) the zebra fish embryo development test result. LL is L RH- L (GFLG) 3 , LD is L RH- D (GFLG) 3 , DD is D RH- D (GFLG) 3 , DL is D RH- L (GFLG) 3 , PEI 25KD Is a cationic polymer as a positive control.
4 is a result of the cell influx assay of NH red bound RH- (GFLG) 3 nanoparticles. (A) is an image confirmed by confocal microscopy, and (B) is the result of FACS (Fluorescence-activated cell sorting) analysis.
Figure 5 shows the results of an enzyme sensitivity assay using MALDI-TOF mass spectrometry. (A) LL peptide (control), (B) LL peptide treated with cathepsin B; (C) LD peptide (control) (D) LD peptide treated with cathepsin B; (E) DL peptide (control) (F) DL peptide treated with cathepsin B; (G) DD peptide (control) (H) DD peptide treated with cathepsin B.
6 is a result showing the cumulative release amount of the drug (doxorubicin) released from LL-Dox and DD-Dox by enzyme treatment.
7 is a result of a cell influx assay of RH- (GFLG) 3 nanoparticles in which Doxorubicin (Dox) is sealed in HeLa cells.
8 is a result confirming the anticancer activity of Dox-RH- (GFLG) 3 nanoparticles in HeLa and SW480 cells. (A) is the cell viability after 48 hours incubation in SW480 cells, and (B) is the cell survival rate after 72 hours incubation in HeLa cells. ** and *** are statistically significantly reduced cell viability of Dox-RH- (GFLG) 3 nanoparticles of the present invention compared to treatment with doxorubicin alone, ** is p <0.01, * ** is p <0.001.
9 is a result confirming the anticancer activity of Dox-RH- (GFLG) 3 nanoparticles.

본 발명은 하기 일반식 1로 표시되는 아미노산 서열로 이루어진 펩티드를 포함하는 약물 전달체에 관한 것이다.The present invention relates to a drug delivery system comprising a peptide consisting of the amino acid sequence represented by the following general formula (1).

[일반식 1][Formula 1]

아르기닌(R)-히스티딘(H)-[글리신(G)-류신(L)-페닐알라닌(F)-글리신(G)]n Arginine (R) -histidine (H)-[glycine (G) -leucine (L) -phenylalanine (F) -glycine (G)] n

상기 일반식 1에서, n은 1~10인 정수이다.In the general formula 1, n is an integer from 1 to 10.

상기 펩티드는 자가조립(self-assembly)하여 바깥쪽으로 친수성의 아르기닌(R)-히스티딘(H)의 아미노산 서열이 위치하고, 안쪽으로 소수성 잔기의 글리신(G)-류신(L)-페닐알라닌(F)-글리신(G)의 아미노산 서열이 위치하는 미셀 형태의 나노입자를 형성하는 것이 특징이다. The peptide is self-assembled and the amino acid sequence of hydrophilic arginine (R) -histidine (H) is located outward, and glycine (G) -leucine (L) -phenylalanine (F)-of hydrophobic residues is located inward. It is characterized by forming micelle-shaped nanoparticles in which the amino acid sequence of glycine (G) is located.

상기 펩티드를 형성하는 아미노산의 키랄성(chirality)은 L-형 또는 D-형일 수 있으나, 바람직하게는 친수성의 아르기닌 및 히스티딘 아미노산이 L- 또는 D-형일 수 있으며, 마찬가지로 소수성의 글리신, 류신, 페닐알라닌 및 글리신 아미노산이 L- 또는 D-형일 수 있고, 더 바람직하게는 상기 펩티드를 형성하는 아미노산의 키랄성(chirality)은 LRH-L(GFLG)n, LRH-D(GFLG)n 또는 DRH-L(GFLG)n(DL)인 것이며, 가장 바람직하게는 LRH-L(GFLG)n인 것이지만, 이에 한정하는 것은 아니다. The chirality of the amino acids forming the peptide may be L-type or D-type, but preferably the hydrophilic arginine and histidine amino acids may be L- or D-type, likewise hydrophobic glycine, leucine, phenylalanine and The glycine amino acid may be of L- or D-type, more preferably the chirality of the amino acids forming the peptide is L RH- L (GFLG) n , L RH- D (GFLG) n or D RH- L (GFLG) n (DL), and most preferably L RH- L (GFLG) n , but is not limited thereto.

상기 미셀의 안쪽에 소수성 항암제를 함유할 수 있으며, 상기 소수성 항암제는 독소루비신, 도세탁셀, 파클리탁셀, 이리노테칸, 캠프토테신 및 액티노마이신 D 중에서 선택된 하나 이상의 항암제인 것이 바람직하고, 더 바람직하게는 독소루비신이지만 이에 한정하는 것은 아니다. A hydrophobic anticancer agent may be contained inside the micelle, and the hydrophobic anticancer agent is preferably at least one anticancer agent selected from doxorubicin, docetaxel, paclitaxel, irinotecan, camptothecin and actinomycin D, and more preferably doxorubicin. It is not limited.

상기 펩티드는 카텝신 B(Cathepsin B) 효소에 의해 절단되는 것이 특징이다.The peptide is characterized by being cleaved by the cathepsin B enzyme.

이하, 실시예를 이용하여 본 발명을 더욱 상세하게 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이들에 의해 제한되지 않는다는 것은 당해 기술분야에서 통상의 지식을 가진 자에게 있어 자명한 것이다. Hereinafter, the present invention will be described in more detail using examples. It is obvious to those skilled in the art that these examples are only intended to illustrate the present invention more specifically and that the scope of the present invention is not limited by them.

실시예Example 1. 펩티드의 나노입자 1. Peptide nanoparticles of 형성 formation

RH-GFLG(서열번호 1), RH-(GFLG)2(서열번호 2), LRH-L(GFLG)3(LL)(서열번호 3), LRH-D(GFLG)3(LD)(서열번호 3), DRH-L(GFLG)3(DL)(서열번호 3), 및 DRH-D(GFLG)3(DD)(서열번호 3)는 펩트론에서 구매하였고, 상기 펩티드 중에서, 이성질체가 포함된 LD, DL, DD 펩티드는 대조군으로 사용하였다. RH-GFLG (SEQ ID NO: 1), RH- (GFLG) 2 (SEQ ID NO: 2), L RH- L (GFLG) 3 (LL) (SEQ ID NO: 3), L RH- D (GFLG) 3 (LD) ( SEQ ID NO: 3), D RH- L (GFLG) 3 (DL) (SEQ ID NO: 3), and D RH- D (GFLG) 3 (DD) (SEQ ID NO: 3) were purchased from peptron and among the peptides, isomers LD, DL, DD peptide containing was used as a control.

펩티드는 최종 농도가 1~10mg/㎖이 되도록 물에 녹여 준비한 후, 15분 동안 초음파 처리하여 펩티드 나노입자를 형성시키고, 4℃에서 하루 동안 보관한 후 사용하였다. Peptides were prepared by dissolving in water so that the final concentration was 1-10 mg / ml, and then sonicating for 15 minutes to form peptide nanoparticles and storing at 4 ° C for one day before use.

나일 레드가 태깅된 펩티드 나노입자는 세포 유입 어세이를 위해 준비하였는데, 나일 레드는 메탄올을 용매로 하여 100nM의 농도가 되도록 준비한 후, 나일 레드:펩티드가 1:105의 몰비가 되도록 상기 펩티드 용액과 나일레드를 혼합하고 15분 동안 초음파 처리하였다. 펩티드에 태깅되지 않은 나일레드는 스핀칼럼으로 제거하고, 나일레드 태깅된 펩티드 나노입자는 4℃에서 보관하였다. Peptide nanoparticles tagged with Nile Red were prepared for a cell influx assay, and Nile Red was prepared to have a concentration of 100 nM using methanol as a solvent, followed by solution of the peptide such that the Nile Red: peptide became a molar ratio of 1:10 5 And nile were mixed and sonicated for 15 minutes. Nileed that was not tagged to the peptide was removed by spin column, and the nanoparticle of the nied-tagged peptide was stored at 4 ° C.

실시예Example 2. 펩티드 나노입자 2. Peptide nanoparticles of 물리적 특성  Physical properties

펩티드 나노입자의 크기는 0.5mg/㎖의 농도에서 Photal사의 ELS-Z2 동적광산란입도계를 이용하여 분석하였다. 펩티드 나노입자의 표면 전하 값은 Malvern사의 Nano-ZS로 측정하였다. 나노입자의 안정도를 확인하기 위하여, LL 펩티드 나노입자는 30일 동안 동적 광산란 입도계로 지속적으로 분석하였다. LL 펩티드 나노입자의 형태는 히타치사의 주사전자현미경으로 분석하였다. 주사전자현미경 측정을 위하여, 펩티드 나노입자는 실리콘 웨이퍼 위에서 건조한 다음 오스뮴으로 코팅하였다. 준비된 펩티드 나노입자는 5~10kV 전압 조건에서 주사전자현미경으로 분석하였다. 자가조립(self-assembly)으로 형성된 펩티드 나노입자의 구조는 Jasco사의 CD 분석기를 이용하여 측정하였다. LL 및 DD 펩티드 나노입자 용액을 190~260nm 파장 범위에서 측정하였다. The size of the peptide nanoparticles was analyzed using a phosphorescent ELS-Z2 dynamic light scatterometer at a concentration of 0.5 mg / ml. The surface charge value of the peptide nanoparticles was measured by Nano-ZS from Malvern. To confirm the stability of the nanoparticles, LL peptide nanoparticles were continuously analyzed with a dynamic light scattering particle sizer for 30 days. The form of the LL peptide nanoparticles was analyzed by Hitachi scanning electron microscope. For scanning electron microscope measurements, the peptide nanoparticles were dried on a silicon wafer and then coated with osmium. The prepared peptide nanoparticles were analyzed under a scanning electron microscope under a voltage condition of 5-10 kV. The structure of the peptide nanoparticles formed by self-assembly was measured using a Jasco CD analyzer. LL and DD peptide nanoparticle solutions were measured in the 190-260 nm wavelength range.

그 결과 도 2의 (A) 및 (B)에 개시한 바와 같이, 본 발명에 따른 LL 펩티드 나노입자의 크기(직경)는 약 100nm 수준으로 나타났으며; 도 2의 (C)는 LL 및 DD 펩티드 나노입자는 4℃에서 30일 정도 저장해도 그 크기(직경)가 약 200nm 정도를 유지한다는 것으로 나타났고; 도 2의 (D)는 LL 펩티드 나노입자의 91.5%가 turn 구조이고, 8.5%가 random 구조라는 것을 확인하였고, DD 펩티드 나노입자의 29.2%가 beta-sheet 구조이며, 15%가 turn 구조이고, 55.8%가 random 구조라는 것을 확인하였다.As a result, as shown in (A) and (B) of Figure 2, the size (diameter) of the LL peptide nanoparticles according to the present invention was found to be about 100 nm level; FIG. 2 (C) shows that LL and DD peptide nanoparticles retain their size (diameter) of about 200 nm even when stored at 4 ° C. for about 30 days; 2 (D), it was confirmed that 91.5% of LL peptide nanoparticles have a turn structure, 8.5% have a random structure, 29.2% of DD peptide nanoparticles have a beta-sheet structure, 15% have a turn structure, It was confirmed that 55.8% were random structures.

실시예Example 3. 펩티드 나노입자의 임계 미셀 농도 분석  3. Critical micelle concentration analysis of peptide nanoparticles

펩티드 나노입자의 임계 미셀 농도는 소수성의 나일레드를 이용하여 분석하였다. 펩티드 나노입자는 0.001~0.3mg/㎖로 1㎖씩 준비하였다. 준비된 나노입자 용액과 40μM의 나일레드 용액 5㎕을 혼합하였다. 나일레드 용액에 포함된 에탄올을 제거하기 위하여, 질소로 날려준 후, 상온에서 1시간 동안 반응시켰다. 반응이 끝난 시료들은 형광기를 이용하여 515nm에서 여기(excitation)하여 550~750nm에서 측정하였다. 펩티드 나노입자의 임계 미셀 농도는 650nm에서 분석하였다. The critical micelle concentration of the peptide nanoparticles was analyzed using hydrophobic Nile. Peptide nanoparticles were prepared in 1 ml increments at 0.001 to 0.3 mg / ml. The prepared nanoparticle solution and 5 μl of a 40 μM nile red solution were mixed. In order to remove the ethanol contained in the nile red solution, it was blown with nitrogen and reacted at room temperature for 1 hour. After the reaction was completed, excitation was performed at 515 nm using a fluorescent device to measure at 550 to 750 nm. The critical micelle concentration of the peptide nanoparticles was analyzed at 650 nm.

그 결과 도 2(E)에 개시한 바와 같이 나노입자의 임계 미셀 농도가 0.02mg/㎖인 것을 확인할 수 있었다.As a result, it was confirmed that the critical micelle concentration of the nanoparticles was 0.02 mg / ml, as shown in FIG. 2 (E).

실시예Example 4. 펩티드 나노입자 4. Peptide nanoparticles of 세포 독성 확인 Cytotoxicity check

(1) 세포배양(1) Cell culture

HeLa 세포는 89%의 DMEM, 10%의 FBS 및 0.1mg/㎖의 antibiotic-antimycotic시약이 포함된 상태에서 37℃, 5% CO2 조건에서 배양하였다. 상기 배양한 HeLa 세포를 이용하여 펩티드 나노입자의 세포독성을 분석하였다.HeLa cells were cultured at 37 ° C., 5% CO 2 condition with 89% DMEM, 10% FBS and 0.1 mg / ml antibiotic-antimycotic reagent. Cytotoxicity of the peptide nanoparticles was analyzed using the cultured HeLa cells.

(2) (2) WSTWST -1 분석-1 analysis

HeLa 세포를 96웰 마이크로플레이트에 각 웰당 1.0×104 개의 세포를 분주하여 24시간 동안 인큐베이션하였다. PEI 25KD, LL, LD, DL 및 DD는 0.025~0.2㎍/㎕의 농도로 준비하였다. 24시간 동안 안정화 후, 10㎕의 WST-1를 처리하고 2시간 동안 반응시켰다. WST-1 포말잔은 VERASmax 마이크로 리더기를 이용해서 450nm에서 흡광도를 측정하였다. HeLa cells were incubated for 24 hours by dispensing 1.0 × 10 4 cells per well into a 96-well microplate. PEI 25KD, LL, LD, DL and DD were prepared at concentrations of 0.025 to 0.2 μg / μl. After stabilization for 24 hours, 10 μl of WST-1 was treated and reacted for 2 hours. For WST-1 foam, absorbance was measured at 450 nm using a VERASmax micro reader.

그 결과, 도 3의 (A)에 개시한 바와 같이, LL, DD, DL 및 LD 펩티드 나노입자는 세포독성이 거의 없어, 세포 생존률(%)에는 영향을 미치지 않는 것으로 나타났다.As a result, as shown in Figure 3 (A), it was found that the LL, DD, DL and LD peptide nanoparticles have little cytotoxicity, and thus do not affect the cell viability (%).

(3) (3) LDHLDH 활성 분석 Active analysis

20%의 Tween-20을 처리한 세포를 LDH 최대 활성을 나타낸 대조군으로 사용하였으며, 각각의 시료를 처리하고 24시간 후, 각 시료의 상층액을 10㎕씩 취한 후, 이 상층액을 0.2mM의 NADH 및 2.5mM의 피브르산나트륨이 포함된 반응 용액과 함께 37℃에서 45분 동안 반응시켰다. 반응이 끝난 시료는 490nm에서 흡광도를 측정하였다.Cells treated with 20% Tween-20 were used as a control showing the maximum activity of LDH, and after 24 hours of processing each sample, 10 μl of the supernatant of each sample was taken, and this supernatant was 0.2 mM. The reaction solution was reacted with NADH and 2.5 mM sodium fibrate at 37 ° C for 45 minutes. The absorbance of the sample after the reaction was measured at 490 nm.

그 결과, 도 3의 (B)에 개시한 바와 같이, LL, DD, DL 및 LD 펩티드 나노입자는 세포막을 손상시키지 않아 LDH 방출이 거의 일어나지 않는 것으로 나타났다. As a result, as shown in FIG. 3 (B), it was found that the LL, DD, DL and LD peptide nanoparticles did not damage the cell membrane and thus little LDH release occurred.

실시예Example 5. 나노입자의 용혈작용에 대한 분석 5. Analysis of hemolysis of nanoparticles

LL, LD, DL, DD 펩티드 나노입자의 용혈분석은 인간의 적혈구를 이용하여 실시하였고, PEI 25KD을 양성대조군으로 사용하였다. 본 실시예 6에서 사용한 혈액은 건강한 지원자로부터 채취하였다. 혈액에 EDTA를 처리하여 응고를 방지한 후, 5000rpm으로 5분 동안 원심분리하여 혈장으로부터 적혈구를 분리하였다. 분리한 적혈구는 PBS를 이용해서 2번 씻어 준 후, 1㎖ 당 2.0×108 개의 세포로 준비하였다. Hemolysis analysis of LL, LD, DL, and DD peptide nanoparticles was performed using human red blood cells, and PEI 25KD was used as a positive control. Blood used in Example 6 was taken from healthy volunteers. After treating EDTA with blood to prevent coagulation, red blood cells were separated from plasma by centrifugation at 5000 rpm for 5 minutes. The isolated red blood cells were washed twice with PBS, and then prepared with 2.0 × 10 8 cells per ml.

용혈 작용을 비교 분석하기 위해서, 0.2%의 트리톤 X-100을 처리한 군을 최대 용혈 대조군으로 설정하였으며, 0.25㎖의 적혈구와 0.25㎖의 시료를 혼합하여, 최종 농도가 0.1 또는 0.2 mg/㎖가 되도록 준비하여 37℃에서 2시간 동안 방치하였다. 반응이 끝난 시료는 5000rpm으로 5분 동안 원심분리하여 상층액 30㎕을 취하였다. 이 상층액을 PBS로 10배 희석하여 450nm의 파장에서 VERSAmax 마이크로플레이트 리더로 측정하여 분석하였다. In order to compare and analyze the hemolytic action, the group treated with 0.2% Triton X-100 was set as the maximum hemolysis control, and 0.25 ml of red blood cells and 0.25 ml of the sample were mixed to give a final concentration of 0.1 or 0.2 mg / ml. Prepared as much as possible and left at 37 ° C for 2 hours. After completion of the reaction, the sample was centrifuged at 5000 rpm for 5 minutes, and 30 µl of the supernatant was taken. The supernatant was diluted 10-fold with PBS and analyzed by measuring with a VERSAmax microplate reader at a wavelength of 450 nm.

그 결과, 도 3의 (C)에 개시한 바와 같이, LL, DD, DL 및 LD 펩티드 나노입자는 적혈구 세포를 용해하지 않는 것으로 나타났다.As a result, as shown in Fig. 3 (C), it was shown that LL, DD, DL and LD peptide nanoparticles do not lyse red blood cells.

실시예Example 6. 세포 유입  6. Cell influx 어세이Assay

펩티드 나노입자의 세포 유입 능력은 레이카사의 형광현미경, 자이스사의 공초점 현미경 및 BD 바이오사이언스사의 유세포 분석기로 분석하였다. 나일레드로 표지된 LL, DL, LD, DD 펩티드 나노입자들은 최종 농도가 0.2mg/㎖이 되도록 처리하여 6시간 또는 16시간 방치하였다. 그 후에, HeLa 세포는 20μM의 Hoechst 33324를 15분 동안 처리하여 핵을 염색하여 형광현미경과 공초점 현미경으로 분석하였다. 유세포 분석에서는 웰당 1.0×106개의 HeLa 세포를 분주하여 24시간 동안 안정화 한 후, 최종 농도 0.2mg/㎖로 처리하여 16시간 동안 방치하였다. 그 후에, HeLa 세포는 DPBS로 2번 세척한 후 trypsin-EDTA를 이용하여 수확하였다. HeLa 세포를 1500rpm에서 3분 동안 원심분리하여 수확한 후, 500㎕의 PBS로 분산시켜 준 후, 유세포 분석기를 이용하여 세포 유입 여부를 확인하였다. The ability of the peptide nanoparticles to enter the cells was analyzed by a fluorescence microscope from Reika, a confocal microscope from Zeiss, and a flow cytometer from BD Biosciences. The nano-labeled LL, DL, LD, and DD peptide nanoparticles were treated to a final concentration of 0.2 mg / ml and left for 6 hours or 16 hours. Thereafter, HeLa cells were treated with 20 μM of Hoechst 33324 for 15 minutes to stain the nuclei and analyzed with a fluorescence microscope and confocal microscope. In the flow cytometry analysis, 1.0 × 10 6 HeLa cells per well were dispensed and stabilized for 24 hours, then treated with a final concentration of 0.2 mg / ml and left for 16 hours. After that, HeLa cells were washed twice with DPBS and harvested using trypsin-EDTA. HeLa cells were harvested by centrifugation at 1500 rpm for 3 minutes, and then dispersed with 500 μl of PBS, and then the flow cytometry was used to check whether the cells were introduced.

도 4에 개시한 바와 같이, 나일레드로 염색된 LL, DL, LD, DD 펩티드 나노입자들은 세포질에 유입되었으며, 유입된 정도는 LL > DL, LD >> DD 순으로 나타났다.As illustrated in FIG. 4, the nanoparticles stained with nile red, LL, DL, LD, and DD peptides were introduced into the cytoplasm, and the degree of introduction was in the order of LL> DL, LD >> DD.

실시예Example 7.  7. 독소루비신이Doxorubicin 봉합된 RH-( Sutured RH- ( GFLGGFLG )) 3 3 나노입자의 준비Preparation of nanoparticles

독소루비신을 펩티드 나노입자에 봉합하여 약물전달체로서의 효능을 평가하기 위하여, 독소루비신이 봉합된 펩티드 나노입자를 준비하였다. In order to evaluate the efficacy as a drug delivery agent by sealing doxorubicin to peptide nanoparticles, peptide nanoparticles sealed with doxorubicin were prepared.

독소루비신 하이드로클로라이드의 염 제거를 위해서 3배의 트리메틸아민(trimethylamine)을 처리하여 16시간 동안 방치하였다. 염이 제거된 독소루비신은 클로로포름으로 5번 정도 추출하여 사용하였다. 펩티드 나노입자에 독소루비신의 봉합효율을 최적화하기 위해서 다양한 몰 비율(0.1~ 2배 정도)을 준비하였다. 클로로포름에 용해된 독소루비신을 유리 바이알에 넣은 후, 질소 가스로 클로로포름을 제거하고, 1㎍/㎕의 펩티드 용액을 넣어주었다. 시료가 잘 섞이도록 볼텍스를 실시한 후, 15분 동안 초음파에 노출시켜 봉합을 진행한 후 하룻밤 냉장보관하였다. 봉합되지 않은 독소루비신을 제거하기 위해서 1000Da 투석막을 이용해서 하룻밤 동안 투석을 진행하였다. 준비된 독소루비신이 봉합된 펩티드 나노입자를 냉장보관하였다. In order to remove the salt of doxorubicin hydrochloride, treatment with trimethylamine 3 times was left for 16 hours. The doxorubicin from which the salt was removed was extracted with chloroform about 5 times and used. To optimize the sealing efficiency of doxorubicin in peptide nanoparticles, various molar ratios (about 0.1 to 2 times) were prepared. After the doxorubicin dissolved in chloroform was placed in a glass vial, chloroform was removed with nitrogen gas, and a peptide solution of 1 µg / µl was added. After performing the vortex so that the sample was well mixed, the suture was exposed to ultrasound for 15 minutes, and then kept refrigerated overnight. Dialysis was performed overnight using a 1000Da dialysis membrane to remove unsealed doxorubicin. The prepared doxorubicin-sealed peptide nanoparticles were refrigerated.

실시예Example 8. 효소 민감성 분석  8. Enzyme sensitivity analysis

LL, LD, DL, DD 펩티드 나노입자의 효소 민감성을 분석하기 위해서 MALDI-TOF 질량분석기(matrix-assisted laser mass spectroscopy)를 이용하여 분석하였다. LL, LD, DL, DD 펩티드에 0.02μM의 카텝신 B를 37℃에서 6시간 동안 처리하여 준비하였다. 상기 준비된 펩티드들은 α-cyano-4-hydroxycinnamic acid(CHCA)를 매트릭스로 사용하여 Voyager사의 MALDI-TOF MS를 사용하여 질량분석하였다.  To analyze the enzyme sensitivity of LL, LD, DL, and DD peptide nanoparticles, they were analyzed using a MALDI-TOF mass spectrometer (matrix-assisted laser mass spectroscopy). LL, LD, DL, and DD peptides were prepared by treating 0.02 μM cathepsin B at 37 ° C. for 6 hours. The prepared peptides were mass analyzed using Voyager's MALDI-TOF MS using α-cyano-4-hydroxycinnamic acid (CHCA) as a matrix.

도 5에 개시한 바와 같이 카텝신 B 효소에 대한 민감성은 LL 펩티드 나노입자가 가장 우수한 것으로 나타났다. As shown in Figure 5, the sensitivity to cathepsin B enzyme was found to be the best LL peptide nanoparticles.

실시예Example 9. 약물  9. Drug 방출능Release ability 분석 analysis

독소루비신이 포함된 펩티드 나노입자의 약물 방출능을 분석하기 위해서 투석 방법을 사용하였다. 간단하게, 300㎕의 독소루비신이 봉합된 펩티드 나노입자(LL-Dox과 DD-Dox)를 1000Da의 투석용 막에 넣고, 2.7㎖의 PBS에 넣고 37℃에서 흔들면서 시간에 따른 독소루비신 방출량을 분석하였다. A dialysis method was used to analyze the drug release capacity of the peptide nanoparticles containing doxorubicin. Briefly, 300 μl of doxorubicin-sealed peptide nanoparticles (LL-Dox and DD-Dox) were placed in a dialysis membrane of 1000 Da, placed in 2.7 ml of PBS, and the amount of doxorubicin released over time was analyzed while shaking at 37 ° C. .

또한, 상기 방법과 동일하게 300㎕의 독소루비신이 봉합된 펩티드 나노입자(LL-Dox과 DD-Dox)와 0.02μM의 카텝신 B를 1000Da의 투석용 막에 넣고, 2.7㎖의 PBS에 넣고 37℃에서 흔들면서 시간에 따른 독소루비신 방출량을 분석하였다. In the same manner as above, 300 μl of doxorubicin-sealed peptide nanoparticles (LL-Dox and DD-Dox) and 0.02 μM cathepsin B were placed in a dialysis membrane of 1000 Da, placed in 2.7 mL of PBS, and 37 ° C. The amount of doxorubicin released over time was analyzed while shaking at.

이때 방출되는 독소루비신(Dox)의 방출량은 마이크로리더를 이용하여 480nm의 파장에서 분석하였다. At this time, the amount of emitted doxorubicin (Dox) was analyzed at a wavelength of 480 nm using a micro reader.

그 결과, 도 6에 개시한 바와 같이, LL-Dox+카텝신 B의 독소루비신 방출량이, 나머지 LL-Dox, DD-Dox 및 DD-Dox+카텝신 B의 독소루비신 방출량에 비해 크다는 것을 확인하였다.As a result, as shown in FIG. 6, it was confirmed that the amount of doxorubicin release of LL-Dox + cathepsin B is greater than the amount of doxorubicin release of the remaining LL-Dox, DD-Dox and DD-Dox + cathepsin B.

실시예Example 10.  10. 독소루비신이Doxorubicin 봉합된 RH-( Sutured RH- ( GFLGGFLG )) 3 3 펩티드 나노입자의 세포 Peptide nanoparticle cells 침투성permeability 분석 analysis

독소루비신이 봉합된 펩티드 나노입자의 세포 침투성에 대하여 HeLa 세포에서 공초점 현미경으로 분석하였다. HeLa 세포를 1.0×104 개씩 분주해서 8웰의 공초점 현미경용 디쉬에서 안정화시키고, HeLa 세포에 독소루비신, 독소루비신이 봉합된 LL와 DD 펩티드 나노입자를 처리하였다. 이때 세포핵을 20μM의 Hoechst 33324으로 15분 동안 염색하였다. 6시간 및 16시간 이후, 공초점 현미경으로 준비된 상기 시료들을 분석하였다. The cell permeability of the doxorubicin sealed peptide nanoparticles was analyzed by confocal microscopy in HeLa cells. The HeLa cells were divided into 1.0 × 10 4 pieces, stabilized in an 8-well confocal microscope dish, and treated with LL and DD peptide nanoparticles sealed with doxorubicin and doxorubicin in HeLa cells. At this time, the cell nuclei were stained with 20 μM Hoechst 33324 for 15 minutes. After 6 and 16 hours, the samples prepared with a confocal microscope were analyzed.

또한, 상기 HeLa 세포와 유사하게 3D spheroid 모델을 이용하여 세포 침투성을 분석하였다. 본 실시예에서 사용된 펩티드 나노 입자는 나일레드가 태깅되어 관찰시 빨간색으로 나타나도록 준비한 것이다.In addition, similar to the HeLa cells, cell permeability was analyzed using a 3D spheroid model. The peptide nanoparticles used in this example were prepared such that the nile was tagged and appeared red when observed.

그 결과, 도 7에 개시한 바와 같이, 본 발명의 LL-Dox가 독소루비신 단독으로 처리하였거나, DD 펩티드 나노입자에 카텝신 B가 결합된 DD-Dox에 비해 세포로의 유입이 우수하였다.As a result, as shown in Figure 7, LL-Dox of the present invention was treated with doxorubicin alone, or DD peptide nanoparticles, cathepsin B-bound DD-Dox was superior to the cell.

실시예Example 11.  11. 독소루비신이Doxorubicin 봉합된 RH-( Sutured RH- ( GFLGGFLG )) 3 3 펩티드 나노입자의 항암 효과 Anticancer effect of peptide nanoparticles

독소루비신이 봉합된 펩티드 나노입자의 항암효과는 HeLa 및 SW480 세포에서 MTT 분석하였다. 상기 HeLa 및 sw480 세포를 1.0×104 개씩 분주하여 96웰 마이크로디쉬에서 24시간 동안 안정화하였다. 준비된 HeLa 및 SW480 세포에 독소루비신(Dox), 독소루비신이 봉합된 펩티드 나노입자(LL-Dox 및 DD-Dox)를 0.25~2μM로 처리한 후, 48시간 후 SW480 세포에 대한 MTT 어세이를 실시하였고, 72시간 후 HeLa 세포에 대한 MTT 어세이를 실시하였다. The anticancer effect of the doxorubicin-sealed peptide nanoparticles was analyzed by MTT in HeLa and SW480 cells. The HeLa and sw480 cells were divided into 1.0 × 10 4 cells and stabilized in a 96-well micro dish for 24 hours. Prepared HeLa and SW480 cells were treated with doxorubicin (Dox) and doxorubicin-sealed peptide nanoparticles (LL-Dox and DD-Dox) with 0.25 to 2 μM, and after 48 hours, MTT assay was performed on SW480 cells. After 72 hours, MTT assay was performed on HeLa cells.

그 결과, 도 8의 (A)에 개시한 바와 같이, sw480 세포의 생존률(%)이 약 50% 수준까지 감소한 것을 확인할 수 있으며, 도 8의 (B)에 개시한 바, HeLa 세포에서는 세포 생존률(%)이 약 25% 수준까지 감소한 것을 확인할 수 있었다. 한편, 독소루비신 단독으로 처리한 경우, 암세포에 대한 항암활성이 미미한 것으로 나타났다. As a result, as shown in Figure 8 (A), it can be seen that the survival rate (%) of sw480 cells was reduced to about 50% level, as shown in Figure 8 (B), the cell survival rate in HeLa cells It was confirmed that (%) decreased to about 25%. On the other hand, when treated with doxorubicin alone, it was found that the anticancer activity against cancer cells was minimal.

실시예Example 12.  12. 제브라피쉬Zebrafish 모델에서의  In the model 독소루비신이Doxorubicin 봉합된 펩티드 나노입자의 항암 효과 확인  Confirmation of anticancer effect of sealed peptide nanoparticles

독소루비신이 봉합된 펩티드 나노입자의 항암 효과를 제브라피쉬 모델에서 확인하였다. 제브라피쉬 알을 2일 동안 피쉬 인큐베이터에서 배양하고, 난막을 제거하였다. 한편, SW480 세포에 트래커 green CMFDA를 처리하여 30분 동안 세포배양을 통해 염색한 후, trypsin-EDTA을 이용해서 수득한 후, 10% FBS를 포함하는 PBS로 2번 세척하였다. 이와 같이 준비된 SW480 세포는 제브라피쉬 유충에 마이크로 인젝션하였다. 이후, 제브라피쉬 유충은 96웰 마이크로 플레이트에 분주하여 2일 동안 안정화시켰다. 그리고 나서, 독소루비신 및 독소루비신이 봉합된 LL 및 DD 펩티드 나노입자를 주입하여 2일 동안 다시 안정화시킨 후, 0.04 % tricaine으로 제브라피쉬 유충을 마취하여 레이카사의 형광 현미경으로 분석하였다. The anticancer effect of the doxorubicin-sealed peptide nanoparticles was confirmed in the zebrafish model. The zebrafish eggs were incubated in a fish incubator for 2 days and the eggshell was removed. Meanwhile, SW480 cells were treated with tracker green CMFDA and stained through cell culture for 30 minutes, and then obtained using trypsin-EDTA, and washed twice with PBS containing 10% FBS. The thus prepared SW480 cells were micro-injected into zebrafish larvae. The zebrafish larvae were then dispensed into 96-well microplates and allowed to stabilize for 2 days. Then, doxorubicin and doxorubicin-sealed LL and DD peptide nanoparticles were injected and stabilized again for 2 days, followed by anesthetization of zebrafish larvae with 0.04% tricaine and analyzed by Reika's fluorescence microscope.

그 결과 도 9에 개시한 바와 같이, 암세포인 sw480을 주입한 제브라피쉬에서 녹색형광을 확인할 수 있었으며, 독소루비신 단독으로 주입한 경우, 녹색 형광의 암세포가 그대로 있어, 주황빛의 형광을 나타냈으나, LL-Dox를 주입한 경우 암세포가 거의 사라졌고, DD-Dox의 경우는 독소루비신 단독에 비해 녹색 형광이 많이 제거되었으나, LL-Dox에 비해 미약하다는 것을 확인할 수 있었다.As a result, as shown in FIG. 9, green fluorescence was confirmed in zebrafish injected with the cancer cell sw480, and when injected with doxorubicin alone, the green fluorescent cancer cells remained and exhibited orange fluorescence. Cancer cells were almost disappeared when -Dox was injected, and green fluorescence was much removed in the case of DD-Dox compared to doxorubicin alone, but it was confirmed that it was weaker than LL-Dox.

<110> The Industry & Academic Cooperation in Chungnam National University <120> Drug delivery system comprising enzyme-responsive amphiphilic peptide <130> PN18213 <160> 3 <170> KopatentIn 2.0 <210> 1 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> RH-[GFLG]1 <400> 1 Arg His Gly Phe Leu Gly 1 5 <210> 2 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> RH-[GFLG]2 <400> 2 Arg His Gly Phe Leu Gly Gly Phe Leu Gly 1 5 10 <210> 3 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> RH-[GFLG]3 <400> 3 Arg His Gly Phe Leu Gly Gly Phe Leu Gly Gly Phe Leu Gly 1 5 10 <110> The Industry & Academic Cooperation in Chungnam National University <120> Drug delivery system comprising enzyme-responsive amphiphilic          peptide <130> PN18213 <160> 3 <170> KopatentIn 2.0 <210> 1 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> RH- [GFLG] 1 <400> 1 Arg His Gly Phe Leu Gly   1 5 <210> 2 <211> 10 <212> PRT <213> Artificial Sequence <220> <223> RH- [GFLG] 2 <400> 2 Arg His Gly Phe Leu Gly Gly Phe Leu Gly   1 5 10 <210> 3 <211> 14 <212> PRT <213> Artificial Sequence <220> <223> RH- [GFLG] 3 <400> 3 Arg His Gly Phe Leu Gly Gly Phe Leu Gly Gly Phe Leu Gly   1 5 10

Claims (6)

하기 일반식 1로 표시되는 아미노산 서열로 이루어진 펩티드를 포함하는 약물 전달체:
[일반식 1]
아르기닌(R)-히스티딘(H)-[글리신(G)-류신(L)-페닐알라닌(F)-글리신(G)]n
상기 일반식 1에서, n은 1~10인 정수이다.
A drug delivery system comprising a peptide consisting of the amino acid sequence represented by Formula 1 below:
[Formula 1]
Arginine (R) -histidine (H)-[glycine (G) -leucine (L) -phenylalanine (F) -glycine (G)] n
In the general formula 1, n is an integer from 1 to 10.
제1항에 있어서, 상기 펩티드는 자가조립(self-assembly)하여 바깥쪽으로 친수성의 아르기닌(R)-히스티딘(H)의 아미노산 서열이 위치하고, 안쪽으로 소수성 잔기의 글리신(G)-류신(L)-페닐알라닌(F)-글리신(G)의 아미노산 서열이 위치하는 미셀 형태의 나노입자를 형성하는 것을 특징으로 하는 약물 전달체.According to claim 1, wherein the peptide is self-assembled (self-assembly) is located in the amino acid sequence of the hydrophilic arginine (R) -histidine (H) outward, glycine (G)-leucine (L) of the hydrophobic residue inwardly -Phenylalanine (F)-glycine (G) drug delivery system, characterized in that to form a nanoparticle in the form of micelles in which the amino acid sequence is located. 제1항에 있어서, 상기 펩티드를 형성하는 아미노산의 키랄성(chirality)은 LRH-L(GFLG)n, LRH-D(GFLG)n 또는 DRH-L(GFLG)n인 것을 특징으로 하는 약물 전달체.The drug of claim 1, wherein the chirality of the amino acids forming the peptide is L RH- L (GFLG) n , L RH- D (GFLG) n or D RH- L (GFLG) n . Carrier. 제2항에 있어서, 상기 나노입자의 소수성 잔기의 아미노산 안쪽에 소수성 항암제를 봉합하는 것을 특징으로 하는 약물 전달체.The drug delivery system according to claim 2, wherein a hydrophobic anticancer agent is sealed inside the amino acid of the hydrophobic residue of the nanoparticle. 제4항에 있어서, 상기 소수성 항암제는 독소루비신인 것을 특징으로 하는 약물 전달체. 5. The drug delivery system according to claim 4, wherein the hydrophobic anti-cancer agent is doxorubicin. 제1항에 있어서, 상기 펩티드는 카텝신 B(Cathepsin B) 효소에 의해 절단되는 것을 특징으로 하는 약물전달체.The drug delivery system of claim 1, wherein the peptide is cleaved by a cathepsin B enzyme.
KR1020180136764A 2018-11-08 2018-11-08 Drug delivery system comprising enzyme-responsive amphiphilic peptide KR102156649B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180136764A KR102156649B1 (en) 2018-11-08 2018-11-08 Drug delivery system comprising enzyme-responsive amphiphilic peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180136764A KR102156649B1 (en) 2018-11-08 2018-11-08 Drug delivery system comprising enzyme-responsive amphiphilic peptide

Publications (2)

Publication Number Publication Date
KR20200053308A true KR20200053308A (en) 2020-05-18
KR102156649B1 KR102156649B1 (en) 2020-09-16

Family

ID=70913068

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180136764A KR102156649B1 (en) 2018-11-08 2018-11-08 Drug delivery system comprising enzyme-responsive amphiphilic peptide

Country Status (1)

Country Link
KR (1) KR102156649B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075657A1 (en) * 2020-10-06 2022-04-14 엘앤피코스메틱 주식회사 Method for preparing cosmetic composition containing micelle composite formed using natural moisturizing factor, and cosmetic composition prepared therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230126566A (en) 2022-02-23 2023-08-30 충남대학교산학협력단 Polyamidoamine generation 2 dendrimers polymer derivative conjugated with nuclear localization signal peptide for nucleic acid delivery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Y.J. Cheng et al. POLYMER CHEMISTRY (2015) Vol.6, pp.3512-3520* *
대한화학회 제109회 학술발표회 (2012) 포스터발표(BIO.P-669) 초록* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022075657A1 (en) * 2020-10-06 2022-04-14 엘앤피코스메틱 주식회사 Method for preparing cosmetic composition containing micelle composite formed using natural moisturizing factor, and cosmetic composition prepared therefrom

Also Published As

Publication number Publication date
KR102156649B1 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
Wang et al. Redox-sensitive shell cross-linked PEG–polypeptide hybrid micelles for controlled drug release
Han et al. Synergistic gene and drug tumor therapy using a chimeric peptide
Carneiro et al. Functionalized rifampicin-loaded nanostructured lipid carriers enhance macrophages uptake and antimycobacterial activity
Liang et al. pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier
Chen et al. Construction of surfactant-like tetra-tail amphiphilic peptide with RGD ligand for encapsulation of porphyrin for photodynamic therapy
Bragagni et al. Development and characterization of niosomal formulations of doxorubicin aimed at brain targeting
Suthiwangcharoen et al. M13 bacteriophage-polymer nanoassemblies as drug delivery vehicles
Li et al. Bioinspired peptosomes with programmed stimuli-responses for sequential drug release and high-performance anticancer therapy
Tahara et al. Cellular uptake mechanisms and intracellular distributions of polysorbate 80-modified poly (D, L-lactide-co-glycolide) nanospheres for gene delivery
Ahmed et al. Enhanced protein internalization and efficient endosomal escape using polyampholyte-modified liposomes and freeze concentration
Ahmed et al. Protein cytoplasmic delivery using polyampholyte nanoparticles and freeze concentration
Shi et al. Virus-inspired surface-nanoengineered antimicrobial liposome: A potential system to simultaneously achieve high activity and selectivity
KR102156649B1 (en) Drug delivery system comprising enzyme-responsive amphiphilic peptide
Qin et al. An innovative pre-targeting strategy for tumor cell specific imaging and therapy
CN106632695B (en) pH-sensitive polypeptide and application thereof
Thambi et al. Biostable and bioreducible polymersomes for intracellular delivery of doxorubicin
PT2748182T (en) Peptide nanoparticles and uses thereof
Wang et al. Efficient and facile formation of two-component nanoparticles via aromatic moiety directed self-assembly
You et al. Enhanced cytotoxicity by a benzothiazole-containing cisplatin derivative in breast cancer cells
TWI564020B (en) Containing pH-responsive peptides
Xuan et al. Multi-functional lipopeptide micelles as a vehicle for curcumin delivery
EP3405429B1 (en) Formation of functionalized nanoparticles by supramolecular co-assembly
Wang et al. Polycation-telodendrimer nanocomplexes for intracellular protein delivery
Ding et al. Interfacially active polydopamine for nanoparticle stabilized nanocapsules in a one-pot assembly strategy toward efficient drug delivery
US20180078511A1 (en) Sequentially decomposable polypeptide-based nanocarriers with protective shell and preparation thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant