KR20200051326A - METHOD FOR DESIGNING MAIN ROTOR OF 200kg UNMANNED HELICOPTER - Google Patents

METHOD FOR DESIGNING MAIN ROTOR OF 200kg UNMANNED HELICOPTER Download PDF

Info

Publication number
KR20200051326A
KR20200051326A KR1020180134555A KR20180134555A KR20200051326A KR 20200051326 A KR20200051326 A KR 20200051326A KR 1020180134555 A KR1020180134555 A KR 1020180134555A KR 20180134555 A KR20180134555 A KR 20180134555A KR 20200051326 A KR20200051326 A KR 20200051326A
Authority
KR
South Korea
Prior art keywords
main rotor
main
speed
power
equation
Prior art date
Application number
KR1020180134555A
Other languages
Korean (ko)
Other versions
KR102125862B1 (en
Inventor
채상현
황창전
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Priority to KR1020180134555A priority Critical patent/KR102125862B1/en
Publication of KR20200051326A publication Critical patent/KR20200051326A/en
Application granted granted Critical
Publication of KR102125862B1 publication Critical patent/KR102125862B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/30Wing lift efficiency
    • Y02T50/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/66

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Optimization (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Toys (AREA)

Abstract

The present invention relates to a method for designing the main rotor of a 200 kg unmanned helicopter, and more specifically, to a method for designing the main rotor of a 200 kg unmanned helicopter, which comprises: a step that the following formula (1) is calculated by using a driving formula during a forward flight; a step that the following formula (2) is calculated by allowing a blade load value to be included in the formula (1); and a step that the following formula (3) is deduced when considering V_tip as a tip speed, C_t/σ as a blade load, and thrust (^T) as the maximum takeoff weight.

Description

200kg급 무인 헬리콥터 주로터 설계방법{METHOD FOR DESIGNING MAIN ROTOR OF 200kg UNMANNED HELICOPTER}Design method of 200kg unmanned helicopter main rotor {METHOD FOR DESIGNING MAIN ROTOR OF 200kg UNMANNED HELICOPTER}

본 발명은 200kg급 무인 헬리콥터에 사용되는 주로터의 형상을 설계하는 방법과 그 방법에 의해 도출된 200kg급 무인 헬리콥터 주로터의 최적 설계 결과치에 대한 것이다.The present invention relates to a method for designing a shape of a main rotor used for a 200 kg unmanned helicopter and an optimal design result of a 200 kg unmanned helicopter main rotor derived by the method.

일반적인 형상(Conventional configuration: Single main rotor - tail rotor)을 갖는 헬리콥터의 경우 주로터(main rotor)가 이륙에 필요한 양력과 전진비행 시 필요한 추력 및 제어력을 모두 감당하기 때문에, 헬리콥터에 있어서 주로터는 필수적인 부분이다. 그리고, 주로터의 추력과 동력의 대부분은 주로터 반경과 회전속도에 의해 결정되기 때문에 초기 설계시 기체의 요구성능에 따라 주로터의 반경과 회전속도를 정의하는 것이 중요하다.In the case of a helicopter having a general configuration (Conventional configuration: Single main rotor-tail rotor), the main rotor is an essential part of the helicopter because the main rotor handles both the lift required for takeoff and the thrust and control required for forward flight. to be. In addition, since most thrust and power of the main rotor are determined by the main rotor radius and rotation speed, it is important to define the radius and rotation speed of the main rotor according to the required performance of the aircraft during initial design.

헬리콥터 주로터의 전형적인 사이징 방법은 개발된 헬리콥터의 추세를 활용하여 사이징을 수행하게된다. 그러나, 200kg급 무인 헬리콥터의 경우 개발사례가 희소하여 요구성능에 부합하는 주로터 사이징이 어려운 문제가 있었다. 도 1은 ICAS 2006.(학회명)에서 공개된 “Design Trends for Rotray-wing Unmanned Air Vehicles,”논문(저자: V. Khromov, O. Rand)에 공개된 그래프이며, 헬리콥터의 최대중량 대 주로터 직경의 관계를 보여주는 추세선이다. 위 추세선에 따르면 200kg급 헬리콥터의 반경이 약 2.5m(직경 5m)가 되어야 하지만, 실제 개발시 주로터 반경이 상당히 길어서 비행체의 항속시간과 최대속도가 감소 되고 이를 지지하기 위한 구조물의 무게증가가 필수적이어서 효율적인 무인 헬리콥터 개발을 위해서는 새로운 주로터 사이징 설계기법이 필요하였다.The typical sizing method of the helicopter main is to perform sizing using the trend of the developed helicopter. However, in the case of a 200kg unmanned helicopter, there was a rare development case, so there was a problem in that the main sizing to meet the required performance was difficult. 1 is a graph published in the “Design Trends for Rotray-wing Unmanned Air Vehicles,” published by ICAS 2006. (author: V. Khromov, O. Rand), the maximum weight of a helicopter versus the diameter of the main rotor It is a trend line showing the relationship of. According to the above trend line, the radius of the 200kg helicopter should be about 2.5m (5m in diameter), but in actual development, the radius of the main aircraft is considerably long, so the flight time and maximum speed of the aircraft are reduced and the weight of the structure to support it is essential. Subsequently, a new main sizing design technique was needed to develop an efficient unmanned helicopter.

본 발명은 200kg급 무인 헬리콥터에 사용되는 주로터의 최적 형상을 설계하는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for designing an optimal shape of a main rotor used in a 200kg unmanned helicopter.

본 발명은, 200kg급 무인 헬리콥터의 주로터를 설계하는 방법으로서, 전진비행시 동력식을 이용하여 아래 식(1)을 구하는 단계; 상기 식(1)에 깃면하중값이 포함되도록 하여 아래 식(2)를 구하는 단계;

Figure pat00001
는 깃끝속도,
Figure pat00002
는 깃면하중, 추력(
Figure pat00003
)은 최대이륙중량이라 할 때, 아래 식(3)을 도출하는 단계;로 이루어지는 200kg급 무인 헬리콥터 주로터 설계방법을 제공한다.The present invention, as a method of designing a main rotor of a 200kg unmanned helicopter, obtaining the following equation (1) by using a power equation during forward flight; Obtaining a formula (2) below by including a surface load value in the formula (1);
Figure pat00001
Is the feather tip speed,
Figure pat00002
Is the surface load, thrust (
Figure pat00003
) Is the maximum take-off weight, deriving the following equation (3); provides a 200kg class unmanned helicopter main rotor design method.

식(1) :

Figure pat00004
Equation (1):
Figure pat00004

식(2) :

Figure pat00005
Equation (2):
Figure pat00005

식(3) :

Figure pat00006
Equation (3):
Figure pat00006

여기서, 깃의 개수는 2개라고 한정하고(

Figure pat00007
),
Figure pat00008
,
Figure pat00009
그리고 최대이륙중량 200kgf를 적용하고, 주로터 회전수를 950RPM으로 적용하여, 반경 1.8m와 코드길이 0.145m의 주로터 형상을 획득하는 단계;로 최적 설계값을 도출해 낸다.Here, the number of feathers is limited to two (
Figure pat00007
),
Figure pat00008
,
Figure pat00009
And applying the maximum take-off weight 200kgf, and applying the main rotor speed to 950RPM, obtaining the main rotor shape with a radius of 1.8m and a code length of 0.145m; derives the optimum design value.

본 발명은 상기 설계방법에 의해서 200kg급 무인 헬리콥터에 사용되는 주로터의 최적 형상을 도출하였다.The present invention derives the optimum shape of the main rotor used for the 200kg unmanned helicopter by the above design method.

도 1은 종래기술에 따라 헬리콥터의 최대중량 대 주로터 직경의 관계를 보여주는 추세선이며,
도 2는 본 발명에 따른 설계방법에서의 깃면하중과 깃끝속도에 따른 항속시간 및 운용한계고도를 보여주며,
도 3은 본 발명에 따른 설계방법에서의 깃면하중과 깃끝속도에 따른 최대속도 및 운용한계고도를 보여주며,
도 4는 본 발명에 따른 설계방법에서의 깃면하중과 깃끝속도에 따른 최대속도 및 항속시간를 보여주며,
도 5 및 도 6는 본 발명에 따른 설계방법에서의 주로터 사이징 최적설계 결과를 보여주며,
도 7은 본 발명에 따라 설계한 200kg 급 무인 헬리콥터의 주로터 사이즈의 최종 결과값이다.
1 is a trend line showing the relationship between the maximum weight of the helicopter and the diameter of the main rotor according to the prior art,
Figure 2 shows the cruising time and operating limit altitude according to the surface load and the tip speed in the design method according to the present invention,
Figure 3 shows the maximum speed and operating limit altitude according to the surface load and the tip speed in the design method according to the present invention,
Figure 4 shows the maximum speed and cruising time according to the surface load and the tip speed in the design method according to the present invention,
5 and 6 show the optimal design results of the main rotor sizing in the design method according to the present invention,
7 is the final result of the main rotor size of a 200kg unmanned helicopter designed according to the present invention.

본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 또한, 사용된 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로써, 이는 사용자 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서의 전반에 걸친 내용을 토대로 내려져야 할 것이다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments associated with the accompanying drawings. In addition, the terms used are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of the user operator. Therefore, definitions of these terms should be made based on the contents of the present specification.

도 2는 본 발명에 따른 설계방법에서의 깃면하중과 깃끝속도에 따른 항속시간 및 운용한계고도를 보여주며, 도 3은 본 발명에 따른 설계방법에서의 깃면하중과 깃끝속도에 따른 최대속도 및 운용한계고도를 보여주며, 도 4는 본 발명에 따른 설계방법에서의 깃면하중과 깃끝속도에 따른 최대속도 및 항속시간를 보여주며, 도 5 및 도 6는 본 발명에 따른 설계방법에서의 주로터 사이징 최적설계 결과를 보여주며, 도 7은 본 발명에 따라 설계한 200kg 급 무인 헬리콥터의 주로터 사이즈의 최종 결과값이다.Figure 2 shows the cruising load and the operating limit altitude according to the surface load and the tip end speed in the design method according to the invention, Figure 3 shows the maximum speed and operation according to the surface load and the tip end speed in the design method according to the invention The limit altitude is shown, and FIG. 4 shows the maximum speed and cruising time according to the surface load and the tip end speed in the design method according to the present invention. The design results are shown, and FIG. 7 is a final result value of the main rotor size of the 200 kg unmanned helicopter designed according to the present invention.

이하에서는 본 발명에서 고려하고 진행된 설계방법에 대해 설명한다.Hereinafter, a design method considered and advanced in the present invention will be described.

먼저, 헬리콥터 사이징 도구를 활용하여 주로터의 깃개수, 주로터 반경, 코드길이, 회전속도를 설계하게 되며, 주로터의 성능은 운동량이론을 활용하여 계산한다.First, the number of main rotors, the radius of the main rotor, the length of the cord, and the rotational speed are designed using the helicopter sizing tool, and the performance of the main rotor is calculated using the momentum theory.

[[ 로터Rotor 성능 계산법] Performance calculation method]

로터 성능을 계산하기 위한 수식을 도출하기 위해, 아래와 같이 의미를 정의한다.In order to derive an equation for calculating the rotor performance, the meaning is defined as follows.

공기밀도

Figure pat00010
: 표준대기밀도에서 고도 0m, 온도 15℃일 때
Figure pat00011
Air density
Figure pat00010
: Standard air density at altitude of 0m and temperature of 15 ℃
Figure pat00011

반경

Figure pat00012
: 주로터 반경Radius
Figure pat00012
: Main radius

시위길이

Figure pat00013
: 주로터 시위길이, 테이퍼 적용 등으로 코드길이가 일정하지 않을 경우 평균 시위길이를 적용함Protest length
Figure pat00013
: If the chord length is not constant due to the protest length, taper, etc., the average protest length is applied.

깃 개수

Figure pat00014
: 주로터 블레이드(깃)의 개수Number of feathers
Figure pat00014
: Number of main blades (feathers)

회전속도

Figure pat00015
: 주로터 회전속도 rad/sec Rotation speed
Figure pat00015
: Main rotor rotation speed rad / sec

추력

Figure pat00016
: 제자리 비행시 기체총중량, 전진비행시 기체항력에 의한 힘벡터 추가thrust
Figure pat00016
: Added gross weight when flying in place, and force vector due to aircraft drag when flying forward

동력

Figure pat00017
: 주로터 전체동력 (
Figure pat00018
)power
Figure pat00017
: Main power
Figure pat00018
)

유도동력

Figure pat00019
: 주로터가 추력을 내는데 필요한 동력Induction power
Figure pat00019
: Main power required for thrust

형상동력

Figure pat00020
: 주로터가 회전을 하는데 필요한 동력Shape power
Figure pat00020
: Power required for main rotor to rotate

전진비행속도

Figure pat00021
Forward flight speed
Figure pat00021

익단속도

Figure pat00022
Tip speed
Figure pat00022

전진비

Figure pat00023
Forward
Figure pat00023

고형비

Figure pat00024
Solid ratio
Figure pat00024

추력계수

Figure pat00025
Thrust coefficient
Figure pat00025

깃면하중

Figure pat00026
Face load
Figure pat00026

동력계수

Figure pat00027
Power factor
Figure pat00027

위 값들을 고려하고, 운동량이론과 깃요소이론을 통해 유도한 전진비행시 동력계수는 아래 식(1)과 같이 된다.Considering the above values, the power factor for forward flight derived through momentum theory and feather element theory is as shown in Equation (1) below.

Figure pat00028
식(1)
Figure pat00028
Expression (1)

(여기서

Figure pat00029
는 유도유입류계수,
Figure pat00030
항력보정계수로 주로터 세부형상과 관련되므로 사이징에서는 참조기체에 맞게 고정)(here
Figure pat00029
Is the influent flow coefficient,
Figure pat00030
As the drag correction coefficient is mainly related to the detailed shape, it is fixed to the reference gas in sizing)

[헬리콥터 [Helicopter 주로터의Predominantly 깃끝속도(회전속도)와Collar speed (rotation speed) and 깃면하중을Face load 설계변수로 정의하고 케이스별  Defined by design variables and case by case 스터디study 수행] Perform]

깃끝속도는 최대속도와 항속시간에 영향을 주며, 다음과 같은 관계가 성립한다.The tip speed affects the maximum speed and cruising time, and the following relationship is established.

- 깃끝속도

Figure pat00031
최대속도, 깃끝속도
Figure pat00032
항속시간-1 -Feather end speed
Figure pat00031
Maximum speed, feather tip speed
Figure pat00032
Cruising time -1

깃끝속도가 증가하면 전진비

Figure pat00033
가 감소하므로, 전진비행시 동력식
Figure pat00034
에서 비행속도가 빠를수록 증가하는 두 번째 항의 값이 감소하기 때문에 최대속도와 항속시간 감소한다. As the speed of the feather increases, the forward ratio
Figure pat00033
Is reduced, so it is powered when flying forward
Figure pat00034
At the faster flight speed, the value of the second term, which increases, decreases, so the maximum speed and cruising time decrease.

깃면하중은 최대속도와 항속시간, 운용한계고도에 영향을 주며 다음과 같은 관계가 성립한다.The surface load affects the maximum speed, cruising time, and operating limit altitude, and the following relationship is established.

- 깃면하중

Figure pat00035
최대속도, 깃면하중
Figure pat00036
(운용한계고도&항속시간)-1 -Face load
Figure pat00035
Maximum speed, face load
Figure pat00036
(Operation Limit Altitude & Cruise Time) -1

그리고, 위 전진비행 동력식에 깃면하중값이 포함되도록 변경하여 아래 식(2)을 도출하였다.In addition, the following equation (2) was derived by changing the above forward flight power formula to include the surface load value.

Figure pat00037
식(2),
Figure pat00037
Equation (2),

전진속도에 크게 영향을 미치는 두 번째항에 깃면하중이 역수로 되어 있어서 깃면하중이 증가할수록 최대속도도 증가하고, 전체 전진비행동력에 깃면하중이 곱해지므로 깃면하중과 운용한계고도 및 항속시간은 반비례하게 된다.Since the surface load is the reciprocal in the second term, which greatly affects the forward speed, the maximum speed increases as the surface load increases, and the total forward flight power is multiplied by the surface load. Is done.

도 2, 도 3, 및 도 4에 도시된 깃면하중과 깃끝속도에 따른 항속시간 및 운용한계고도와, 최대속도 및 운용한계고도와, 최대속도 및 항속시간의 그래프를 참고하여, 최적 설계값을 도출하기 위한 제한조건으로 최대이륙중량>200kg, 운용한계고도(160kg기준)>5,000m, 항속시간>3시간, 최대속도>150km/h 의 요구성능을 선정하였다.Referring to the graphs of the cruising time and operating limit altitude, the maximum speed and operating limit altitude, the maximum speed and cruising time according to the surface load and the tip speed shown in FIGS. 2, 3, and 4, the optimum design values As the limiting conditions for deriving, the required performances of maximum take-off weight> 200kg, operating limit altitude (based on 160kg)> 5,000m, cruising time> 3 hours, and maximum speed> 150km / h were selected.

상기 제한조건을 만족하는 최적의 주로터 사이징 설계를 수행한 결과, 각 성능을 최대화하는 형상 3개, 구조적 제한조건을 만족하는 최적형상 1개 도출하였다(도 5 참조).As a result of performing an optimal main rotor sizing design that satisfies the above constraints, three shapes that maximize each performance and one optimum shape that satisfies the structural constraints were derived (see FIG. 5).

그리고, 케이스별 스터디와 최적설계결과를 참조하여 깃끝속도와 깃면하중을 선택하면 아래 식(3-1)이 도출된다. 여기서

Figure pat00038
깃끝속도,
Figure pat00039
깃면하중, 추력(
Figure pat00040
)는 최대이륙중량이다.Then, referring to the study for each case and the optimal design result, the formula (3-1) below is derived by selecting the tip speed and the face load. here
Figure pat00038
Speed,
Figure pat00039
Face load, thrust (
Figure pat00040
) Is the maximum takeoff weight.

Figure pat00041
식(3-1)
Figure pat00041
Expression (3-1)

위 식(3-1)를 다시 정리하면 아래 식(3-2)가 나오게 된다.If the above equation (3-1) is rearranged, the following equation (3-2) will come out.

Figure pat00042
식(3-2)
Figure pat00042
Expression (3-2)

본 발명의 최적 설계방법은 위 식(3-2)에 무인 헬리콥터의 추가적인 조건을 대입하면 주로터의 반경과 코드길이 및 깃개수가 산출된다. In the optimal design method of the present invention, if an additional condition of an unmanned helicopter is substituted in the above equation (3-2), the radius, cord length, and number of feathers of the main rotor are calculated.

예를 들어, 200kg급 무인헬기 사이징시 기체 하중과 운용을 고려하여 깃의 개수는 2개라고 한정하고(

Figure pat00043
),
Figure pat00044
Figure pat00045
그리고, 최대이륙중량 200kgf를 적용하고, 익단속도와 엔진운용속도를 고려하여 주로터 회전수를 950RPM으로 정의하면,For example, when sizing a 200kg unmanned helicopter, the number of feathers is limited to 2 in consideration of the gas load and operation (
Figure pat00043
),
Figure pat00044
And
Figure pat00045
And, if the maximum takeoff weight of 200kgf is applied and the rotor speed is defined as 950RPM in consideration of the tip speed and the engine operating speed,

반경의 값이

Figure pat00046
, 코드길이 값이
Figure pat00047
로 도출된다. 즉, 최종적으로 반경 1.8m, 코드길이 0.145m, 회전속도 950RPM, 깃개수 2개의 주로터 형상을 획득하게 된다.The value of the radius
Figure pat00046
, Code length value
Figure pat00047
Is derived. That is, finally, a radius of 1.8m, a code length of 0.145m, a rotation speed of 950RPM, and two main rotor shapes are obtained.

본 발명의 위 설명에서는 200kg급 무인헬기 사이징 설계를 고려하였으나 반드시 여기에만 한정되는 것은 아니며, 상기 설계방법을 250kg 또는 300kg급 무인 헬리콥터에도 동일하게 적용할 수 있다.In the above description of the present invention, the 200kg class unmanned helicopter sizing design was considered, but the present invention is not limited thereto, and the design method may be equally applied to a 250kg or 300kg class unmanned helicopter.

이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (2)

200kg급 무인 헬리콥터의 주로터를 설계하는 방법으로서,
전진비행시 동력식을 이용하여 아래 식(1)을 구하는 단계;
상기 식(1)에 깃면하중값이 포함되도록 하여 아래 식(2)를 구하는 단계;
Figure pat00048
는 깃끝속도,
Figure pat00049
는 깃면하중, 추력(
Figure pat00050
)은 최대이륙중량이라 할 때, 아래 식(3)을 도출하는 단계;로 이루어지는 200kg급 무인 헬리콥터 주로터 설계방법.
식(1) :
Figure pat00051

식(2) :
Figure pat00052

식(3) :
Figure pat00053

위 식(1) 내지 (3)에서 문자의 의미는 다음과 같음.
공기밀도
Figure pat00054
: 표준대기밀도에서 고도 0m, 온도 15℃일 때
Figure pat00055

반경
Figure pat00056
: 주로터 반경
시위길이
Figure pat00057
: 주로터 시위길이, 테이퍼 적용 등으로 코드길이가 일정하지 않을 경우 평균 시위길이를 적용함
깃 개수
Figure pat00058
: 주로터 블레이드(깃)의 개수
회전속도
Figure pat00059
: 주로터 회전속도 rad/sec
추력
Figure pat00060
: 제자리 비행시 기체총중량, 전진비행시 기체항력에 의한 힘벡터 추가
동력
Figure pat00061
: 주로터 전체동력 (
Figure pat00062
)
유도동력
Figure pat00063
: 주로터가 추력을 내는데 필요한 동력
형상동력
Figure pat00064
: 주로터가 회전을 하는데 필요한 동력
전진비행속도
Figure pat00065

익단속도
Figure pat00066

전진비
Figure pat00067

고형비
Figure pat00068

추력계수
Figure pat00069

깃면하중
Figure pat00070

동력계수
Figure pat00071
As a method of designing the main site of a 200kg unmanned helicopter,
Obtaining the following equation (1) using a power equation when flying forward;
Obtaining a formula (2) below by including a surface load value in the formula (1);
Figure pat00048
Is the feather tip speed,
Figure pat00049
Is the surface load, thrust (
Figure pat00050
) Is the maximum takeoff weight, deriving the following equation (3); 200kg class unmanned helicopter main rotor design method consisting of.
Equation (1):
Figure pat00051

Equation (2):
Figure pat00052

Equation (3):
Figure pat00053

The meanings of the characters in the above formulas (1) to (3) are as follows.
Air density
Figure pat00054
: Standard air density at altitude of 0m and temperature of 15 ℃
Figure pat00055

Radius
Figure pat00056
: Main radius
Protest length
Figure pat00057
: If the chord length is not constant due to the protest length, taper, etc., the average protest length is applied.
Number of feathers
Figure pat00058
: Number of main blades (feathers)
Rotation speed
Figure pat00059
: Main rotor rotation speed rad / sec
thrust
Figure pat00060
: Added gross weight when flying in place, and force vector due to aircraft drag when flying forward
power
Figure pat00061
: Main power
Figure pat00062
)
Induction power
Figure pat00063
: Main power required for thrust
Shape power
Figure pat00064
: Power required for main rotor to rotate
Forward flight speed
Figure pat00065

Tip speed
Figure pat00066

Forward
Figure pat00067

Solid ratio
Figure pat00068

Thrust coefficient
Figure pat00069

Face load
Figure pat00070

Power factor
Figure pat00071
제1항에 있어서,
깃의 개수는 2개라고 한정하고(
Figure pat00072
),
Figure pat00073
,
Figure pat00074
그리고 최대이륙중량 200kgf를 적용하고, 주로터 회전수를 950RPM으로 적용하여, 반경 1.8m와 코드길이 0.145m의 주로터 형상을 획득하는 단계;를 포함하는 200kg급 무인 헬리콥터 주로터 설계방법.


According to claim 1,
The number of feathers is limited to 2 (
Figure pat00072
),
Figure pat00073
,
Figure pat00074
And applying a maximum takeoff weight of 200 kgf and applying a main rotor speed of 950 RPM to obtain a main rotor shape with a radius of 1.8 m and a code length of 0.145 m; a 200 kg class unmanned helicopter main rotor design method.


KR1020180134555A 2018-11-05 2018-11-05 METHOD FOR DESIGNING MAIN ROTOR OF 200kg UNMANNED HELICOPTER KR102125862B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180134555A KR102125862B1 (en) 2018-11-05 2018-11-05 METHOD FOR DESIGNING MAIN ROTOR OF 200kg UNMANNED HELICOPTER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180134555A KR102125862B1 (en) 2018-11-05 2018-11-05 METHOD FOR DESIGNING MAIN ROTOR OF 200kg UNMANNED HELICOPTER

Publications (2)

Publication Number Publication Date
KR20200051326A true KR20200051326A (en) 2020-05-13
KR102125862B1 KR102125862B1 (en) 2020-06-23

Family

ID=70729667

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180134555A KR102125862B1 (en) 2018-11-05 2018-11-05 METHOD FOR DESIGNING MAIN ROTOR OF 200kg UNMANNED HELICOPTER

Country Status (1)

Country Link
KR (1) KR102125862B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111717411A (en) * 2020-05-22 2020-09-29 成都飞机工业(集团)有限责任公司 Method for correcting cruise thrust increment based on test flight data standard weight

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950310B1 (en) * 2007-10-12 2010-03-31 건국대학교 산학협력단 Intergration method for sizing and performance program for rotorcarft conceptual design

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950310B1 (en) * 2007-10-12 2010-03-31 건국대학교 산학협력단 Intergration method for sizing and performance program for rotorcarft conceptual design

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111717411A (en) * 2020-05-22 2020-09-29 成都飞机工业(集团)有限责任公司 Method for correcting cruise thrust increment based on test flight data standard weight

Also Published As

Publication number Publication date
KR102125862B1 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
JP6727665B2 (en) Aircraft propulsion system
Gur et al. Comparison between blade-element models of propellers
JP7401545B2 (en) Rotor blades and their design methods
Leishman et al. Figure of merit definition for coaxial rotors
BR112015012287B1 (en) Engine control device, full authority digital engine control computer, turboprop, and ductless fan motor
Ruddell Advancing blade concept (ABC™) development
KR102125862B1 (en) METHOD FOR DESIGNING MAIN ROTOR OF 200kg UNMANNED HELICOPTER
CN108386276A (en) Aero-engine based on control of lengthening the life accelerates control real-time optimization method, apparatus
Rosen et al. Free wake model of hovering rotors having straight or curved blades
Dangelo Wide speed range turboshaft study
Arcidiacono Theoretical performance of helicopters having second and higher harmonic feathering control
Chattopadhyay et al. Optimum design of high speed prop-rotors using a multidisciplinary approach
CN112977814B (en) Improved rotor pneumatic appearance suitable for small and medium-sized unmanned tilt rotor aircraft
Priatmoko et al. Design analysis of ducted propeller for bicopter drone propulsion
Walsh Performance optimization of helicopter rotor blades
Mavris et al. A multidisciplinary design optimization approach to sizing stopped rotor configurations utilizing reaction drive and circulation control
Johnson NASA Design and Analysis of Rotorcraft
CN113051659A (en) Method for optimizing blades of tilt rotor unmanned aerial vehicle
Liu et al. Design of swept blade rotors for high-speed tiltrotor application
Afjeh et al. A simple computational method for performance prediction of tip-controlled horizontal axis wind turbines
Sandak et al. Aeroelastically adaptive propeller using blades’ root flexibility
Roncz Propeller development for the Rutan Voyager
Muscarello et al. Optimization of Tiltrotor Blade Twist to Increase Whirl-Flutter Stability
CN116976012B (en) Performance analysis method for electric aircraft and storage medium
Zhang et al. Design of Ducted Fan Based on Optimal Circulation Distribution

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant