KR20200050483A - An enzyme treatment method to activate antioxidants from wheat embryos containing antioxidants - Google Patents

An enzyme treatment method to activate antioxidants from wheat embryos containing antioxidants Download PDF

Info

Publication number
KR20200050483A
KR20200050483A KR1020180132680A KR20180132680A KR20200050483A KR 20200050483 A KR20200050483 A KR 20200050483A KR 1020180132680 A KR1020180132680 A KR 1020180132680A KR 20180132680 A KR20180132680 A KR 20180132680A KR 20200050483 A KR20200050483 A KR 20200050483A
Authority
KR
South Korea
Prior art keywords
wheat
antioxidants
hours
wheat germ
added
Prior art date
Application number
KR1020180132680A
Other languages
Korean (ko)
Inventor
최용석
최용현
이재강
이정훈
금혜임
강동우
Original Assignee
사조동아원 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사조동아원 주식회사 filed Critical 사조동아원 주식회사
Priority to KR1020180132680A priority Critical patent/KR20200050483A/en
Publication of KR20200050483A publication Critical patent/KR20200050483A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/152Cereal germ products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/40Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
    • A23L3/44Freeze-drying
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/104Fermentation of farinaceous cereal or cereal material; Addition of enzymes or microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/308Foods, ingredients or supplements having a functional effect on health having an effect on cancer prevention

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention relates to an enzyme treatment method of wheat germ containing antioxidants, wherein water is added to wheat germ which is then added with celluclast to induce a reaction in a double boiler, followed by filtering, freezing and drying. The present invention activates antioxidants that suppress the generation of excess oxygen, that is a free (active) oxygen radical, that causes cancer and degenerative diseases, and thus can be added to be applied as a material for functional health foods, anti-cancer foods, and the like.

Description

항산화 물질이 함유된 밀 배아로 부터 항산화 물질을 활성화하기 위한 효소처리 방법{An enzyme treatment method to activate antioxidants from wheat embryos containing antioxidants}Enzyme treatment method to activate antioxidants from wheat embryos containing antioxidants

본 발명은 밀가루 제분 부산물인 밀 배아에 셀루클러스트(celluclast)첨가를 통해 암, 퇴행성 질환의 원인이 되는 산소의 과다 즉, 유리(활성)산소기(프리래디컬, free radical)의 생성을 억제하는 항산화 물질을 활성화하여 건강기능식품 및 항암 관련 식품등의 소재로 첨가 적용이 가능토록 하며 또한, 저평가 되어 있는 밀 배아의 고부가가치 식품화를 통하여 밀 농가 수입확대 등 국민 건강 증진 및 농가 수입확대를 위한 항산화 물질이 함유된 밀 배아로 부터 항산화 물질을 활성화하기 위한 효소처리 방법에 관한 것이다.The present invention is an antioxidant that suppresses the generation of excess oxygen, ie, free (active) oxygen radicals (free radicals), which cause cancer and degenerative diseases, through the addition of celluclast to wheat germ, a by-product of flour milling. Activated to enable the application of supplementary ingredients such as health functional foods and anti-cancer foods. Also, through the high value-added food production of undervalued wheat germs, antioxidants are used to increase public health and increase farmers 'income, such as increasing wheat farmers' income. It relates to an enzyme treatment method for activating antioxidants from this contained wheat germ.

최근 세계 각 나라는 물론 우리나라 소비자들도 안전하고 기능성과 영양이 우수한 식품에 관심이 증가되면서 새로운 기능성 소재를 개발하려는 연구가 급증하고 있다. 특히 식량자원 중에 가공과정에서 부산물로 배출되던 물질 중에서 고 기능성 물질을 확인하고 이를 이용하여 새로운 건강식품을 개발하려는 연구가 활발히 진행되고 있다.Recently, as consumers around the world as well as Korean consumers have increased interest in safe, functional and nutritious foods, research to develop new functional materials is rapidly increasing. In particular, research is underway to identify high-functional substances among substances that were discharged as by-products during processing in food resources and to develop new health foods using them.

옥수수, 쌀 및 밀은 세계의 3대 작물로, 밀은 쌀을 주식으로 사용하는 아시아를 제외한 대부분의 나라에서 주식으로 사용되고 있다. 밀은 제분하여 밀가루로 빵이나 국수 등 뿐 만 아니라 다양한 식품가공에 사용되어 왔다. 아시아권의 나라에서도 최근 밀가루 가공품의 사용량이 증가하고 있으며 우리나라의 경우 연간 1인의 쌀 소비량인 2017년 61.8 kg의 1/2보다 많은 33-35 kg을 소비하여 하루 한 끼를 밀가루로 소비하는 추세를 보이고 있다(KOSTAT 2018). Corn, rice and wheat are the world's three largest crops, and wheat is the staple food in most countries except Asia, where rice is the staple food. Wheat has been milled and used in various food processing as well as bread and noodles. In the Asian countries, the amount of processed wheat products has recently increased, and in Korea, 33-35 kg, which is more than 1/2 of 61.8 kg of rice per year in 2017, consumes one meal a day. Yes (KOSTAT 2018).

밀은 벼과(―科 Gramineae) 밀속(―屬 Triticum)의 풀 또는 그 곡물을 일컫는 것으로서 빵을 만드는 데 쓰는 밀(Triticum vulgare/T. aestivum), 스파게티나 마카로니 같은 파스타를 만드는 데 쓰는 듀럼 밀(T. durum), 케이크 크래커 쿠키 페이스트리 중력분 등에 쓰는 부드러운 콤팍툼 밀(T. compactum) 등이 있다.Wheat refers to the grass or grains of the rice family (Gra 科 Gramineae) and the wheat (― 屬 Triticum). It is used to make bread (Triticum vulgare / T. Aestivum), and durum wheat (T) used to make pasta such as spaghetti or macaroni. .durum), cake cracker cookie pastry, etc. There are soft T. compactum used for gravity.

건조한 지방에서 자란 밀은 대개 경질(硬質) 밀로 단백질이 11~15% 함유되어 있고 글루텐 함량이 풍부해서 빵을 만드는 데 가장 적합하고, 반면에 습기찬 지방에서 자란 밀은 연질(軟質) 밀로서 단백질이 8~10% 함유되어 있고 글루텐 함량이 적어서 케이크 크래커 쿠키 페이스트리, 가정용 밀가루 등에 알맞다. Wheat grown in dry fat is usually hard wheat, which contains 11 to 15% of protein and is rich in gluten, making it best for making bread, whereas wheat grown in wet fat is soft wheat. It contains 8-10% and has a low gluten content, making it suitable for cake cracker cookie pastries, home wheat flour, etc.

이와 같은 밀에는 사람이 필요로 하는 주 에너지원으로는 보통 한 알갱이에는 물 12%, 탄수화물 70%, 단백질 12%, 지방 2%, 무기질 1.8%, 조섬유 2.2% 등이 함유되어 있다. 밀 100g은 약 330㎈의 열량을 낼 수 있다. 소량의 비타민 A가 밀에 들어 있지만 제분과정에서 제거하는 것이 일반적이다.As a main energy source for humans, such wheat usually contains 12% water, 70% carbohydrates, 12% protein, 2% fat, 1.8% minerals, and 2.2% crude fiber. 100g of wheat can produce about 330 calories. A small amount of vitamin A is found in wheat, but it is common to remove it during milling.

이하 통상적인 밀 제분과정을 설명하면, 밀의 선별, 이물질 제거, 가수(加水), 조질, 분쇄, 체질, 포장의 공정으로 이루어진다. 즉, 밀의 선별이나 이물질 제거는 보통 정선공정이라고 칭하고 상기와 같이 정선된 밀을 분쇄/분리 용이하게 하기 위하여 적당량의 물과 적정 수분조건을 유지하는 공정을 가수공정이라 하며 그 다음, 롤러등으로 밀의 껍질과 씨눈 씨젖등을 분리하는 공정을 조질 또는 조쇄공정을 거친 후 밀을 누르고 비벼서 미세한 밀가루로 만드는 분쇄공정을 거쳐 분쇄된 밀가루를 체를 이용하여 입자별로 분리하는 체질 또는 사별공정을 거친 후 포장하면 되는 것이다.Hereinafter, a typical wheat milling process will be described, consisting of wheat selection, foreign matter removal, hydrolysis, tempering, grinding, sieving, and packaging. That is, the process of selecting wheat or removing foreign substances is generally referred to as a selection process, and a process of maintaining an appropriate amount of water and proper moisture conditions to facilitate crushing / separation of the selected wheat as described above is called a hydrolysis process. When the process of separating the skin and the seed skin is subjected to a sieving or crushing process, and then the wheat is pressed and rubbed to grind into a fine flour, and then the crushed flour is separated by particles using a sieve or after a sieving process and packaged. Will be.

이와 같이 제조된 밀가루는 밀의 구성요소에서 배아를 제외함으로서 실질적인 밀의 영양성분중 많은 부분을 버리는 문제점을 갖고 있는 것이 사실이다.It is true that the flour produced in this way excludes embryos from the components of wheat and has a problem of discarding many of the nutrients of the actual wheat.

밀의 배아는 밀알의 약 2-3% 차지하고 있고, 분쇄 과정에서 순수분리가 가능한 소재이지만 불포화 지방산 함량이 높고 지방분해효소나 산화효소로 인해 저장 동안 밀 배아의 영양과 기능성을 빠르게 감소시켜 저장 수명이 크게 저하되어 사용이 제한되고 있다(Boukid F 등 2018). 밀배아에는 생리 활성 화합물이 상당량 들어있고. 약 10-15 %의 지질, 26-35 %의 단백질, 17 %의 당, 1.5-4.5 %의 섬유 및 4 %의 미네랄을 함유하고 있다.(Brandolini A & Hidalgo A 2012). 밀 배아에는 특히 α-tocopherol 등의 항산화물질과 피토스테롤(phytosterols) 및 폴리코사놀(polycosanols)이 있으며 비타민으로 비타민 B(thiamin), 리보플라빈(riboflavin)과 니아신(niacin)을 함유하고 있다(Gelmz N 등 2009, Megahed MG 2011).Wheat germ accounts for about 2-3% of wheat grains, and is a material that can be separated purely during the crushing process, but has a high content of unsaturated fatty acids and rapidly reduces the nutrition and functionality of wheat germ during storage due to lipolytic enzymes or oxidase. Its use has been severely reduced and its use is limited (Boukid F, etc. 2018). Wheat germ contains a significant amount of bioactive compounds. Contains about 10-15% lipid, 26-35% protein, 17% sugar, 1.5-4.5% fiber and 4% minerals (Brandolini A & Hidalgo A 2012). Wheat embryos contain antioxidants such as α-tocopherol, phytosterols and polycosanols, and vitamin B (thiamin), riboflavin and niacin (Gelmz N et al. 2009, etc.) Megahed MG 2011).

현재 약 8-14%의 지방질(평균 10%)을 포함하는 밀 배아는 일부 식품, 의료 및 화장품 산업에서 사용되고 있지만 소비량을 증가하기 위해서는 기능성과 항산화활성을 개선할 필요가 있다. 밀 배아에 함유된 항산화 물질로는 지용성 비타민인 토코페놀류와 페놀성 화합물, 플라보노이드 및 카로티노이드가 포함되므로 배아에서 얻는 배아 유는 항산화물질과 식물성 스테롤을 함유하는 좋은 식품이라고 할 수 있다. 그렇기 때문에 통밀 및 밀의 외피, 배아 등의 분획으로부터 항산화활성의 연구가 꾸준히 이루어져 왔으나(Liyana-Pathirana CM & Shahidi F, 2007; Vaher M 등, 2010; Zhou 등, 2004) 항산화활성을 증가시키기 위해 효소를 사용한 연구는 없는 실정이다.Wheat germ, which currently contains about 8-14% fat (average 10%), is used in some food, medical and cosmetic industries, but it is necessary to improve its functionality and antioxidant activity to increase consumption. Antioxidants contained in wheat germ include fat-soluble vitamins, tocophenols and phenolic compounds, flavonoids and carotenoids, so embryo oil obtained from embryos can be said to be a good food containing antioxidants and vegetable sterols. For this reason, studies on antioxidant activity from fractions of whole wheat and wheat husks and embryos have been conducted steadily (Liyana-Pathirana CM & Shahidi F, 2007; Vaher M et al., 2010; Zhou et al., 2004). No studies have been used.

한국 특허출원 제10-2014-0168153호Korean Patent Application No. 10-2014-0168153 한국 특허등록 제10-0491362호Korean Patent Registration No. 10-0491362 한국 특허등록 제10-1345729호Korean Patent Registration No. 10-1345729

본 발명은 밀가루 제분 부산물인 밀 배아에 셀루클러스트 첨가를 통해 암, 퇴행성 질환의 원인이 되는 산소의 과다 즉, 유리(활성)산소기(프리래디컬, free radical)의 생성을 억제하는 항산화 물질을 활성화하여 건강기능식품 및 항암 관련 식품등의 소재로 첨가 적용이 가능토록 하며 또한, 저평가 되어 있는 밀 배아의 고부가가치 식품화를 통하여 밀 농가 수입확대 등 국민 건강 증진 및 농가 수입확대를 위한 항산화 물질이 함유된 밀 배아로 부터 항산화 물질을 활성화하기 위한 효소처리 방법을 제공함에 그 목적이 있는 것이다.The present invention activates antioxidants that suppress the production of excess oxygen, which is the cause of cancer and degenerative diseases, that is, free (active) oxygen radicals (free radicals) through the addition of cellulcrust to wheat germ, a by-product of flour milling. It is possible to apply it as a material for health functional foods and anti-cancer foods, and it also contains antioxidants to increase national health and increase farm income by increasing the import of wheat farms through the high value-added foodization of undervalued wheat germ. The aim is to provide an enzyme treatment method for activating antioxidants from wheat embryos.

본 발명은 상기 목적을 달성하기 위한 구체적인 해결적 수단은,The present invention is a specific solution means for achieving the above object,

"밀 배아에 물을 가수한 다음 셀루클러스트를 첨가하여 중탕기에 반응시킨 후 여과한 다음, 동결시키고 건조시킨 것을 특징으로 하는 항산화 물질이 함유된 밀 배아 효소처리 방법과,"The method of enzyme treatment of wheat germ containing antioxidants, characterized in that water is added to the wheat germ and then added to the cellulose to react with a water heater, filtered, and then frozen and dried.

밀 배아 50g에 물 200mL을 가수한 다음 셀루클러스트 1.5L를 첨가하여 50℃의 중탕기에 6 ~ 30시간 반응시킨 후 여과한 다음, -50℃에서 동결시키고 건조시킨 것을 특징으로 하는 항산화 물질이 함유된 밀 배아 효소처리 방법,200 ml of water is added to 50 g of wheat germ, and then 1.5 L of cellulose is added, reacted in a water bath at 50 ° C. for 6 to 30 hours, filtered, frozen at -50 ° C., and dried, containing antioxidants. Wheat germ enzyme treatment method,

상기 중탕기 반응시간은 6시간, 12시간, 18시간, 24시간, 30시간중 어느 하나를 선택하여 이루어진 것을 특징으로 하는 항산화 물질이 함유된 밀 배아 효소처리 방법"을 그 구성적 특징으로 함으로서 상기의 목적을 달성할 수 있다.The boiling water reaction time is 6 hours, 12 hours, 18 hours, 24 hours, 30 hours, selected from any one of the wheat germ enzyme treatment method containing antioxidant, characterized in that made by the constitutional characteristics of the above You can achieve your purpose.

상기와 같이 구성된 본 발명은 밀가루 제분 부산물인 밀 배아에 셀루클러스트를 첨가를 통해 암, 퇴행성 질환의 원인이 되는 산소의 과다 즉, 유리(활성)산소기(프리래디컬, free radical)의 생성을 억제하는 항산화 물질을 활성화하여 건강기능식품 및 항암 관련 식품등의 소재로 첨가 적용이 가능토록 하며 현재 전량 수입에 의존하고 있는 밀배아 추출물의 국산화로 가격경쟁력 강화 및 수입 대체 효과가 있으며, 밀 배아 추출물의 항암 기능성 관련하여 국외에서 항암효과 관련 150편 이상의 기능성이 인정된 바 암 환자의 치료비 경제적 부담을 덜어주고, 예방에 활용하는 등 국민 건강 증진에 이바지 할 수 있으며, 국산밀 원맥의 높은 가격으로 국산밀 밀가루의 원가부담을 밀배아 부가가치로 상쇄하여 국산밀 밀가루 가격 경쟁력 제고를 통하여 농가 소득증대의 효과를 발휘할 수 있다.The present invention configured as described above suppresses the production of excess oxygen, which is a cause of cancer and degenerative diseases, that is, free (active) oxygen radicals (free radicals) by adding cellulcrust to wheat germ, a by-product of flour milling. Activating antioxidants, it is possible to apply it as a material for health functional foods and anti-cancer foods, and localization of wheat germ extracts, which currently rely on imports, strengthens price competitiveness and replaces imports, anti-cancer of wheat germ extracts With regard to functionality, more than 150 functionalities related to anti-cancer effects have been recognized abroad, which can help reduce the economic burden of treatment for cancer patients and contribute to the improvement of national health by utilizing it for prevention. The cost burden of wheat is offset by the added value of wheat germ. It can exert the effect of the increase.

도 1은 본 발명인 항산화 물질이 함유된 밀 배아로 부터 항산화 물질을 활성화하기 위한 효소처리 방법에 의해 효소처리된 밀 배아로 부터 α-토코페롤 분석을 위한 HPLC의 분석 조건표,
도 2는 본 발명인 항산화 물질이 함유된 밀 배아로 부터 항산화 물질을 활성화하기 위한 효소처리 방법에 의해 효소처리된 밀 배아로 부터 총 폴리페놀 화합물, 총 플라보노이드, α-토코페롤을 측정한 결과표,
도 3은 본 발명인 항산화 물질이 함유된 밀 배아로 부터 항산화 물질을 활성화하기 위한 효소처리 방법에 있어서 (A)는 신선한 밀 배아, (B)는 셀루크라스트 1.5L가 첨가된 밀 배아, (C)는 표준으로 처리되는 밀 배아에서 함유된 α-토코페롤 함량을 각각 HPLC 크로마토그램으로 나타낸 그래프,
도 4는 본 발명인 항산화 물질이 함유된 밀 배아로 부터 항산화 물질을 활성화하기 위한 효소처리 방법에 의해 효소 셀루클러스트 1.5L로 처리된 밀 배아를 서로 다른 반응 시간에 따라 ABTS(A) 및 DPPH(B) 를 이용한 효소 활성화를 나타낸 그래프이다.
1 is an analysis condition table of HPLC for α-tocopherol analysis from enzyme-treated wheat embryos by an enzyme treatment method for activating antioxidants from wheat embryos containing antioxidants according to the present invention,
Figure 2 is a result of measuring the total polyphenol compound, total flavonoids, α-tocopherol from wheat embryos enzymatically treated by an enzyme treatment method for activating antioxidants from wheat embryos containing the antioxidants of the present invention,
3 is an enzyme treatment method for activating antioxidants from wheat embryos containing the antioxidants of the present invention, (A) is fresh wheat germ, (B) wheat germ added with cellulast 1.5L, (C ) Is a graph showing the content of α-tocopherol contained in wheat germ treated as a standard by HPLC chromatogram,
Figure 4 is the present invention according to different reaction times for wheat embryos treated with the enzyme cellocluster 1.5L by the enzyme treatment method for activating antioxidants from wheat embryos containing antioxidants according to different reaction times ABTS (A) and DPPH (B ) Is a graph showing enzyme activation.

본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명들은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함하며, 명세서 및 청구범위에 사용되는 용어나 단어는 통상적이거나 사전적인 의미로 한정 해석되지 않음은 물론, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 점에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다. 따라서, 본 발명의 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아닌바, 본 발명의 출원 시점에 있어서 이를 대체할 수 있는 다양한 균등물과 변형예들이 가능하거나 존재할 수 있음을 이해하여야 할 것이다.Specific structural or functional descriptions of the embodiments according to the concept of the present invention disclosed in this specification are exemplified only for the purpose of explaining the embodiments according to the concept of the present invention, and the embodiments according to the concept of the present invention Since it is possible to make various changes and have various forms, it includes all changes, equivalents, or substitutes included in the spirit and scope of the present invention, and terms or words used in the specification and claims are conventional or dictionary Not to be construed as being limited to meaning, the inventor can, on the basis that he can appropriately define the concept of terms to describe his or her invention in the best way, meanings and concepts consistent with the technical spirit of the present invention Should be interpreted as Therefore, the embodiments shown in the specification and drawings of the present invention are only the most preferred embodiments of the present invention and do not represent all the technical spirit of the present invention, and are replaced at the time of filing of the present invention It should be understood that various equivalents and variations that can be made are possible or possible.

또한, 본 발명의 명세서에서 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In addition, unless defined otherwise in the specification of the present invention, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. Have Terms such as those defined in a commonly used dictionary should be interpreted as having meanings consistent with meanings in the context of related technologies, and should not be interpreted as ideal or excessively formal meanings unless explicitly defined herein. Does not.

이하 본 발명의 바람직한 일실시 형태를 첨부하는 도면을 참조하여 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

도 1은 본 발명인 항산화 물질이 함유된 밀 배아로 부터 항산화 물질을 활성화하기 위한 효소처리 방법에 의해 효소처리된 밀 배아로 부터 α-토코페롤 분석을 위한 HPLC의 분석 조건표이며, 도 2는 본 발명인 항산화 물질이 함유된 밀 배아로 부터 항산화 물질을 활성화하기 위한 효소처리 방법에 의해 효소처리된 밀 배아로 부터 총 폴리페놀 화합물, 총 플라보노이드, α-토코페롤을 측정한 결과표이고, 도 3은 본 발명인 항산화 물질이 함유된 밀 배아로 부터 항산화 물질을 활성화하기 위한 효소처리 방법에 있어서 (A)는 신선한 밀 배아, (B)는 셀루크라스트 1.5L가 첨가된 밀 배아, (C)는 표준으로 처리되는 밀 배아에서 함유된 α-토코페롤 함량을 각각 HPLC 크로마토그램으로 나타낸 그래프이며, 도 4는 본 발명인 항산화 물질이 함유된 밀 배아로 부터 항산화 물질을 활성화하기 위한 효소처리 방법에 의해 효소 셀루클러스트 1.5L로 처리된 밀 배아를 서로 다른 반응 시간에 따라 ABTS(A) 및 DPPH(B) 를 이용한 효소 활성화를 나타낸 그래프이다.1 is an analysis condition table of HPLC for α-tocopherol analysis from an enzyme-treated wheat embryo by an enzyme treatment method for activating an antioxidant from a wheat embryo containing the antioxidant material of the present invention, and FIG. 2 is an antioxidant of the present invention Total polyphenol compounds, total flavonoids, α-tocopherols are measured from enzyme-treated wheat embryos by an enzyme treatment method for activating antioxidants from wheat embryos containing substances, and FIG. 3 is an antioxidant of the present invention In the enzymatic treatment method for activating antioxidants from the wheat germ containing this, (A) is fresh wheat germ, (B) is wheat germ added with Cellulcrust 1.5L, and (C) is wheat treated as standard. It is a graph showing the content of α-tocopherol contained in embryos by HPLC chromatogram, respectively, and FIG. 4 is an antioxidant from wheat embryos containing the antioxidant substance of the present invention It is a graph showing enzyme activation using ABTS (A) and DPPH (B) according to different reaction times of wheat embryos treated with enzyme cellocluster 1.5L by an enzyme treatment method for activating substances.

우선, 본 발명은 밀 배아에 물을 가수한 다음 셀루클러스트를 첨가하여 중탕기에 반응시킨 후 여과한 다음, 동결시키고 건조시킨 것이며,First, in the present invention, water is added to wheat germ, and then added to the cellulite to react with a water bath, filtered, then frozen and dried.

바람직하게는, 밀 배아 50g에 물 200mL을 가수한 다음 셀루클러스트 1.5L를 첨가하여 50℃의 중탕기에 6 ~ 30시간 반응시킨 후 여과한 다음, -50℃에서 동결시키고 건조시킨 것이고,Preferably, 200 mL of water is added to 50 g of wheat germ, and then 1.5 L of cellulose is added, reacted in a water bath at 50 ° C. for 6 to 30 hours, filtered, then frozen and dried at −50 ° C.,

더욱 바람직하게는 상기 중탕기 반응시간은 6시간, 12시간, 18시간, 24시간, 30시간중 어느 하나를 선택하여 이루어진 것이다.More preferably, the hot water reaction time is made by selecting any one of 6 hours, 12 hours, 18 hours, 24 hours, and 30 hours.

상기와 같은 구성에 대하여 실험 분석 내용을 살펴보면,Looking at the contents of the experimental analysis for the above configuration,

밀 배아는 국내 제분공장인 사조동아원(주) (당진, 한국)에서 제분공정 중에 부산물로 생산되는 밀 배아를 사용하였다. 밀 배아는 안정화를 하여 시료로 사용하였다. Celluclast 1.5L는 Novozymes Corp. (Bagsvaerd, Denmark)에서 구입하였다. 2,2-Diphenyl-1-picrylhydrazyl(DPPH)와 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS)는 Sigama Aldrich Co.(St. Louis, MO, USA)에서 구입하였다.Wheat germ was used as a by-product wheat germ during the milling process at Sajo Dong-awon Co., Ltd. (Dangjin, Korea). Wheat embryos were stabilized and used as samples. Celluclast 1.5L is Novozymes Corp. (Bagsvaerd, Denmark). 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) were purchased from Sigama Aldrich Co. (St. Louis, MO, USA).

이하, 상기와 같은 구성으로 효소처리된 밀 배아에 함유된 항산화 물질 즉, 총 폴리페놀 화합물 함량, 총 플라보노이드 함량, α-tocopherol(알파- 토코페롤) 함량의 측정방법 및 그 결과에 대하여 설명하면 다음과 같다.Hereinafter, a method for measuring the antioxidant substance contained in the enzyme-treated wheat germ, that is, the total polyphenol compound content, the total flavonoid content, and the α-tocopherol (alpha-tocopherol) content and the results will be described as follows. same.

1. 총 폴리페놀 화합물과 총 플라보노이드 함량 측정1. Total polyphenol compound and total flavonoid content measurement

1) 총 폴리페놀 화합물 함량 1) Total polyphenol compound content

총 폴리페놀 화합물 함량(total phenolic compounds, TPC)은 Folin-Ciocalteu’phenol시약을 사용한 비색법(Chen L 등 2015)을 수정하여 분석하였다. 15 mL의 원심분리관에 10 mg의 효소처리 밀 배아와 2.5 mL 10% Folin-Ciocalteu 시약을 혼합한 다음 5 분간 상온에서 반응시킨 후 2 mL의 7.5%(v/v) Na2CO3을 혼합물에 첨가 하였다. 혼합용액을 실온에서 2 시간 동안 반응시켰고, 10,000 ×g에서 2 시간 동안 원심분리기(Union 5KR, Hanil, Incheon, Korea)로 분리하였다. 상등액의 흡광도를 UV-vis 분광 광도계(Libra S22, Biochrom, Cambridge, England)로 750 nm에서 측정하였다. 표준물질로는 gallic acid를 이용하였고 총 페놀성 화합물 함량은 mg gallic acid equivalents(GAE)/g dry weight로 나타내었다. The total polyphenolic compound content (TPC) was analyzed by modifying the colorimetric method (Chen L et al. 2015) using Folin-Ciocalteu'phenol reagent. In a 15 mL centrifuge tube, mix 10 mg of enzyme-treated wheat embryos with 2.5 mL 10% Folin-Ciocalteu reagent, react at room temperature for 5 minutes, and then mix 2 mL of 7.5% (v / v) Na 2 CO 3 Was added to. The mixed solution was reacted for 2 hours at room temperature, and separated by centrifugation (Union 5KR, Hanil, Incheon, Korea) for 2 hours at 10,000 × g. The absorbance of the supernatant was measured at 750 nm with a UV-vis spectrophotometer (Libra S22, Biochrom, Cambridge, England). As a standard, gallic acid was used, and the total phenolic compound content was expressed as mg gallic acid equivalents (GAE) / g dry weight.

2) 총 플라보노이드 함량 2) Total flavonoid content

총 플라보노이드 함량(total flavonoid content, TFC)은 Abozed SS 등(2014)의 방법에 따라 측정하였다. 2 mg의 효소처리 밀 배아를 시험관에 넣고 70%(v/v) 에탄올 20 mL에 첨가한 다음 15 시간동안 진탕 추출 하였다. 2,500 ×g에서 5 분간 원심 분리 한 후 상층 액 0.5 mL(v/v)를 시험관에 넣고 95%(v/v) 에탄올 1.5 mL와 10% 염화알루미늄 용액 0.1 mL를 넣었다. 1 M 아세트산 칼륨 용액 100 mL 및 증류수 2.8 mL를 첨가하였다. 실온에서 30 분간 방치 한 후, 415 nm에서 흡광도(Libra S22 UV-vis spectrophotometer, Biochrom, Cambridge, England.)를 측정하였다. 표준곡선은 rutin을 사용하여 실험하였으며 표준곡선으로부터 총 플라보노이드 함량을 계산하였다. 결과는 3번 반복하여 평균 및 표준 편차로 나타내었다.Total flavonoid content (TFC) was measured according to the method of Abozed SS et al. (2014). 2 mg of enzyme-treated wheat embryos were placed in a test tube, and added to 20 mL of 70% (v / v) ethanol, followed by shaking extraction for 15 hours. After centrifugation for 5 minutes at 2,500 × g, 0.5 mL (v / v) of the supernatant was placed in a test tube, and 1.5 mL of 95% (v / v) ethanol and 0.1 mL of 10% aluminum chloride solution were added. 100 mL of 1 M potassium acetate solution and 2.8 mL of distilled water were added. After standing at room temperature for 30 minutes, absorbance (Libra S22 UV-vis spectrophotometer, Biochrom, Cambridge, England.) Was measured at 415 nm. The standard curve was tested using rutin and the total flavonoid content was calculated from the standard curve. The results were repeated 3 times and expressed as mean and standard deviation.

2. HPLC를 이용한 밀 배아의 α-tocopherol(알파- 토코페롤) 함량 측정2. Measurement of α-tocopherol (alpha-tocopherol) content in wheat embryos using HPLC

효소처리 밀 배아의 α-tocopherol의 함량은 Lee SM 등(2006)의 방법에 따라 도 1에 도시된 바와 같이, 컬럼(ZORBAX ODS 150 ×4.6 mm)으로 구성된 HPLC(Spectra System, Thermo Electron Co., Waltham, MA, USA)와 fluorescence detector(여기 파장 290 nm, 방출 파장 330 nm)를 사용하여 측정하였다. 이동상은 헥산이 포함 된 1.3% 이소프로판올, 유속은 1.0 mL/min, 주입량은 20 mL였다. 효소처리 밀 배아 5 g을 취하여 원통형 여과지에 넣고 0.01% BHT가 들어있는 헥산 100 mL를 용매로 속실렛으로 70-80℃에서 4 h 동안 추출하였다. 헥산 추출물을 100 mL로 정용한 후 그 중 2 mL를 시료로 사용하여 질소주입 하에 농축시켰고 이동상 1.3% isopropanol을 포함하는 헥산을 넣은 후 HPLC로 분석하였다.The content of α-tocopherol in the enzyme-treated wheat embryo is HPLC (Spectra System, Thermo Electron Co., consisting of columns (ZORBAX ODS 150 × 4.6 mm), as shown in FIG. 1 according to the method of Lee SM et al. (2006). Waltham, MA, USA) and a fluorescence detector (excitation wavelength 290 nm, emission wavelength 330 nm) were measured. The mobile phase was 1.3% isopropanol containing hexane, the flow rate was 1.0 mL / min, and the injection volume was 20 mL. 5 g of the enzyme-treated wheat germ was taken, placed in a cylindrical filter paper, and 100 mL of hexane containing 0.01% BHT was extracted with a solvent in Soxhlet at 70-80 ° C. for 4 h. After hexane extract was used as 100 mL, 2 mL of the sample was concentrated under nitrogen injection, and hexane containing 1.3% isopropanol was added and analyzed by HPLC.

3. 효소 처리 밀 배아의 항산화활성 측정3. Measurement of antioxidant activity of enzyme-treated wheat embryos

1) ABTS 라디칼 소거능 측정1) ABTS radical scavenging ability measurement

효소처리 밀 배아 1 g을 증류수 20 mL에 넣고 30 분간 초음파로 추출한(ST505 Solutech, Osan, Gyeonggido Korea)다음 원심분리(4,500 rpm, 5 min, Union 5KR, Hanil Co., Incheon, Korea) 하여 상등액을 사용하였다. ABTS(2,2-azino-bis-3-ethylbenzo-thiazoline-6-sulfonate) 라디칼 소거능 측정은 Park KR 등(2009)의 실험 방법을 일부 변경하여 실시하였다. 1.0 mM AAPH[(2,2‘와 2.5 mM ABTS 시약을 phosphate-buffered saline(PBS, pH 7.4) 용액 100 mL에 섞어 70℃ 항온수조에서 반응시켜 ABTS 라디칼 용액을 제조하였다. 라디칼 용액의 농도는 PBS 용액을 이용하여 734 nm에서 0.650±0.020 흡광도로 조절하였다. ABTS 라디칼 용액 980 μL와 시료 20 μL를 37℃의 항온수조에서 10분간 반응시켜 734 nm 파장에서 흡광도의 감소량을 측정하였으며 vitamin C를 표준물질로 항산화활성을 mg vitamin C equivalents(VCE)/g dry weight로 계산하였다. 1 g of enzyme-treated wheat germ was placed in 20 mL of distilled water, and extracted with ultrasonic waves for 30 minutes (ST505 Solutech, Osan, Gyeonggido Korea), followed by centrifugation (4,500 rpm, 5 min, Union 5KR, Hanil Co., Incheon, Korea), and the supernatant. Used. Measurement of ABTS (2,2-azino-bis-3-ethylbenzo-thiazoline-6-sulfonate) radical scavenging ability was carried out by partially changing the experimental method of Park KR et al. (2009). ABTS radical solution was prepared by mixing 1.0 mM AAPH [(2,2 'and 2.5 mM ABTS reagent in 100 mL of phosphate-buffered saline (PBS, pH 7.4) solution and reacting in a 70 ° C constant temperature water bath. The absorbance was adjusted to 0.650 ± 0.020 absorbance at 734 nm by reacting 980 μL of ABTS radical solution and 20 μL of sample in a constant temperature water bath at 37 ° C. for 10 minutes to measure the decrease in absorbance at a wavelength of 734 nm and vitamin C as a standard. The antioxidant activity was calculated as mg vitamin C equivalents (VCE) / g dry weight.

2) DPPH에 의한 항산화활성2) Antioxidant activity by DPPH

DPPH radical 소거능은 Blois MS(1958)의 방법을 변형하여 측정하였다. 효소처리 밀 배아 1 g을 증류수 20 mL에 넣고 30 분간 초음파로 추출한(ST505 Solutech, Osan, Gyeonggido Korea)다음 원심분리(4,500 rpm, 5 min, Union 5KR, Hanil Co., Incheon, Korea)한 상등액을 사용하였다. 시료 0.5 mL에 0.2 mM DPPH (1,1-diphenyl-2-picrylhydrazyl) 용액을 0.5 mL 가하여 혼합하여 30분간 방치시킨 후 분광광도계로 517 nm에서 흡광도를 측정하였다. 대조구는 시료 대신 용매를 가하여 동일한 방법으로 측정하였으며 시료 자체의 색에 대한 흡광도 값을 보정해주기 위해 0.2 mM DPPH 대신 메탄올을 넣어 같은 방법으로 흡광도를 측정하였다. DPPH radical 소거능은 다음과 같이 계산하였다.DPPH radical scavenging ability was measured by modifying the method of Blois MS (1958). 1 g of the enzyme-treated wheat germ was placed in 20 mL of distilled water and extracted with ultrasonic waves for 30 minutes (ST505 Solutech, Osan, Gyeonggido Korea), followed by centrifugation (4,500 rpm, 5 min, Union 5KR, Hanil Co., Incheon, Korea). Used. After adding 0.5 mL of a 0.2 mM DPPH (1,1-diphenyl-2-picrylhydrazyl) solution to 0.5 mL of the sample, mixing and allowing to stand for 30 minutes, the absorbance was measured at 517 nm with a spectrophotometer. The control was measured in the same way by adding a solvent instead of the sample, and absorbance was measured in the same manner by adding methanol instead of 0.2 mM DPPH to correct the absorbance value for the color of the sample itself. DPPH radical scavenging capacity was calculated as follows.

DPPH radical scavenging effect (%) = (1 - 시료첨가구의 흡광도/무첨가구의 흡광도) ×100DPPH radical scavenging effect (%) = (1-absorbance of sample addition / absorption of no addition) × 100

4. 분석4. Analysis

실험은 3회 이상 반복하여 측정하였고 결과는 평균과 표준편차로 나타내었다. 실험결과는 미니탭(Minitab17, Minitab Inc., University Park, PA, USA)을 이용하여 분산분석(ANOVA)을 실시하였고 p<0.05 수준에서 평균간 차이에 대한 Tukey법을 적용하여 검정을 실시하였다.The experiment was repeated three or more times and the results were expressed as the mean and standard deviation. As a result of the experiment, ANOVA was performed using Minitab (Minitab17, Minitab Inc., University Park, PA, USA), and the test was conducted by applying the Tukey method for the difference between means at the p <0.05 level.

5. 결과 및 고찰5. Results and Discussion

1)총 폴리페놀성 화합물 함량 1) Total polyphenolic compound content

제분과정에서 분리된 밀 배아의 항산화물질의 용출을 증가시키기 위해 세포막을 구성하는 셀룰로오스를 분해하는 효소(Celluclast 1.5L)를 가하여 일정 시간별로 반응시켰다. 반응 후 배아를 분리하여 동결 건조시키고 효소처리 밀 배아로부터 총 폴리페놀 화합물(TPC)을 측정한 결과는 도 2에 도시된 바와 같다. 효소처리 6 시간 후까지는 TPC이 급격히 증가하였다. 즉 9.35 mg/g인 TPC함량이 22.66 mg/g으로 약 2.5배 증가하였지만 매 6시간 마다 반응 후 측정한 TPC 함량은 24.57 mg/g에서 30시간 반응 후 37.63 mg/g으로 비교적 완만하게 증가하였다. Laroze L 등 (2010)의 보고에 의하면 raspberry 부산물에 효소처리를 50℃에서 하였을 때 대조군에 비해 폴리페놀류의 항산화물질 함량이 35%까지 증가한다고 하였다. Kalcheva-Karadzhova K 등(2014)은 추출물 수율의 증가, 총 폴리페놀과 안토시안 및 항산화 물질의 값의 증가가 효소 처리에 의해 반응한 것으로 관찰되었다. 또한 Celluclast(셀루클러스트) 1.5L과 같은 셀룰로오스를 가수분해하는 효소는 세포 내 또는 세포벽에서 단백질 또는 탄수화물과 결합한 폴리페놀을 유리시켜 추출에 매우 효과적이었다고 보고하였다. 식물체의 세포벽은 셀룰로오스와 헤미셀룰로오스, 단백질 등의 골격성분이 세포간질인 펙틴질에 둘러싸여 있는 구조로 되어 있다(Carpiat NC & Gibeau DM 1993). 이 중 페놀성 물질은 세포내에서 일정한 분포를 보이지 않으며, 불용성 페놀성 화합물의 경우 세포벽 성분으로, 수용성 페놀성 화합물은 액포 등에 존재하는 것으로 알려져 있다(Wink M 1997). 그래서 세포벽 등 세포를 둘러싸고 있는 물질을 효소로 분해하여 페놀성 물질 등 세포내 유용성분을 추출하고자 하는 여러 연구가 수행되었음을 알 수 있었다. Li BB 등(2006)은 열대과일인 citrus fruit의 경우 세포벽을 분해하는 효소(Celluzyme CL, Celluzyme MX, Kleepase AFP 106L)를 사용하고 물로 추출한 경우 6 시간 반응하였을 때 가장 높은 페놀성 화합물이 추출되었고 그 후 약간씩 감소하는 경향을 보여 초기 6시간의 효과가 컸음을 보고하였다. 본 실험에서도 유사한 결과를 보여 세포벽을 분해할 수 있는 Celluclast 1.5L 외에도 다양한 효소 처리하면 밀 배아로부터 폴리페놀 추출을 용이하게 하였으며 이는 반응초기에 더 급격한 증가를 보이며 추출 시간이 증가함에 따라서도 증가하는 경향을 보임을 알 수 있었다.In order to increase the elution of antioxidants of wheat germ isolated in the milling process, an enzyme (Celluclast 1.5L) that breaks down cellulose constituting the cell membrane was added and reacted for a certain time. After the reaction, the embryos were separated, lyophilized, and the results of measuring the total polyphenol compound (TPC) from the enzyme-treated wheat embryos are as shown in FIG. 2. TPC increased rapidly until 6 hours after enzyme treatment. That is, the TPC content of 9.35 mg / g increased by about 2.5 times to 22.66 mg / g, but the TPC content measured after the reaction every 6 hours increased from 24.57 mg / g to 37.63 mg / g after 30 hours of reaction. According to a report by Laroze L et al. (2010), when the raspberry by-product was enzymatically treated at 50 ° C, the antioxidant content of polyphenols increased by 35% compared to the control group. Kalcheva-Karadzhova K et al. (2014) observed that an increase in extract yield, an increase in the value of total polyphenols and anthocyanins and antioxidants was reacted by enzyme treatment. In addition, it was reported that enzymes that hydrolyze cellulose, such as Celluclast (1.5L), were highly effective in extraction by liberating polyphenols bound to proteins or carbohydrates in cells or in cell walls. The cell wall of the plant has a structure in which skeletal components such as cellulose, hemicellulose, and protein are surrounded by pectin, an interstitial cell (Carpiat NC & Gibeau DM 1993). Among them, phenolic substances do not show a constant distribution in cells, and insoluble phenolic compounds are known as cell wall components, and water-soluble phenolic compounds are known to exist in vacuoles (Wink M 1997). Therefore, it has been found that several studies have been conducted to extract useful substances in cells such as phenolic substances by decomposing substances surrounding the cells, such as cell walls, with enzymes. Li BB et al. (2006) used the enzymes that break down cell walls (Celluzyme CL, Celluzyme MX, Kleepase AFP 106L) in the case of citrus fruit, a tropical fruit, and when extracted with water, the highest phenolic compound was extracted when reacted for 6 hours. After showing a tendency to decrease slightly, it was reported that the effect of the initial 6 hours was great. In this experiment, similar results showed similar celluclast 1.5L, which can decompose cell walls, and various enzyme treatments facilitated the extraction of polyphenols from wheat embryos, which showed a more rapid increase in the initial reaction and tended to increase with increasing extraction time. I could see that.

2) 총 플라보노이드 함량 2) Total flavonoid content

Celluclast 1.5L로 처리한 밀 배아의 총 플라보노이드 함량(TFC)은 도 2에 도시된 바와 같이 반응 초기 6 시간까지는 2.93 mg/g에서 8.64 mg/g으로 약 3.0 배 증가하였으나, 그 이후 증가는 미미하여 24시간까지 1.21 mg/g 만 더 증가하였다. 그러나 30 시간 반응 후에는 12.78 mg/g으로 증가 폭이 커졌다. Chen S 등(2011)은 은행으로부터 플라보노이드를 추출하기 위하여 Penicillium decumbens cellulase를 사용하여 세포벽을 파괴하고 용해도를 증가시켜 효소사용을 안했을 때보다 102%를 증가시켰다. 또한 Tomaz I 등(2016) 포도껍질로부터 플라보노이드 추출을 증가시키기 위해 새로운 효소를 준비하여 최적 조건을 규명하였다. 대체적으로 효소처리에 의해 추출되는 정도는 원료와 사용하는 효소의 최적조건이 영향을 주며 또한 추출용매에 따라서도 달라지는 것을 알 수 있었다. 본 실험에서는 Celluclast 1.5L을 반응시키고 물로 추출하였을 때 총 페놀성화합물이나 총 플라보노이드 함량이 초기 6시간에 가장 수율이 높은 결과를 보여줌을 확인하였다.  The total flavonoid content (TFC) of wheat embryos treated with Celluclast 1.5L increased by about 3.0 times from 2.93 mg / g to 8.64 mg / g until the initial 6 hours of the reaction, as shown in FIG. By time, only 1.21 mg / g increased further. However, after a 30-hour reaction, the increase was increased to 12.78 mg / g. Chen S et al. (2011) used Penicillium decumbens cellulase to extract flavonoids from the bank, destroying the cell wall and increasing solubility, increasing 102% compared to the absence of enzyme use. In addition, a new enzyme was prepared to increase flavonoid extraction from grape skins of Tomaz I et al. (2016) to determine the optimal conditions. In general, it was found that the degree of extraction by enzyme treatment affects the optimum conditions of the raw material and the enzyme used, and also varies depending on the extraction solvent. In this experiment, it was confirmed that when the Celluclast 1.5L was reacted and extracted with water, the total yield of phenolic compounds or total flavonoids was highest in the initial 6 hours.

3) HPLC를 이용한 α-tocopherol 함량 3) α-tocopherol content using HPLC

HPLC로 확인한 α-tocopherol의 추출 및 분리는 도 3에 도시된 바와 같이 순수 분리되었으며 그 피크의 면적으로부터 구한 함량은 도 2에 도시된 바와 같다.  Extraction and separation of α-tocopherol confirmed by HPLC were purely separated as shown in FIG. 3, and the content obtained from the area of the peak was as shown in FIG. 2.

Celluclast 1.5L로 처리한 밀 배아의 α-토코페롤 함량은 처리하지 않은 경우 40.17 mg/ 100 g이었는데 효소처리를 하면 감소하여 6시간 후 29.31 mg/100 g으로 28%가 감소하였고, 30시간 반응 후까지 큰 변화를 보이지 않았다. 밀 배아에는 밀알 입자의 어떤 부분보다 많은 양의 α-토코페롤을 갖고 있다고 보고되었다(Gili RD 등 2017). 특히 α-토코페롤은 세포막과 지질단백질의 산화과정에서 생성되는 라디칼을 제거하는 항산화제의 역할을 하는 것으로 알려져 있는데(Kamal-Eldin A 1996), 추출방법에 영향을 보이나 효소처리로 산소와는 접촉이 많아져 나타난 결과로 생각되었다. Oh 등(2016)은 α-토코페롤 함량은 헥산으로 추출하는 것보다 초임계추출방법에 의해 많이 추출됨을 확인하였으나 용매추출 및 초임계유체추출 모두 β-tocopherol은 검출되지 않았다고 보고했다. Zou Y 등(2018)은 밀 배아의 토코페롤 함량은 안정화를 위해 볶음과정을 할 경우 시간에 따라 감소함을 보고하였으며 그 이유는 열분해의 결과라고 하였다. Kumar GS 등(2014)도 유사한 결과를 보고하여 α-토코페놀은 열이나 산소에 의해 분해되어 함량이 감소하는 것으로 생각되었다. 본 연구에서 밀 배아의 안정화를 위하여 압출처리의 온도 상승과, 효소처리 후 추출과정을 거치면서 산소의 접촉이 쉬워져 α-토코페롤 값이 비처리군보다 낮게 나타난 것으로 생각되었다. 그래서 지용성비타민으로 항산화물질인 α-토코페롤은 세포벽 등 세포 분해로 인해 오히려 추출을 증가하는 것보다는 산화 등으로 감소할 가능성이 있음을 알 수 있었다. The α-tocopherol content of wheat embryos treated with Celluclast 1.5L was 40.17 mg / 100 g without treatment, but decreased by 28% to 29.31 mg / 100 g after 6 hours after enzyme treatment, until 30 hours after reaction. There was no significant change. It has been reported that wheat embryos contain more α-tocopherol than any part of the grain of wheat (Gili RD et al. 2017). In particular, α-tocopherol is known to act as an antioxidant that removes radicals generated in the oxidation process of cell membranes and lipoproteins (Kamal-Eldin A 1996), which affects the extraction method, but does not contact oxygen with enzyme treatment. It was thought that it was the result of the increase. Oh et al. (2016) confirmed that α-tocopherol content was extracted more by supercritical extraction method than by hexane extraction, but reported that β-tocopherol was not detected in both solvent extraction and supercritical fluid extraction. Zou Y et al. (2018) reported that the tocopherol content of wheat germ decreases with time when roasting for stabilization, and the reason is that it is the result of thermal decomposition. Kumar GS et al. (2014) reported similar results, and it was thought that α-tocophenol was decomposed by heat or oxygen and thus the content decreased. In this study, for stabilization of wheat germ, it was thought that the temperature of the extrusion treatment increased and the contact of oxygen was easy through the extraction process after the enzyme treatment, so that the α-tocopherol value was lower than that of the untreated group. Therefore, it was found that α-tocopherol, an antioxidant as fat-soluble vitamin, may be reduced due to oxidation rather than increase extraction due to cell decomposition such as cell wall.

4) 항산화활성4) Antioxidant activity

ABTS에 의한 라디칼 소거능 측정은 항산화 활성 평가에 많이 사용되는 비색법으로(Adedapo AA 등 2008) 본 실험 결과 도 4에 도시된 바와 같이 효소처리 밀 배아 처리한 Celluclast 1.5L의 처리 24시간까지는 오히려 ABTS 값이 약간 감소하는 경향을 보였으나 30시간 반응처리한 밀 배아의 경우에는 항산화활성이 증가하였다. DPPH에 의한 라디칼 소거능 측정은 낮은 농도에서 유효성분들을 검출할 만큼 민감하고 짧은 시간에 많을 시료들을 확인할 수 있다고 한다(Hseu YC 등 2008). Chen D 등(2016)은 귀리 껍질을 cellulase로 최대 80분간 처리하면 ABTS와 DPPH 라디칼 소거능과 FRAP values가 유의미하게 증가한다고 보고하였다. 본 발명에서도 도 4에 도시된 바와 같이 ABTS와 DPPH 모두 초기값에 비해 약간의 감소를 보이다가 24시간 이상의 효소처리한 경우에는 항산화활성이 증가하는 경향을 보였다. 이는 총페놀성화합물과 플라보노이드의 증가현상과 α-tocopherol 함량의 감소가 종합적으로 작용하였기 때문으로 사료되었으며 항산화활성을 높이기 위해서는 세포벽 가수분해효소로 Celluclast 1.5L만을 사용할 경우 30시간 이상의 처리가 필요한 것으로 생각되었다. 본 실험에서 밀 배아 지방질의 가수분해 및 산화효소를 불활성화 시키기 위해 압출성형기로 안정화시켰지만 토코페롤 함량이 감소되는 경향을 보여 밀배아의 항산화활성을 증가시키기 위해 페놀성 화합물의 추출 능력의 증가뿐만 아니라 토코페롤의 안정화를 위한 처리가 필요함을 확인하였다. Measurement of radical scavenging activity by ABTS is a colorimetric method that is frequently used for evaluating antioxidant activity (Adedapo AA et al. 2008). As a result of this experiment, the ABTS value was not increased until 24 hours of treatment with Celluclast 1.5L treated with enzyme-treated wheat embryos as shown in FIG. It showed a tendency to decrease slightly, but the antioxidant activity increased in wheat embryos that were treated for 30 hours. It is said that the measurement of radical scavenging activity by DPPH is sensitive enough to detect active ingredients at low concentrations and can identify many samples in a short time (Hseu YC et al. 2008). Chen D et al. (2016) reported that treatment of oat shells with cellulase for up to 80 minutes significantly increased ABTS and DPPH radical scavenging activity and FRAP values. In the present invention, as shown in FIG. 4, both ABTS and DPPH showed a slight decrease compared to the initial value, and when the enzyme was treated for more than 24 hours, the antioxidant activity tended to increase. This was thought to be because the total phenolic compound and flavonoid increase and α-tocopherol content were collectively considered. In order to increase the antioxidant activity, treatment with Celluclast 1.5L as a cell wall hydrolase requires more than 30 hours of treatment. Became. In this experiment, it was stabilized by an extrusion molding machine to inactivate hydrolyzate and oxidase of wheat embryo fat, but it showed a tendency to decrease the tocopherol content, so as to increase the antioxidant activity of wheat embryo, tocopherol as well as increase the extraction ability of phenolic compounds. It was confirmed that the treatment for the stabilization of the need.

이와 같이, 밀배아의 항산화활성을 증가시키기 위해 세포벽을 분해하는 Celluclast 1.5L를 이용하여 밀배아에 일정시간 처리 한 다음 효소처리 밀 배아로부터 총페놀성화합물(TPC), 총 플라보노이드 함량(TFC)과 α-토코페롤 함량을 측정하였고 항산화활성을 ABTS와 DPPH 라디칼 소거능으로 비교하였다. TPC와 TFC는 효소처리 하지 않은 밀 배아보다 초기 6시간 후 급격한 증가를 보였으나 그 후 변화가 크기 않았으며 30시간 처리하였을 때 TPC는 4.3배, TFC는 3.0배 증가하였다. α- 토코페롤 함량은 안정화 밀배아에서 40.17 mg/100 g이었는데 효소처리 6시간 후 28% 감소하였으며 그 후 큰 변화는 없었다. 항산화활성을 ABTS와 DPPH 라디칼소거능으로 비교하였을 때 효소처리 초기에는 감소하였으나 효소처리 30시간 이후에는 증가하여 항산화활성을 개선하기 위해서는 Celluclast 1.5L로만 처리할 경우에는 30시간의 처리시간이 요구되었다. 위의 결과로부터 세포를 분해하는 다른 효소의 복합 작용의 효과와 토코페롤 감소 원인을 확인하면 항산화활성을 훨씬 더 개선할 수 있는 것이다. As such, to increase the antioxidant activity of wheat embryos, Celluclast 1.5L is used to decompose cell walls to treat wheat embryos for a certain period of time, followed by enzymatically treated wheat embryos with total phenolic compounds (TPC) and total flavonoid content (TFC). α-tocopherol content was measured and antioxidant activity was compared with ABTS and DPPH radical scavenging activity. TPC and TFC showed a sharp increase after the initial 6 hours, but there was no significant change, and TPC increased 4.3-fold and TFC increased 3.0-fold after 30-hour treatment. The content of α-tocopherol was 40.17 mg / 100 g in stabilized wheat embryos, which decreased by 28% after 6 hours of enzyme treatment, and there was no significant change after that. When the antioxidant activity was compared with ABTS and DPPH radical scavenging ability, it decreased at the initial stage of enzyme treatment, but increased after 30 hours of enzyme treatment. In order to improve the antioxidant activity, treatment time with Celluclast 1.5L required 30 hours of treatment time. From the above results, it is possible to further improve the antioxidant activity by confirming the effect of the complex action of other enzymes that degrade cells and the causes of tocopherol reduction.

이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기 실시예에 한정되지 않음은 물론이며, 본 발명이 속하는 분야에서 통상의 기술적 지식을 가진 자에 의해 상기 기재된 내용으로부터 다양한 수정 및 변형이 가능할 수 있음은 물론이다.As described above, although the present invention has been described by limited embodiments and drawings, the present invention is not limited to the above embodiments, and the contents described above by those skilled in the art to which the present invention pertains Of course, various modifications and variations may be possible.

따라서 본 발명에서의 기술적 사상은 아래에 기재되는 청구범위에 의해 파악되어야 하되 이의 균등 또는 등가적 변형 모두 본 발명의 기술적 사상의 범주에 속함은 자명하다 할 것이다.Therefore, the technical idea in the present invention should be grasped by the claims described below, but it will be apparent that all equivalent or equivalent modifications fall within the scope of the technical idea of the present invention.

Claims (3)

밀 배아에 물을 가수한 다음 셀루클러스트를 첨가하여 중탕기에 반응시킨 후 여과한 다음, 동결시키고 건조시킨 것을 특징으로 하는 항산화 물질이 함유된 밀 배아 효소처리 방법.
A method of enzymatic treatment of wheat germ containing antioxidants, characterized in that water is added to the wheat germ and then added to the cellulite to react with a water heater, filtered, and then frozen and dried.
제 1 항에 있어서,
밀 배아 50g에 물 200mL을 가수한 다음 셀루클러스트 1.5L를 첨가하여 50℃의 중탕기에 6 ~ 30시간 반응시킨 후 여과한 다음, -50℃에서 동결시키고 건조시킨 것을 특징으로 하는 항산화 물질이 함유된 밀 배아 효소처리 방법.
According to claim 1,
200 ml of water is added to 50 g of wheat germ, and then 1.5 L of cellulose is added, reacted in a water bath at 50 ° C. for 6 to 30 hours, filtered, frozen at -50 ° C., and dried, containing antioxidants. Wheat germ enzyme treatment method.
제 2 항에 있어서,
상기 중탕기 반응시간은 6시간, 12시간, 18시간, 24시간, 30시간중 어느 하나를 선택하여 이루어진 것을 특징으로 하는 항산화 물질이 함유된 밀 배아 효소처리 방법.
According to claim 2,
The jungtanggi reaction time is 6 hours, 12 hours, 18 hours, 24 hours, 30 hours, wheat germ enzyme treatment method containing an antioxidant, characterized in that any one selected.
KR1020180132680A 2018-11-01 2018-11-01 An enzyme treatment method to activate antioxidants from wheat embryos containing antioxidants KR20200050483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180132680A KR20200050483A (en) 2018-11-01 2018-11-01 An enzyme treatment method to activate antioxidants from wheat embryos containing antioxidants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180132680A KR20200050483A (en) 2018-11-01 2018-11-01 An enzyme treatment method to activate antioxidants from wheat embryos containing antioxidants

Publications (1)

Publication Number Publication Date
KR20200050483A true KR20200050483A (en) 2020-05-12

Family

ID=70679569

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180132680A KR20200050483A (en) 2018-11-01 2018-11-01 An enzyme treatment method to activate antioxidants from wheat embryos containing antioxidants

Country Status (1)

Country Link
KR (1) KR20200050483A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491362B1 (en) 2003-01-22 2005-05-24 엔제피아 주식회사 Method for preparing immune enhancing polysaccharides
KR101345729B1 (en) 2011-10-28 2013-12-30 가천대학교 산학협력단 Method of extracting arabinoxylan from rice bran

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491362B1 (en) 2003-01-22 2005-05-24 엔제피아 주식회사 Method for preparing immune enhancing polysaccharides
KR101345729B1 (en) 2011-10-28 2013-12-30 가천대학교 산학협력단 Method of extracting arabinoxylan from rice bran

Similar Documents

Publication Publication Date Title
Watson Polyphenols in plants: isolation, purification and extract preparation
Briones-Labarca et al. Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction
Torres-León et al. Solid-state fermentation with Aspergillus niger to enhance the phenolic contents and antioxidative activity of Mexican mango seed: A promising source of natural antioxidants
Ferri et al. Recovery of polyphenols from red grape pomace and assessment of their antioxidant and anti-cholesterol activities
Ng et al. Customized drying treatments increased the extraction of phytochemicals and antioxidant activity from economically viable medicinal plants
Wanyo et al. Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk
Valdés et al. Microwave-assisted extraction of phenolic compounds from almond skin byproducts (Prunus amygdalus): A multivariate analysis approach
Tabaraki et al. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology
Liu et al. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus)
Durante et al. Durum wheat by-products as natural sources of valuable nutrients
Bae et al. Optimized preparation of anthocyanin-rich extract from black rice and its effects on in vitro digestibility
Meral et al. The effect of bread-making process on the antioxidant activity and phenolic profile of enriched breads
Bagchi et al. Process standardization for rice bran stabilization and its' nutritive value.
Siriamornpun et al. Reducing retrogradation and lipid oxidation of normal and glutinous rice flours by adding mango peel powder
Rezende et al. Enzymatic and ultrasonic-assisted pretreatment in the extraction of bioactive compounds from Monguba (Pachira aquatic Aubl) leaf, bark and seed
Keskin et al. Antioxidant activity and biochemical compounds of Vitis vinifera L.(cv.‘Katıkara’) and Vitis labrusca L.(cv.‘Isabella’) grown in Black Sea Coast of Turkey
Laokuldilok et al. Protease treatment for the stabilization of rice bran: Effects on lipase activity, antioxidants, and lipid stability
Abouelenein et al. Phenolic and nutritional profiles, and antioxidant activity of grape pomaces and seeds from Lacrima di Morro d'Alba and Verdicchio varieties
Zhu et al. The road to reuse of walnut by-products: A comprehensive review of bioactive compounds, extraction and identification methods, biomedical and industrial applications
Šic Žlabur et al. Application of ultrasound as clean technology for extraction of specialized metabolites from stinging nettle (Urtica dioica L.)
Tangkhawanit et al. Bioactive compounds, biological activity, and starch digestibility of dried soy residues from the soybean oil industry and the effects of hot‐air drying
dos Santos Friolli et al. High-intensity ultrasound-based process strategies for obtaining edible sunflower (Helianthus annuus L.) flour with low-phenolic and high-protein content
Bhise et al. Antioxidant property and health benefits of grape byproducts
Mehran et al. Free radical scavenging and antioxidant potential activity of cassava plants
Zaky et al. Utilization of grape pomace extract as a source of natural antioxidant in biscuits

Legal Events

Date Code Title Description
E601 Decision to refuse application