KR20200046763A - Lead-acid batteries with conductive plastic grid - Google Patents

Lead-acid batteries with conductive plastic grid Download PDF

Info

Publication number
KR20200046763A
KR20200046763A KR1020180128347A KR20180128347A KR20200046763A KR 20200046763 A KR20200046763 A KR 20200046763A KR 1020180128347 A KR1020180128347 A KR 1020180128347A KR 20180128347 A KR20180128347 A KR 20180128347A KR 20200046763 A KR20200046763 A KR 20200046763A
Authority
KR
South Korea
Prior art keywords
lead
conductive plastic
acid battery
grid
polyacetylene
Prior art date
Application number
KR1020180128347A
Other languages
Korean (ko)
Inventor
최석모
서세영
배봉문
Original Assignee
주식회사 한국아트라스비엑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국아트라스비엑스 filed Critical 주식회사 한국아트라스비엑스
Priority to KR1020180128347A priority Critical patent/KR20200046763A/en
Publication of KR20200046763A publication Critical patent/KR20200046763A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

The present invention relates to a lead-acid battery with a conductive plastic grid and, more specifically, to a lead-acid battery with a conductive plastic grid, in which the grid is made of conductive plastic transmitting electricity while maintaining advantages of light and easy processability, which are characteristics of polymer, to prevent corrosion, thereby increasing durability. When being manufactured with the conductive plastic grid, the lead-acid battery is prevented from corrosion to increase durability. The conductive plastic is a plastic material that transmits electricity while maintaining advantages of light and easy processability. In polyacetylene polymer, electrons can be moved between carbon-carbon bonds so electric conductivity is shown. When the conductive plastic with an electric conductivity similar to that of metal is used, the density thereof is lower than that of lead by 7 to 10 times so specific energy, which is energy per unit weight of the lead-acid battery, can be increased. The lead-acid battery with the high specific energy can be significantly advantageous to an electric vehicle in which mileage is increased when components are lightweight.

Description

전도성 플라스틱 격자를 구비한 납축전지{Lead-acid batteries with conductive plastic grid}Lead-acid batteries with conductive plastic grid

본 발명은 전도성 플라스틱 격자를 구비한 납축전지에 관한 것으로써, 더욱 상세하게는, 고분자의 특성인 가볍고 가공이 쉬운 장점을 유지한 채 전기가 관통하는 전도성 플라스틱을 격자로 제작하면 부식이 개선되어 내구성이 상승하게 되는 전도성 플라스틱 격자를 구비한 납축전지에 관한 것이다.The present invention relates to a lead acid battery having a conductive plastic grid, and more specifically, corrosion is improved when the conductive plastic that is passed through electricity is made of a grid while maintaining the advantages of light and easy to process, which are polymer characteristics, to improve corrosion and durability. The present invention relates to a lead acid battery having a conductive plastic grid that rises.

본 발명에 관한 선행문헌으로는 '특허문헌 1'이 있다. Prior patents related to the present invention include 'Patent Document 1'.

특허문헌 1은 가요성의 전도성 플라스틱 전극 및 그의 제조방법에 관한 것이다.Patent document 1 relates to a flexible conductive plastic electrode and a method for manufacturing the same.

도 1은 바나듐레독스 배터리에서 이용되는 탄소-플라스틱, 바이폴라 및 단부-전극 조립체를 위한 제조공정을 도시하는 플로우챠트이다. 1 is a flow chart showing a manufacturing process for carbon-plastic, bipolar and end-electrode assemblies used in vanadium redox batteries.

도 1을 참고로 하여, 전도성 플라스틱 전극(10)을 제조하기 위한 공정은 고밀도 폴리에틸렌(20 중량%), 스티렌-부타디엔-스티렌(20 중량 %)와 카본 블랙(60 중량 %)을 건식 혼합하는 초기 단계(11)를 포함한다. Referring to Figure 1, the process for manufacturing the conductive plastic electrode 10 is an initial dry mixing of high density polyethylene (20 wt%), styrene-butadiene-styrene (20 wt%) and carbon black (60 wt%) Step 11 is included.

이어서, 이 혼합물은 195℃에서 대략 20 분동안 내부 혼합기에서 50rpm 의 블레이드 속도로 혼합된다. The mixture is then mixed at 195 ° C. for approximately 20 minutes in an internal mixer at a blade speed of 50 rpm.

내부 혼합기에서 혼합동안, 혼합물은 공기에 노출되지 않는다. During mixing in the internal mixer, the mixture is not exposed to air.

그래파이트 섬유가 이어서 혼합된 혼합물(12)에 서서히 첨가되고 대략 10분 동안 혼합된다(13). Graphite fibers are then slowly added to the mixed mixture 12 and mixed for approximately 10 minutes (13).

중합 개시제 (SBS의 0.00 내지 0.15 중량%)가 혼합된 혼합물(13)에 첨가되고 수분동안 혼합된다(14). A polymerization initiator (0.00 to 0.15% by weight of SBS) is added to the mixed mixture 13 and mixed for 14 minutes (14).

결과적인 혼합물이 적어도 30 분동안 250kg/㎠ 와 180~220℃ 에서 압력 -성형된다(15). The resulting mixture was pressure-molded at 250 kg / cm 2 and 180-220 ° C. for at least 30 minutes (15).

성형된 물질은 급격히 냉각되어(16), 얇고, 매끄러운 전도성 및 가요성 탄소 플라스틱 전극 시트가 된다.The molded material is rapidly cooled (16), resulting in a thin, smooth conductive and flexible carbon plastic electrode sheet.

종래 기술의 문제점은, The problems of the prior art,

납축전지의 양/음 극판의 격자(GRID)는 높은 비율의 납을 함유한 합금을 사용하여 만들어진다. The lattice (GRID) of the lead / cathode plates of lead acid batteries is made using an alloy containing a high proportion of lead.

이들 전극에서, 합금 납의 주요 역할은 축전지 충/방전 동안에 전기 전도를 용이하게 하는 것이다.In these electrodes, the main role of alloy lead is to facilitate electrical conduction during charge / discharge of the battery.

납 합금이 일반적으로 구리와 같은 금속만큼 좋은 전도체는 아니지만, 축전지 충방전 동안에 합금 납의 안정성과 비교적 저렴한 비용 때문에 다른 금속들보다 나은 경우가 많다. Lead alloys are generally not as good conductors as metals such as copper, but are often better than other metals because of the stability and relatively low cost of alloy lead during battery charge and discharge.

구체적으로, 합금 납은 보통 산성 전해액에 의해 생긴 매우 부식성이 높은 환경을 상당히 잘 견뎌낼 수 있다. Specifically, alloy lead can withstand fairly highly corrosive environments usually caused by acidic electrolytes.

납보다 도전성이 좋은 금속들은 산성 환경에서 빠르게 부식하거나 상용적으로 사용하기에 비용이 높은 단점이 있다.Metals with better conductivity than lead have the disadvantage of quickly corroding in an acidic environment or of high cost for commercial use.

방전상태에서 오래 놓아두면 '황산화'가 생기지만, 반대로 과충전(overcharge) 상태로 오래 놓아두면 내부 격자(그리드)가 부식되는 현상이 빨라지고(부식현상은 자연스런 현상이다) 가스발생이 높아진다. If it is left in a discharged state for a long time, 'sulfurization' occurs, but if it is left in an overcharge state for a long time, the phenomenon that the internal grid (grid) is corroded becomes faster (corrosion is a natural phenomenon) and gas generation increases.

이 부식현상은 외부 배터리 전극에서도 나타나는데, 이러한 이유로 납-축전지는 문제소지가 많은 배터리이며 수시로 체크하고 관리가 필요하다. This corrosion phenomenon also occurs in external battery electrodes. For this reason, lead-acid batteries are problematic batteries and need to be checked and managed frequently.

또 한가지 문제는 '내부쇼트'라는 현상이 발생하는데 방전을 하면서 납-플레이트에 황산결정이 쌓이면서 플레이트가 팽창해 두꺼워지면서 내부에서 쇼트가 발생할 수 있고, 격자(그리드)가 부식하면서 부서진 납가루들이 내부에 쌓이면서 '자체방전'이 심해지는 현상으로 나타나기도 한다. Another problem is the phenomenon of 'internal short'. As the sulfuric acid crystals accumulate on the lead-plate while discharging, the plate expands and thickens, and a short circuit may occur inside. In addition, 'self-discharge' may accumulate as it accumulates.

특히 이 현상은 '딥-싸이클'배터리의 경우에 심하다. This is especially true for 'deep-cycle' batteries.

그 이유는 플레이트의 두께가 상대적으로 두껍고 이름처럼 방전을 오래하는 배터리의 특성상 확률이 높아지기 때문이라고 보면 될 것 같다.The reason is that the thickness of the plate is relatively thick, and as the name suggests, the probability of a battery that has a long discharge time increases.

대한민국등록특허공보 10-0281252 (2001년03월02일)Republic of Korea Registered Patent Publication 10-0281252 (March 02, 2001)

본 발명은 상기 서술한 문제점에 대하여 보완하고자 안출되었다.The present invention has been devised to supplement the above-mentioned problems.

본 발명은 목적은 납축전지의 중량을 감소시키고 비에너지(Specific energy)를 증가시키고자 한다.The object of the present invention is to reduce the weight of the lead acid battery and increase the specific energy.

본 발명의 다른 목적은 부식이 개선되어 내구성이 상승된 납축전지를 제공하고자 한다. Another object of the present invention is to provide a lead acid battery having improved corrosion and improved durability.

본 발명의 또 다른 목적은 전기차의 연료효율을 높이는데 있다.Another object of the present invention is to increase the fuel efficiency of an electric vehicle.

상기 서술한 문제점을 해결하고 목적을 달성하기 위하여,In order to solve the above-mentioned problems and achieve the purpose,

고분자의 특성인 가볍고 가공이 쉬운 장점을 유지한 채 전기가 관통하는 전도성 플라스틱을 격자로 제작하여 부식이 개선되고 내구성이 상승하게 되는 전도성 플라스틱 격자를 구비한 납축전지를 제안한다.We propose a lead-acid battery with a conductive plastic grid that improves corrosion and improves durability by fabricating a conductive plastic through which electricity passes through while maintaining the advantages of light and easy processing, which is a characteristic of polymers.

본 발명의 실시예로는,In an embodiment of the present invention,

격자를 구비한 납축전지에 있어서,In the lead acid battery having a grid,

상기 격자는 전도성 플라스틱 격자인 것을 특징으로 하는 전도성 플라스틱 격자를 구비한 납축전지를 제안한다. The grating proposes a lead acid battery having a conductive plastic grating, characterized in that it is a conductive plastic grating.

본 발명의 다른 실시예로는, In another embodiment of the present invention,

상기 전도성 플라스틱 격자는 폴리아세틸렌인 것을 특징으로 하는 전도성 플라스틱 격자를 구비한 납축전지를 제안한다. The conductive plastic grating proposes a lead acid battery having a conductive plastic grating, characterized in that it is polyacetylene.

본 발명의 또 다른 실시예로는In another embodiment of the present invention

상기 폴리아세틸렌은 치글러형의 촉매에 의해 합성되며, 짝이중 결합이 트란스 위치에서 결합한 구조를 가지는 것을 특징으로 하는 전도성 플라스틱 격자를 구비한 납축전지를 제안한다. The polyacetylene is synthesized by a Ziegler-type catalyst and proposes a lead acid battery having a conductive plastic lattice, characterized in that the pair double bond has a structure bonded at the trans position.

본 발명의 제 4실시예로는, In a fourth embodiment of the present invention,

상기 폴리아세틸렌의 분자 사슬은 한 평면 내에 지그재그 구조로 늘어나 있는 전도성 플라스틱 격자를 구비한 납축전지를 제안한다. The molecular chain of the polyacetylene proposes a lead acid battery having a conductive plastic grid extending in a zigzag structure in one plane.

본 발명은 전도성 플라스틱 격자를 구비한 납축전지를 통해, 납축전지의 중량을 감소시키고 비에너지(Specific energy)를 증가하며, 부식이 개선되어 내구성이 상승된 납축전지의 격자를 제공하며, 경량으로 인하여 전기차의 연료효율을 높일 수 있다. The present invention, through a lead-acid battery having a conductive plastic grid, reduces the weight of the lead-acid battery and increases the specific energy, improves corrosion and provides a grid of a lead-acid battery with increased durability, due to its light weight It can increase the fuel efficiency of electric vehicles.

도 1은 바나듐레독스 배터리에서 이용되는 탄소-플라스틱, 바이폴라 및 단부-전극 조립체를 위한 제조공정을 도시하는 플로우 챠트이다.
도 2는 폴리아세틸렌 분자구조이다.
도 3은 납축전지 구조를 도시한 도면이다.
도 4는 납축전지의 격자가 부식하여 극판성장이 일어난 사진이다.
1 is a flow chart showing a manufacturing process for a carbon-plastic, bipolar and end-electrode assembly used in a vanadium redox battery.
2 is a polyacetylene molecular structure.
3 is a view showing the structure of a lead acid battery.
FIG. 4 is a photograph of the growth of the electrode plate due to corrosion of the grid of the lead acid battery.

본 발명의 일실시예에 따른 전도성 플라스틱 격자를 구비한 납축전지는,Lead acid battery having a conductive plastic grid according to an embodiment of the present invention,

격자를 구비한 납축전지에 있어서,In the lead acid battery having a grid,

상기 격자는 전도성 플라스틱 격자인 것을 특징으로 한다.The grating is characterized by being a conductive plastic grating.

이때, 상기 전도성 플라스틱 격자는 폴리아세틸렌인 것을 특징으로 한다.At this time, the conductive plastic grid is characterized in that the polyacetylene.

이때, 상기 폴리아세틸렌은 치글러형의 촉매에 의해 합성되는 것을 특징으로 한다.At this time, the polyacetylene is characterized by being synthesized by a Ziegler-type catalyst.

이때, 상기 폴리아세틸렌의 분자 사슬은 한 평면 내에 지그재그 구조로 늘어나 있는 것을 특징으로 한다.At this time, the molecular chain of the polyacetylene is characterized by extending in a zigzag structure in one plane.

이때, 상기 폴리아세틸렌은 짝이중 결합이 트란스 위치에서 결합한 구조를 가지는 것을 특징으로 한다.At this time, the polyacetylene is characterized in that it has a structure in which the pair double bond is bonded at the trans position.

이하, 본 발명에 의한 전도성 플라스틱 격자를 구비한 납축전지의 실시예를 통해 상세히 설명하도록 한다.Hereinafter, it will be described in detail through an embodiment of a lead acid battery having a conductive plastic grid according to the present invention.

도 2는 폴리아세틸렌 분자구조이다. 2 is a polyacetylene molecular structure.

도 2를 보면, 폴리아세틸렌의 분자인 H(C≡C)nH를 구조체로 도시한 것이다. 2, H (C≡C) nH, a molecule of polyacetylene, is shown as a structure.

아세틸렌을 치글러형의 촉매(예를 들면 Al(C2H5)3ㆍTiCl4계 촉매, Al(C2H5)3ㆍTi(OC4H9)4계 촉매, Al(C2H5)3ㆍVO(CH3COCHCOCH3)2계 촉매 등)를 이용하여 중합하면 반응 조건에 따라 비결정성 내지 고결정성의 폴리아세틸렌이 얻어진다. 또 NaBH4ㆍNiCl2ㆍP(C6H5)3계 촉매나 방사선을 이용해도 고중합체가 얻어진다.Ziegler-type catalyst (eg Al (C2H5) 3, TiCl4 catalyst, Al (C2H5) 3, Ti (OC4H9) 4 catalyst, Al (C2H5) 3, VO (CH3COCHCOCH3) 2 catalyst, etc.) When polymerization is carried out by using, amorphous or highly crystalline polyacetylene is obtained depending on the reaction conditions. Also, a high polymer can be obtained by using a NaBH4, NiCl2, P (C6H5) 3-based catalyst or radiation.

화학적 성질로는 일반적으로 아세틸렌에 대해서는 아니오노이드핵 첨가 반응(시안화수소, 알코올 등의 첨가)이 일어나기 쉽지만, 폴리아세틸렌에서는 삼중 결합 수의 증가에 따라 더욱 이 경향이 강해진다. As a chemical property, in general, a reaction of adding an annoide nucleus (addition of hydrogen cyanide, alcohol, etc.) is likely to occur with respect to acetylene, but in polyacetylene, this tendency becomes stronger as the number of triple bonds increases.

또한, 반응은 항상 공액 폴리인 결합의 말단에서부터 일어난다. In addition, the reaction always takes place from the end of the conjugated polyyne bond.

반대로 카티오노이드 첨가 반응은 삼중 결합의 공액 수가 증가함에 따라 반응하기 어렵게 된다.On the contrary, the reaction of adding a methionoid becomes difficult to react as the conjugated number of triple bonds increases.

분자의 성질로는 흑록색 내지 흑갈색의 분말. 섬유상, 피막상으로 얻어지는 경우도 있다. Molecular properties are black-green to black-brown powder. It may be obtained in a fibrous or film form.

고결정성인 것은 산화되기 어렵지만 비결정성인 것은 쉽게 산화되어 오렌지색 내지 황색이 된다. Highly crystalline ones are difficult to oxidize, but amorphous ones are easily oxidized to orange to yellow.

치글러형의 촉매에 의해 합성된 폴리아세틸렌은 짝이중 결합이 트란스 위치에서 결합한 구조를 가지며 분자 사슬은 거의 한 평면 내에 지그재그 구조로 늘어나 있다. Polyacetylene synthesized by a Ziegler-type catalyst has a structure in which a double bond is bonded at the trans position, and the molecular chains are stretched in a zigzag structure in almost one plane.

고결정성의 폴리아세틸렌에는 비국재(非局在)의 고립 전자가 존재하며 이것들의 시료에는 상자성 공명 흡수이 관찰된다. Non-localized isolated electrons are present in the highly crystalline polyacetylene, and paramagnetic resonance absorption is observed in these samples.

또 폴리아세틸렌은 반도체적인 여러 가지 물리적 성질을 나타내며 전기 전도성은 온도의 상승과 함께 증가하고 또 광전도성도 갖는다. In addition, polyacetylene exhibits a number of semiconductor-like physical properties, and electrical conductivity increases with an increase in temperature and also has photoconductivity.

분자 내에 존재하는 공액 π전자의 전자 구름의 중첩에 의해 전기 전도 현상이 생긴다.Electrical conduction occurs due to the superposition of electron clouds of conjugate π electrons present in the molecule.

폴리아세틸렌은 아세틸렌을 치글러-나타 촉매 등으로 중합하여 얻어지는 폴리엔 구조의 고분자로서 중합 조건에 따라 cis- 혹은 trans- 폴리아세틸렌의 기하 이성질체가 생성된다. Polyacetylene is a polymer having a polyene structure obtained by polymerizing acetylene with a Ziegler-Natta catalyst or the like, and isomers of cis- or trans-polyacetylene are generated depending on polymerization conditions.

이것에 요오드, 오플루오르 비소 등의 억셉터, 나트륨 등의 도너를 도프하면 금속적 도전체가 되어 구리의 도전율에 필적하는 6×105 Scm-1의 값을 얻게 된다.Doping an acceptor such as iodine or fluorine arsenic or a donor such as sodium results in a metallic conductor to obtain a value of 6 × 105 Scm-1 comparable to the conductivity of copper.

본 발명은 납축전지에 관한 것으로 특히 납축전지의 중량을 감소시키는 방법에 관한 것으로, 이에 의해 납축전지의 비에너지(Specific energy)를 증가시키는 특성이 있다. The present invention relates to a lead acid battery, and in particular, to a method for reducing the weight of a lead acid battery, thereby increasing the specific energy (specific energy) of the lead acid battery.

여기에서 비에너지(specific energy)란 어떤 물질에 있어서 단위 중량당 내부(內部) 에너지를 말한다. Here, specific energy refers to internal energy per unit weight in a certain material.

전도성 플라스틱 격자를 구비한 납축전지를 제작하면 부식이 개선되어 내구성이 상승하게 된다. When a lead acid battery having a conductive plastic grid is manufactured, corrosion is improved and durability is increased.

전도성 플라스틱은 고분자의 특성인 가볍고 가공이 쉬운 장점을 유지한 채 전기가 관통하는 플라스틱을 말한다. Conductive plastic refers to plastic through which electricity passes through while maintaining the advantages of lightweight and easy to process, which is a characteristic of polymers.

폴리아세틸렌 고분자와 같이 탄소와 탄소의 결합 사이에서 전자 이동이 가능하여 전기 전도성이 나타난다. Like polyacetylene polymers, electrons can move between carbon and carbon bonds, resulting in electrical conductivity.

전기 전도성이 금속과 유사한 전도성 플라스틱 을 이용하면 납보다 밀도가 7~10배 정도 낮기 때문에 납축전지의 중량당 에너지인 비에너지를 높일 수 있다.When a conductive plastic having electrical conductivity similar to a metal is used, the density is 7 to 10 times lower than that of lead, so the specific energy, which is energy per weight of the lead acid battery, can be increased.

높은 비에너지를 갖는 납축전지는 부품들이 경량일 때 연료효율이 증가하는 전기차에 상당히 유리하다.Lead-acid batteries with high specific energy are significantly advantageous for electric vehicles with increased fuel efficiency when components are lightweight.

도 3은 납축전지 구조를 도시한 도면이다. 축전지(300)는 극판(310), 격자(320), 흡수성 유리 매트(330), 러그(340), 및 컨테이너(350)를 포함한다. 3 is a view showing the structure of a lead acid battery. The storage battery 300 includes a polar plate 310, a grid 320, an absorbent glass mat 330, a lug 340, and a container 350.

BATTERY 고장 원인은 사용 중에 부하의 종류와 관리에 좌우된다. BATTERY The cause of the failure depends on the type and management of the load during use.

다음에 다루는 고장 요인은 실험실에서 실시한 것이 이며 실제 사용시 발생되는 고장과 유사하다. 고장 원인 중에 기계적인 손상이나 취급 부주의에 의한 고장은 제외하였다.The failure factors covered next are those conducted in the laboratory and are similar to those occurring in actual use. Among the causes of failure, mechanical damage or failure due to careless handling was excluded.

납축전지의 주된 고장요인은 다음 5가지이다.The main failure factors of lead acid batteries are the following five.

1) 양극 활물질 탈락1) Elimination of positive electrode active material

2) 양극 격자(GRID) 부식2) Anode grating (GRID) corrosion

3) 음극 활물질 파손3) Damage to negative active material

4) 격리판 파손4) Breakage of the separator

5) 복합적인 요인5) Complex factors

도 4는 납축전지의 격자가 부식하여 극판성장이 일어난 사진이다. FIG. 4 is a photograph of the growth of the electrode plate due to corrosion of the grid of the lead acid battery.

양극 격자 부식은 동질 계면에서의 부식과 이질 계면에서 부식으로 나누며 양극 격자 부식의 결과를 극판성장 현상이다. Anodic lattice corrosion is divided into corrosion at the homogeneous interface and corrosion at the heterogeneous interface, and the result of the anode lattice corrosion is an electrode plate growth phenomenon.

전해액과 양극 격자 부식 관계는 전해액 비중이 낮을수록 증가한다.The relationship between the electrolyte and the anode lattice corrosion increases as the specific gravity of the electrolyte decreases.

도 5는 납축전지 내부 구조도이다. 5 is an internal structure diagram of a lead acid battery.

도 5를 보면, 양극 격자(positive grid)와 음극 격자(negative grid)가 도시되어 있다. Referring to FIG. 5, a positive grid and a negative grid are shown.

상기 서술한 내용 중 도면에 표시되지 않은 내용은 상기 서술된 내용을 바탕으로 당업자가 충분히 이해할 수 있는 내용으로 이하 도면에 표시되지 않아도 본 발명의 권리에 포함되어야 한다.Among the above-mentioned contents, contents not indicated in the drawings are contents that can be sufficiently understood by those skilled in the art based on the above-described contents and should be included in the rights of the present invention even if not shown in the drawings.

이상에서와 같은 내용의 본 발명이 속하는 기술분야의 당업자는 본 발명의 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시된 것이며 한정적인 것이 아닌 것으로 이해해야만 한다.Those skilled in the art to which the present invention pertains as described above may understand that the present invention may be implemented in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplified in all respects and are not limiting.

300 : 축전지
310 : 극판
320 : 격자
330 : 흡수성 유리 매트
340 : 러그
350 : 컨테이너
300: storage battery
310: polar plate
320: grid
330: absorbent glass mat
340: Rug
350: container

Claims (5)

격자를 구비한 납축전지에 있어서,
상기 격자는 전도성 플라스틱 격자인 것을 특징으로 하는 전도성 플라스틱 격자를 구비한 납축전지.
In the lead acid battery having a grid,
The grid is a lead-acid battery having a conductive plastic grid, characterized in that the conductive plastic grid.
제 1항에 있어서,
상기 전도성 플라스틱 격자는 폴리아세틸렌인 것을 특징으로 하는 전도성 플라스틱 격자를 구비한 납축전지.
According to claim 1,
The conductive plastic grid is a lead acid battery having a conductive plastic grid, characterized in that polyacetylene.
제 2항에 있어서,
상기 폴리아세틸렌은 치글러형의 촉매에 의해 합성되는 것을 특징으로 하는 전도성 플라스틱 격자를 구비한 납축전지.
According to claim 2,
The polyacetylene is a lead acid battery having a conductive plastic grid, characterized in that synthesized by a Ziegler-type catalyst.
제 2항에 있어서,
상기 폴리아세틸렌의 분자 사슬은 한 평면 내에 지그재그 구조로 늘어나 있는 전도성 플라스틱 격자를 구비한 납축전지.
According to claim 2,
Molecular chain of the polyacetylene is a lead acid battery having a conductive plastic grid extending in a zigzag structure in one plane.
제 2항에 있어서,
상기 폴리아세틸렌은 짝이중 결합이 트란스 위치에서 결합한 구조를 가지는 것을 특징으로 하는 전도성 플라스틱 격자를 구비한 납축전지.

According to claim 2,
The polyacetylene is a lead acid battery having a conductive plastic grid, characterized in that it has a structure in which the double bond is bonded at the trans position.

KR1020180128347A 2018-10-25 2018-10-25 Lead-acid batteries with conductive plastic grid KR20200046763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180128347A KR20200046763A (en) 2018-10-25 2018-10-25 Lead-acid batteries with conductive plastic grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180128347A KR20200046763A (en) 2018-10-25 2018-10-25 Lead-acid batteries with conductive plastic grid

Publications (1)

Publication Number Publication Date
KR20200046763A true KR20200046763A (en) 2020-05-07

Family

ID=70734236

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180128347A KR20200046763A (en) 2018-10-25 2018-10-25 Lead-acid batteries with conductive plastic grid

Country Status (1)

Country Link
KR (1) KR20200046763A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100281252B1 (en) 1992-09-04 2001-03-02 리차드 레블린스 Flexible conductive plastic electrode and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100281252B1 (en) 1992-09-04 2001-03-02 리차드 레블린스 Flexible conductive plastic electrode and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101359900B1 (en) Novel Polymer Electrolyte and Lithium Secondary Battery Comprising the Same
US9142859B2 (en) Polymer-silicon composite particles, method of making the same, and anode and lithium secondary battery including the same
US20210399295A1 (en) Lithium Secondary Battery and Manufacturing Method Thereof
Zhang et al. Poly (3-butylthiophene)-based positive-temperature-coefficient electrodes for safer lithium-ion batteries
US20150146346A1 (en) Lithium ion capacitor
CN113725421B (en) Preparation method and application of covalent organic framework material modified zinc cathode
US20130252096A1 (en) Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer
WO1994013024A1 (en) Cathode for a solid-state battery
US20130252102A1 (en) Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer
Liu et al. Influence of binder on impedance of lithium batteries: a mini-review
US4628015A (en) Insoluble and infusible substrate with a polyacene-type skeletal structure, and its applications for electrical conductor and organic cell
US10991945B2 (en) Electrode active material for nonaqueous secondary batteries, and nonaqueous secondary battery using same
KR101283331B1 (en) Unification-typed Electrode Assembly and Secondary Battery Using the Same
CN110492175B (en) Organic nano composite electrolyte membrane for all-solid-state alkali metal battery and preparation method thereof
US20210384558A1 (en) Sodium Secondary Battery and Manufacturing Method Thereof
KR102150999B1 (en) Manufacturing method for lithium-chalcogen secondary battery comprising in-situ polymerized conductive polymer layer and lithium-chalcogen secondary battery manufactured thereby
KR20200046763A (en) Lead-acid batteries with conductive plastic grid
US20210384517A1 (en) All-solid-state battery having high energy density and capable of stable operation
WO2022237106A1 (en) Cobalt-free positive electrode material slurry, preparation method therefor and application technical field thereof
CN114122395B (en) Preparation and application of negative electrode plate for sodium ion battery
KR20180100320A (en) Use of Conducting and Flexible Polymers in Lithium Batteries
JP2007149533A (en) Electrode, and electrochemical cell using it
WO2019143306A1 (en) Gel (cross linked) polymeric binder for high performance lithium ion batteries
US11791472B2 (en) Positive current collector, secondary battery, and electrical device
KR20150008307A (en) Cathode for lithium secondary battery comprising amorphous lithium transition metal oxide coating layer and manufacturing method thereof

Legal Events

Date Code Title Description
E601 Decision to refuse application