KR20200044662A - 영상의 ai 부호화 및 ai 복호화를 위한 장치, 및 방법 - Google Patents

영상의 ai 부호화 및 ai 복호화를 위한 장치, 및 방법 Download PDF

Info

Publication number
KR20200044662A
KR20200044662A KR1020190066057A KR20190066057A KR20200044662A KR 20200044662 A KR20200044662 A KR 20200044662A KR 1020190066057 A KR1020190066057 A KR 1020190066057A KR 20190066057 A KR20190066057 A KR 20190066057A KR 20200044662 A KR20200044662 A KR 20200044662A
Authority
KR
South Korea
Prior art keywords
image
dnn
data
upscale
information
Prior art date
Application number
KR1020190066057A
Other languages
English (en)
Inventor
김재환
이종석
전선영
최광표
최민석
쿠오칸 딘
박영오
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to PCT/KR2019/013421 priority Critical patent/WO2020080765A1/en
Priority to CN201980061966.7A priority patent/CN112740687A/zh
Priority to EP19872393.4A priority patent/EP3811617A4/en
Priority to US16/656,812 priority patent/US10817985B2/en
Priority to US16/781,083 priority patent/US10825139B2/en
Priority to US16/831,521 priority patent/US10817989B2/en
Publication of KR20200044662A publication Critical patent/KR20200044662A/ko
Priority to US17/079,773 priority patent/US11288770B2/en
Priority to US17/575,691 priority patent/US11688038B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4046Scaling the whole image or part thereof using neural networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression

Abstract

하나 이상의 인스트럭션들을 저장하는 메모리; 및 메모리에 저장된 하나 이상의 인스트럭션들을 실행하는 프로세서를 포함하고, 프로세서는, 제 1 영상의 제 1 부호화 결과 생성된 영상 데이터를 획득하고, 영상 데이터를 제 1 복호화하여 제 1 영상에 대응하는 제 2 영상을 획득하고, 제 2 영상에 대한 AI 업스케일 수행 여부를 결정하고, 제 2 영상에 대해 AI 업스케일을 수행하는 것으로 결정된 경우, 업스케일용 DNN을 통해 제 2 영상으로부터 AI 업스케일된 제 3 영상을 획득하고, 제 3 영상이 획득된 경우, 제 3 영상을 출력하고, 제 2 영상에 대해 AI 업스케일을 수행하지 않는 것으로 결정된 경우, 제 2 영상을 출력하는 것을 특징으로 하는 일 실시예에 따른 AI 복호화 장치가 개시된다.

Description

영상의 AI 부호화 및 AI 복호화를 위한 장치, 및 방법{APPARATUS AND METHOD FOR PERFORMING ARTIFICIAL INTELLIGENCE ENCODING AND ARTIFICIAL INTELLIGENCE DECODING OF IMAGE}
본 개시는 영상의 부호화 및 복호화 분야에 관한 것이다. 보다 구체적으로, 본 개시는 AI 기반으로 영상을 부호화/복호화하는 장치 및 방법에 관한 것이다.
영상은 소정의 데이터 압축 표준, 예를 들어 MPEG (Moving Picture Expert Group) 표준 등을 따르는 코덱(codec)에 의해 부호화된 후 비트스트림의 형태로 기록매체에 저장되거나 통신 채널을 통해 전송된다.
고해상도/고화질의 영상을 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도/고화질의 영상을 효과적으로 부호화 및 복호화할 수 있는 코덱의 필요성이 증대하고 있다.
일 실시예에 따른 영상의 AI 부호화 및 AI 복호화를 위한 장치, 및 방법은 낮은 비트레이트의 달성을 위해 AI 기반으로 영상을 부호화 및 복호화하는 것을 기술적 과제로 한다.
일 실시예에 따른 AI 복호화 장치는, 하나 이상의 인스트럭션들을 저장하는 메모리; 및 상기 메모리에 저장된 상기 하나 이상의 인스트럭션들을 실행하는 프로세서를 포함하고, 상기 프로세서는, 제 1 영상의 제 1 부호화 결과 생성된 영상 데이터를 획득하고, 상기 영상 데이터를 제 1 복호화하여 상기 제 1 영상에 대응하는 제 2 영상을 획득하고, 상기 제 2 영상에 대한 AI 업스케일 수행 여부를 결정하고, 상기 제 2 영상에 대해 상기 AI 업스케일을 수행하는 것으로 결정된 경우, 업스케일용 DNN을 통해 상기 제 2 영상으로부터 AI 업스케일된 제 3 영상을 획득하고,상기 제 3 영상이 획득된 경우, 상기 제 3 영상을 출력하고, 상기 제 2 영상에 대해 상기 AI 업스케일을 수행하지 않는 것으로 결정된 경우, 상기 제 2 영상을 출력할 수 있다.
상기 프로세서는, AI 다운스케일과 관련된 AI 데이터가 획득된 경우, 획득한 AI 데이터에 기초하여 상기 AI 업스케일의 수행 여부를 결정할 수 있다.
상기 프로세서는, 상기 AI 데이터에 기초하여 상기 제 1 영상이 다운스케일용 DNN을 통해 원본 영상으로부터 AI 다운스케일된 것으로 확인되면, 상기 제 2 영상에 대해 상기 AI 업스케일을 수행하는 것으로 결정할 수 있다.
상기 프로세서는, 상기 제 1 영상이 다운스케일용 DNN을 통해 원본 영상으로부터 AI 다운스케일된 것으로 확인되고, 상기 업스케일용 DNN의 이용 가능성이 있는 경우, 상기 제 2 영상에 대해 상기 AI 업스케일을 수행하는 것으로 결정할 수 있다.
상기 프로세서는, 상기 AI 복호화 장치에 상기 업스케일용 DNN이 저장되어 있지 않은 경우 또는 상기 업스케일용 DNN을 동작시키기 위한 DNN 설정 정보가 저장되어 있지 않은 경우에 상기 업스케일용 DNN의 이용 가능성이 없는 것으로 결정할 수 있다.
상기 프로세서는, 상기 제 1 영상이 다운스케일용 DNN을 통해 원본 영상으로부터 AI 다운스케일된 것으로 확인되고, 상기 업스케일용 DNN의 이용 가능성이 없는 경우, 상기 제 2 영상을 출력하되, 상기 제 2 영상은 디스플레이 장치에 의해 업스케일될 수 있다.
상기 프로세서는, 상기 제 1 영상이 다운스케일용 DNN을 통해 원본 영상으로부터 AI 다운스케일된 것으로 확인되고, 상기 업스케일용 DNN의 이용 가능성이 없는 경우, 상기 제 2 영상을 레거시 업스케일할 수 있다.
상기 프로세서는, 미리 저장된 복수의 DNN 설정 정보 중 상기 제 2 영상의 AI 업스케일을 위한 DNN 설정 정보를, 상기 AI 데이터에 기초하여 결정하고, 상기 결정된 DNN 설정 정보로 동작하는 업스케일용 DNN을 통해 상기 제 2 영상으로부터 AI 업스케일된 제 3 영상을 생성할 수 있다.
상기 업스케일용 DNN은, 상기 업스케일용 DNN으로부터 출력되는 제 1 훈련 영상과 AI 다운스케일되기 전의 원본 훈련 영상 간의 비교 결과에 대응하는 제 1 손실 정보에 기초하여 훈련될 수 있다.
상기 프로세서는, 상기 제 2 영상 및 상기 제 2 영상과 관련된 정보를 상기 업스케일용 DNN에 입력하여 상기 제 3 영상을 획득하고, 상기 제 2 영상과 관련된 정보는, 상기 제 2 영상의 픽셀들의 위치 정보 및 부호화 파라미터 정보 중 적어도 하나를 포함할 수 있다.
상기 업스케일용 DNN은, 상기 제 2 영상을 입력받아 순차적으로 컨볼루션 처리하는 복수의 컨볼루션 레이어; 및 상기 제 2 영상을 입력받아 스케일링 처리하는 적어도 하나의 바이패스 스케일러를 포함하되, 상기 복수의 컨볼루션 레이어의 출력과 상기 바이패스 스케일러의 출력의 결합 결과에 대응하여 상기 제 3 영상이 획득될 수 있다.
일 실시예에 따른 AI 부호화 장치는, 하나 이상의 인스트럭션들을 저장하는 메모리; 및 상기 메모리에 저장된 상기 하나 이상의 인스트럭션들을 실행하는 프로세서를 포함하고, 상기 프로세서는, 원본 영상의 AI 다운스케일 여부를 결정하고, 상기 결정 결과를 기초로, 다운스케일용 DNN을 이용하여 상기 원본 영상으로부터 AI 다운스케일된 제 1 영상을 획득하고, 상기 제 1 영상을 제 1 부호화하여 영상 데이터를 생성하고, 상기 AI 다운스케일과 관련된 정보를 포함하는 AI 데이터 및 상기 영상 데이터를 전송하되, 상기 AI 데이터는, 제 1 부호화된 영상이 상기 다운스케일용 DNN을 통해 AI 다운스케일된 영상인지 여부를 나타내는 정보를 포함할 수 있다.
일 실시예에 따른 AI 복호화 방법은, 제 1 영상의 제 1 부호화 결과 생성된 영상 데이터를 획득하는 단계; 상기 영상 데이터를 제 1 복호화하여 상기 제 1 영상에 대응하는 제 2 영상을 획득하는 단계; 상기 제 2 영상에 대한 AI 업스케일 수행 여부를 결정하는 단계; 상기 제 2 영상에 대해 상기 AI 업스케일을 수행하는 것으로 결정된 경우, 업스케일용 DNN을 통해 상기 제 2 영상으로부터 AI 업스케일된 제 3 영상을 획득하는 단계; 및 상기 제 3 영상이 획득된 경우, 상기 제 3 영상을 출력하고, 상기 제 2 영상에 대해 상기 AI 업스케일을 수행하지 않는 것으로 결정된 경우, 상기 제 2 영상을 출력하는 단계를 포함할 수 있다.
일 실시예에 따른 AI 부호화 방법은, 원본 영상의 AI 다운스케일 여부를 결정하는 단계; 상기 결정 결과를 기초로, 다운스케일용 DNN을 이용하여 상기 원본 영상으로부터 AI 다운스케일된 제 1 영상을 획득하는 단계; 상기 제 1 영상을 제 1 부호화하여 영상 데이터를 생성하는 단계; 및 상기 AI 다운스케일과 관련된 정보를 포함하는 AI 데이터 및 상기 영상 데이터를 전송하는 단계를 포함하되, 상기 AI 데이터는, 제 1 부호화된 영상이 상기 다운스케일용 DNN을 통해 AI 다운스케일된 영상인지 여부를 나타내는 정보를 포함할 수 있다.
일 실시예에 따른 영상의 AI 부호화 및 AI 복호화를 위한 장치, 및 방법은 AI 기반의 영상 부호화 및 복호화를 통해 처리가 필요한 비트레이트를 낮출 수 있다.
다만, 일 실시예에 따른 영상의 AI 부호화 및 AI 복호화를 위한 장치 및 방법이 달성할 수 있는 효과는 이상에서 언급한 것들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.
도 1a는 일 실시예에 따른 AI 부호화 및 AI 복호화 과정을 설명하기 위한 도면이다.
도 1b는 일 실시예에 따른 AI 부호화 및 일반 복호화 과정을 설명하기 위한 도면이다.
도 1c는 일 실시예에 따른 일반 부호화 및 AI 복호화 과정을 설명하기 위한 도면이다.
도 2는 일 실시예에 따른 AI 복호화 장치의 구성을 도시하는 블록도이다.
도 3은 제 2 영상의 AI 업스케일을 위한 제 2 DNN을 나타내는 예시적인 도면이다.
도 4는 컨볼루션 레이어에 의한 컨볼루션 연산을 설명하기 위한 도면이다.
도 5는 여러 영상 관련 정보들과 여러 DNN 설정 정보들 사이의 매핑 관계를 나타내는 예시적인 도면이다.
도 6은 복수의 프레임으로 구성된 제 2 영상을 도시하는 도면이다.
도 7은 일 실시예에 따른 제 2 영상의 AI 업스케일을 위한 제 2 DNN의 구조를 설명하기 위한 도면이다.
도 8은 제 1 업스케일 타겟에 대응하는 제 2 영상의 AI 업스케일을 위한 제 2 DNN의 구조를 설명하기 위한 도면이다.
도 9는 제 2 업스케일 타겟에 대응하는 제 2 영상의 AI 업스케일을 위한 제 2 DNN의 구조를 설명하기 위한 도면이다.
도 10은 제 3 업스케일 타겟에 대응하는 제 2 영상의 AI 업스케일을 위한 제 2 DNN의 구조를 설명하기 위한 도면이다.
도 11은 제 4 업스케일 타겟에 대응하는 제 2 영상의 AI 업스케일을 위한 제 2 DNN의 구조를 설명하기 위한 도면이다.
도 12는 일 실시예에 따른 AI 복호화 방법을 설명하기 위한 순서도이다.
도 13은 일 실시예에 따른 AI 부호화 장치의 구성을 나타내는 블록도이다.
도 14는 원본 영상의 AI 다운스케일을 위한 제 1 DNN을 나타내는 예시적인 도면이다.
도 15는 일 실시예에 따른 원본 영상의 AI 다운스케일을 위한 제 1 DNN의 구조를 나타내는 도면이다.
도 16은 일 실시예에 따른 원본 영상의 AI 다운스케일을 위한 제 1 DNN의 구조를 나타내는 도면이다.
도 17은 일 실시예에 따른 AI 부호화 방법을 설명하기 위한 순서도이다.
도 18은 제 1 DNN 및 제 2 DNN을 훈련시키는 방법을 설명하기 위한 도면이다.
본 개시는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 개시의 실시 형태에 대해 한정하려는 것이 아니며, 본 개시는 여러 실시예들의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
실시예를 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제 1, 제 2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.
또한, 본 명세서에서 '~부(유닛)', '모듈' 등으로 표현되는 구성요소는 2개 이상의 구성요소가 하나의 구성요소로 합쳐지거나 또는 하나의 구성요소가 보다 세분화된 기능별로 2개 이상으로 분화될 수도 있다. 또한, 이하에서 설명할 구성요소 각각은 자신이 담당하는 주기능 이외에도 다른 구성요소가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성요소 각각이 담당하는 주기능 중 일부 기능이 다른 구성요소에 의해 전담되어 수행될 수도 있음은 물론이다.
또한, 본 명세서에서, '영상(image)' 또는 '픽처'는 비디오의 정지영상, 복수의 연속된 정지영상(또는 프레임)으로 구성된 동영상, 또는 비디오를 나타낼 수 있다.
또한, 본 명세서에서 'DNN(deep neural network)'은 뇌 신경을 모사한 인공신경망 모델의 대표적인 예시로써, 특정 알고리즘을 사용한 인공신경망 모델로 한정되지 않는다.
또한, 본 명세서에서 '파라미터'는 뉴럴 네트워크를 이루는 각 레이어의 연산 과정에서 이용되는 값으로서 예를 들어, 입력 값을 소정 연산식에 적용할 때 이용되는 가중치를 포함할 수 있다. 또한, 파라미터는 매트릭스 형태로 표현될 수 있다. 파라미터는 훈련의 결과로 설정되는 값으로서, 필요에 따라 별도의 훈련 데이터(training data)를 통해 갱신될 수 있다.
또한, 본 명세서에서 '제 1 DNN'은 영상의 AI 다운스케일을 위해 이용되는 DNN을 의미하고, '제 2 DNN'은 영상의 AI 업스케일을 위해 이용되는 DNN을 의미한다.
또한, 본 명세서에서 'DNN 설정 정보'는 DNN을 구성하는 요소와 관련된 정보를 포함하며, 전술한 파라미터를 포함한다. DNN 설정 정보를 이용하여 제 1 DNN 또는 제 2 DNN이 설정될 수 있다.
또한, 본 명세서에서 '원본 영상'은 AI 부호화의 대상이 되는 영상을 의미하고, '제 1 영상'은 AI 부호화 과정에서 원본 영상의 AI 다운스케일 결과 생성된 영상을 의미한다. 또한, '제 2 영상'은 AI 복호화 과정에서 제 1 복호화를 통해 생성된 영상을 의미하고, '제 3 영상'은 AI 복호화 과정에서 제 2 영상을 AI 업스케일하여 생성된 영상을 의미한다.
또한, 본 명세서에서 'AI 다운스케일'은 AI 기반으로 영상의 해상도를 감소시키는 처리를 의미하고, '제 1 부호화'는 주파수 변환 기반의 영상 압축 방법에 의한 부호화 처리를 의미한다. 또한, '제 1 복호화'는 주파수 변환 기반의 영상 복원 방법에 의한 복호화 처리를 의미하고, 'AI 업스케일'은 AI 기반으로 영상의 해상도를 증가시키는 처리를 의미한다.
도 1a는 일 실시예에 따른 AI(artificial intelligence) 부호화 과정 및 AI 복호화 과정을 설명하기 위한 도면이다.
전술한 바와 같이 영상의 해상도가 급격히 커짐에 따라 부호화/복호화를 위한 정보 처리량이 많아지게 되고, 이에 따라 영상의 부호화 및 복호화 효율을 향상시키기 위한 방안이 필요하다.
도 1a에 도시된 바와 같이, 본 발명의 일 실시예에 따르면, 해상도가 큰 원본 영상(105)을 AI 다운스케일(110)하여 제 1 영상(115)을 생성한다. 그리고, 상대적으로 작은 해상도의 제 1 영상(115)을 대상으로 하여 제 1 부호화(120) 및 제 1 복호화(130)를 수행하므로, 원본 영상(105)을 대상으로 하여 제 1 부호화(120) 및 제 1 복호화(130)를 수행하는 경우에 비해 처리되는 비트레이트를 크게 감소시킬 수 있다.
도 1a를 참조하여 상세히 설명하면, 일 실시예는 AI 부호화 과정에서, 원본 영상(105)을 AI 다운스케일(110)하여 제 1 영상(115)을 생성하고, 제 1 영상(115)을 제 1 부호화(120)한다. AI 복호화 과정에서는, AI 부호화 결과 생성된 AI 데이터와 영상 데이터를 포함하는 AI 부호화 데이터를 수신하고, 제 1 복호화(130)를 통해 제 2 영상(135)을 생성하고, 제 2 영상(135)을 AI 업스케일(140)하여 제 3 영상(145)을 생성한다.
AI 부호화 과정을 좀 더 상세히 살펴보면, 원본 영상(105)을 입력받으면, 소정 해상도 또는 소정 화질의 제 1 영상(115)을 생성하기 위해 원본 영상(105)을 AI 다운스케일(110)한다. 이때, AI 다운스케일(110)은 AI 기반으로 수행되는데, AI 다운스케일(110)을 위한 AI는 제 2 영상(135)의 AI 업스케일(140)을 위한 AI와 연계되어 훈련되어야(trained connectively) 한다. 왜냐하면, AI 다운스케일(110)을 위한 AI와 AI 업스케일(140)을 위한 AI가 분리되어 훈련되는 경우, AI 부호화 대상인 원본 영상(105)과 AI 복호화를 통해 복원된 제 3 영상(145) 사이의 차이가 커지게 되기 때문이다.
본 개시의 실시예에서는, AI 부호화 과정과 AI 복호화 과정에서 이러한 연계 관계를 유지하기 위해, AI 데이터를 이용할 수 있다. 따라서, AI 부호화 과정을 통해 생성된 AI 데이터는 업스케일 타겟을 나타내는 정보를 포함하여야 하고, AI 복호화 과정에서는 AI 데이터에 기초하여 확인되는 업스케일 타겟에 따라 제 2 영상(135)을 AI 업스케일(140)하여야 한다.
AI 다운스케일(110)을 위한 AI 및 AI 업스케일(140)을 위한 AI는 DNN(deep neural network)으로 구현될 수 있다. 도 18을 참조하여 후술하는 바와 같이, 제 1 DNN과 제 2 DNN은 소정 타겟 하에 손실 정보의 공유를 통해 연계 훈련되므로, AI 부호화 장치는 제 1 DNN과 2 DNN이 연계 훈련할 때 이용된 타겟 정보를 AI 복호화 장치로 제공하고, AI 복호화 장치는 제공받은 타겟 정보에 기초하여 제 2 영상(135)을 타겟하는 해상도로 AI 업스케일(140)할 수 있다.
AI 복호화 과정에서는 제 3 영상(145) 대신 제 2 영상(135)이 출력될 수 있다. AI 복호화 과정을 통해 출력되는 영상의 종류는 AI 데이터에 기초하여 결정된다. 구체적으로, AI 데이터에 기초하여 제 2 영상(135)의 AI 업스케일(140)의 수행 여부가 결정되며, AI 업스케일(140)이 수행되면, AI 복호화 과정에서 제 3 영상(145)이 출력되고, AI 업스케일(140)이 수행되지 않으면 제 1 복호화(130)를 통해 생성된 제 2 영상(135)이 출력된다. 영상 데이터가 원본 영상(105)에 기반하여 생성되었거나, AI 업스케일(140)을 위한 DNN이 존재하지 않거나, 존재하더라도 이용이 불가능한 경우에 AI 복호화 과정에서 제 2 영상(135)이 출력된다. AI 복호화 과정을 통해 출력되는 영상의 종류에 대해서는 도 2를 참조하여 후술한다.
도 1a에 도시된 제 1 부호화(120) 및 제 1 복호화(130)에 대해 상세히 설명하면, 원본 영상(105)으로부터 AI 다운스케일(110)된 제 1 영상(115)은 제 1 부호화(120)를 통해 정보량이 감축될 수 있다. 제 1 부호화(120)는, 제 1 영상(115)을 예측하여 예측 데이터를 생성하는 과정, 제 1 영상(115)과 예측 데이터 사이의 차이에 해당하는 잔차 데이터를 생성하는 과정, 공간 영역 성분인 잔차 데이터를 주파수 영역 성분으로 변환(transformation)하는 과정, 주파수 영역 성분으로 변환된 잔차 데이터를 양자화(quantization)하는 과정 및 양자화된 잔차 데이터를 엔트로피 부호화하는 과정 등을 포함할 수 있다. 이와 같은 제 1 부호화 과정(120)은 MPEG-2, H.264 AVC(Advanced Video Coding), MPEG-4, HEVC(High Efficiency Video Coding), VC-1, VP8, VP9 및 AV1(AOMedia Video 1) 등 주파수 변환을 이용한 영상 압축 방법 중의 하나를 통해 구현될 수 있다.
제 1 영상(115)에 대응하는 제 2 영상(135)은 영상 데이터의 제 1 복호화(130)를 통해 복원될 수 있다. 제 1 복호화(130)는, 영상 데이터를 엔트로피 복호화하여 양자화된 잔차 데이터를 생성하는 과정, 양자화된 잔차 데이터를 역양자화하는 과정, 주파수 영역 성분의 잔차 데이터를 공간 영역 성분으로 변환하는 과정, 예측 데이터를 생성하는 과정 및 예측 데이터와 잔차 데이터를 이용하여 제 2 영상(135)을 복원하는 과정 등을 포함할 수 있다. 이와 같은 제 1 복호화(130) 과정은 제 1 부호화(120) 과정에서 사용된 MPEG-2, H.264, MPEG-4, HEVC, VC-1, VP8, VP9 및 AV1 등 주파수 변환을 이용한 영상 압축 방법 중의 하나에 대응되는 영상 복원 방법을 통해 구현될 수 있다.
AI 부호화 과정을 통해 생성된 AI 부호화 데이터는, 제 1 영상(115)의 제 1 부호화(120) 결과 생성된 영상 데이터 및 원본 영상(105)의 AI 다운스케일(110)과 관련된 AI 데이터를 포함할 수 있다. 영상 데이터는 제 1 복호화(130) 과정에서 이용될 수 있으며, AI 데이터는 AI 업스케일(140) 과정에서 이용될 수 있다.
영상 데이터는 비트스트림 형태로 전송될 수 있다. 영상 데이터는 제 1 영상(115) 내 픽셀 값들에 기초하여 생성되는 데이터, 예를 들어, 제 1 영상(115)과 제 1 영상(115)의 예측 데이터 사이의 차이인 잔차 데이터를 포함할 수 있다. 또한, 영상 데이터는 제 1 영상(115)의 제 1 부호화(120) 과정에서 이용된 정보들을 포함한다. 예를 들어, 영상 데이터는 제 1 영상(115)을 제 1 부호화(120)하는데 이용된 모드(mode) 정보(예를 들어, 예측 모드 정보, 움직임 정보 등) 및 제 1 부호화(120)에서 이용된 양자화 파라미터 관련 정보 등을 포함할 수 있다. 영상 데이터는 MPEG-2, H.264 AVC, MPEG-4, HEVC, VC-1, VP8, VP9 및 AV1 등 주파수 변환을 이용하는 영상 압축 방법 중 제 1 부호화(120) 과정에서 이용된 영상 압축 방법의 규칙, 예를 들어, 신택스(syntax)에 따라 생성될 수 있다.
AI 데이터는 제 2 DNN에 기반한 AI 업스케일(140)에 이용된다. 전술한 바와 같이, 제 1 DNN과 제 2 DNN은 연계 훈련되기 때문에, AI 데이터는 제 2 DNN을 통한 제 2 영상(135)의 정확한 AI 업스케일(140)이 수행될 수 있게 하는 정보를 포함한다. AI 복호화 과정에서는 AI 데이터에 기반하여 제 2 영상(135)을 타겟하는 해상도 및 화질로 AI 업스케일(140)할 수 있다.
AI 데이터는 비트스트림의 형태로 영상 데이터와 함께 전송될 수 있다. 또는, 구현예에 따라, AI 데이터는 프레임이나 패킷 형태로 영상 데이터와 구분되어 전송될 수도 있다. AI 부호화 결과 생성된 영상 데이터와 AI 데이터는 동일한 네트워크 또는 서로 상이한 네트워크를 통해 전송될 수 있다.
도 1b는 일 실시예에 따른 AI 부호화 및 일반 복호화 과정을 설명하기 위한 도면이다.
도 1b는 AI 부호화 데이터를 수신하는 일반 복호화 장치가 AI 복호화 과정을 수행하지 못하는 경우를 설명하기 위한 도면으로서, 도시된 바와 같이, 일반 복호화 장치는 제 1 복호화(130) 과정만을 수행한다.
전술한 바와 같이, AI 부호화 과정을 통해 생성된 영상 데이터 및 AI 데이터를 포함하는 AI 부호화 데이터가 일반 복호화 장치 측으로 전송된다. 일반 복호화 장치는 AI 데이터를 처리할 수 없으므로, 영상 데이터만을 제 1 복호화(130)하여 제 2 영상(135)을 출력한다.
도 1c는 일 실시예에 따른 일반 부호화 및 AI 복호화 과정을 설명하기 위한 도면이다.
도 1c는 원본 영상(115)을 부호화하는 장치가 AI 부호화 과정을 수행하지 못하는 경우를 설명하기 위한 도면으로서, 도시된 바와 같이, 일반 부호화 장치는 제 1 부호화(120) 과정만을 수행한다.
일반 부호화 장치는 원본 영상(105)을 제 1 부호화(120)하여 영상 데이터를 AI 복호화 장치 측으로 전송한다. 일반 부호화 장치는 AI 부호화 과정을 수행할 수 없으므로, AI 데이터는 일반 부호화 장치로부터 AI 복호화 장치로 전송되지 않는다. AI 복호화 장치는 수신된 데이터에 AI 데이터가 포함되어 있지 않으므로, AI 업스케일(140)을 수행하지 않고, 대신 영상 데이터를 제 1 복호화(130)하여 제 2 영상(135)을 출력한다. 즉, AI 복호화 장치는 AI 부호화 장치로부터 수신된 데이터에 AI 데이터가 포함되어 있는지 여부에 기초하여, 제 2 영상(135)을 출력하거나, 제 3 영상(145)을 출력할 수 있다.
이하에서는, 도 2를 참조하여 AI 복호화 과정을 수행하는 AI 복호화 장치에 대해 상세히 설명한다.
도 2는 일 실시예에 따른 AI 복호화 장치(200)의 구성을 도시하는 블록도이다.
도 2를 참조하면, 일 실시예에 따른 AI 복호화 장치(200)는 수신부(210) 및 AI 복호화부(230)를 포함할 수 있다. 수신부(210)는 통신부(212), 파싱부(214) 및 출력부(216)를 포함할 수 있다. AI 복호화부(230)는 제 1 복호화부(232) 및 AI 업스케일부(234)를 포함할 수 있다. AI 복호화부(230)는 제어부(236)를 더 포함할 수도 있다.
도 2는 수신부(210) 및 AI 복호화부(230)가 개별적인 장치인 것으로 도시하고 있으나, 이들은 하나의 프로세서를 통해 구현될 수 있다. 이 경우, 전용 프로세서로 구현될 수도 있고, AP 또는 CPU, GPU와 같은 범용 프로세서와 S/W의 조합을 통해 구현될 수도 있다. 또한, 전용 프로세서의 경우, 본 개시의 실시예를 구현하기 위한 메모리를 포함하여 구현되거나, 외부 메모리를 이용하기 위한 메모리 처리부를 포함하여 구현될 수 있다.
또한, 수신부(210) 및 AI 복호화부(230)는 하나 이상의 프로세서로 구성될 수도 있다. 이 경우, 전용 프로세서들의 조합으로 구현될 수도 있고, AP 또는 CPU, GPU와 같은 다수의 범용 프로세서들과 S/W의 조합을 통해 구현될 수도 있다. 마찬가지로 AI 업스케일부(234)와 제 1 복호화부(232)도 각각 서로 다른 프로세서로 구현될 수 있다.
수신부(210)는 AI 부호화 결과 생성된 AI 부호화 데이터를 수신 및 파싱하고, 영상 데이터와 AI 데이터를 구분하여 AI 복호화부(230)로 출력한다.
구체적으로, 통신부(212)는 네트워크를 통해 AI 부호화 결과 생성된 AI 부호화 데이터를 수신한다. AI 부호화 결과 생성된 AI 부호화 데이터는 영상 데이터와 AI 데이터를 포함한다. 영상 데이터와 AI 데이터는 동종 네트워크 또는 이종 네트워크를 통해 수신될 수 있다. 통신부(212)는 네트워크를 통해 영상 데이터만을 수신할 수도 있다. 즉, 앞서 도 1c와 관련하여 설명한 바와 같이, 일반 부호화 장치에 의해 일반 부호화가 수행된 경우, 통신부(212)는 일반 부호화 장치로부터 영상 데이터만을 수신할 수 있다.
파싱부(214)는 통신부(212)를 통해 수신된 AI 부호화 데이터를 전달받아 파싱(parsing)하여 영상 데이터와 AI 데이터로 구분한다. 예를 들어, 통신부(212)로부터 획득된 데이터의 헤더를 읽어, 해당 데이터가 영상 데이터인지 또는 AI 데이터인지를 구분할 수 있다. 일 예에서, 파싱부(214)는 통신부(212)를 통해 수신된 데이터의 헤더를 통해 영상 데이터와 AI 데이터를 구분하여 출력부(216)로 전달하고, 출력부(216)는 각각의 구분된 데이터를 제 1 복호화부(232) 및 AI 업스케일부(234)로 전달한다. 이 때, AI 부호화 데이터에 포함된 영상 데이터가 소정의 코덱(예를 들어, MPEG-2, H.264, MPEG-4, HEVC, VC-1, VP8, VP9 또는 AV1)을 통해 생성된 영상 데이터인 것으로 확인될 수도 있다. 이 경우, 영상 데이터가 상기 확인된 코덱으로 처리될 수 있도록, 출력부(216)를 통해 해당 정보가 제 1 복호화부(232)로 전달될 수 있다.
일 실시예에서, 파싱부(214)가 파싱하는 데이터는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium) 등을 포함하는 데이터 저장 매체로부터 획득된 것일 수도 있다.
도 2는 출력부(216)로부터 AI 업스케일(234)로 제공되는 AI 데이터의 흐름을 나타내는 선을 점선으로 도시하고 있는데, 이는 통신부(212)가 수신한 데이터에 AI 데이터가 포함되어 있지 않은 경우, AI 업스케일부(234)로 AI 데이터가 전달되지 않을 수 있음을 나타낸다.
제 1 복호화부(232)는 영상 데이터에 기초하여 제 1 영상(115)에 대응하는 제 2 영상(135)을 복원한다. 제 1 복호화부(232)에 의해 생성된 제 2 영상(135)은, 제 2 스위치(244)가 제 1 복호화부(232) 측에 연결되어 있지 않으면, AI 업스케일부(234)로 제공된다. 구현예에 따라, 영상 데이터에 포함된 모드 정보(예를 들어, 예측 모드 정보, 움직임 정보 등), 양자화 파라미터 정보 등이 제 1 복호화부(232)로부터 AI 업스케일부(234)로 제공될 수 있다. AI 업스케일부(234)는 수신된 AI 데이터에 기초하여 AI 복호화부(230)로부터 출력될 영상의 종류를 제어할 수 있다. 이를 위해 AI 업스케일부(234)는 제 1 스위치(242) 및 제 2 스위치(244)를 제어하여, AI 복호화부(230)를 통해 출력되는 데이터의 종류를 제어할 수 있다.
도 2에 도시된 제 1 스위치(242) 및 제 2 스위치(244)는 본 개시의 일 실시예에 대한 이해를 위한 것으로서, 물리적 구성를 갖는 제 1 스위치(242) 및 제 2 스위치(244)가 AI 복호화부(230)에 포함된다는 것을 의미하지 않는다. 다시 말하면, 제 1 스위치(242) 및 제 2 스위치(244)의 동작이 AI 업스케일부(234)에 의해 제어되는 것으로 설명하고 있지만, AI 업스케일부(234)는 프로그램 또는 인스트럭션에 따라 AI 복호화부(230)로부터 출력되는 데이터의 종류를 제어할 수 있다. 일 실시예에 따라, 제 1 스위치(242) 및 제 2 스위치(244)의 제어는 제어부(control unit)(236)에 의해 수행될 수도 있다. 이 경우, 제어부(236)는 AI 데이터 및 제 2 DNN의 이용 가능성에 기초하여 제 1 스위치(242) 및 제 2 스위치(244)의 동작을 제어할 수 있다.
최초, 제 1 스위치(242)는 오프 상태, 제 2 스위치(244)는 제 1 복호화부(232)에 연결된 상태일 수 있다. 즉, 디폴트 상태로서, 제 1 스위치(242)는 오프 상태, 제 2 스위치(244)는 제 1 복호화부(232)에 연결된 상태일 수 있다. AI 업스케일부(234)는 출력부(216)로부터 AI 데이터가 수신되면 AI 데이터에 기초하여 제 1 스위치(242) 및 제 2 스위치(244)의 상태를 변경할 수 있다.
전술한 바와 같이, AI 부호화 데이터에 AI 데이터가 포함되어 있지 않으면, 제 1 스위치(242)는 오프 상태, 제 2 스위치(244)는 제 1 복호화부(232)에 연결된 상태로 유지되고, 영상 데이터에 기초하여 생성된 제 2 영상(135)이 AI 복호화부(230)에서 출력될 수 있다.
일 실시예에서, AI 업스케일부(234)는 출력부(216)로부터 AI 데이터가 수신되면, 제 1 영상(115)이 제 1 DNN을 통해 생성된 것인지를 확인할 수 있다. 이를 위해 AI 데이터는 제 1 영상(115)이 제 1 DNN을 통해 생성된 것인지 여부를 나타내는 정보를 포함할 수 있다. 일 예에서, 제 1 영상(115)이 제 1 DNN을 통해 생성된 경우, AI 데이터는 제 1 영상(115)이 제 1 DNN을 통해 생성되었다는 것을 나타내는 플래그를 포함할 수 있고, 반대로, 제 1 영상(115)이 제 1 DNN을 통해 생성되지 않은 경우(즉, 제 1 영상(115)이 원본 영상(105)과 동일한 경우), AI 데이터는 제 1 영상(115)이 제 1 DNN을 통해 생성되지 않았다는 것을 나타내는 플래그를 포함할 수 있다.
AI 데이터에 기초하여 제 1 영상(115)이 제 1 DNN을 통해 생성된 것으로 확인되면, AI 업스케일부(234)는 제 1 스위치(242)를 온 상태로 제어하고, 제 2 스위치(244)가 AI 업스케일부(234) 측에 연결되도록 제 2 스위치(244)를 제어할 수 있다. 이에 따라, 제 1 복호화부(232)는 제 1 복호화를 통해 복원된 제 2 영상(135)을 AI 업스케일부(234)로 전달하고, AI 업스케일부(234)는 제 2 영상(135)을 AI 업스케일하여 제 3 영상(145)을 출력한다. 제 1 스위치(242)가 온 상태가 됨에 따라 영상 데이터에 포함된 모드 정보(예를 들어, 예측 모드 정보, 움직임 정보 등), 양자화 파라미터 정보 등이 제 1 복호화부(232)로부터 AI 업스케일부(234)로 전달될 수도 있다.
AI 데이터에 기초하여 제 1 영상(115)이 제 1 DNN을 통해 생성되지 않은 것으로 확인되면, AI 업스케일부(234)는 제 1 스위치(242)를 오프 상태로 제어하고, 제 2 스위치(244)가 제 1 복호화부(232) 측에 연결되도록 제 2 스위치(244)를 제어할 수 있다. 이에 AI 복호화부(230)의 출력으로서, 제 1 복호화부(232)에 의해 생성된 제 2 영상(135)이 출력된다.
전술한 바와 같이, AI 데이터는 AI 업스케일에 이용되는 정보들을 포함하므로, 제 1 영상(115)이 제 1 DNN을 통해 생성된 것이 아니라면, 제 2 영상(135)의 AI 업스케일의 필요성이 없는 것이고, 이에 따라 AI 업스케일부(234)는 제 1 복호화부(232)에 의해 생성된 제 2 영상(135)이 그대로 출력되게 하는 것이다.
일 실시예에서, 제 1 영상(115)이 제 1 DNN을 통해 생성된 것으로 확인되었으나, 제 2 DNN의 이용 가능성이 없는 경우, AI 업스케일부(234)는 제 1 스위치(242)를 오프 상태로 제어하고, 제 2 스위치(244)가 제 1 복호화부(232) 측에 연결되도록 제 2 스위치(244)를 제어할 수 있다. 이에 AI 복호화부(230)의 출력으로서, 제 1 복호화부(232)에 의해 생성된 제 2 영상(135)이 출력된다.
여기서, 제 2 DNN의 이용 가능성이 없는 경우는, AI 업스케일부(234)에 제 2 DNN이 저장되어 있지 않거나, AI 업스케일부(234)에 제 2 DNN이 저장되어 있더라도 제 2 영상(135)을 AI 업스케일하는데 필요한 DNN 설정 정보가 저장되어 있지 않은 경우를 포함할 수 있다. 후술하는 바와 같이, AI 다운스케일에 특정의 DNN 설정 정보가 이용되었으면, AI 다운스케일에 이용된 DNN 설정 정보와 연계된 DNN 설정 정보로 제 2 영상(135)을 AI 업스케일을 하여야 하므로, 제 2 영상(135)을 AI 업스케일하는데 필요한 DNN 설정 정보가 저장되어 있지 않은 경우, 제 2 DNN의 이용 가능성이 없는 것으로 판단한다.
또한, 제 2 DNN의 이용 가능성이 없는 경우는, AI 업스케일부(234)에 저장된 제 2 DNN 및/또는 DNN 설정 정보의 버전이 최신 버전이 아닌 경우를 포함할 수 있다. 일 실시예에서, AI 복호화 장치(200)는 네트워크를 통해 외부 서버로부터 제 2 DNN 및 DNN 설정 정보를 수신하여 저장할 수 있는데, AI 복호화 장치(200)에 저장된 제 2 DNN 및 DNN 설정 정보 중 적어도 하나가 최신 버전의 제 2 DNN 및 DNN 설정 정보가 아니라면, AI 업스케일부(234)는 제 2 DNN의 이용 가능성이 없는 것으로 결정할 수 있다.
일 실시예에서, 제 1 영상(115)이 제 1 DNN을 통해 생성된 것으로 확인되었으나, 제 2 DNN의 이용 가능성이 없는 경우, AI 업스케일부(234)는 제 1 스위치(242)를 오프 상태로 제어하고, 제 2 스위치(244)가 제 1 복호화부(232)에 연결되도록 제 2 스위치(244)를 제어하여, AI 복호화부(230)를 통해 제 2 영상(135)이 출력되게 할 수 있다.
일 실시예에서, 제 1 영상(115)이 제 1 DNN을 통해 생성된 것으로 확인되었으나, 제 2 DNN의 이용 가능성이 없는 경우, AI 업스케일부(234)는 제 1 스위치(242)를 온 상태로 제어하고, 제 2 스위치(244)가 AI 업스케일부(234) 측에 연결되도록 제 2 스위치(244)를 제어할 수 있다. 제 2 DNN의 이용 가능성이 없으므로, AI 업스케일부(234)에 의한 제 2 영상(135)의 AI 업스케일이 수행되지 않으나, 원본 영상(105) 대비 해상도가 감소한 제 2 영상(135)이 디스플레이 될 수 있으므로, AI 업스케일부(234)는 제 1 복호화부(232)로부터 수신한 제 2 영상(135)을 출력하면서, 디스플레이 장치(예를 들어, 디스플레이 장치의 화질 엔진)에 의해 제 2 영상(135)이 업스케일될 수 있도록 디스플레이 장치로 업스케일 요청을 할 수 있다. 구현예에 따라, 제 1 영상(115)이 제 1 DNN을 통해 생성된 것으로 확인되었으나, 제 2 DNN의 이용 가능성이 없는 경우, AI 업스케일부(234)는 제 2 영상(135)을 레거시 업스케일한 후 출력할 수도 있다. 레거시 스케일링 방법은, DNN을 이용하지 않는 스케일링 방법으로서, 예를 들어, 바이리니어(bi-linear) 스케일링 방법, 바이큐빅(bi-cubic) 스케일링 방법, 란초스(lanczos) 스케일링 방법 및 스테어 스탭(stair step) 스케일링 방법 중 적어도 하나를 포함할 수 있다.
한편, AI 복호화부(230)로부터 제 2 영상(135) 또는 제 3 영상(145)이 출력된다는 것은, 제 2 영상(135) 또는 제 3 영상(145)이 그대로 디스플레이되도록 디스플레이 장치로 출력되거나, 제 2 영상(135) 또는 제 3 영상(145)이 후처리된 후 디스플레이되도록 디스플레이 장치로 출력되는 것을 의미할 수 있다. 다시 말하면, 제 3 영상(145) 또는 후처리된 제 3 영상(145)이 디스플레이될 수 있고, 반대로, 제 2 영상(135) 또는 후처리된 제 2 영상(135)이 디스플레이될 수 있다.
AI 데이터를 수신한 AI 업스케일부(234)는 AI 데이터에 기초하여 제 2 영상(135)을 AI 업스케일한다. 구현예에 따라서는, 영상 데이터에 포함된 모드 정보, 양자화 파라미터 정보 등의 제 1 복호화 관련 정보를 더 이용하여 AI 업스케일할 수 있다. 전술한 바와 같이, AI 업스케일은, 제 1 영상(115)이 제 1 DNN을 통해 생성되었고, 제 2 DNN의 이용 가능성이 있는 경우에 수행된다.
AI 업스케일부(234)로 제공되는 AI 데이터는, 제 2 영상(135)을 AI 업스케일할 수 있게 하는 정보들을 포함한다. 이때, 업스케일 타겟은 제 1 DNN의 다운스케일 타겟에 대응하여야 한다. 따라서, AI 데이터는 제 1 DNN의 다운스케일 타겟을 확인할 수 있는 정보가 포함되어야 한다.
AI 데이터는 원본 영상(105)의 해상도와 제 1 영상(115)의 해상도의 차이 정보를 포함할 수 있다. 또한, AI 데이터는 제 1 영상(115) 관련 정보를 포함할 수도 있다. 또한, AI 데이터는 AI 복호화 장치(200)가 생성하여야 할 제 3 영상(145)의 해상도 정보를 포함할 수도 있다.
차이 정보는, 원본 영상(105) 대비 제 1 영상(115)의 해상도 변환 정도에 대한 정보(예를 들어, 해상도 변환률 정보)로 표현될 수 있다. 그리고, 복원된 제 2 영상(135)의 해상도를 통해 제 1 영상(115)의 해상도를 알게 되고 이를 통해 해상도 변환 정도를 확인할 수 있기 때문에, 차이 정보는 원본 영상(105)의 해상도 정보만으로 표현될 수도 있다. 여기서 해상도 정보는 가로 및 세로의 사이즈로 표현될 수도 있고, 비율(16:9, 4:3 등)과 한 축의 사이즈로 표현될 수도 있다. 또한, 기 설정된 해상도 정보가 있는 경우는 인덱스 또는 플래그의 형태로 표현될 수도 있다.
제 1 영상(115) 관련 정보는, 제 1 영상(115)의 제 1 부호화 결과 생성된 영상 데이터의 비트레이트 및 제 1 영상(115)의 제 1 부호화시 이용된 코덱 타입 중 적어도 하나에 대한 정보를 포함할 수 있다.
차이 정보와 제 1 영상(115) 관련 정보는 하나의 AI 데이터로 전달될 수도 있고, 필요에 따라 각각 전달되어 처리될 수도 있다.
AI 업스케일부(234)는 AI 데이터에 포함된 차이 정보, 제 1 영상(115) 관련 정보 및 제 3 영상(145)의 해상도 정보 중 적어도 하나에 기초하여 제 2 영상(135)의 업스케일 타겟을 결정할 수 있다. 업스케일 타겟은 예를 들어, 제 2 영상(135)을 어느 정도의 해상도로 AI 업스케일하여야 하는지를 나타낼 수 있다. AI 업스케일부(234)는 업스케일 타겟이 결정되면, 업스케일 타겟에 대응하는 제 3 영상(145)을 생성하기 위해 제 2 DNN을 통해 제 2 영상(135)을 AI 업스케일한다.
일 실시예에서, AI 업스케일부(234)는 제 2 영상(135)의 AI 업스케일을 위해 제 2 DNN에 제 2 영상(135)과 함께 참조 정보를 더 입력할 수도 있다. 상기 참조 정보는 제 2 영상(135)의 효과적인 AI 업스케일을 위해 제 2 DNN에 입력될 수 있다. 참조 정보는 예를 들어, 제 2 영상(135)에 포함된 픽셀들의 위치 정보 및 원본 영상(105)의 제 1 부호화시 생성될 수 있는 부호화 파라미터 정보 중 적어도 하나를 포함할 수 있다.
제 2 영상(135)에 포함된 픽셀들의 위치 정보는, 제 2 영상(135)의 위치 맵을 포함할 수 있는데, 위치 맵의 각 샘플들은 제 2 영상(135) 내 각 픽셀의 위치에 대응하는 값을 가질 수 있다.
또한, 부호화 파라미터 정보는 원본 영상(105)의 데이터 단위(최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 또는 픽셀 단위)별 움직임 벡터 맵, 인트라 모드 맵, 잔차 분포 맵, 예측 움직임 벡터 맵, SAO 파라미터 맵 등 원본 영상(105)의 제 1 부호화시 생성될 수 있는 다양한 부호화 파라미터 맵을 포함할 수 있다. 부호화 파라미터 맵의 각 샘플들은 자신이 속한 데이터 단위에서 생성된 부호화 파라미터에 대응하는 값을 가질 수 있다. 일 실시예에서, 상기 부호화 파라미터 정보는 AI 데이터에 포함되어 AI 복호화 장치(200)로 전송될 수 있다.
도 18과 관련하여 후술하는 바와 같이, 참조 정보는 제 2 DNN의 훈련을 위해 제 2 DNN으로 입력될 수 있다. 제 2 DNN은 참조 정보에 해당하는 맵과 입력 영상(제 1 훈련 영상(1702) 또는 제 2 훈련 영상) 사이의 위치 별 관계(예를 들어, 맵의 특정 위치의 샘플 값과 입력 영상의 특정 위치의 픽셀 값 사이의 관계)에 기반하여 파라미터들을 최적화시킬 수 있다. 따라서, 제 2 영상(135)의 AI 업스케일을 위해 제 2 영상(135)과 참조 정보 맵을 제 2 DNN으로 입력하면, 제 2 DNN은 제 2 영상(135)과 참조 정보 맵 사이의 위치별 관계를 고려하여 제 2 영상(135)을 보다 정확하게 AI 업스케일할 수 있다. 일 예에서, 제 2 DNN은 참조 정보 맵을 고려하여, 제 2 영상(135)에 대해 컨볼루션 연산을 수행할 때, 제 2 영상(135)의 특정 위치(예를 들어, 움직임 벡터 값들이 기준 값 이상인 위치)에 대한 특징 맵(450)(도 4 참조)의 샘플 값들을 변경할 수 있다. 예를 들어, 도 4를 참조하여 후술하는 바와 같이, 제 2 영상(135)의 특정 위치에서 컨볼루션 연산이 수행될 때, 특징 맵(450)의 샘플 값들인 M1 내지 M9 중 적어도 하나의 값이 변경될 수 있다.
AI 업스케일부(234)가 업스케일 타겟에 맞춰 제 2 영상(135)을 AI 업스케일하는 방법을 설명하기에 앞서, 제 2 DNN을 통한 AI 업스케일 과정에 대해 도 3 및 도 4를 참조하여 설명한다.
도 3은 제 2 영상(135)의 AI 업스케일을 위한 제 2 DNN(300)을 나타내는 예시적인 도면이다.
도 3에 도시된 바와 같이, 제 2 영상(135)은 제 1 컨볼루션 레이어(310)로 입력된다. 도 3에 도시된 제 1 컨볼루션 레이어(310)에 표시된 3X3X4는 3 x 3의 크기의 4개의 필터 커널을 이용하여 1개의 입력 영상에 대해 컨볼루션 처리를 하는 것을 예시한다. 컨볼루션 처리 결과 4개의 필터 커널에 의해 생성된 4개의 특징 맵은 각각 제 1 활성화 레이어(320)로 입력된다. 제 1 활성화 레이어(320)는 각각의 특징 맵에 대해 비선형(Non-linear) 특성을 부여할 수 있다. 제 1 활성화 레이어(320)는 시그모이드 함수(sigmoid function), Tanh 함수, ReLU(Rectified Linear Unit) 함수 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
제 1 활성화 레이어(320)에서 비선형 특성을 부여하는 것은, 제 1 컨볼루션 레이어(310)를 통한 출력인, 특징 맵의 일부 샘플 값을 변경하여 출력하는 것을 의미한다. 이때, 변경은 비선형 특성을 적용하여 수행된다.
제 1 활성화 레이어(320)의 출력이 제 2 컨볼루션 레이어(330)로 입력된다. 제 2 컨볼루션 레이어(330)에 표시된 3X3X4는 3 x 3의 크기의 4개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리하는 것을 예시한다. 제 2 컨볼루션 레이어(330)의 출력은 제 2 활성화 레이어(340)로 입력된다. 제 2 활성화 레이어(340)는 입력 데이터에 대해 비선형 특성을 부여할 수 있다.
제 2 활성화 레이어(340)의 출력은 제 3 컨볼루션 레이어(350)로 입력된다. 도 3에 도시된 제 3 컨볼루션 레이어(350)에 표시된 3X3X1는 3 x 3의 크기의 1개의 필터 커널을 이용하여 1개의 출력 영상을 만들기 위해 컨볼루션 처리를 하는 것을 예시한다. 제 3 컨볼루션 레이어(350)는 최종 영상을 출력하기 위한 레이어로서 1개의 필터 커널을 이용하여 1개의 출력을 생성한다. 본 개시의 예시에 따르면, 제 3 컨볼루션 레이어(350)는 컨벌루션 연산 결과를 통해 제 3 영상(145)을 출력할 수 있다.
제 2 DNN(300)의 제 1 컨볼루션 레이어(310), 제 2 컨볼루션 레이어(330) 및 제 3 컨볼루션 레이어(350)의 필터 커널의 개수, 필터 커널의 파라미터 등을 나타내는 DNN 설정 정보는 후술하는 바와 같이 복수 개일 수 있는데, 복수의 DNN 설정 정보는 제 1 DNN의 복수의 DNN 설정 정보와 연계되어야 한다. 제 2 DNN의 복수의 DNN 설정 정보와 제 1 DNN의 복수의 DNN 설정 정보 사이의 연계는, 제 1 DNN 및 제 2 DNN의 연계 학습을 통해 구현될 수 있다.
도 3은 제 2 DNN(300)이 세 개의 컨볼루션 레이어(310, 330, 350)와 두 개의 활성화 레이어(320, 340)를 포함하고 있는 것으로 도시하고 있으나, 이는 하나의 예시일 뿐이며, 구현예에 따라서, 컨볼루션 레이어 및 활성화 레이어의 개수는 다양하게 변경될 수 있다. 또한, 구현예에 따라서, 제 2 DNN(300)은 RNN(recurrent neural network)을 통해 구현될 수도 있다. 이 경우는 본 개시의 예시에 따른 제 2 DNN(300)의 CNN 구조를 RNN 구조로 변경하는 것을 의미한다.
도 4를 참조하여, 컨볼루션 레이어의 컨볼루션 연산에 대해 보다 상세히 설명한다.
도 4는 특징 맵(450)의 샘플 값을 획득하기 위한 필터 커널(430)과 입력 영상(410) 사이의 컨볼루션 연산을 도시하고 있다.
미리 결정된 2차원의 크기를 갖는 필터 커널(430)(도 4에서는 3 X 3 크기의 필터 커널)의 파라미터들과 그에 대응하는 입력 영상(410) 내 픽셀 값들 사이의 곱 연산 및 덧셈 연산을 통해 특징 맵(450)이 생성될 수 있다.
도 4에서 입력 영상(410)에 표시된 I1 내지 I49는 입력 영상(410) 내 픽셀들을 나타내고, 필터 커널(430)에 표시된 F1 내지 F9는 필터 커널(430)의 파라미터들을 나타낸다. 또한, 특징 맵(450)에 표시된 M1 내지 M9는 특징 맵(450)의 샘플들을 나타낸다. 필터 커널(430)의 파라미터는, 제 1 DNN과의 연계 학습을 통해 그 값이 최적화될 수 있다. 후술하는 바와 같이, AI 업스케일부(234)는 필터 커널의 파라미터를, AI 데이터에 기초하여 결정한 업스케일 타겟에 대응하는 파라미터로 세팅함으로써, 다운스케일 타겟에 대응하는 업스케일 타겟으로 제 2 영상(135)을 AI 업스케일할 수 있다.
컨볼루션 연산 과정에서, 입력 영상(410)의 I1, I2, I3, I8, I9, I10, I15, I16, I17의 픽셀 값들 각각과 필터 커널(430)의 F1, F2, F3, F4, F5, F6, F7, F8 및 F9 각각의 곱 연산이 수행되고, 곱 연산의 결과 값들을 조합(예를 들어, 덧셈 연산)한 값이 특징 맵(450)의 M1의 값으로 할당될 수 있다. 컨볼루션 연산의 스트라이드(stride)가 2라면, 입력 영상(410)의 I3, I4, I5, I10, I11, I12, I17, I18, I19의 픽셀 값들 각각과 필터 커널(430)의 F1, F2, F3, F4, F5, F6, F7, F8 및 F9 각각의 곱 연산이 수행되고, 곱 연산의 결과 값들을 조합한 값이 특징 맵(450)의 M2의 값으로 할당될 수 있다.
필터 커널(430)이 입력 영상(410)의 마지막 픽셀에 도달할 때까지 스트라이드에 따라 이동하는 동안 입력 영상(410) 내 픽셀 값들과 필터 커널(430)의 파라미터들 사이의 컨볼루션 연산이 수행됨으로써, 소정 크기를 갖는 특징 맵(450)이 획득될 수 있다.
본 개시에 따르면, 제 1 DNN과 제 2 DNN의 연계 훈련을 통해 제 2 DNN의 파라미터들, 예를 들어, 필터 커널(430)의 F1, F2, F3, F4, F5, F6, F7, F8 및 F9의 값이 최적화될 수 있다. 전술한 바와 같이, AI 업스케일부(234)는 AI 데이터에 기초하여, 제 1 DNN의 다운스케일 타겟에 대응하는 업스케일 타겟을 결정하고, 결정된 업스케일 타겟에 대응하는 파라미터들을 필터 커널(430)의 F1, F2, F3, F4, F5, F6, F7, F8 및 F9의 값으로 결정할 수 있다.
도 4와 관련하여 설명한 컨볼루션 연산 과정은 하나의 예시일 뿐이며, 이에 한정되는 것은 아니다.
이하에서, AI 업스케일부(234)가 업스케일 타겟에 맞춰 제 2 영상(135)을 AI 업스케일하는 방법을 설명한다.
일 실시예에서, AI 업스케일부(234)는 제 2 DNN에 세팅 가능한 복수의 DNN 설정 정보를 저장할 수 있다.
여기서, DNN 설정 정보는 제 2 DNN에 포함되는 컨볼루션 레이어의 수, 컨볼루션 레이어별 필터 커널의 개수 및 각 필터 커널의 파라미터 중 적어도 하나에 대한 정보를 포함할 수 있다. 복수의 DNN 설정 정보는 다양한 업스케일 타겟에 각각 대응될 수 있으며, 특정 업스케일 타겟에 대응되는 DNN 설정 정보에 기반하여 제 2 DNN이 동작할 수 있다. DNN 설정 정보에 따라 제 2 DNN이 서로 다른 구조를 가질 수 있다. 예를 들어, 어느 DNN 설정 정보에 따라 제 2 DNN이 3개의 컨볼루션 레이어를 포함할 수 있고, 다른 DNN 설정 정보에 따라 제 2 DNN이 4개의 컨볼루션 레이어를 포함할 수 있다.
일 실시예에서, DNN 설정 정보는 제 2 DNN에서 사용되는 필터 커널의 파라미터만을 포함할 수도 있다. 이 경우, 제 2 DNN의 구조는 변경되지 않는 대신, DNN 설정 정보에 따라 내부의 필터 커널의 파라미터만이 달라질 수 있다.
AI 업스케일부(234)는 복수의 DNN 설정 정보 중 제 2 영상(135)의 AI 업스케일을 위한 DNN 설정 정보를 획득할 수 있다. 여기서 복수의 DNN 설정 정보 각각은 미리 결정된 해상도 및/또는 미리 결정된 화질의 제 3 영상(145)을 생성하기 위한 정보로, 제 1 DNN과 연계하여 훈련된 것이다.
예를 들어, 복수의 DNN 설정 정보 중 어느 하나의 DNN 설정 정보는 제 2 영상(135)의 해상도보다 2배 큰 해상도의 제 3 영상(145), 예를 들어, 2K (2048*1080)의 제 2 영상(135)보다 2배 큰 4K(4096*2160)의 제 3 영상(145)을 생성하기 위한 정보들을 포함할 수 있고, 다른 하나의 DNN 설정 정보는 제 2 영상(135)의 해상도보다 4배 큰 해상도의 제 3 영상(145), 예를 들어, 2K (2048*1080)의 제 2 영상(135)보다 4배 큰 8K(8192*4320)의 제 3 영상(145)을 생성하기 위한 정보들을 포함할 수 있다.
복수의 DNN 설정 정보 각각은 AI 부호화 장치(1200)의 제 1 DNN의 DNN 설정 정보와 연계되어 만들어진 것이며, AI 업스케일부(234)는 제 1 DNN의 DNN 설정 정보의 축소 비율에 대응되는 확대 비율에 따라 복수의 DNN 설정 정보 중 하나의 DNN 설정 정보를 획득한다. 이를 위해, AI 업스케일부(234)는 제 1 DNN의 정보를 확인하여야 한다. 제 1 DNN의 정보를 AI 업스케일부(234)가 확인하기 위해, 일 실시예에 따른 AI 복호화 장치(200)는 AI 부호화 장치(1200)로부터 제 1 DNN의 정보를 포함하는 AI 데이터를 수신한다.
다시 말하면, AI 업스케일부(234)는 AI 부호화 장치(1200)로부터 수신되는 정보들을 이용하여, 제 1 영상(115)을 생성하기 위해 이용된 제 1 DNN의 DNN 설정 정보가 타겟하는 정보를 확인하고, 그와 연계 훈련된 제 2 DNN의 DNN 설정 정보를 획득할 수 있는 것이다.
복수의 DNN 설정 정보 중 제 2 영상(135)의 AI 업스케일을 위한 DNN 설정 정보가 획득되면, 획득된 DNN 설정 정보에 따라 동작하는 제 2 DNN에 기초하여 입력 데이터가 처리될 수 있다.
예를 들어, 어느 하나의 DNN 설정 정보가 획득되면, 도 3에 도시된 제 2 DNN(300)의 제 1 컨볼루션 레이어(310), 제 2 컨볼루션 레이어(330) 및 제 3 컨볼루션 레이어(350) 각각에 대해서, 각 레이어에 포함되는 필터 커널의 개수와 필터 커널의 파라미터들을, 상기 획득된 DNN 설정 정보에 포함된 값으로 설정한다.
구체적으로, 도 4에 도시된 제 2 DNN의 어느 하나의 컨볼루션 레이어에서 이용되는 3 X 3의 필터 커널의 파라미터들이 {1, 1, 1, 1, 1, 1, 1, 1, 1}로 세팅되도록 하고, 이후 DNN 설정 정보의 변경이 있는 경우, 이를 변경된 DNN 설정 정보에 포함된 파라미터들인 {2, 2, 2, 2, 2, 2, 2, 2, 2}로 교체할 수 있는 것이다.
AI 업스케일부(234)는 AI 데이터에 포함된 정보에 기초하여 복수의 DNN 설정 정보 중 제 2 영상(135)을 업스케일하기 위한 DNN 설정 정보를 획득할 수 있는데, DNN 설정 정보를 획득하는데 이용되는 AI 데이터에 대해 구체적으로 설명한다.
일 실시예에서, AI 업스케일부(234)는 AI 데이터에 포함된 차이 정보에 기초하여, 복수의 DNN 설정 정보 중 제 2 영상(135)을 업스케일하기 위한 DNN 설정 정보를 획득할 수 있다. 예를 들어, 차이 정보에 기초하여 원본 영상(105)의 해상도(예를 들어, 4K(4096*2160))가 제 1 영상(115)의 해상도(예를 들어, 2K (2048*1080))보다 2배 큰 것으로 확인된 경우, AI 업스케일부(234)는 제 2 영상(135)의 해상도를 2배 증가시킬 수 있는 DNN 설정 정보를 획득할 수 있다.
다른 실시예에서, AI 업스케일부(234)는 AI 데이터에 포함된 제 1 영상(115) 관련 정보에 기초하여, 복수의 DNN 설정 정보 중 제 2 영상(135)을 AI 업스케일하기 위한 DNN 설정 정보를 획득할 수 있다. AI 업스케일부(234)는 영상 관련 정보들과 DNN 설정 정보들 사이의 매핑 관계를 미리 결정하고, 제 1 영상(115) 관련 정보에 매핑된 DNN 설정 정보를 획득할 수 있다.
도 5는 여러 영상 관련 정보들과 여러 DNN 설정 정보들 사이의 매핑 관계를 나타내는 예시적인 도면이다.
도 5에 따른 실시예를 통해, 본 개시의 일 실시예의 AI 부호화/AI 복호화 과정은 해상도의 변화만을 고려하는 것이 아님을 알 수 있다. 도 5에 도시된 바와 같이, SD, HD, Full HD와 같은 해상도, 10Mbps, 15Mbps, 20Mbps와 같은 비트레이트, 그리고 AV1, H.264, HEVC와 같은 코덱 정보를 개별적으로 또는 모두 고려하여 DNN 설정 정보의 선택이 이루어질 수 있다. 이러한 고려를 위해서는 AI 훈련 과정에서 각각의 요소들을 고려한 훈련이 부호화, 복호화 과정에서 연계되어 이루어져야 한다(도 18 참조).
따라서, 훈련 내용에 따라서 도 5에 도시된 바와 같이, 코덱 타입, 영상의 해상도 등을 포함하는 영상 관련 정보에 기반하여 복수의 DNN 설정 정보가 구비된 경우, AI 복호화 과정에서 전달받는 제 1 영상(115) 관련 정보에 기반하여 제 2 영상(135)의 AI 업스케일을 위한 DNN 설정 정보를 획득할 수 있다.
즉, AI 업스케일부(234)는 도 5에 도시된 표의 좌측에 도시된 영상 관련 정보와 표 우측의 DNN 설정 정보를 매칭하고 있음으로써, 영상 관련 정보에 따른 DNN 설정 정보를 사용할 수 있는 것이다.
도 5에 예시된 바와 같이, 제 1 영상(115) 관련 정보로부터 제 1 영상(115)의 해상도가 SD이고, 제 1 영상(115)의 제 1 부호화 결과 생성된 영상 데이터의 비트레이트가 10Mbps이고, 제 1 영상(115)이 AV1 코덱으로 제 1 부호화된 것으로 확인되면, AI 업스케일부(234)는 복수의 DNN 설정 정보 중 A DNN 설정 정보를 사용할 수 있다.
또한, 제 1 영상(115) 관련 정보로부터 제 1 영상(115)의 해상도가 HD이고, 제 1 부호화 결과 생성된 영상 데이터의 비트레이트가 15Mbps이고, 제 1 영상(115)이 H.264 코덱으로 제 1 부호화된 것으로 확인되면, AI 업스케일부(234)는 복수의 DNN 설정 정보 중 B DNN 설정 정보를 사용할 수 있다.
또한, 제 1 영상(115) 관련 정보로부터 제 1 영상(115)의 해상도가 Full HD이고, 제 1 영상(115)의 제 1 부호화 결과 생성된 영상 데이터의 비트레이트가 20Mbps이고, 제 1 영상(115)이 HEVC 코덱으로 제 1 부호화된 것으로 확인되면, AI 업스케일부(234)는 복수의 DNN 설정 정보 중 C DNN 설정 정보를 사용하고, 제 1 영상(115)의 해상도가 Full HD이고, 제 1 영상(115)의 제 1 부호화 결과 생성된 영상 데이터의 비트레이트가 15Mbps이고, 제 1 영상(115)이 HEVC 코덱으로 제 1 부호화된 것으로 확인되면, AI 업스케일부(234)는 복수의 DNN 설정 정보 중 D DNN 설정 정보를 사용할 수 있다. 제 1 영상(115)의 제 1 부호화 결과 생성된 영상 데이터의 비트레이트가 20Mbps인지 또는 15Mbps인지에 따라 C DNN 설정 정보와 D DNN 설정 정보 중에서 어느 하나가 선택된다. 동일 해상도의 제 1 영상(115)을 동일 코덱으로 제 1 부호화하였을 때, 영상 데이터의 비트레이트가 서로 상이하다는 것은, 복원되는 영상의 화질이 서로 상이하다는 것을 의미한다. 따라서, 제 1 DNN과 제 2 DNN은 소정 화질에 기반하여 연계 훈련될 수 있으며, 이에 따라 AI 업스케일부(234)는 제 2 영상(135)의 화질을 나타내는, 영상 데이터의 비트레이트에 따라 DNN 설정 정보를 획득할 수 있다.
또 다른 실시예에서, AI 업스케일부(234)는 제 1 복호화부(232)로부터 제공되는 정보(모드 정보, 양자화 파라미터 정보 등)와 AI 데이터에 포함된 제 1 영상(115) 관련 정보를 모두 고려하여 복수의 DNN 설정 정보 중 제 2 영상(135)을 AI 업스케일하기 위한 DNN 설정 정보를 획득할 수도 있다. 예를 들어, AI 업스케일부(234)는 제 1 복호화부(232)로부터 제 1 영상(115)의 제 1 부호화 과정에서 이용된 양자화 파라미터 정보를 전달받고, AI 데이터로부터 제 1 영상(115)의 부호화 결과 생성된 영상 데이터의 비트레이트를 확인하고, 양자화 파라미터 및 비트레이트에 대응하는 DNN 설정 정보를 획득할 수도 있다. 동일한 비트레이트라도 영상의 복잡도에 따라 복원 영상의 화질 정도에 차이가 있을 수 있으며, 비트레이트는 제 1 부호화되는 제 1 영상(115) 전체를 대표하는 값으로서 제 1 영상(115) 내에서도 각 프레임의 화질이 서로 다를 수 있다. 따라서, 제 1 복호화부(232)로부터 각 프레임 별로 획득할 수 있는 모드 정보 (예를 들어, 예측 모드 정보, 움직임 정보 등) 및/또는 양자화 파라미터를 함께 고려하면, AI 데이터만 이용하는 것에 비해 제 2 영상(135)에 보다 적합한 DNN 설정 정보를 획득할 수 있다.
또한, 구현예에 따라, AI 데이터는 상호 약속된 DNN 설정 정보의 식별자를 포함할 수 있다. DNN 설정 정보의 식별자는, 제 1 DNN의 다운스케일 타겟에 대응하는 업스케일 타겟으로, 제 2 영상(135)을 AI 업스케일할 수 있도록, 제 1 DNN과 제 2 DNN 간 연계 훈련된 DNN 설정 정보의 쌍을 구분하기 위한 정보이다. AI 업스케일부(234)는 AI 데이터에 포함된 DNN 설정 정보의 식별자를 획득한 후, DNN 설정 정보의 식별자에 대응하는 DNN 설정 정보를 사용하여 제 2 영상(135)을 AI 업스케일할 수 있다.
또한, 구현예에 따라, AI 데이터는 DNN 설정 정보를 포함할 수도 있다. AI 업스케일부(234)는 AI 데이터에 포함된 DNN 설정 정보를 획득한 후, 해당 DNN 설정 정보를 사용하여 제 2 영상(135)을 AI 업스케일할 수도 있다.
구현예에 따라, DNN 설정 정보를 구성하는 정보들(예를 들어, 컨볼루션 레이어의 수, 컨볼루션 레이어별 필터 커널의 개수, 각 필터 커널의 파라미터 등)들이 룩업 테이블 형태로 저장되어 있는 경우, AI 업스케일부(234)는 AI 데이터에 포함된 정보에 기초하여 룩업 테이블 값들 중에서 선택된 일부를 조합하여 DNN 설정 정보를 획득하고, 획득된 DNN 설정 정보를 사용하여 제 2 영상(135)을 AI 업스케일할 수도 있다.
구현예에 따라, AI 업스케일부(234)는 업스케일 타겟에 대응되는 DNN의 구조가 결정되면, 결정된 DNN의 구조에 대응하는 DNN 설정 정보, 예를 들어, 필터 커널의 파라미터들을 획득할 수도 있다.
일 실시예에서, AI 업스케일부(234)는 AI 데이터에 포함된 제 3 영상(145)의 해상도 정보에 기초하여, 복수의 DNN 설정 정보 중 제 2 영상(135)을 AI 업스케일하기 위한 DNN 설정 정보를 획득할 수도 있다.
AI 업스케일부(234)는 제 1 DNN과 관련된 정보를 포함하는 AI 데이터를 통해 제 2 DNN의 DNN 설정 정보를 획득하고, 획득된 DNN 설정 정보로 세팅된 제 2 DNN을 통해 제 2 영상(135)을 AI 업스케일하는 데, 이는, 제 2 영상(135)의 특징을 직접 분석하여 업스케일하는 것과 비교하여 메모리 사용량과 연산량이 감소될 수 있다.
일 실시예에서, AI 업스케일부(234)는 디스플레이 장치의 성능 정보, AI 복호화 장치(200)에 미리 저장된 설정 값 및 사용자로부터 입력받은 설정 값 중 적어도 하나를 고려하여, 복수의 DNN 설정 정보 중 제 2 영상(135)의 AI 업스케일을 위한 DNN 설정 정보를 획득할 수도 있다.
일 예로, AI 업스케일부(234)는 AI 복호화 장치(200)에 미리 저장된 설정 값에 대응하는 DNN 설정 정보를 획득할 수 있다. 예를 들어, AI 복호화 장치(200)에 특정의 화질 및/또는 해상도가 미리 저장된 경우, AI 업스케일부(234)는 미리 저장된 특정의 화질 및/또는 해상도를 갖는 제 3 영상(145)을 생성하기 위한 DNN 설정 정보를 획득할 수 있다.
다른 예로, AI 업스케일부(234)는 사용자에 의해 입력된 설정 값에 대응하는 DNN 설정 정보를 획득할 수 있다. 예를 들어, AI 업스케일부(234)는 특정 화질 및/또는 해상도가 사용자에 의해 입력된 경우, 입력된 특정 화질 및/또는 해상도를 갖는 제 3 영상(145)을 생성하기 위한 DNN 설정 정보를 획득할 수도 있다.
다른 예로, AI 업스케일부(234)는 제 3 영상(145) 또는 후처리된 제 3 영상(145)을 재생할 디스플레이 장치의 성능 정보(예를 들어, 디스플레이 장치가 재생할 수 있는 영상의 해상도 정보, 디스플레이 장치가 재생할 수 있는 영상의 화질 정보 등)를 고려하여, 특정의 화질 및/또는 해상도를 갖는 제 3 영상(145)을 생성하기 위한 DNN 설정 정보를 획득할 수도 있다. 예를 들어, 디스플레이 장치가 최대 해상도로서 1920x1080의 FHD(Full HD) 해상도만을 지원하고, 제 2 영상(135)의 해상도가 1280x720인 경우, AI 업스케일부(234)는 제 2 영상(135)의 해상도를 약 2배 증가시킬 수 있는 DNN 설정 정보를 획득할 수 있다.
일 실시예에서, 제 2 영상(135)이 복수의 프레임으로 구성된 경우, AI 업스케일부(234)는 소정 개수의 프레임 별로 DNN 설정 정보를 독립적으로 획득할 수 있고, 또는, 전체 프레임에 대해 공통된 DNN 설정 정보를 획득할 수도 있다.
도 6은 복수의 프레임으로 구성된 제 2 영상(135)을 도시하는 도면이다.
도 6에 도시된 바와 같이, 제 2 영상(135)은 t0 내지 tn에 대응하는 프레임들로 이루어질 수 있다.
일 예시에서, AI 업스케일부(234)는 AI 데이터를 통해 제 2 DNN의 DNN 설정 정보를 획득하고, 획득한 DNN 설정 정보에 기초하여 t0 내지 tn에 대응하는 프레임들을 AI 업스케일할 수 있다. 즉, t0 내지 tn에 대응하는 프레임들이 공통된 DNN 설정 정보에 기초하여 AI 업스케일될 수 있다.
다른 예시에서, AI 업스케일부(234)는 t0 내지 tn에 대응하는 프레임들 중 일부의 프레임들, 예를 들어, t0 내지 ta에 대응하는 프레임들을 AI 데이터에 기초하여 획득한 A DNN 설정 정보로 AI 업스케일하고, ta+1 내지 tb에 대응하는 프레임들을 AI 데이터에 기초하여 획득한 B DNN 설정 정보로 AI 업스케일할 수 있다. 또한, AI 업스케일부(234)는 tb+1 내지 tn에 대응하는 프레임들을 AI 데이터에 기초하여 획득한 C DNN 설정 정보로 AI 업스케일할 수 있다. 다시 말하면, AI 업스케일부(234)는 복수의 프레임들 중 소정 개수의 프레임을 포함하는 그룹마다 DNN 설정 정보를 독립적으로 획득하고, 그룹 각각에 포함된 프레임들을 독립적으로 획득한 DNN 설정 정보로 AI 업스케일할 수 있다.
또 다른 예시에서, AI 업스케일부(234)는 제 2 영상(135)을 구성하는 프레임별로 DNN 설정 정보를 독립적으로 획득할 수도 있다. 즉, 제 2 영상(135)이 3개의 프레임으로 구성되어 있는 경우, AI 업스케일부(234)는 첫 번째 프레임과 관련하여 획득한 DNN 설정 정보로 첫 번째 프레임을 AI 업스케일하고, 두 번째 프레임과 관련하여 획득한 DNN 설정 정보로 두 번째 프레임을 AI 업스케일하고, 세 번째 프레임과 관련하여 획득한 DNN 설정 정보로 세 번째 프레임을 AI 업스케일할 수 있다. 전술한, 제 1 복호화부(232)로부터 제공되는 정보(모드 정보, 양자화 파라미터 정보 등)와 AI 데이터에 포함된 제 1 영상(115) 관련 정보에 기초하여 DNN 설정 정보가 획득되는 방식에 따라, 제 2 영상(135)을 구성하는 프레임별로 DNN 설정 정보가 독립적으로 획득될 수 있다. 왜냐하면, 모드 정보, 양자화 파라미터 정보 등은 제 2 영상(135)을 구성하는 프레임마다 독립적으로 결정될 수 있기 때문이다.
또 다른 예시에서, AI 데이터는 AI 데이터에 기초하여 획득되는 DNN 설정 정보가 어느 프레임까지 유효한 것인지를 나타내는 정보를 포함할 수 있다. 예를 들어, AI 데이터 내에 DNN 설정 정보가 ta 프레임까지 유효하다는 정보가 포함되어 있는 경우, AI 업스케일부(234)는 AI 데이터에 기초하여 획득한 DNN 설정 정보로 t0 내지 ta 프레임들을 AI 업스케일한다. 그리고, 다른 AI 데이터 내에 DNN의 설정 정보가 tn 프레임까지 유효하다는 정보가 포함되어 있는 경우, AI 업스케일부(234)는 상기 다른 AI 데이터에 기초하여 획득한 DNN 설정 정보로 ta+1 내지 tn 프레임들을 AI 업스케일할 수 있다.
한편, 일 실시예에서, 다양한 종류의 제 3 영상(145)의 획득을 위해 AI 복호화 장치(200)는 복수의 제 2 DNN을 저장할 수 있다. 복수의 제 2 DNN은 레이어의 구조가 서로 상이하거나, 미리 세팅된 파라미터들이 서로 상이할 수 있다. AI 업스케일부(234)는 영상 데이터 및 AI 데이터 중 적어도 하나에 포함된 정보에 기초하여 복수의 제 2 DNN 중 제 2 영상(135)을 AI 업스케일하기 위한 제 2 DNN을 선택할 수 있다.
AI 업스케일부(234)는 영상 데이터, AI 데이터, 디스플레이 장치의 성능 정보, AI 복호화 장치(200)에 미리 저장된 설정 값 및 사용자로부터 입력받은 설정 값 중 적어도 하나에 기초하여 복수의 제 2 DNN 중 제 2 영상(135)을 AI 업스케일하기 위한 제 2 DNN을 선택할 수도 있다. 복수의 제 2 DNN 중 제 2 영상(135)을 AI 업스케일하기 위한 제 2 DNN을 선택하는 기준은, 복수의 DNN 설정 정보 중 제 2 영상(135)을 AI 업스케일하기 위한 DNN 설정 정보를 획득하는 기준과 동일할 수 있다.
이하에서는, 도 7을 참조하여 제 2 영상(135)의 AI 업스케일을 위한 제 2 DNN의 예시적인 구조에 대해 설명하고, 도 8 내지 도 11을 참조하여 서로 다른 업스케일 타겟에 대응하는 복수의 제 2 DNN의 구조에 대해 설명한다.
도 7은 일 실시예에 따른 제 2 영상(135)의 AI 업스케일을 위한 제 2 DNN의 구조를 설명하기 위한 도면이다.
제 2 DNN(600)은 복수의 컨볼루션 레이어(610, 640)를 포함할 수 있다. 각각의 컨볼루션 레이어에서는 입력 영상에 대해 적어도 하나의 필터 커널을 이용한 컨볼루션 처리가 수행될 수 있다.
도 7을 참조하면, 제 2 영상(135)은 제 1 컨볼루션 레이어(610)로 입력된다. 제 1 컨볼루션 레이어(610)에서는 n x n 크기의 f 개의 필터 커널을 이용한 컨볼루션 처리가 수행된다. 제 1 컨볼루션 레이어(610)의 출력이 제 1 활성화 레이어(620)로 입력된다. 또한, 이전 레이어의 출력 결과가 제 2 컨볼루션 레이어(640)로 입력된다. 제 2 컨볼루션 레이어(640)에서는 n x n 크기의 f 개의 필터 커널을 이용한 컨볼루션 처리가 수행된다. 제 1 컨볼루션 레이어(610) 및 제 2 컨볼루션 레이어(640)는 모두 n x n 크기의 f개의 필터 커널을 이용하는 것으로 도시하고 있으나, 제 1 컨볼루션 레이어(610)에서 이용되는 필터 커널의 크기 및 개수는, 제 2 컨볼루션 레이어(640)에서 이용되는 필터 커널의 크기 및 개수와 상이할 수 있다. 제 2 컨볼루션 레이어(640)의 출력 결과는 제 2 활성화 레이어(650)로 입력된다.
또한, 제 2 영상(135)은 제 1 컨볼루션 레이어(610)로 입력된 것과는 별개로 바이패스 스케일러(660)로 입력되고, 바이패스 스케일러(660)의 출력이 제 2 활성화 레이어(650)의 출력에 가산될 수 있다. 바이패스 스케일러(660)의 출력과 제 2 활성화 레이어(650)의 출력의 가산 결과에 대응하여 제 3 영상(145)이 생성될 수 있다.
도 7에 도시된 바와 같이, 컨볼루션 레이어(610, 640) 및 활성화 레이어(620, 650)를 포함하는 입출력 라인에 스케일러(630)가 더 포함될 수도 있다. 스케일러(630)는 하나 또는 복수 개일 수 있으며, 어느 하나의 컨볼루션 레이어의 앞이나 뒤, 또는 어느 하나의 활성화 레이어의 앞이나 뒤에 스케일러(630)가 위치할 수 있다. 스케일러(630) 및 바이패스 스케일러(660)는 입력된 영상의 해상도를 증가시킬 수 있는데, 예를 들어, 바이리니어(bilinear) 스케일러, 바이큐빅(bicubic) 스케일러, 란조스(lanczos) 스케일러 및 스테어 스탭(stair step) 스케일러 중 적어도 하나를 포함할 수 있다. 일 실시예에서, 스케일러(630) 및 바이패스 스케일러(660) 중 적어도 하나는 입력 데이터의 크기를 증가시키기 위한 컨볼루션 레이어로 대체될 수도 있다.
도 7에 도시된 제 2 DNN(600)은 바이패스 스케일러(660)를 통해 예측 버전(prediction version)의 제 3 영상을 생성하고, 컨볼루션 레이어(610, 640)를 포함하는 입출력 라인을 통해 잔차 버전(residual version)의 제 3 영상을 생성하고, 예측 버전의 제 3 영상과 잔차 버전의 제 3 영상의 가산을 통해 제 3 영상(145)을 생성할 수 있다. 바이패스 스케일러(660)가 예측 버전의 제 3 영상을 출력하기 때문에 제 2 DNN(600)의 레이어의 개수를 감소시킬 수 있으며, 이에 따라 파라미터들을 훈련시키는데 적은 시간이 소요되며, 실제 구동할 때에도 연산 시간이 감소된다.
도 8은 제 1 업스케일 타겟에 대응하는 제 2 영상(135)의 AI 업스케일을 위한 제 2 DNN의 구조를 설명하기 위한 도면이고, 도 9는 제 2 업스케일 타겟에 대응하는 제 2 영상(135)의 AI 업스케일을 위한 제 2 DNN의 구조를 설명하기 위한 도면이다. 또한, 도 10은 제 3 업스케일 타겟에 대응하는 제 2 영상(135)의 AI 업스케일을 위한 제 2 DNN의 구조를 설명하기 위한 도면이고, 도 11은 제 4 업스케일 타겟에 대응하는 제 2 영상(135)의 AI 업스케일을 위한 제 2 DNN의 구조를 설명하기 위한 도면이다.
일 실시예에서, 제 1 업스케일 타겟에 따라 생성된 제 3 영상(145)의 해상도는 제 2 업스케일 타겟에 따라 생성된 제 3 영상(145)의 해상도보다 작을 수 있다. 또한, 제 2 업스케일 타겟에 따라 생성된 제 3 영상(145)의 해상도는 제 3 업스케일 타겟에 따라 생성된 제 3 영상(145)의 해상도보다 작을 수 있다. 또한, 제 3 업스케일 타겟에 따라 생성된 제 3 영상(145)의 해상도는 제 4 업스케일 타겟에 따라 생성된 제 3 영상(145)의 해상도보다 작을 수 있다.
전술한 바와 같이, AI 업스케일부(234)는 업스케일 타겟이 결정되면, 복수의 제 2 DNN 중 상기 결정된 업스케일 타겟에 대응하는 제 2 DNN에 제 2 영상(135)을 입력할 수 있다.
AI 업스케일부(234)는 AI 데이터 등에 기초하여 업스케일 타겟을 결정한 경우, 도 8 내지 도 11에 도시된 제 2 DNN들(700, 800, 900, 1000) 중 업스케일 타겟에 대응하는 제 2 DNN을 통해 제 3 영상(145)을 생성할 수 있다.
먼저, 도 8을 참조하면, 제 2 영상(135)은 제 1 컨볼루션 레이어(710)로 입력된다. 제 1 컨볼루션 레이어(710)는 3x3의 크기의 4개의 필터 커널을 이용하여 제 2 영상(135)에 대해 컨볼루션 처리를 한다. 제 1 컨볼루션 레이어(710)의 출력은 제 1 활성화 레이어(720)로 입력되고, 제 1 활성화 레이어(720)의 출력은 스케일러(730)로 입력되고, 스케일러(730)의 출력은 제 2 활성화 레이어(740)로 입력된다. 제 2 활성화 레이어(740)의 출력은 제 2 컨볼루션 레이어(750)로 입력된다. 제 2 컨볼루션 레이어(750)는 3x3의 크기의 1개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 한다.
또한, 제 2 영상(135)은 바이패스 스케일러(760)로 입력되고, 바이패스 스케일러(760)의 출력과 제 2 컨볼루션 레이어(750)의 출력이 가산되어 제 3 영상(145)이 생성된다.
다음으로, 도 9를 참조하면, 제 2 영상(135)은 제 1 컨볼루션 레이어(810)로 입력된다. 제 1 컨볼루션 레이어(810)는 3x3의 크기의 8개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 한다. 제 1 컨볼루션 레이어(810)의 출력은 제 1 활성화 레이어(820)로 입력되고, 제 1 활성화 레이어(820)의 출력은 스케일러(830)로 입력된다. 그리고, 스케일러(830)의 출력은 제 2 활성화 레이어(840)로 입력되고, 제 2 활성화 레이어(840)의 출력은 제 2 컨볼루션 레이어(850)로 입력된다. 제 2 컨볼루션 레이어(850)는 3x3의 크기의 1개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 한다. 또한, 제 2 영상(135)은 바이패스 스케일러(860)로 입력되고, 바이패스 스케일러(860)의 출력이 제 2 컨볼루션 레이어(850)의 출력에 가산되어 제 3 영상(145)이 생성된다.
도 10을 참조하면, 제 2 영상(135)은 제 1 컨볼루션 레이어(910)로 입력된다. 제 1 컨볼루션 레이어(910)는 3x3의 크기의 8개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 한다. 제 1 컨볼루션 레이어(910)의 출력은 제 1 활성화 레이어(920)로 입력되고, 제 1 활성화 레이어(920)의 출력은 제 2 컨볼루션 레이어(930)로 입력된다. 제 2 컨볼루션 레이어(930)는 3x3의 크기의 8개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 한다. 제 2 컨볼루션 레이어(930)의 출력은 제 2 활성화 레이어(940)로 입력되고, 제 2 활성화 레이어(940)의 출력은 스케일러(950)로 입력된다. 그리고, 스케일러(950)의 출력은 제 3 컨볼루션 레이어(960)로 입력된다. 제 3 컨볼루션 레이어(960)는 3x3의 크기의 1개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 한다. 또한, 제 2 영상(135)은 바이패스 스케일러(970)로 입력되고, 바이패스 스케일러(970)의 출력이 제 3 컨볼루션 레이어(960)의 출력에 가산되어 제 3 영상(145)이 생성된다.
다음으로, 도 11을 참조하면, 제 2 영상(135)은 제 1 컨볼루션 레이어(1010)로 입력된다. 제 1 컨볼루션 레이어(1010)는 3x3의 크기의 8개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 한다. 제 1 컨볼루션 레이어(1010)의 출력은 제 1 활성화 레이어(1020)로 입력되고, 제 1 활성화 레이어(1020)의 출력은 제 2 컨볼루션 레이어(1030)로 입력된다. 제 2 컨볼루션 레이어(1030)는 3x3의 크기의 8개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 한다. 제 2 컨볼루션 레이어(1030)의 출력은 제 2 활성화 레이어(1040)로 입력되고, 제 2 활성화 레이어(1040)의 출력은 스케일러(1050)로 입력된다. 스케일러(1050)의 출력은 제 3 컨볼루션 레이어(1060)로 입력된다. 제 3 컨볼루션 레이어(1060)는 3x3의 크기의 8개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 한다. 제 3 컨볼루션 레이어(1060)의 출력은 제 3 활성화 레이어(1070)로 입력되고, 제 3 활성화 레이어(1070)의 출력은 제 4 컨볼루션 레이어(1080)로 입력된다. 제 4 컨볼루션 레이어(1080)는 3x3의 크기의 1개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 한다. 그리고, 제 2 영상(135)을 입력받은 바이패스 스케일러(1090)의 출력과 제 4 컨볼루션 레이어(1080)의 출력이 가산되어 제 3 영상(145)이 생성된다.
도 8 내지 도 11에 도시된 제 2 DNN(700, 800, 900, 1000) 각각은 서로 다른 업스케일 타겟을 위해 AI 복호화 장치(200)에 저장될 수 있다. 도 8 내지 도 11에 도시된 바와 같이, 복수의 제 2 DNN(700, 800, 900, 1000)은 서로 다른 레이어 구조를 갖거나, 동일 레이어 구조라도 필터 커널의 크기, 개수 등이 서로 상이할 수 있다. AI 복호화 장치(200)는 AI 데이터 등에 기초하여 제 2 영상(135)의 AI 업스케일을 위한 제 2 DNN을 결정할 수 있다.
복수의 제 2 DNN 각각은 AI 다운스케일을 위한 복수의 제 1 DNN 각각과 연계 훈련될 수 있다. 예를 들어, AI 다운스케일을 위한 제 1 DNN의 개수가 4개이고, AI 업스케일을 위한 제 2 DNN의 개수가 4개인 경우, 4개의 제 1 DNN 및 4개의 제 2 DNN 각각은 1:1로 매핑되어 연계 훈련될 수 있다.
도 12는 일 실시예에 따른 AI 복호화 방법을 설명하기 위한 순서도이다.
S1110 단계에서, AI 복호화 장치(200)는 제 1 영상(115)의 제 1 부호화 결과 생성된 영상 데이터를 획득한다. AI 복호화 장치(200)는 AI 다운스케일과 관련된 AI 데이터를 더 획득할 수 있다.
영상 데이터는 비트스트림 형태로 수신될 수 있다. 영상 데이터는 제 1 영상(115) 내 픽셀 값들에 기초하여 생성되는 데이터, 예를 들어, 제 1 영상(115)과 제 1 영상(115)의 예측 데이터 사이의 차이인 잔차 데이터를 포함할 수 있다. 또한, 영상 데이터는 제 1 영상(115)의 제 1 부호화(120) 과정에서 이용된 정보들을 포함한다. 예를 들어, 영상 데이터는 제 1 영상(115)을 제 1 부호화(120)하는데 이용된 모드(mode) 정보(예를 들어, 예측 모드 정보, 움직임 정보 등) 및 제 1 부호화(120)에서 이용된 양자화 파라미터 관련 정보 등을 포함할 수 있다. 영상 데이터는 MPEG-2, H.264 AVC, MPEG-4, HEVC, VC-1, VP8, VP9 및 AV1 등 주파수 변환을 이용하는 영상 압축 방법 중 제 1 부호화(120) 과정에서 이용된 영상 압축 방법의 규칙, 예를 들어, 신택스(syntax)에 따라 생성될 수 있다.
AI 데이터는 제 1 영상(115)이 AI 다운스케일을 통해 생성된 것인지를 나타내는 정보를 포함한다.
또한, AI 데이터는 제 2 DNN이 제 1 DNN의 다운스케일 타겟에 대응하는 업스케일 타겟으로 제 2 영상(135)을 AI 업스케일할 수 있게 하는 정보들을 포함한다.
AI 데이터에 포함된 정보들을 구체적으로 설명하면, 일 예에서, AI 데이터는 원본 영상(105)과 제 1 영상(115) 사이의 차이 정보를 포함할 수 있다. 차이 정보는, 원본 영상(105) 대비 제 1 영상(115)의 해상도 변환 정도에 대한 정보(예를 들어, 해상도 변환률 정보)를 포함할 수 있다. 복원된 제 2 영상(135)의 해상도를 통해 제 1 영상(115)의 해상도를 알게 되고 이를 통해 해상도 변환 정도를 확인할 수 있기 때문에, 차이 정보는 원본 영상(105)의 해상도 정보만으로 표현될 수도 있다.
일 예에서, AI 데이터는 제 1 영상(115) 관련 정보를 포함할 수도 있다. 제 1 영상(115) 관련 정보는, 제 1 영상(115)의 해상도, 제 1 영상(115)의 제 1 부호화 결과 생성된 영상 데이터의 비트레이트 및 제 1 영상(115)의 제 1 부호화시 이용된 코덱 타입 중 적어도 하나에 대한 정보를 포함할 수 있다.
일 예에서, AI 데이터는 AI 업스케일을 통해 생성될 제 3 영상(145)의 해상도 정보를 포함할 수도 있다.
또한, 일 예에서, AI 데이터는 제 2 영상(135)의 AI 업스케일을 위해 제 2 DNN에 입력될 참조 정보로서 부호화 파라미터 정보를 더 포함할 수 있다. 부호화 파라미터 정보는 원본 영상(105)의 제 1 부호화시 생성될 수 있는 부호화 파라미터를 나타낸다.
AI 데이터는 비트스트림의 형태로 수신될 수 있다. 또는, 구현예에 따라, AI 데이터는 프레임이나 패킷 형태로 수신될 수도 있다.
영상 데이터와 AI 데이터는 동일한 네트워크 또는 서로 상이한 네트워크를 통해 AI 복호화 장치(200)로 전송될 수 있다.
S1120 단계에서, AI 복호화 장치(200)는 영상 데이터에 기초하여 제 2 영상(135)을 획득한다. 구체적으로, AI 복호화 장치(200)는 주파수 변환을 이용한 영상 복원 방법을 기초로 영상 데이터를 복호화하여 제 1 영상(115)에 대응하는 제 2 영상(135)을 복원한다.
S1130 단계에서, AI 복호화 장치(200)는 상기 제 2 영상(135)에 대한 AI 업스케일 수행 여부를 결정한다.
AI 복호화 장치(200)는 AI 데이터가 획득되지 않은 경우, 제 2 영상(135)을 AI 업스케일하지 않는 것으로 결정할 수 있다.
AI 복호화 장치(200)는 AI 데이터가 획득되고, 획득한 AI 데이터 내에 제 1 영상(115)이 AI 다운스케일을 통해 생성되었다는 정보가 포함되어 있으면, 제 2 영상(135)에 대해 AI 업스케일을 수행하는 것으로 결정하고, AI 데이터 내에 제 1 영상(115)이 AI 다운스케일을 통해 생성되지 않았다는 정보가 포함되어 있으면, 제 2 영상(135)에 대해 AI 업스케일을 수행하지 않는 것으로 결정할 수 있다.
일 실시예에서, AI 복호화 장치(200)는 AI 데이터 내에 제 1 영상(115)이 AI 다운스케일을 통해 생성되었다는 정보가 포함되어 있더라도 제 2 DNN의 이용 가능성이 없으면, 제 2 영상(135)에 대해 AI 업스케일을 수행하지 않는 것으로 결정할 수 있다.
S1140 단계에서, AI 복호화 장치(200)는 제 2 영상(135)에 대해 AI 업스케일을 수행하는 것으로 결정된 경우, 업스케일용 DNN을 통해 제 2 영상(135)으로부터 AI 업스케일된 제 3 영상(145)을 생성한다. 그리고, AI 복호화 장치(200)는 제 3 영상(145)이 생성된 경우, 제 3 영상(145)을 출력하고, 제 2 영상(135)에 대해 AI 업스케일을 수행하지 않는 것으로 결정된 경우, 제 2 영상(135)을 출력한다. 구현예에 따라, AI 복호화 장치(200)에서 출력된 제 2 영상(135)은 디스플레이 장치에 의해 업스케일될 수 있다.
일 실시예에서, AI 복호화 장치(200)는 AI 데이터 내에 제 1 영상(115)이 AI 다운스케일을 통해 생성되었다는 정보가 포함되어 있었지만, 제 2 DNN의 이용 가능성이 없어 제 2 영상(135)의 AI 업스케일을 하지 않은 경우, 제 2 영상(135)을 레거시 업스케일한 후 출력할 수도 있다.
이하에서는, 도 13을 참조하여, 원본 영상(105)의 AI 부호화를 위한 AI 부호화 장치(1200)에 대해 설명한다.
도 13은 일 실시예에 따른 AI 부호화 장치(1200)의 구성을 도시하는 블록도이다.
도 13을 참조하면, AI 부호화 장치(1200)는 AI 부호화부(1210) 및 전송부(1230)를 포함할 수 있다. AI 부호화부(1210)는 AI 다운스케일부(1212) 및 제 1 부호화부(1214)를 포함할 수 있다. 전송부(1230)는 데이터 처리부(1232) 및 통신부(1234)를 포함할 수 있다.
도 13은 AI 부호화부(1210) 및 전송부(1230)를 개별적인 장치로 도시하고 있으나, AI 부호화부(1210) 및 전송부(1230)는 하나의 프로세서를 통해 구현될 수 있다. 이 경우, AI 부호화부(1210) 및 전송부(1230)는 별도의 전용 프로세서로 구현될 수도 있고, AP 또는 CPU, GPU와 같은 범용 프로세서와 S/W의 조합을 통해 구현될 수도 있다. 또한, 전용 프로세서의 경우, 본 발명의 실시예를 구현하기 위한 메모리를 포함하여 구현되거나, 외부 메모리를 이용하기 위한 메모리 처리부를 포함하여 구현될 수 있다.
또한, AI 부호화부(1210) 및 전송부(1230)는 하나 이상의 프로세서로 구성될 수도 있다. 이 경우, 전용 프로세서들의 조합으로 구현될 수도 있고, AP 또는 CPU, GPU와 같은 다수의 범용 프로세서들과 S/W의 조합을 통해 구현될 수도 있다. 마찬가지로 AI 다운스케일부(1212)와 제 1 부호화부(1214)도 각각 서로 다른 프로세서로 구현될 수 있다.
AI 부호화부(1210)는 원본 영상(105)의 AI 다운스케일 및 제 1 영상(115)의 제 1 부호화를 수행하고, AI 데이터 및 영상 데이터를 전송부(1230)로 전달한다. 전송부(1230)는 AI 데이터 및 영상 데이터를 AI 복호화 장치(200)로 전송한다.
영상 데이터는 제 1 영상(115)의 제 1 부호화 결과 생성된 데이터를 포함한다. 영상 데이터는 제 1 영상(115) 내 픽셀 값들에 기초하여 생성되는 데이터, 예를 들어, 제 1 영상(115)과 제 1 영상(115)의 예측 데이터 사이의 차이인 잔차 데이터를 포함할 수 있다. 또한, 영상 데이터는 제 1 영상(115)의 제 1 부호화 과정에서 이용된 정보들을 포함한다. 예를 들어, 영상 데이터는 제 1 영상(115)을 제 1 부호화하는데 이용된 모드(mode) 정보(예를 들어, 예측 모드 정보, 움직임 정보 등) 및 제 1 영상(115)을 제 1 부호화하는데 이용된 양자화 파라미터 관련 정보 등을 포함할 수 있다.
AI 데이터는, AI 복호화 장치(200)의 AI 업스케일부(234)가 제 1 DNN의 다운스케일 타겟에 대응하는 업스케일 타겟으로 제 2 영상(135)을 AI 업스케일할 수 있게 하는 정보들을 포함한다. 일 예에서, AI 데이터는 원본 영상(105)과 제 1 영상(115) 사이의 차이 정보를 포함할 수 있다. 또한, AI 데이터는 제 1 영상(115) 관련 정보를 포함할 수도 있다. 제 1 영상(115) 관련 정보는, 제 1 영상(115)의 해상도, 제 1 영상(115)의 제 1 부호화 결과 생성된 영상 데이터의 비트레이트 및 제 1 영상(115)의 제 1 부호화시 이용된 코덱 타입 중 적어도 하나에 대한 정보를 포함할 수 있다.
일 실시예에서, AI 데이터는, 제 1 DNN의 다운스케일 타겟에 대응하는 업스케일 타겟으로 제 2 영상(135)이 AI 업스케일될 수 있도록, 상호 약속된 DNN 설정 정보의 식별자를 포함할 수 있다.
또한, 일 실시예에서, AI 데이터는 제 2 DNN에 세팅 가능한 DNN 설정 정보를 포함할 수도 있다.
또한, AI 데이터는 제 1 부호화되는 영상이 AI 다운스케일된 영상인지 여부를 나타내는 정보를 포함할 수 있다. 또한, AI 데이터는 AI 업스케일을 통해 생성될 제 3 영상(145)의 해상도 정보를 포함할 수 있다. 또한, AI 데이터는 제 2 영상(135)의 AI 업스케일을 위해 제 2 DNN에 입력될 참조 정보를 더 포함할 수 있다.
AI 다운스케일부(1212)는 제 1 DNN을 통해 원본 영상(105)을 AI 다운스케일 할지 여부를 결정한다. AI 다운스케일부(1212)는 원본 영상(105)의 해상도, 원본 영상(105)의 타입(예를 들어, 파일의 종류), 원본 영상(105)에 포함된 피사체의 종류 등에 기초하여 AI 다운스케일 수행 여부를 결정할 수 있다. 예를 들어, AI 다운스케일부(1212)는 원본 영상(105)의 해상도가 소정 해상도(예를 들어, HD)보다 작으면, AI 다운스케일을 하지 않는 것으로 결정할 수 있다.
일 실시예에서, AI 다운스케일부(1212)는 제 1 DNN의 이용 가능성이 있는 경우, 원본 영상(105)을 AI 다운스케일하는 것으로 결정하고, 제 1 DNN의 이용 가능성이 없는 경우, 원본 영상(105)을 AI 다운스케일하지 않는 것으로 결정할 수 있다.
여기서, 제 1 DNN의 이용 가능성이 없는 경우는, AI 다운스케일부(1212)에 제 1 DNN이 저장되어 있지 않거나, AI 다운스케일부(1212)에 제 1 DNN이 저장되어 있더라도 원본 영상(105)을 AI 다운스케일하는데 필요한 DNN 설정 정보가 저장되어 있지 않은 경우를 포함할 수 있다.
또한, 제 1 DNN의 이용 가능성이 없는 경우는, AI 다운스케일부(1212)에 저장된 제 1 DNN 및/또는 DNN 설정 정보의 버전이 최신 버전이 아닌 경우를 포함할 수 있다. 일 실시예에서, AI 부호화 장치(1200)는 네트워크를 통해 외부 서버로부터 제 1 DNN 및 DNN 설정 정보를 수신하여 저장할 수 있는데, AI 부호화 장치(1200)에 저장된 제 1 DNN 및 DNN 설정 정보 중 적어도 하나가 최신 버전의 제 1 DNN 및 DNN 설정 정보가 아니라면, AI 다운스케일부(1212)는 제 1 DNN의 이용 가능성이 없는 것으로 결정할 수 있다.
AI 다운스케일부(1212)는 제 1 DNN을 통해 원본 영상(105)을 AI 다운스케일하는 것으로 결정하면, 제 1 DNN을 통해 원본 영상(105)으로부터 AI 다운스케일된 제 1 영상(115)을 생성할 수 있다. AI 다운스케일부(1212)는 원본 영상(105)의 AI 다운스케일을 위해 제 1 DNN에 원본 영상(105)과 함께 참조 정보를 더 입력할 수도 있다. 상기 참조 정보는 원본 영상(105)의 효과적인 AI 다운스케일을 위해 제 1 DNN에 입력될 수 있다. 참조 정보는 예를 들어, 원본 영상(105)에 포함된 픽셀들의 위치 정보를 포함할 수 있다. 원본 영상(105)에 포함된 픽셀들의 위치 정보는, 원본 영상(105)의 위치 맵을 포함할 수 있는데, 위치 맵의 각 픽셀은 원본 영상(105) 내 각 픽셀의 위치에 대응하는 값을 가질 수 있다.
AI 다운스케일부(1212)는 미리 결정된 기준에 기초하여 원본 영상(105)의 다운스케일 타겟을 결정할 수 있다.
다운스케일 타겟에 부합하는 제 1 영상(115)의 생성을 위해, AI 다운스케일부(1212)는 제 1 DNN에 세팅 가능한 복수의 DNN 설정 정보를 저장할 수 있다. AI 다운스케일부(1212)는 복수의 DNN 설정 정보 중 다운스케일 타겟에 대응하는 DNN 설정 정보를 획득하고, 획득된 DNN 설정 정보로 세팅된 제 1 DNN을 통해 원본 영상(105)을 AI 다운스케일한다.
상기 복수의 DNN 설정 정보 각각은 미리 결정된 해상도 및/또는 미리 결정된 화질의 제 1 영상(115)을 생성하기 위해 훈련된 것일 수 있다. 예를 들어, 복수의 DNN 설정 정보 중 어느 하나의 DNN 설정 정보는 원본 영상(105)의 해상도보다 1/2배만큼 작은 해상도의 제 1 영상(115), 예를 들어, 4K(4096*2160)의 원본 영상(105)보다 1/2배 작은 2K(2048*1080)의 제 1 영상(115)을 생성하기 위한 정보들을 포함할 수 있고, 다른 하나의 DNN 설정 정보는 원본 영상(105)의 해상도보다 1/4배만큼 작은 해상도의 제 1 영상(115), 예를 들어, 8K(8192*4320)의 원본 영상(105)보다 1/4배 작은 2K(2048*1080)의 제 1 영상(115)을 생성하기 위한 정보들을 포함할 수 있다.
구현예에 따라, DNN 설정 정보를 구성하는 정보들(예를 들어, 컨볼루션 레이어의 수, 컨볼루션 레이어별 필터 커널의 개수, 각 필터 커널의 파라미터 등)들이 룩업 테이블 형태로 저장되어 있는 경우, AI 다운스케일부(1212)는 다운스케일 타겟에 따라 룩업 테이블 값들 중에서 선택된 일부를 조합하여 DNN 설정 정보를 획득하고, 획득된 DNN 설정 정보를 사용하여 원본 영상(105)을 AI 다운스케일할 수도 있다.
구현예에 따라, AI 다운스케일부(1212)는 다운스케일 타겟에 대응되는 DNN의 구조를 결정하고, 결정된 DNN의 구조에 대응하는 DNN 설정 정보, 예를 들어, 필터 커널의 파라미터들을 획득할 수도 있다.
원본 영상(105)의 AI 다운스케일을 위한 복수의 DNN 설정 정보는, 제 1 DNN과 제 2 DNN이 연계 훈련됨으로써, 최적화된 값을 가질 수 있다. 여기서, 각 DNN 설정 정보는 제 1 DNN에 포함되는 컨볼루션 레이어의 수, 컨볼루션 레이어별 필터 커널의 개수 및 각 필터 커널의 파라미터 중 적어도 하나를 포함한다.
AI 다운스케일부(1212)는 원본 영상(105)의 AI 다운스케일을 위해 획득된 DNN 설정 정보로 제 1 DNN을 세팅하여, 소정 해상도 및/또는 소정 화질의 제 1 영상(115)을 제 1 DNN을 통해 생성할 수 있다. 복수의 DNN 설정 정보 중 원본 영상(105)의 AI 다운스케일을 위한 DNN 설정 정보가 획득되면, 제 1 DNN 내 각 레이어는 DNN 설정 정보에 포함된 정보들에 기초하여 입력된 데이터를 처리할 수 있다.
일 실시예에서, 다운스케일 타겟에 부합하는 제 1 영상(115)의 생성을 위해, AI 다운스케일부(1212)는 미리 저장된 복수의 제 1 DNN 중 원본 영상(105)을 AI 다운스케일하기 위한 제 1 DNN을 결정하고, 결정된 제 1 DNN을 통해 원본 영상(105)을 AI 다운스케일할 수도 있다. 복수의 제 1 DNN은 레이어의 구조가 서로 상이하거나, 미리 세팅된 파라미터들이 서로 상이할 수 있다.
AI 다운스케일부(1212)는 미리 결정된 기준(예를 들어, 압축률, 압축 품질, 압축 히스토리 정보 및 원본 영상의 타입 중 적어도 하나에 기초하여 결정되는 기준)에 기초하여 복수의 제 1 DNN 중 원본 영상(105)을 AI 다운스케일하기 위한 제 1 DNN을 선택할 수 있다. 앞서 도 8 내지 도 11과 관련하여 설명한 것과 같이, 복수의 제 1 DNN은 바이패스 스케일러를 공통적으로 포함하되, 복수의 컨볼루션 레이어를 포함하는 입출력 라인의 레이어 구조가 서로 상이할 수 있다.
이하에서는, AI 다운스케일부(1212)가 다운스케일 타겟을 결정하는 방법에 대해 설명한다. 상기 다운스케일 타겟은 예를 들어, 원본 영상(105)으로부터 얼마나 해상도가 감소한 제 1 영상(115)을 생성해야 하는지를 나타낼 수 있다.
일 실시예에서, AI 다운스케일부(1212)는 압축률, 압축 품질, 압축 히스토리 정보 및 원본 영상(105)의 타입 중 적어도 하나에 기초하여 다운스케일 타겟을 결정할 수 있다.
일 예에서, AI 다운스케일부(1212)는 미리 설정되거나, 사용자로부터 입력받은 압축률 또는 압축 품질 등에 기반하여 다운스케일 타겟을 결정할 수 있다.
다른 예로, AI 다운스케일부(1212)는 AI 부호화 장치(1200)에 저장된 압축 히스토리 정보를 이용하여 다운스케일 타겟을 결정할 수도 있다. 예를 들어, AI 부호화 장치(1200)가 이용할 수 있는 압축 히스토리 정보에 따르면, 사용자가 선호하는 부호화 품질 또는 압축률 등이 결정될 수 있으며, 압축 히스토리 정보에 기초하여 결정된 부호화 품질 등에 따라 다운스케일 타겟이 결정될 수 있다. 예를 들면, 압축 히스토리 정보에 따라 가장 많이 이용된 적이 있는 부호화 품질에 따라 제 1 영상(115)의 해상도, 화질 등이 결정될 수 있다.
또 다른 예로, AI 다운스케일부(1212)는 압축 히스토리 정보에 따라 소정의 임계 값보다 많이 이용된 적이 있는 부호화 품질(예를 들면, 소정의 임계값보다 많이 이용된 적이 있는 부호화 품질의 평균 품질)에 기초하여 다운스케일 타겟을 결정할 수도 있다.
또 다른 예로, AI 다운스케일부(1212)는 원본 영상(105)의 해상도, 타입(예를 들어, 파일의 형식)등에 기초하여 다운스케일 타겟을 결정할 수도 있다.
일 실시예에서, 원본 영상(105)이 복수의 프레임으로 구성된 경우, AI 다운스케일부(1212)는 소정 개수의 프레임 별로 다운스케일 타겟을 독립적으로 결정할 수 있고, 또는, 전체 프레임에 대해 공통된 다운스케일 타겟을 결정할 수도 있다.
일 예시에서, AI 다운스케일부(1212)는 원본 영상(105)을 구성하는 프레임들을 소정 개수의 그룹으로 구분하고, 각 그룹별로 다운스케일 타겟을 독립적으로 결정할 수 있다. 각 그룹에 대해 동일하거나 상이한 다운스케일 타겟이 결정될 수 있다. 그룹들에 포함된 프레임들의 개수는 그룹별로 동일하거나 상이할 수 있다.
다른 예시에서, AI 다운스케일부(1212)는 원본 영상(105)을 구성하는 프레임별로 다운스케일 타겟을 독립적으로 결정할 수 있다. 각각의 프레임에 대해 동일하거나 상이한 다운스케일 타겟이 결정될 수 있다.
이하에서는, AI 다운스케일의 기반이 되는 제 1 DNN의 예시적인 구조에 대해 설명한다.
도 14는 원본 영상(105)의 AI 다운스케일을 위한 제 1 DNN(1300)을 나타내는 예시적인 도면이다.
도 14에 도시된 바와 같이, 원본 영상(105)은 제 1 컨볼루션 레이어(1310)로 입력된다. 제 1 컨볼루션 레이어(1310)는 5 x 5의 크기의 32개의 필터 커널을 이용하여 원본 영상(105)에 대해 컨볼루션 처리를 한다. 컨볼루션 처리 결과 생성된 32개의 특징 맵은 제 1 활성화 레이어(1320)로 입력된다. 제 1 활성화 레이어(1320)는 32개의 특징 맵에 대해 비선형(Non-linear) 특성을 부여할 수 있다.
제 1 활성화 레이어(1320)의 출력이 제 2 컨볼루션 레이어(1330)로 입력된다. 제 2 컨볼루션 레이어(1330)는 5 x 5의 크기의 32개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 한다. 컨볼루션 처리 결과 출력된 32개의 특징 맵은 제 2 활성화 레이어(1340)로 입력되고, 제 2 활성화 레이어(1340)는 32개의 특징 맵에 대해 비선형 특성을 부여할 수 있다.
제 2 활성화 레이어(1340)의 출력은 제 3 컨볼루션 레이어(1350)로 입력된다. 제 3 컨볼루션 레이어(1350)는 5 x 5의 크기의 1개의 필터 커널을 이용하여 입력된 데이터에 대해 컨볼루션 처리를 한다. 컨볼루션 처리 결과 제 3 컨볼루션 레이어(1350)로부터 1개의 영상이 출력될 수 있다. 제 3 컨볼루션 레이어(1350)는 최종 영상을 출력하기 위한 레이어로서 1개의 필터 커널을 이용하여 1개의 출력을 생성한다. 본 개시의 예시에 따르면, 제 3 컨볼루션 레이어(1350)는 컨볼루션 연산 결과를 통해 제 1 영상(115)을 출력할 수 있다.
제 1 DNN(1300)의 제 1 컨볼루션 레이어(1310), 제 2 컨볼루션 레이어(1330) 및 제 3 컨볼루션 레이어(1350)의 필터 커널의 개수, 필터 커널의 파라미터 등을 나타내는 DNN 설정 정보는 복수 개일 수 있는데, 복수의 DNN 설정 정보는 제 2 DNN의 복수의 DNN 설정 정보와 연계되어야 한다. 제 1 DNN의 복수의 DNN 설정 정보와 제 2 DNN의 복수의 DNN 설정 정보 사이의 연계는, 제 1 DNN 및 제 2 DNN의 연계 학습을 통해 구현될 수 있다.
도 14는 제 1 DNN(1300)이 세 개의 컨볼루션 레이어(1310, 1330, 1350)와 두 개의 활성화 레이어(1320, 1340)를 포함하고 있는 것으로 도시하고 있으나, 이는 하나의 예시일 뿐이며, 구현예에 따라서, 컨볼루션 레이어 및 활성화 레이어의 개수는 다양하게 변경될 수 있다. 또한, 구현예에 따라서, 제 1 DNN(1300)은 RNN(recurrent neural network)을 통해 구현될 수도 있다. 이 경우는 본 개시의 예시에 따른 제 1 DNN(1300)의 CNN 구조를 RNN 구조로 변경하는 것을 의미한다.
다시 도 13을 참조하면, AI 다운스케일부(1212)로부터 제 1 영상(115)을 전달받은 제 1 부호화부(1214)는 제 1 영상(115)을 제 1 부호화하여 제 1 영상(115)이 가지는 정보량을 감축시킬 수 있다. 제 1 부호화부(1214)에 의한 제 1 부호화 결과 제 1 영상(115)에 대응하는 영상 데이터가 생성될 수 있다.
데이터 처리부(1232)는 AI 데이터 및 영상 데이터 중 적어도 하나가 소정의 형태로 전송될 수 있게 처리한다. 예를 들어, AI 데이터 및 영상 데이터를 비트스트림 형태로 전송하여야 하는 경우, 데이터 처리부(1232)는 AI 데이터가 비트스트림 형태로 표현되도록 AI 데이터를 처리하고, 통신부(1234)를 통해 하나의 비트스트림 형태의 AI 데이터 및 영상 데이터를 전송한다. 다른 예로, 데이터 처리부(1232)는 AI 데이터가 비트스트림 형태로 표현되도록 AI 데이터를 처리하고, 통신부(1234)를 통해 AI 데이터에 해당하는 비트스트림 및 영상 데이터에 해당하는 비트스트림 각각을 통신부(1234)를 통해 전송한다. 또 다른 예로, 데이터 처리부(1232)는 AI 데이터가 프레임 또는 패킷으로 표현되도록 AI 데이터를 처리하고, 비트스트림 형태의 영상 데이터와, 프레임 또는 패킷 형태의 AI 데이터를 통신부(1234)를 통해 전송한다.
통신부(1234)는 네트워크를 통해 AI 부호화 결과 생성된 AI 부호화 데이터를 전송한다. AI 부호화 결과 생성된 AI 부호화 데이터는 영상 데이터와 AI 데이터를 포함한다. 영상 데이터와 AI 데이터는 동종 네트워크 또는 이종 네트워크를 통해 전송될 수 있다.
일 실시예에서, 데이터 처리부(1232)의 처리 결과 생성된 데이터는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium) 등을 포함하는 데이터 저장 매체에 저장될 수도 있다.
이하에서는, 원본 영상(105)의 AI 다운스케일을 위한 제 1 DNN의 다른 구조에 대해 살펴본다.
도 15는 일 실시예에 따른 AI 다운스케일을 위한 제 1 DNN의 구조를 나타내는 도면이다.
도 15를 참조하면, 제 1 DNN(1400)은 복수의 컨볼루션 레이어(1410, 1440)를 포함할 수 있다. 각각의 컨볼루션 레이어에서는 입력된 영상에 대해 적어도 하나의 필터 커널을 이용한 컨볼루션 연산이 수행될 수 있다.
제 1 DNN(1400)은 적어도 하나의 활성화 레이어(1420, 1450)를 더 포함할 수 있다. 각각의 활성화 레이어는 이전 레이어의 출력 결과에 대해 비선형 특성을 부여할 수 있다.
도 15를 참조하면, 원본 영상(105)은 제 1 컨볼루션 레이어(1410)로 입력된다. 제 1 컨볼루션 레이어(1410)에서는 n x n 크기의 f 개의 필터 커널을 이용한 컨볼루션 처리가 수행된다. 제 1 컨볼루션 레이어(1410)의 출력이 제 1 활성화 레이어(1420)로 입력된다. 또한, 이전 레이어의 출력 결과가 제 2 컨볼루션 레이어(1440)로 입력된다. 제 2 컨볼루션 레이어(1440)에서는 n x n 크기의 f 개의 필터 커널을 이용한 컨볼루션 처리가 수행된다. 제 1 컨볼루션 레이어(1410) 및 제 2 컨볼루션 레이어(1440)는 모두 n x n 크기의 f개의 필터 커널을 이용하는 것으로 도시하고 있으나, 제 1 컨볼루션 레이어(1410)에서 이용되는 필터 커널의 크기 및 개수는, 제 2 컨볼루션 레이어(1440)에서 이용되는 필터 커널의 크기 및 개수와 상이할 수 있다. 제 2 컨볼루션 레이어(1440)의 출력 결과는 제 2 활성화 레이어(1450)로 입력된다.
또한, 원본 영상(105)은 제 1 컨볼루션 레이어(1410)로 입력된 것과는 별개로 바이패스 스케일러(1460)로 입력되고, 바이패스 스케일러(1460)의 출력이 제 2 활성화 레이어(1450)의 출력에 가산될 수 있다. 바이패스 스케일러(1460)의 출력과 제 2 활성화 레이어(1450)의 출력의 가산 결과에 대응하여 제 1 영상(115)이 생성될 수 있다.
도 15에 도시된 바와 같이, 컨볼루션 레이어(1410, 1440) 및 활성화 레이어(1420, 1450)를 포함하는 입출력 라인에 스케일러(1430)가 더 포함될 수도 있다. 스케일러(1430)는 하나 또는 복수 개일 수 있으며, 어느 하나의 컨볼루션 레이어의 앞이나 뒤, 또는 어느 하나의 활성화 레이어의 앞이나 뒤에 스케일러(1430)가 위치할 수 있다. 스케일러(1430) 및 바이패스 스케일러(1460)는 입력된 영상의 해상도를 감소시킬 수 있는데, 예를 들어, 바이리니어(bilinear) 스케일러, 바이큐빅(bicubic) 스케일러, 란조스(lanczos) 스케일러 및 스테어 스탭(stair step) 스케일러 중 적어도 하나를 포함할 수 있다. 일 실시예에서, 스케일러(1430) 및 바이패스 스케일러(1460) 중 적어도 하나는 입력 데이터의 크기를 감소시키기 위한 컨볼루션 레이어로 대체될 수도 있다.
도 15에 도시된 제 1 DNN(1400)은 바이패스 스케일러(1460)를 통해 예측 버전(prediction version)의 제 1 영상을 생성하고, 컨볼루션 레이어(1410, 1440)를 포함하는 입출력 라인을 통해 잔차 버전(residual version)의 제 1 영상을 생성하고, 예측 버전의 제 1 영상과 잔차 버전의 제 1 영상의 가산을 통해 제 1 영상(115)을 생성할 수 있다. 바이패스 스케일러(1460)가 예측 버전의 제 1 영상을 출력하기 때문에 제 1 DNN(1400)의 레이어의 개수를 감소시킬 수 있으며, 이에 따라 파라미터들을 훈련시키는데 적은 시간이 소요되며, 실제 구동할 때에도 연산 시간이 감소된다.
도 16은 다른 실시예에 따른 AI 다운스케일을 위한 제 1 DNN(1500)의 구조를 나타내는 도면이다.
도 16을 참조하면, 원본 영상(105)은 제 1 컨볼루션 레이어(1510)로 입력되고, 제 1 컨볼루션 레이어(1510)의 출력이 제 1 활성화 레이어(1520)로 입력된다. 제 1 활성화 레이어(1520)의 출력은 제 2 컨볼루션 레이어(1530)로 입력되고, 제 2 컨볼루션 레이어(1530)의 출력은 제 2 활성화 레이어(1540)로 입력된다. 또한, 제 2 활성화 레이어(1540)의 출력은 제 3 컨볼루션 레이어(1550)로 입력되고, 제 3 컨볼루션 레이어(1550)의 출력은 제 3 활성화 레이어(1560)로 입력된다. 제 3 활성화 레이어(1560)의 출력은 제 4 컨볼루션 레이어(1570)로 입력된다. 또한, 원본 영상(105)을 입력받은 바이패스 스케일러(1580)로부터 출력된 결과는 제 4 컨볼루션 레이어(1570)의 출력에 가산될 수 있다. 도 16에서 제 1 컨볼루션 레이어(1510)는 5x5의 크기의 32개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 하며, 제 2 컨볼루션 레이어(1530)는 5x5의 크기의 32개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 할 수 있다. 또한, 제 3 컨볼루션 레이어(1550)는 7x7의 크기의 32개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 할 수 있고, 제 4 컨볼루션 레이어(1570)는 5x5의 크기의 1개의 필터 커널을 이용하여 입력 데이터에 대해 컨볼루션 처리를 할 수 있다.
도 16에서 여러 컨볼루션 레이어들(1510, 1530, 1550, 1570) 중 적어도 하나의 컨볼루션 레이어, 예를 들어, 제 3 컨볼루션 레이어(1550)는 입력 영상의 크기를 감소시키기 위한 스케일러로 대체될 수도 있다.
도 17은 일 실시예에 따른 AI 부호화 방법을 설명하기 위한 순서도이다.
S1610 단계에서, AI 부호화 장치(1200)은 원본 영상(105)의 AI 다운스케일 여부를 결정한다. AI 부호화 장치(1200)는 원본 영상(105)의 해상도, 원본 영상(105)의 타입(예를 들어, 파일의 종류), 원본 영상(105)에 포함된 피사체의 종류 등에 기초하여 AI 다운스케일 수행 여부를 결정할 수 있다. 또한, AI 부호화 장치(1200)는 제 1 DNN의 이용 가능성이 있는 경우, 원본 영상(105)을 AI 다운스케일하는 것으로 결정하고, 제 1 DNN의 이용 가능성이 없는 경우, 원본 영상(105)을 AI 다운스케일하지 않는 것으로 결정할 수 있다.
S1620 단계에서, AI 부호화 장치(1200)는 AI 다운스케일의 수행 여부에 대한 결정 결과를 기초로 다운스케일용 DNN을 이용하여 원본 영상(105)으로부터 AI 다운스케일된 제 1 영상(115)을 생성한다. AI 부호화 장치(1200)는 원본 영상(105)에 대해 AI 다운스케일을 수행하는 것으로 결정되면, 원본 영상(105)으로부터 AI 다운스케일된 제 1 영상(115)을 생성하고, 원본 영상(105)에 대해 AI 다운스케일을 수행하지 않는 것으로 결정되면, 원본 영상(105)을 AI 다운스케일하지 않는다.
S1630 단계에서, AI 부호화 장치(1200)는 제 1 영상(115)을 제 1 부호화하여 영상 데이터를 생성한다. 구체적으로, AI 부호화 장치(1200)는 주파수 변환을 이용한 영상 압축 방법을 기초로 제 1 영상(115)을 부호화하여 제 1 영상(115)에 대응하는 영상 데이터를 생성한다. AI 부호화 장치(1200)는 원본 영상(105)의 AI 다운스케일이 수행되지 않았으면, 원본 영상(105)을 제 1 부호화하여 영상 데이터를 생성할 수 있다.
S1640 단계에서, AI 부호화 장치(1200)는 영상 데이터, 및 AI 다운스케일과 관련된 정보를 포함하는 AI 데이터를 포함하는 AI 부호화 데이터를 전송한다. AI 데이터는 제 2 영상(135)의 AI 업스케일을 위한 제 2 DNN의 DNN 설정 정보와 관련된 정보를 포함한다.
전술한 바와 같이, 제 1 DNN 및 제 2 DNN이 연계 훈련되므로, AI 부호화 장치(1200)가 특정의 다운스케일 타겟으로 원본 영상(105)을 AI 다운스케일한 경우, AI 복호화 장치(200) 역시 해당 다운스케일 타겟에 대응하는 업스케일 타겟으로 제 2 영상(135)을 AI 업스케일하여야 한다. 따라서, AI 데이터는, AI 복호화 장치(200)로 하여금 원본 영상(105)의 다운스케일 타겟에 대응하는 업스케일 타겟으로 제 2 영상(135)을 AI 업스케일할 수 있게 하는 정보를 포함한다. 구체적으로, AI 데이터는 업스케일 타겟에 대응하는 DNN 설정 정보를 결정하는데 이용되는 정보를 포함한다. AI 데이터를 수신한 AI 복호화 장치(200)는, AI 부호화 장치(1200)가 어떠한 DNN 설정 정보로 원본 영상(105)을 AI 다운스케일하였는지를 유추 또는 알 수 있으며, 이에 따라 AI 다운스케일에 이용된 DNN 설정 정보에 대응하는 DNN 설정 정보를 획득하고, 획득된 DNN 설정 정보를 이용하여 AI 업스케일할 수 있다.
또한, AI 데이터는, 영상 데이터에 대응하는 영상이 AI 다운스케일을 통해 생성된 것인지 여부를 나타내는 정보를 포함한다. 원본 영상(105)에 대한 AI 다운스케일이 수행되지 않아 원본 영상(105)의 제 1 부호화를 통해 영상 데이터가 생성된 경우, AI 데이터는 영상 데이터에 대응하는 영상(즉, 원본 영상(105))이 AI 다운스케일을 통해 생성된 것이 아니라는 정보를 포함할 수 있다. 또한, 원본 영상(105)에 대한 AI 다운스케일이 수행됨으로써, 제 1 영상(115)의 제 1 부호화를 통해 영상 데이터가 생성된 경우, AI 데이터는 영상 데이터에 대응하는 영상(즉, 제 1 영상(115))이 AI 다운스케일을 통해 생성된 것이라는 정보를 포함할 수 있다.
또한, AI 데이터는 AI 복호화 장치(200)가 생성하여야 할 제 3 영상(145)의 해상도 정보, 제 2 DNN으로 입력될 참조 정보를 포함할 수도 있다.
이하에서는, 도 18을 참조하여, 제 1 DNN과 제 2 DNN을 훈련시키는 방법에 대해 설명한다.
도 18은 제 1 DNN(1740) 및 제 2 DNN(1750)을 훈련시키는 방법을 설명하기 위한 도면이다.
일 실시예에서 AI 부호화 과정을 통해 AI 부호화된 원본 영상(105)이 AI 복호화 과정을 통해 제 3 영상(145)으로 복원되는데, AI 복호화 결과 생성된 제 3 영상(145)과 원본 영상(105)과의 유사성을 유지하기 위해서는 AI 부호화 과정 및 AI 복호화 과정에 연관성이 필요하다. 즉, AI 부호화 과정에서 손실된 정보를 AI 복호화 과정에서 복원할 수 있어야 하는데, 이를 위해 제 1 DNN(1740)과 제 2 DNN(1750)의 연계 훈련이 요구된다.
정확한 AI 복호화를 위해서는 궁극적으로 도 18에 도시된 제 3 훈련 영상(1704)과 원본 훈련 영상(1701) 사이의 비교 결과에 대응하는 제 3 손실 정보(1730)를 감소시킬 필요가 있다. 따라서, 제 3 손실 정보(1730)는 제 1 DNN(1740) 및 제 2 DNN(1750)의 훈련 모두에 이용된다.
먼저, 도 18에 도시된 훈련 과정에 대해 설명한다.
도 18에서, 원본 훈련 영상(original training image)(1701)은 AI 다운스케일의 대상이 되는 영상이고, 제 1 훈련 영상(first training image)(1702)은 원본 훈련 영상(1701)로부터 AI 다운스케일된 영상이다. 또한, 제 3 훈련 영상(third training image)(1704)은 제 1 훈련 영상(1702)으로부터 AI 업스케일된 영상이다.
제 1 DNN(1740) 및 제 2 DNN(1750)의 연계 훈련을 위해, 원본 훈련 영상(1701)이 제 1 DNN(1740)으로 입력된다. 제 1 DNN(1740)으로 입력된 원본 훈련 영상(1701)은 AI 다운스케일되어 제 1 훈련 영상(1702)으로 출력되고, 제 1 훈련 영상(1702)이 제 2 DNN(1750)에 입력된다. 제 1 훈련 영상(1702)에 대한 AI 업스케일 결과 제 3 훈련 영상(1704)이 출력된다.
도 18을 참조하면, 제 2 DNN(1750)으로 제 1 훈련 영상(1702)이 입력되고 있는데, 구현예에 따라, 제 1 훈련 영상(802)의 제 1 부호화 및 제 1 복호화 과정을 거쳐 생성된 제 2 훈련 영상(second training image)이 제 2 DNN(1750)으로 입력될 수도 있다. 제 2 훈련 영상을 제 2 DNN(1750)으로 입력시키기 위해 MPEG-2, H.264, MPEG-4, HEVC, VC-1, VP8, VP9 및 AV1 중 어느 하나의 코덱이 이용될 수 있다. 구체적으로, 제 1 훈련 영상(1702)의 제 1 부호화 및 제 1 훈련 영상(1702)에 대응하는 영상 데이터의 제 1 복호화에, MPEG-2, H.264, MPEG-4, HEVC, VC-1, VP8, VP9 및 AV1 중 어느 하나의 코덱이 이용될 수 있다.
일 실시예에서, 제 1 훈련 영상(1702) 또는 제 2 훈련 영상이 제 2 DNN(1750)으로 입력될 때, 참조 정보도 함께 입력될 수 있다. 상기 참조 정보는 제 1 훈련 영상(1702) 또는 제 2 훈련 영상에 포함된 픽셀들의 위치 정보 및 훈련 원본 영상(1701)의 제 1 부호화시 생성될 수 있는 부호화 파라미터 정보 중 적어도 하나를 포함할 수 있다.
제 1 훈련 영상(1702) 또는 제 2 훈련 영상에 포함된 픽셀들의 위치 정보는, 제 1 훈련 영상(1702) 또는 제 2 훈련 영상의 위치 맵을 포함할 수 있는데, 위치 맵의 각 샘플들은 제 1 훈련 영상(1702) 또는 제 2 훈련 영상 내 각 픽셀의 위치에 대응하는 값을 가질 수 있다.
또한, 부호화 파라미터 정보는 훈련 원본 영상(1701)의 데이터 단위(최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 또는 픽셀 단위)별 움직임 벡터 맵, 인트라 모드 맵, 잔차 분포 맵, 예측 움직임 벡터 맵, SAO 파라미터 맵 등 훈련 원본 영상(1701)의 제 1 부호화시 생성될 수 있는 다양한 부호화 파라미터 맵을 포함할 수 있다. 부호화 파라미터 맵의 각 샘플들은 자신이 속한 데이터 단위에서 생성된 부호화 파라미터에 대응하는 값을 가질 수 있다.
제 2 DNN(1750)은 참조 정보 맵과 입력 영상(제 1 훈련 영상(1702) 또는 제 2 훈련 영상) 사이의 위치 별 관계(예를 들어, 맵의 특정 위치의 샘플 값과 입력 영상의 특정 위치의 픽셀 값 사이의 관계)에 기반하여 파라미터들을 최적화시킬 수 있다.
도 18을 참조하면, 제 1 DNN(1740)을 통해 제 1 훈련 영상(1702)이 출력되는 것과 별개로, 원본 훈련 영상(1701)으로부터 레거시 다운스케일된 축소 훈련 영상(1703)이 생성된다. 여기서, 레거시 다운스케일은 바이리니어(bilinear) 스케일, 바이큐빅(bicubic) 스케일, 란조스(lanczos) 스케일 및 스테어 스탭(stair step) 스케일 중 적어도 하나를 포함할 수 있다.
원본 영상(105)의 구조적 특징을 기준으로 제 1 영상(115)의 구조적 특징이 크게 벗어나는 것을 방지하기 위해, 원본 훈련 영상(1701)의 구조적 특징을 보존하는 축소 훈련 영상(1703)을 생성하는 것이다.
훈련의 진행 전 제 1 DNN(1740) 및 제 2 DNN(1750)은 미리 결정된 DNN 설정 정보로 세팅될 수 있다. 훈련이 진행됨에 따라 제 1 손실 정보(1710), 제 2 손실 정보(1720) 및 제 3 손실 정보(1730)가 결정될 수 있다.
제 1 손실 정보(1710)는 축소 훈련 영상(1703)과 제 1 훈련 영상(1702)의 비교 결과에 기초하여 결정될 수 있다. 일 예에서, 제 1 손실 정보(1710)는 축소 훈련 영상(1703)의 구조적 정보와 제 1 훈련 영상(1702)의 구조적 정보 사이의 차이에 해당할 수 있다. 구조적 정보는, 영상의 휘도, 대비, 히스토그램 등 영상으로부터 추출 가능한 다양한 특징을 포함할 수 있다. 제 1 손실 정보(1710)는 원본 훈련 영상(1701)의 구조적 정보가 제 1 훈련 영상(1702)에서 어느 정도로 유지되고 있는지를 나타낸다. 제 1 손실 정보(1710)가 작을수록 제 1 훈련 영상(1702)의 구조적 정보가 원본 훈련 영상(1701)의 구조적 정보와 유사해진다.
제 2 손실 정보(1720)는 제 1 훈련 영상(1702)의 공간적 복잡도에 기반하여 결정될 수 있다. 일 예에서, 공간적 복잡도로서, 제 1 훈련 영상(1702)의 총 분산(total variance)값이 이용될 수 있다. 제 2 손실 정보(1720)는 제 1 훈련 영상(1702)을 제 1 부호화하여 생성한 영상 데이터의 비트레이트와 관련된다. 제 2 손실 정보(1720)가 작을수록 영상 데이터의 비트레이트가 작은 것으로 정의한다.
제 3 손실 정보(1730)는 원본 훈련 영상(1701)과 제 3 훈련 영상(1704)의 비교 결과에 기초하여 결정될 수 있다. 제 3 손실 정보(1730)는 원본 훈련 영상(1701)과 제 3 훈련 영상(1704)의 차이에 대한 L1-norm 값, L2-norm 값, SSIM 값, PSNR-HVS 값, MS-SSIM 값, VIF 값 및 VMAF 값 중 적어도 하나를 포함할 수 있다. 제 3 손실 정보(1730)는 제 3 훈련 영상(1704)이 원본 훈련 영상(1701)과 어느 정도로 유사한지를 나타낸다. 제 3 손실 정보(1730)가 작을수록 제 3 훈련 영상(1704)이 원본 훈련 영상(1701)에 더 유사해진다.
도 18을 참조하면, 제 1 손실 정보(1710), 제 2 손실 정보(1720) 및 제 3 손실 정보(1730)가 제 1 DNN(1740)의 훈련에 이용되고, 제 3 손실 정보(1730)는 제 2 DNN(1750)의 훈련에 이용된다. 즉, 제 3 손실 정보(1730)는 제 1 DNN(1740) 및 제 2 DNN(1750)의 훈련에 모두 이용된다.
제 1 DNN(1740)은 제 1 손실 정보(1710), 제 2 손실 정보(1720) 및 제 3 손실 정보(1730)에 기초하여 결정된 최종 손실 정보가 감소 또는 최소화되도록 파라미터를 갱신할 수 있다. 또한, 제 2 DNN(1750)은 제 3 손실 정보(1730)가 감소 또는 최소화되도록 파라미터를 갱신할 수 있다.
제 1 DNN(1740) 및 제 2 DNN(1750)의 훈련을 위한 최종 손실 정보는 아래의 수학식 1과 같이 결정될 수 있다.
[수학식 1]
Figure pat00001
상기 수학식 1에서, LossDS는 제 1 DNN(1740)의 훈련을 위해 감소 또는 최소화되어야 할 최종 손실 정보를 나타내고, LossUS는 제 2 DNN(1750)의 훈련을 위해 감소 또는 최소화되어야 할 최종 손실 정보를 나타낸다. 또한, a, b, c는 미리 결정된 소정의 가중치에 해당할 수 있다.
즉, 제 1 DNN(1740)은 수학식 1의 LossDS가 감소되는 방향으로 파라미터들을 갱신하고, 제 2 DNN(1750)은 LossUS가 감소되는 방향으로 파라미터들을 갱신하게 된다. 훈련 과정에서 도출된 LossDS에 따라 제 1 DNN(1740)의 파라미터들이 갱신되면, 갱신된 파라미터에 기초하여 생성되는 제 1 훈련 영상(1702)이 이전 훈련 과정에서의 제 1 훈련 영상(1702)과 달라지게 되고, 그에 따라 제 3 훈련 영상(1704) 역시 이전 훈련 과정에서의 제 3 훈련 영상(1704)과 달라지게 된다. 제 3 훈련 영상(1704)이 이전 훈련 과정에서의 제 3 훈련 영상(1704)과 달라지게 되면, 제 3 손실 정보(1730) 역시 새롭게 결정되며, 그에 따라 제 2 DNN(1750)은 파라미터들을 갱신한다. 제 3 손실 정보(1730)가 새롭게 결정되면, LossDS 역시 새롭게 결정되므로, 제 1 DNN(1740)은 새롭게 결정된 LossDS에 따라 파라미터들을 갱신한다. 즉, 제 1 DNN(1740)의 파라미터 갱신은, 제 2 DNN(1750)의 파라미터 갱신을 야기하고, 제 2 DNN(1750)의 파라미터 갱신은 제 1 DNN(1740)의 파라미터 갱신을 야기하는 것이다. 다시 말하면, 제 1 DNN(1740) 및 제 2 DNN(1750)은 제 3 손실 정보(1730)의 공유를 통해 연계 훈련되므로, 제 1 DNN(1740)의 파라미터들과 제 2 DNN(1750)의 파라미터들이 서로 연관성을 가지고 최적화될 수 있는 것이다.
앞서, AI 복호화 장치(200)의 AI 업스케일부(234) 및 AI 부호화 장치(1200)의 AI 다운스케일부(1212)는 복수의 DNN 설정 정보를 저장하는 것으로 설명하였는데, AI 업스케일부(234) 및 AI 다운스케일부(1212)에 저장되는 복수의 DNN 설정 정보 각각을 훈련시키는 방법에 대해 설명한다.
수학식 1과 관련하여 설명한 바와 같이, 제 1 DNN(1740)의 경우, 제 1 훈련 영상(1702)의 구조적 정보와 원본 훈련 영상(1701)의 구조적 정보 사이의 유사 정도(제 1 손실 정보(1710)), 제 1 훈련 영상(1702)의 제 1 부호화 결과 생성되는 영상 데이터의 비트레이트(제 2 손실 정보(1720)) 및 제 3 훈련 영상(1704)과 원본 훈련 영상(1701) 사이의 차이(제 3 손실 정보(1730))를 고려하여 파라미터를 갱신하게 된다.
자세히 설명하면, 원본 훈련 영상(1701)의 구조적 정보와 유사하면서, 제 1 부호화를 하였을 때 생성되는 영상 데이터의 비트레이트가 작은 제 1 훈련 영상(1702)이 생성 가능하도록 하는 동시에, 제 1 훈련 영상(1702)을 AI 업스케일하는 제 2 DNN(1750)이 원본 훈련 영상(1701)에 유사한 제 3 훈련 영상(1704)을 생성할 수 있도록, 제 1 DNN(700)의 파라미터가 갱신될 수 있다.
수학식 1의 a, b, c의 가중치가 조절됨으로써, 제 1 DNN(1740)의 파라미터들이 최적화되는 방향이 상이해지게 된다. 예를 들어, b의 가중치를 높게 결정하는 경우, 제 3 훈련 영상(1704)의 퀄리티보다 비트레이트가 낮아지는 것에 더 중요도를 두고 제 1 DNN(1740)의 파라미터가 갱신될 수 있다. 또한, c의 가중치를 높게 결정하는 경우, 비트레이트가 높아지는 것이나, 원본 훈련 영상(1701)의 구조적 정보가 유지되는 것보다 제 3 훈련 영상(1704)의 퀄리티가 증가하도록 하는 것에 더 중요도를 두고 제 1 DNN(1740)의 파라미터가 갱신될 수 있다.
또한, 제 1 훈련 영상(1702)을 제 1 부호화하는데 이용되는 코덱의 타입에 따라 제 1 DNN(1740)의 파라미터들이 최적화되는 방향이 상이해질 수 있다. 왜냐하면, 코덱의 종류에 따라, 제 2 DNN(1750)으로 입력될 제 2 훈련 영상이 달라질 수 있기 때문이다.
즉, 가중치 a, 가중치 b, 가중치 c 및 제 1 훈련 영상(1702)의 제 1 부호화를 위한 코덱의 종류에 기반하여 제 1 DNN(1740)의 파라미터들과 제 2 DNN(1750)의 파라미터들이 연계하여 갱신될 수 있는 것이다. 따라서, 가중치 a, 가중치 b, 가중치 c 각각을 소정의 값으로 결정하고, 코덱의 종류를 소정의 종류로 결정한 후, 제 1 DNN(1740)과 제 2 DNN(1750)을 훈련시키면, 서로 연계되어 최적화된 제 1 DNN(1740)의 파라미터들과 제 2 DNN(1750)의 파라미터들이 결정될 수 있다.
그리고, 가중치 a, 가중치 b, 가중치 c 및 코덱의 종류를 변경한 후, 제 1 DNN(1740)과 제 2 DNN(1750)을 훈련시키면, 서로 연계되어 최적화된 제 1 DNN(1740)의 파라미터들과 제 2 DNN(1750)의 파라미터들이 결정될 수 있다. 다시 말하면, 가중치 a, 가중치 b, 가중치 c 및 코덱의 종류 각각의 값을 변경하면서 제 1 DNN(1740)과 제 2 DNN(1750)을 훈련시키면 서로 연계되어 훈련된 복수의 DNN 설정 정보가 제 1 DNN(1740) 및 제 2 DNN(1750)에서 결정될 수 있는 것이다.
한편, 상술한 본 개시의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램 또는 인스트럭션으로 작성가능하고, 작성된 프로그램 또는 인스트럭션은 매체에 저장될 수 있다.
매체는 컴퓨터로 실행 가능한 프로그램 또는 인스트럭션을 계속 저장하거나, 실행 또는 다운로드를 위해 임시 저장하는 것일 수도 있다. 또한, 매체는 단일 또는 수개 하드웨어가 결합된 형태의 다양한 기록수단 또는 저장수단일 수 있는데, 어떤 컴퓨터 시스템에 직접 접속되는 매체에 한정되지 않고, 네트워크 상에 분산 존재하는 것일 수도 있다. 매체의 예시로는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등을 포함하여 프로그램 명령어가 저장되도록 구성된 것이 있을 수 있다. 또한, 다른 매체의 예시로, 애플리케이션을 유통하는 앱 스토어나 기타 다양한 소프트웨어를 공급 내지 유통하는 사이트, 서버 등에서 관리하는 기록매체 내지 저장매체도 들 수 있다.
한편, 상술한 DNN과 관련된 모델은, 소프트웨어 모듈로 구현될 수 있다. 소프트웨어 모듈(예를 들어, 명령어(instruction)를 포함하는 프로그램 모듈)로 구현되는 경우, DNN 모델은 컴퓨터로 읽을 수 있는 판독 가능한 기록매체에 저장될 수 있다.
또한, DNN 모델은 하드웨어 칩 형태로 집적되어 전술한 AI 복호화 장치(200) 또는 AI 부호화 장치(1200)의 일부가 될 수도 있다. 예를 들어, DNN 모델은 인공 지능을 위한 전용 하드웨어 칩 형태로 제작될 수도 있고, 또는 기존의 범용 프로세서(예를 들어, CPU 또는 애플리케이션 프로세서) 또는 그래픽 전용 프로세서(예를 들어, GPU)의 일부로 제작될 수도 있다.
또한, DNN 모델은 다운로드 가능한 소프트웨어 형태로 제공될 수도 있다. 컴퓨터 프로그램 제품은 제조사 또는 전자 마켓을 통해 전자적으로 배포되는 소프트웨어 프로그램 형태의 상품(예를 들어, 다운로드 가능한 애플리케이션)을 포함할 수 있다. 전자적 배포를 위하여, 소프트웨어 프로그램의 적어도 일부는 저장 매체에 저장되거나, 임시적으로 생성될 수 있다. 이 경우, 저장 매체는 제조사 또는 전자 마켓의 서버, 또는 중계 서버의 저장매체가 될 수 있다.
이상, 본 개시의 기술적 사상을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 개시의 기술적 사상은 상기 실시예들에 한정되지 않고, 본 개시의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.
200: AI 복호화 장치
1200: AI 부호화 장치

Claims (15)

  1. 하나 이상의 인스트럭션들을 저장하는 메모리; 및
    상기 메모리에 저장된 상기 하나 이상의 인스트럭션들을 실행하는 프로세서를 포함하고,
    상기 프로세서는,
    제 1 영상의 제 1 부호화 결과 생성된 영상 데이터를 획득하고,
    상기 영상 데이터를 제 1 복호화하여 상기 제 1 영상에 대응하는 제 2 영상을 획득하고,
    상기 제 2 영상에 대한 AI 업스케일 수행 여부를 결정하고,
    상기 제 2 영상에 대해 상기 AI 업스케일을 수행하는 것으로 결정된 경우, 업스케일용 DNN을 통해 상기 제 2 영상으로부터 AI 업스케일된 제 3 영상을 획득하고,상기 제 3 영상이 획득된 경우, 상기 제 3 영상을 출력하고,
    상기 제 2 영상에 대해 상기 AI 업스케일을 수행하지 않는 것으로 결정된 경우, 상기 제 2 영상을 출력하는 것을 특징으로 하는 AI 복호화 장치.
  2. 제1항에 있어서,
    상기 프로세서는,
    AI 다운스케일과 관련된 AI 데이터가 획득된 경우, 획득한 AI 데이터에 기초하여 상기 AI 업스케일의 수행 여부를 결정하는 것을 특징으로 하는 AI 복호화 장치.
  3. 제2항에 있어서,
    상기 프로세서는,
    상기 AI 데이터에 기초하여 상기 제 1 영상이 다운스케일용 DNN을 통해 원본 영상으로부터 AI 다운스케일된 것으로 확인되면, 상기 제 2 영상에 대해 상기 AI 업스케일을 수행하는 것으로 결정하는 것을 특징으로 하는 AI 복호화 장치.
  4. 제2항에 있어서,
    상기 프로세서는,
    상기 제 1 영상이 다운스케일용 DNN을 통해 원본 영상으로부터 AI 다운스케일된 것으로 확인되고, 상기 업스케일용 DNN의 이용 가능성이 있는 경우, 상기 제 2 영상에 대해 상기 AI 업스케일을 수행하는 것으로 결정하는 것을 특징으로 하는 AI 복호화 장치.
  5. 제4항에 있어서,
    상기 프로세서는,
    상기 AI 복호화 장치에 상기 업스케일용 DNN이 저장되어 있지 않은 경우 또는 상기 업스케일용 DNN을 동작시키기 위한 DNN 설정 정보가 저장되어 있지 않은 경우에 상기 업스케일용 DNN의 이용 가능성이 없는 것으로 결정하는 것을 특징으로 하는 AI 복호화 장치.
  6. 제4항에 있어서,
    상기 프로세서는,
    상기 제 1 영상이 다운스케일용 DNN을 통해 원본 영상으로부터 AI 다운스케일된 것으로 확인되고, 상기 업스케일용 DNN의 이용 가능성이 없는 경우, 상기 제 2 영상을 출력하되,
    상기 제 2 영상은 디스플레이 장치에 의해 업스케일되는 것을 특징으로 하는 AI 복호화 장치.
  7. 제4항에 있어서,
    상기 프로세서는,
    상기 제 1 영상이 다운스케일용 DNN을 통해 원본 영상으로부터 AI 다운스케일된 것으로 확인되고, 상기 업스케일용 DNN의 이용 가능성이 없는 경우, 상기 제 2 영상을 레거시 업스케일하는 것을 특징으로 하는 AI 복호화 장치.
  8. 제2항에 있어서,
    상기 프로세서는,
    미리 저장된 복수의 DNN 설정 정보 중 상기 제 2 영상의 AI 업스케일을 위한 DNN 설정 정보를, 상기 AI 데이터에 기초하여 결정하고,
    상기 결정된 DNN 설정 정보로 동작하는 업스케일용 DNN을 통해 상기 제 2 영상으로부터 AI 업스케일된 제 3 영상을 생성하는 것을 특징으로 하는 AI 복호화 장치.
  9. 제1항에 있어서,
    상기 업스케일용 DNN은,
    상기 업스케일용 DNN으로부터 출력되는 제 1 훈련 영상과 AI 다운스케일되기 전의 원본 훈련 영상 간의 비교 결과에 대응하는 제 1 손실 정보에 기초하여 훈련되는 것을 특징으로 하는 AI 복호화 장치.
  10. 제1항에 있어서,
    상기 프로세서는,
    상기 제 2 영상 및 상기 제 2 영상과 관련된 정보를 상기 업스케일용 DNN에 입력하여 상기 제 3 영상을 획득하고,
    상기 제 2 영상과 관련된 정보는,
    상기 제 2 영상의 픽셀들의 위치 정보 및 부호화 파라미터 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 AI 복호화 장치.
  11. 제1항에 있어서,
    상기 업스케일용 DNN은,
    상기 제 2 영상을 입력받아 순차적으로 컨볼루션 처리하는 복수의 컨볼루션 레이어; 및
    상기 제 2 영상을 입력받아 스케일링 처리하는 적어도 하나의 바이패스 스케일러를 포함하되,
    상기 복수의 컨볼루션 레이어의 출력과 상기 바이패스 스케일러의 출력의 결합 결과에 대응하여 상기 제 3 영상이 획득되는 것을 특징으로 하는 AI 복호화 장치.
  12. 하나 이상의 인스트럭션들을 저장하는 메모리; 및
    상기 메모리에 저장된 상기 하나 이상의 인스트럭션들을 실행하는 프로세서를 포함하고,
    상기 프로세서는,
    원본 영상의 AI 다운스케일 여부를 결정하고,
    상기 결정 결과를 기초로, 다운스케일용 DNN을 이용하여 상기 원본 영상으로부터 AI 다운스케일된 제 1 영상을 획득하고,
    상기 제 1 영상을 제 1 부호화하여 영상 데이터를 생성하고,
    상기 AI 다운스케일과 관련된 정보를 포함하는 AI 데이터 및 상기 영상 데이터를 전송하되,
    상기 AI 데이터는, 제 1 부호화된 영상이 상기 다운스케일용 DNN을 통해 AI 다운스케일된 영상인지 여부를 나타내는 정보를 포함하는 것을 특징으로 하는 AI 부호화 장치.
  13. 영상의 AI 복호화 방법에 있어서,
    제 1 영상의 제 1 부호화 결과 생성된 영상 데이터를 획득하는 단계;
    상기 영상 데이터를 제 1 복호화하여 상기 제 1 영상에 대응하는 제 2 영상을 획득하는 단계;
    상기 제 2 영상에 대한 AI 업스케일 수행 여부를 결정하는 단계;
    상기 제 2 영상에 대해 상기 AI 업스케일을 수행하는 것으로 결정된 경우, 업스케일용 DNN을 통해 상기 제 2 영상으로부터 AI 업스케일된 제 3 영상을 획득하는 단계; 및
    상기 제 3 영상이 획득된 경우, 상기 제 3 영상을 출력하고, 상기 제 2 영상에 대해 상기 AI 업스케일을 수행하지 않는 것으로 결정된 경우, 상기 제 2 영상을 출력하는 단계를 포함하는 것을 특징으로 하는 AI 복호화 방법.
  14. 영상의 AI 부호화 방법에 있어서,
    원본 영상의 AI 다운스케일 여부를 결정하는 단계;
    상기 결정 결과를 기초로, 다운스케일용 DNN을 이용하여 상기 원본 영상으로부터 AI 다운스케일된 제 1 영상을 획득하는 단계;
    상기 제 1 영상을 제 1 부호화하여 영상 데이터를 생성하는 단계; 및
    상기 AI 다운스케일과 관련된 정보를 포함하는 AI 데이터 및 상기 영상 데이터를 전송하는 단계를 포함하되,
    상기 AI 데이터는, 제 1 부호화된 영상이 상기 다운스케일용 DNN을 통해 AI 다운스케일된 영상인지 여부를 나타내는 정보를 포함하는 것을 특징으로 하는 AI 부호화 방법.
  15. 제13항의 방법을 실행하기 위한 프로그램을 기록하는 컴퓨터로 읽을 수 있는 기록매체.
KR1020190066057A 2018-10-19 2019-06-04 영상의 ai 부호화 및 ai 복호화를 위한 장치, 및 방법 KR20200044662A (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/KR2019/013421 WO2020080765A1 (en) 2018-10-19 2019-10-14 Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
CN201980061966.7A CN112740687A (zh) 2018-10-19 2019-10-14 用于对图像执行人工智能编码和人工智能解码的设备和方法
EP19872393.4A EP3811617A4 (en) 2018-10-19 2019-10-14 APPARATUS AND METHODS FOR PERFORMING ARTIFICIAL INTELLIGENCE CODING AND ARTIFICIAL INTELLIGENCE DECODING ON AN IMAGE
US16/656,812 US10817985B2 (en) 2018-10-19 2019-10-18 Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
US16/781,083 US10825139B2 (en) 2018-10-19 2020-02-04 Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
US16/831,521 US10817989B2 (en) 2018-10-19 2020-03-26 Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
US17/079,773 US11288770B2 (en) 2018-10-19 2020-10-26 Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
US17/575,691 US11688038B2 (en) 2018-10-19 2022-01-14 Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180125406 2018-10-19
KR1020180125406 2018-10-19
KR20190041108 2019-04-08
KR1020190041108 2019-04-08

Publications (1)

Publication Number Publication Date
KR20200044662A true KR20200044662A (ko) 2020-04-29

Family

ID=70466745

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190066057A KR20200044662A (ko) 2018-10-19 2019-06-04 영상의 ai 부호화 및 ai 복호화를 위한 장치, 및 방법

Country Status (3)

Country Link
EP (1) EP3811617A4 (ko)
KR (1) KR20200044662A (ko)
CN (1) CN112740687A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220071056A (ko) * 2020-11-23 2022-05-31 서울대학교산학협력단 영상 데이터 처리 장치 및 방법
US11706261B2 (en) 2020-07-02 2023-07-18 Samsung Electronics Co., Ltd. Electronic device and method for transmitting and receiving content

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104869394B (zh) * 2012-06-11 2018-10-19 三星电子株式会社 视频解码方法
JP6141988B2 (ja) * 2012-09-28 2017-06-07 ヴィド スケール インコーポレイテッド マルチレイヤビデオコーディングの適応型アップサンプリング
US20140177706A1 (en) * 2012-12-21 2014-06-26 Samsung Electronics Co., Ltd Method and system for providing super-resolution of quantized images and video
JP2014171097A (ja) * 2013-03-04 2014-09-18 Toshiba Corp 符号化装置、符号化方法、復号装置、および、復号方法
KR102286856B1 (ko) * 2013-06-12 2021-08-06 주식회사 케이티 스케일러블 비디오 신호 인코딩/디코딩 방법 및 장치
WO2015104963A1 (ja) * 2014-01-09 2015-07-16 株式会社日立国際電気 画像処理装置及び動画像伝送方法
KR101724555B1 (ko) * 2014-12-22 2017-04-18 삼성전자주식회사 부호화 방법 및 장치와 복호화 방법 및 장치
KR101885855B1 (ko) * 2017-03-30 2018-08-07 단국대학교 산학협력단 고해상도 추정 기법을 활용한 영상 신호 전송

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11706261B2 (en) 2020-07-02 2023-07-18 Samsung Electronics Co., Ltd. Electronic device and method for transmitting and receiving content
KR20220071056A (ko) * 2020-11-23 2022-05-31 서울대학교산학협력단 영상 데이터 처리 장치 및 방법

Also Published As

Publication number Publication date
CN112740687A (zh) 2021-04-30
EP3811617A1 (en) 2021-04-28
EP3811617A4 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
KR102285738B1 (ko) 영상의 주관적 품질을 평가하는 방법 및 장치
KR102525578B1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
US11288770B2 (en) Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
KR102287947B1 (ko) 영상의 ai 부호화 및 ai 복호화 방법, 및 장치
KR102500761B1 (ko) 영상의 ai 부호화 및 ai 복호화 방법, 및 장치
US11200639B1 (en) Apparatus and method for performing artificial intelligence encoding and decoding on image by using low-complexity neural network
KR102312337B1 (ko) Ai 부호화 장치 및 그 동작방법, 및 ai 복호화 장치 및 그 동작방법
KR20210067788A (ko) 전자 장치, 시스템 및 그 제어 방법
KR102287942B1 (ko) 전처리를 이용한 영상의 ai 부호화 및 ai 복호화 방법, 및 장치
KR20200044662A (ko) 영상의 ai 부호화 및 ai 복호화를 위한 장치, 및 방법
KR20210056179A (ko) Ai 부호화 장치 및 그 동작방법, 및 ai 복호화 장치 및 그 동작방법
KR20200117059A (ko) 비디오 부호화 및 복호화 방법, 그를 이용한 장치
KR102312338B1 (ko) Ai 부호화 장치 및 그 동작방법, 및 ai 복호화 장치 및 그 동작방법
KR102166337B1 (ko) 영상의 ai 부호화 방법 및 장치, 영상의 ai 복호화 방법 및 장치
KR102436512B1 (ko) 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
US11270469B2 (en) Method and apparatus for performing artificial intelligence encoding and artificial intelligence decoding
KR20220063063A (ko) 인공지능 부호화 및 인공지능 복호화를 수행하기 위한 방법 및 장치
KR102421719B1 (ko) 저복잡도 신경망을 이용한 영상의 ai 부호화 장치 및 방법, ai 복호화 장치 및 방법
KR102421718B1 (ko) 인공지능 부호화 및 인공지능 복호화를 수행하기 위한 방법 및 장치
EP4228268A1 (en) Method and device for performing artificial intelligence encoding and artificial intelligence decoding
KR20220063061A (ko) 영상 내 관심 오브젝트 영역을 위한 ai 부호화 장치 및 방법, 및 ai 복호화 장치 및 방법
KR20230094838A (ko) Ai 기반의 영상 제공 장치 및 이에 의한 방법, 및 ai 기반의 디스플레이 장치 및 이에 의한 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)