KR20200040092A - Microstructure control method of molybdenum thin film surface - Google Patents

Microstructure control method of molybdenum thin film surface Download PDF

Info

Publication number
KR20200040092A
KR20200040092A KR1020180119937A KR20180119937A KR20200040092A KR 20200040092 A KR20200040092 A KR 20200040092A KR 1020180119937 A KR1020180119937 A KR 1020180119937A KR 20180119937 A KR20180119937 A KR 20180119937A KR 20200040092 A KR20200040092 A KR 20200040092A
Authority
KR
South Korea
Prior art keywords
thin film
molybdenum thin
mtorr
molybdenum
deposition pressure
Prior art date
Application number
KR1020180119937A
Other languages
Korean (ko)
Other versions
KR102154899B1 (en
Inventor
최두호
Original Assignee
동의대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동의대학교 산학협력단 filed Critical 동의대학교 산학협력단
Priority to KR1020180119937A priority Critical patent/KR102154899B1/en
Publication of KR20200040092A publication Critical patent/KR20200040092A/en
Application granted granted Critical
Publication of KR102154899B1 publication Critical patent/KR102154899B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • A01G9/1438Covering materials therefor; Materials for protective coverings used for soil and plants, e.g. films, canopies, tunnels or cloches
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to a microstructure control method of a molybdenum thin film surface. Molybdenum thin film RMS surface roughness can be controlled to be rough or controlled to be flat by controlling a bias voltage and a deposition pressure during a manufacturing process of a molybdenum thin film using a sputtering deposition process. A molybdenum thin film with a rough surface can be attached to an inner and an outer wall of a smart greenhouse to be applied to a sunlight control system, and temperature and photosynthesis of a crop in the smart greenhouse can be controlled by light quantity control by wavelength of sunlight entering the smart greenhouse. A molybdenum thin film with a flat surface can be useful as a rear electrode for a solar cell or a low-resistance electrode for an electronic element by reduced specific resistivity by reducing a scattering level of electrons on the surface of the thin film.

Description

몰리브덴 박막 표면의 미세구조 제어방법{Microstructure control method of molybdenum thin film surface}Microstructure control method of molybdenum thin film surface

본 발명은 몰리브덴 박막 표면의 미세구조 제어방법에 관한 것이다.The present invention relates to a method for controlling the microstructure of a molybdenum thin film surface.

박막형 태양전지 중에서 차세대 박막 태양전지로서 주목받고 있는 것은 Cu(In,Ga)Se2 (CIGS) 박막 화합물 반도체 태양전지이다. CIGS 태양전지의 전극으로 사용되는 물질은 우수한 전기적 성질을 가지는 것은 물론, 기판과의 열팽창계수 차이로 인한 박리현상이 일어나지 않도록 유리 기판에의 부착성이 뛰어나야 한다. 또한 CIGS 흡수층을 제조하는 공정 중에 Cu와 In의 확산에 충분히 안정해야 한다. 이러한 배면 전극의 후보 물질로는 Pt, Au, Au/Be, Al, Ni, Ag, Cu 등 여러 가지 금속이 연구되었지만, 현재 Mo 물질이 가장 우수한 특성을 보이면서 가장 널리 연구되고 있다. Mo는 녹는점이 높아서 고온의 CIGS 공정에도 안정하고 매우 높은 전기전도도(conductivity) 즉, 낮은 저항도(resistivity)를 가지면서 동시에 유리 기판과 비슷한 값의 열팽창계수를 가져서 부착성도 매우 뛰어나기 때문에 CIGS 박막 태양전지의 배면 전극물질로서 가장 적합하다.Among the thin-film solar cells, Cu (In, Ga) Se 2 (CIGS) thin-film compound semiconductor solar cells are attracting attention as next-generation thin-film solar cells. The material used as an electrode of the CIGS solar cell must have excellent electrical properties and excellent adhesion to a glass substrate to prevent peeling due to a difference in thermal expansion coefficient with the substrate. In addition, it should be sufficiently stable in the diffusion of Cu and In during the process of manufacturing the CIGS absorbing layer. As a candidate material for such a back electrode, various metals such as Pt, Au, Au / Be, Al, Ni, Ag, and Cu have been studied, but currently, the Mo material is most widely studied while showing the best properties. Mo has high melting point, so it is stable in high temperature CIGS process and has very high electrical conductivity, i.e. low resistivity, and at the same time, has a coefficient of thermal expansion similar to that of a glass substrate, so it has excellent adhesion, so CIGS thin film solar It is most suitable as a back electrode material for batteries.

몰리브덴 박막은 스퍼터링 방법에 의해 증착되며, 최적화된 증착공정의 개발은 박막의 미세구조 및 박막의 특성을 제어하는데 중요한 역할을 한다. Molybdenum thin films are deposited by sputtering, and the development of an optimized deposition process plays an important role in controlling the microstructure and properties of the thin films.

이에 본 발명자들은 몰리브덴 박막의 제조 공정 중 바이어스 전압 및 증착 압력의 제어를 통해 몰리브덴 박막 RMS 표면 거칠기를 거칠게 제어하거나 평탄하게 제어할 수 있는 것을 확인하고 본 발명을 완성하였다.Accordingly, the present inventors confirmed that the molybdenum thin film RMS surface roughness can be roughly or flatly controlled by controlling the bias voltage and the deposition pressure during the manufacturing process of the molybdenum thin film, and have completed the present invention.

본 발명의 목적은 몰리브덴 박막 표면 미세구조 제어방법을 제공하는 것이다.An object of the present invention is to provide a method for controlling the microstructure of a molybdenum thin film surface.

본 발명의 다른 목적은 몰리브덴 박막 표면 거칠기를 거칠게 제어하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for roughly controlling the surface roughness of a molybdenum thin film.

본 발명의 또 다른 목적은 RMS 값 5 내지 10nm를 갖는 몰리브덴 박막을 제공하는 것이다.Another object of the present invention is to provide a molybdenum thin film having an RMS value of 5 to 10 nm.

본 발명의 다른 목적은 스마트 온실의 내·외벽 부착재료를 제공하는 것이다.Another object of the present invention is to provide an interior and exterior wall attachment material of a smart greenhouse.

본 발명의 또 다른 목적은 몰리브덴 박막 표면 거칠기를 평탄하게 제어하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for smoothly controlling the surface roughness of a molybdenum thin film.

본 발명의 다른 목적은 RMS 값 0.1 내지 2nm를 갖는 몰리브덴 박막을 제공하는 것이다.Another object of the present invention is to provide a molybdenum thin film having an RMS value of 0.1 to 2 nm.

본 발명의 또 다른 목적은 박막형 태양전지용 배면 전극을 제공하는 것이다.Another object of the present invention is to provide a back electrode for a thin film solar cell.

본 발명의 다른 목적은 전자소자용 저저항 전극을 제공하는 것이다.Another object of the present invention is to provide a low-resistance electrode for an electronic device.

상기 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 기판 바이어스 전압 및 증착 압력 제어를 통한 몰리브덴 박막 표면 미세구조 제어방법을 제공한다.The present invention provides a method for controlling the surface structure of a molybdenum thin film through controlling the substrate bias voltage and deposition pressure.

또한, 본 발명은 기판 바이어스 전압 0 내지 -250V, 증착압력 3.6 내지 4.6 mTorr의 증착조건으로 마그네트론 스퍼터링 방법에 의해 몰리브덴 박막을 증착하여 표면 거칠기 RMS(Root Mean Square Roughness) 값을 5 내지 10nm로 거칠게 제어하는 방법을 제공한다.In addition, the present invention deposits a molybdenum thin film by a magnetron sputtering method with deposition conditions of a substrate bias voltage of 0 to -250 V and a deposition pressure of 3.6 to 4.6 mTorr to roughly control the surface roughness RMS (Root Mean Square Roughness) value from 5 to 10 nm. How to do.

나아가 본 발명은 본 발명의 방법에 따라 제조된 RMS 값 5 내지 10nm를 갖는 몰리브덴 박막을 제공한다.Furthermore, the present invention provides a molybdenum thin film having an RMS value of 5 to 10 nm prepared according to the method of the present invention.

더 나아가 본 발명은 상기 RMS 값 5 내지 10nm를 갖는 몰리브덴 박막을 포함하는 스마트 온실의 외벽 부착재료를 제공한다.Furthermore, the present invention provides a material for attaching an outer wall of a smart greenhouse including a molybdenum thin film having the RMS value of 5 to 10 nm.

또한, 본 발명은 기판 바이어스 전압 0 내지 -250V, 증착압력 2.0 내지 3.0 mTorr의 증착조건으로 마그네트론 스퍼터링 방법에 의해 몰리브덴 박막을 증착하여 표면 거칠기 RMS(Root Mean Square Roughness) 값을 0.1 내지 2nm로 평탄하게 제어하는 방법을 제공한다.In addition, the present invention deposits a molybdenum thin film by a magnetron sputtering method with deposition conditions of a substrate bias voltage of 0 to -250 V and a deposition pressure of 2.0 to 3.0 mTorr to flatten the surface roughness RMS (Root Mean Square Roughness) value to 0.1 to 2 nm. Provides a way to control.

나아가 본 발명은 본 발명의 방법에 따라 제조된 RMS 값 0.1 내지 2nm를 갖는 몰리브덴 박막을 제공한다.Furthermore, the present invention provides a molybdenum thin film having an RMS value of 0.1 to 2 nm prepared according to the method of the present invention.

또한, 본 발명은 상기 RMS 값 0.1 내지 2nm를 갖는 몰리브덴 박막을 포함하는 태양전지용 배면 전극을 제공한다.In addition, the present invention provides a back electrode for a solar cell including a molybdenum thin film having the RMS value of 0.1 to 2 nm.

나아가 본 발명은 상기 RMS 값 0.1 내지 2nm를 갖는 몰리브덴 박막을 포함하는 전자소자용 저저항 전극을 제공한다.Furthermore, the present invention provides a low-resistance electrode for an electronic device including a molybdenum thin film having the RMS value of 0.1 to 2 nm.

본 발명은 몰리브덴 박막 표면의 미세구조 제어방법에 관한 것으로, 스퍼터링 증착공정을 통하여 몰리브덴 박막의 제조 공정 중 바이어스 전압 및 증착 압력의 제어를 통해 몰리브덴 박막 RMS 표면 거칠기를 거칠게 제어하거나 평탄하게 제어할 수 있으며, 표면이 거친 몰리브덴 박막의 경우 스마트 온실의 내외벽에 부착하여 태양광 제어 시스템에 적용할 수 있으며 또한 스마트 온실 내로 입사하는 태양광의 파장대별 광량 제어를 통해 스마트 온실 내 작물의 광합성 및 온도 제어가 가능하고, 상기 몰리브덴 박막을 스마트 온실의 내·외벽에 부착하여 스마트 온실 내로 입사하는 태양광을 제어할 경우 몰리브덴 박막을 투과한 입사빔이 산란되어 스마트 온실 내 식물들에게 골고루 분산시켜 위치별 광합성의 균일성을 향상시킬 수 있다. 또한 표면이 평탄한 몰리브덴 박막의 경우 전자가 박막 표면에서 산란도가 저감하여 비저항을 감소시키는 효과로 인해 태양전지용 배면전극이나 전자소자용 저저항 전극으로 유용할 수 있다.The present invention relates to a method for controlling the microstructure of a molybdenum thin film surface, through the sputtering deposition process, the molybdenum thin film RMS surface roughness can be roughly or smoothly controlled by controlling the bias voltage and deposition pressure during the manufacturing process of the molybdenum thin film. In the case of a molybdenum thin film with a rough surface, it can be applied to the solar control system by attaching it to the inner and outer walls of the smart greenhouse. Also, it is possible to control the photosynthesis and temperature of crops in the smart greenhouse by controlling the amount of light incident on each wavelength of the smart greenhouse. And, when controlling the sunlight entering into the smart greenhouse by attaching the molybdenum thin film to the inner and outer walls of the smart greenhouse, the incident beam transmitted through the molybdenum thin film is scattered and evenly distributed to the plants in the smart greenhouse, uniformity of photosynthesis by location It can improve sex. In addition, the molybdenum thin film having a flat surface may be useful as a back electrode for a solar cell or a low-resistance electrode for an electronic device due to the effect of reducing the specific resistance by reducing the scattering degree of the electrons on the surface of the thin film.

도 1은 4.1 mTorr (실시예 1) 및 2.5 mTorr (실시예 2)에 증착된 막에 대한 기판 바이어스의 함수로서의 증착 속도를 나타낸 것이다.
도 2는 증착 압력/기판 바이어스에 대한 평면뷰 SEM 이미지이다;((a) A0 (4.1 mTorr/0 V), (b) A100 (4.1 mTorr/-100 V), (c) A200 (4.1 mTorr/-200 V), (d) B0 (2.5 mTorr/0 V), (e) B100 (2.5 mTorr/-100 V) 및 (f) B200 (2.5 mTorr/-200 V)).
도 3은 B200에 대한 평면뷰 명시야(plan-view bright field) TEM 이미지를 나타낸 것이다.
도 4는 A0, A200, B0 및 B200에 대한 단면 명시야 TEM 이미지를 나타낸 것이다.
도 5는 본 발명의 Mo 박막의 (110) 극점도를 나타낸 것이다;(상부 및 하부 행은 그룹 A 및 그룹 B에 해당한다. 극점에서 그려진 작고 큰 원은 각각 (111) 및 (110) 회절면을 나타낸다).
도 6은 본 발명의 Mo 박막의 비저항을 나타낸 것이다.
도 7은 본 발명의 Mo 박막의 잔류응력을 나타낸 것이다.
1 shows deposition rates as a function of substrate bias for films deposited at 4.1 mTorr (Example 1) and 2.5 mTorr (Example 2).
2 is a plan view SEM image of deposition pressure / substrate bias; ((a) A0 (4.1 mTorr / 0 V), (b) A100 (4.1 mTorr / -100 V), (c) A200 (4.1 mTorr / -200 V), (d) B0 (2.5 mTorr / 0 V), (e) B100 (2.5 mTorr / -100 V) and (f) B200 (2.5 mTorr / -200 V)).
3 shows a plan-view bright field TEM image for the B200.
4 shows cross-sectional bright field TEM images for A0, A200, B0 and B200.
Figure 5 shows the (110) pole figure of the Mo thin film of the present invention; (the upper and lower rows correspond to groups A and B. The small and large circles drawn at the poles are (111) and (110) diffraction planes, respectively. Indicates).
6 shows the resistivity of the Mo thin film of the present invention.
Figure 7 shows the residual stress of the Mo thin film of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

몰리브덴 박막 표면 미세구조 제어방법Molybdenum thin film surface microstructure control method

본 발명은 기판 바이어스 전압 및 증착 압력 제어를 통한 몰리브덴 박막 표면 미세구조 제어방법을 제공한다.The present invention provides a method for controlling the surface structure of a molybdenum thin film through controlling the substrate bias voltage and deposition pressure.

본 발명의 제어방법에 있어서, 상기 기판 바이어스 전압은 0 내지 -250V, 증착 압력은 2.0 내지 4.6mTorr인 것을 특징으로 한다.In the control method of the present invention, the substrate bias voltage is 0 to -250 V, and the deposition pressure is 2.0 to 4.6 mTorr.

몰리브덴 박막 표면 거칠기를 거칠게 제어하는 방법 Method for roughly controlling the surface roughness of molybdenum thin film

본 발명은 기판 바이어스 전압 0 내지 -250V, 증착압력 3.6 내지 4.6 mTorr의 증착조건으로 마그네트론 스퍼터링 방법에 의해 몰리브덴 박막을 증착하여 표면 거칠기 RMS(Root Mean Square Roughness) 값을 5 내지 10nm로 거칠게 제어하는 방법을 제공한다.The present invention is a method of roughly controlling the surface roughness RMS (Root Mean Square Roughness) value from 5 to 10 nm by depositing a molybdenum thin film by a magnetron sputtering method with deposition conditions of a substrate bias voltage of 0 to -250 V and a deposition pressure of 3.6 to 4.6 mTorr. Gives

본 발명의 일실시예에 있어서, 상기 증착압력은 3.8 내지 4.4 mTorr인 것을 특징으로 하며, 바람직하게 4.0 내지 4.2 mTorr로 증착조건을 제어하여 몰리브덴 박막을 증착할 수 있다.In one embodiment of the present invention, the deposition pressure is characterized in that 3.8 to 4.4 mTorr, preferably by controlling the deposition conditions to 4.0 to 4.2 mTorr can be deposited molybdenum thin film.

또한, 본 발명은 상기 본 발명의 제어방법에 따라 제조된 RMS 값 5 내지 10nm를 갖는 몰리브덴 박막을 제공한다.In addition, the present invention provides a molybdenum thin film having an RMS value of 5 to 10nm prepared according to the control method of the present invention.

또한, 본 발명은 상기 RMS 값 5 내지 10nm를 갖는 몰리브덴 박막을 포함하는 스마트 온실의 내·외벽 부착재료를 제공한다. In addition, the present invention provides an inner and outer wall attachment material of a smart greenhouse including a molybdenum thin film having the RMS value of 5 to 10 nm.

본 발명의 일실시예에 있어서, 상기 몰리브덴 박막을 스마트 온실의 내외벽에 부착하여 스마트 온실 내로 입사하는 태양광을 제어할 경우 몰리브덴 박막을 투과한 입사빔이 산란되어 스마트 온실 내 식물들에게 골고루 분산시켜 위치별 광합성의 균일성을 향상시킬 수 있다.In one embodiment of the present invention, when the molybdenum thin film is attached to the inner and outer walls of a smart greenhouse to control sunlight incident into the smart greenhouse, the incident beam transmitted through the molybdenum thin film is scattered and evenly distributed to the plants in the smart greenhouse. To improve the uniformity of photosynthesis by location.

몰리브덴 박막 표면 거칠기를 평탄하게 제어하는 방법Method for smoothly controlling the surface roughness of molybdenum thin film

본 발명은 기판 바이어스 전압 0 내지 -250V, 증착압력 2.0 내지 3.0 mTorr의 증착조건으로 마그네트론 스퍼터링 방법에 의해 몰리브덴 박막을 증착하여 표면 거칠기 RMS(Root Mean Square Roughness) 값을 0.1 내지 2nm로 평탄하게 제어하는 방법을 제공한다.The present invention deposits molybdenum thin films by a magnetron sputtering method with deposition conditions of a substrate bias voltage of 0 to -250 V and a deposition pressure of 2.0 to 3.0 mTorr to smoothly control the surface roughness RMS (Root Mean Square Roughness) value to 0.1 to 2 nm. Provides a method.

본 발명의 일실시예에 있어서, 상기 증착압력은 2.2 내지 2.8 mTorr인 것을 특징으로 하며, 바람직하게 2.4 내지 2.6 mTorr로 증착조건을 제어하여 몰리브덴 박막을 증착할 수 있다.In one embodiment of the present invention, the deposition pressure is characterized in that 2.2 to 2.8 mTorr, it is preferable to control the deposition conditions to 2.4 to 2.6 mTorr to deposit a molybdenum thin film.

또한, 본 발명은 상기 본 발명의 제어방법에 따라 제조된 RMS 값 0.1 내지 2nm를 갖는 몰리브덴 박막을 제공한다.In addition, the present invention provides a molybdenum thin film having an RMS value of 0.1 to 2 nm prepared according to the control method of the present invention.

또한, 본 발명은 상기 RMS 값 0.1 내지 2nm를 갖는 몰리브덴 박막을 포함하는 박막형 태양전지용 배면 전극 또는 전자소자용 저저항 전극을 제공한다. In addition, the present invention provides a thin film type solar cell back electrode or a low resistance electrode for an electronic device including a molybdenum thin film having the RMS value of 0.1 to 2 nm.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, the following examples are only illustrative of the present invention, and the contents of the present invention are not limited by the following examples.

<실시예 1><Example 1>

몰리브덴 박막은 300W로 고정된 스퍼터링 전력으로 순도 99.95% Mo 타켓(LTS Inc.)으로부터 300nm의 산화물층(thermally grown oxide; TGO)을 갖는 Si (100) 웨이퍼 상에 DC 마그네트론 스퍼터링에 의해 증착되었다. 기판은 상온에서 증착하였으며, 증착 동안 의도적으로 가열되거나 냉각되지 않았으며 스퍼터링 동안의 기판 온도는 온도 라벨로 측정되었다. 증착 전에 스퍼터 챔버의 기저 압력은 1Х10-6 Torr이다. 그리고 반응가스로 아르곤(Argon)을 사용하였으며, 상기 아르곤 이외 N2, O2 및 H2로 이루어지는 군으로부터 선택되는 1종 이상을 반응가스로 사용할 수 있다. 몰리브덴(Mo) 박막의 특성 향상을 위하여 하기 표 1의 조건으로 기판 바이어스의 범위를 0 ~ -250V의 범위로, 스퍼터링 압력을 4.5mTorr로 Mo 박막을 제조하고 각각 A0, A50, A100, A150, A200 및 A250으로 명명하였다.The molybdenum thin film was deposited by DC magnetron sputtering on a Si (100) wafer with a 300 nm oxide layer (TGO) from a 99.95% Mo target (LTS Inc.) with a sputtering power fixed at 300 W. The substrate was deposited at room temperature, was not intentionally heated or cooled during deposition, and the substrate temperature during sputtering was measured by a temperature label. The base pressure of the sputter chamber before deposition is 1 x 10 -6 Torr. In addition, argon was used as a reaction gas, and one or more selected from the group consisting of N 2 , O 2 and H 2 other than the argon may be used as the reaction gas. In order to improve the properties of the molybdenum (Mo) thin film, a Mo thin film was prepared with a substrate bias range of 0 to -250 V and a sputtering pressure of 4.5 mTorr under the conditions of Table 1 below, and A0, A50, A100, A150, A200 respectively And A250.

<실시예 2><Example 2>

스퍼터링 압력을 2.5mTorr를 사용한 것을 제외하고, 상기 실시예 1의 방법과 동일하게 Mo 박막을 제조하고, 각각 B0, B50, B100, B150, B200 및 B250으로 명명하였다.Mo films were prepared in the same manner as in Example 1, except that the sputtering pressure was 2.5 mTorr, and were designated as B0, B50, B100, B150, B200, and B250, respectively.


증착
압력
(mTorr)
deposition
pressure
(mTorr)
기판
바이어스
(V)
Board
bias
(V)
박막
두께
(nm)
pellicle
thickness
(nm)
비저항
[μΩ-cm]
Resistivity
[ μ Ω-cm]
RMS표면 거칠기
(nm)
RMS surface roughness
(nm)
잔류응력
(GPa)
Residual stress
(GPa)
실시예1-1(A0)Example 1-1 (A0) 4.14.1 00 318318 56.956.9 5.45.4 0.20.2 실시예1-2(A50)Example 1-2 (A50) -50-50 300300 44.744.7 5.35.3 0.30.3 실시예1-3(A100)Example 1-3 (A100) -100-100 292292 29.829.8 5.25.2 0.50.5 실시예1-4(A150)Example 1-4 (A150) -150-150 283283 27.627.6 5.05.0 0.60.6 실시예1-5(A200)Example 1-5 (A200) -200-200 287287 24.524.5 4.84.8 1.21.2 실시예1-6(A250)Example 1-6 (A250) -250-250 319319 27.027.0 4.74.7 1.31.3 실시예2-1(B0)Example 2-1 (B0) 2.52.5 00 288288 17.217.2 2.52.5 -0.4-0.4 실시예2-2(B50)Example 2-2 (B50) -50-50 307307 13.913.9 2.452.45 -0.6-0.6 실시예2-3(B100)Example 2-3 (B100) -100-100 318318 13.813.8 2.42.4 -0.9-0.9 실시예2-4(B150)Example 2-4 (B150) -150-150 302302 16.316.3 2.352.35 -1.4-1.4 실시예2-5(B200)Example 2-5 (B200) -200-200 311311 17.717.7 2.32.3 -1.9-1.9 실시예2-6(B250)Example 2-6 (B250) -250-250 309309 20.820.8 2.22.2 -2.2-2.2

<실험예 1> MO 박막의 SEM, TEM 및 RMS표면 거칠기 측정<Experiment 1> SEM, TEM and RMS surface roughness measurement of MO thin film

실시예 1 및 2의 증착된 박막의 두께는 알파-스텝(KLA Tencor)를 이용하여 측정하였다. 2차 전자 현미경(SEM) 및 투과 전자 현미경(TEM)을 사용하여 Mo 박막의 평면 및 단면의 미세 표면 구조를 관찰하였다. 밝은 영역(도시) 및 어두운 영역(미도시)의 TEM 이미지를 모두 수집하여 결정 구조를 특성화 하였다. 막 거칠기는 태핑 모드 원자 현미경(atomic force microscope; AFM, Veeco NanoMan)으로 측정하였다. θ-2θX선 회절(XRD) 스캔은 Mo 박막의 회절면을 확인하기 위해 Cu 방사선을 사용하여 수행하였다. (110)극점도 표준 X선 데이터 수집 방법에 따라 구성하였다.The thickness of the deposited thin films of Examples 1 and 2 was measured using alpha-step (KLA Tencor). The microscopic surface structure of the plane and cross section of the Mo thin film was observed using a secondary electron microscope (SEM) and a transmission electron microscope (TEM). The crystal structure was characterized by collecting both TEM images of light (not shown) and dark (not shown) regions. The film roughness was measured by a tapping mode atomic force microscope (AFM, Veeco NanoMan). θ-2θ X-ray diffraction (XRD) scan was performed using Cu radiation to confirm the diffraction surface of the Mo thin film. The (110) pole figure was constructed according to the standard X-ray data collection method.

도 1은 기판 바이어스의 변화에 대한 Mo 박막의 증착속도를 나타낸다. 두 그룹 모두에 대해, 박막 증착 속도는 기판 바이어스가 증가함에 따라 연속적으로 감소한다. 실시예 1 및 2에 대한 스퍼터링 전압/전류는 각각 0.67A/457V 및 0.47A/650V였다.Figure 1 shows the deposition rate of the Mo thin film with respect to the change in the substrate bias. For both groups, the thin film deposition rate decreased continuously as the substrate bias increased. The sputtering voltages / currents for Examples 1 and 2 were 0.67A / 457V and 0.47A / 650V, respectively.

기판 홀더에 부착된 온도 라벨은 증착 온도가 모든 박막 증착에 대해 50℃ 미만으로 유지된다는 것을 나타내며, 이는 증착 중단 후 측정된 응력 변화를 기반으로 계산된 온도(40℃)와 일치한다.The temperature label affixed to the substrate holder indicates that the deposition temperature remains below 50 ° C. for all thin film depositions, which is consistent with the temperature (40 ° C.) calculated based on the measured stress change after deposition was stopped.

도 2는 각각 A0, A100, A200, B0, B100 및 B200의 평면 SEM 이미지를 나타낸다. 실시예 1 및 2는 입자 모양에 의해 특징 지어지는 두 개의 뚜렷한 미세구조를 보여준다. 그룹 A는 전체 선택된 기판 바이어스 범위에 걸쳐 신장된 결정립 구조(elongated grain structure)를 포함하지만 그룹 B는 등축립 구조(equiaxed grain structure)를 포함한다. B200에 대한 평면뷰 명시야(plan-view bright field) TEM 이미지는 도 3에 나타내었으며 더욱 자세한 결정립 형상(grin morphology)를 제공한다.2 shows planar SEM images of A0, A100, A200, B0, B100 and B200, respectively. Examples 1 and 2 show two distinct microstructures characterized by particle shape. Group A includes an elongated grain structure over the entire selected substrate bias range, while Group B includes an equiaxed grain structure. The plan-view bright field TEM image for B200 is shown in FIG. 3 and provides a more detailed grain morphology.

도 4는 A0, A200, B0 및 B200에 대한 단면 명시야 TEM 이미지를 나타낸다. 상기 결과는 두 개의 스퍼터링 압력에서 증착된 박막의 표면 거칠기가 다르다는 것을 확인할 수 있으며, 도 4에서 관찰된 미세구조의 중요한 변화는 스퍼터링 압력과 기판 바이어스의 독립적인 제어뿐만 아니라 둘의 상호작용도 박막 미세구조의 제어에 중요하다는 것을 나타낸다.4 shows cross-section bright field TEM images for A0, A200, B0 and B200. The above results confirm that the surface roughness of the thin films deposited at two sputtering pressures is different, and the significant change in the microstructure observed in FIG. 4 is not only independent control of sputtering pressure and substrate bias, but also the interaction of the two thin films. It is important for the control of the structure.

도 5는 Mo 박막에 대한 (110) 극점도이며, 상부 및 하부 행은 실시예 1 및 2에 해당한다. 각 행에서 왼쪽에서 오른쪽으로 각각 0, 50, 100, 150, 200 및 25V의 음의 기판 바이어스에 해당한다. 극점에서 그려진 작고 큰 원은 각각 (111) 및 (110) 회절면을 나타낸다. 박막의 표면 거칠기는 증착 압력뿐만 아니라 기판 바이어스에도 크게 의존하는 것을 확인하였다.Figure 5 is a (110) pole figure for the Mo thin film, the upper and lower rows correspond to Examples 1 and 2. Each row corresponds to a negative substrate bias of 0, 50, 100, 150, 200 and 25V from left to right, respectively. The small and large circles drawn at the poles represent the (111) and (110) diffraction planes, respectively. It was confirmed that the surface roughness of the thin film was highly dependent on the substrate bias as well as the deposition pressure.

<실험예 2> Mo 박막의 비저항 및 잔류응력 측정<Experimental Example 2> Measurement of specific resistance and residual stress of Mo thin film

증착된 박막의 저항은 four point probe를 이용하여 sheet resistance를 측정하였다. 잔류 응력은 Mo- (110) 회절 피크가 사용된 다양한 ψ 각도에서 수집된 d (면 간격)와 sin2ψ 사이의 관계를 사용하여 소위 "d vs. sin2ψ"방법을 수행하여 측정하였다. The resistance of the deposited thin film was measured using a four point probe. Residual stress was measured by performing a so-called " d vs. sin 2 ψ" method using the relationship between d (plane spacing) and sin2ψ collected at various ψ angles where Mo- (110) diffraction peaks were used.

도 6은 공칭 두께가 300nm인 Mo 막의 비저항을 나타낸다. 스퍼터링 압력을 4.1mTorr(실시예 1)에서 2.5mTorr(실시예 2)로 감소시키면 선택된 전압 범위 전반에 걸쳐 막 비저항이 전체적으로 감소하지만, 기판 바이어스의 증가는 스퍼터링 압력에 따라 영향을 미친다. 실시예 1의 경우 적용된 기판 바이어스에 의해 상당한 저항 감소가 발생하고, -200V(A200)에서 가장 낮은 저항 값이 관찰된다. 반면에, 실시예 2의 경우, 가장 낮은 저항은 -100V(B100)의 기판 바이어스에서 관찰되었다. 6 shows the resistivity of the Mo film with a nominal thickness of 300 nm. Reducing the sputtering pressure from 4.1 mTorr (Example 1) to 2.5 mTorr (Example 2) reduces the overall film resistivity throughout the selected voltage range, but the increase in substrate bias affects the sputtering pressure. In the case of Example 1, a significant reduction in resistance occurs due to the applied substrate bias, and the lowest resistance value is observed at -200V (A200). On the other hand, for Example 2, the lowest resistance was observed at a substrate bias of -100V (B100).

도 7은 Mo 박막의 잔류 응력을 나타낸다. 기판 바이어스가 없는 경우, 낮은 압력(2.5mTorr)에서 증착된 박막은 압축응력을 나타내지만 높은 압력(4.1mTorr)에서 증착된 박막에 대해서는 인장응력이 관찰된다. 기판 바이어스의 증가는 2개의 스퍼터링 압력(실시예 1 및 2)에 대해 완전히 반대되는 응력 경향을 야기한다. 즉, 증가하는 기판 바이어스는 실시예 1 및 2 각각에 대해 보다 강한 압축 및 인장 응력을 초래한다. 7 shows the residual stress of the Mo thin film. In the absence of substrate bias, a thin film deposited at low pressure (2.5 mTorr) exhibits compressive stress, but a tensile stress is observed for thin films deposited at high pressure (4.1 mTorr). The increase in substrate bias results in a stress tendency that is completely opposite to the two sputtering pressures (Examples 1 and 2). That is, increasing substrate bias results in stronger compressive and tensile stress for Examples 1 and 2 respectively.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특히 청구범위에 나타나 있으며, 그와 동등한 범위내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been focused on the preferred embodiments. Those skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered in terms of explanation, not limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the equivalent range should be interpreted as being included in the present invention.

Claims (14)

기판 바이어스 전압 및 증착 압력 제어를 통한 몰리브덴 박막 표면 미세구조 제어방법.
Method for controlling molybdenum thin film surface microstructure through control of substrate bias voltage and deposition pressure.
제1항에 있어서,
상기 기판 바이어스 전압은 0 내지 -250V, 증착 압력은 2.0 내지 4.6mTorr인 것을 특징으로 하는 방법.
According to claim 1,
The substrate bias voltage is 0 to -250V, the deposition pressure is characterized in that 2.0 to 4.6mTorr.
기판 바이어스 전압 0 내지 -250V, 증착압력 3.6 내지 4.6 mTorr의 증착조건으로 마그네트론 스퍼터링 방법에 의해 몰리브덴 박막을 증착하여 표면 거칠기 RMS(Root Mean Square Roughness) 값을 5 내지 10nm로 거칠게 제어하는 방법.
A method of roughly controlling the surface roughness RMS (Root Mean Square Roughness) value from 5 to 10 nm by depositing a molybdenum thin film by a magnetron sputtering method with a substrate bias voltage of 0 to -250 V and a deposition pressure of 3.6 to 4.6 mTorr.
제3항에 있어서,
상기 증착압력은 3.8 내지 4.4 mTorr인 것을 특징으로 하는 방법.
According to claim 3,
The deposition pressure is characterized in that 3.8 to 4.4 mTorr.
제4항에 있어서,
상기 증착압력은 4.0 내지 4.2 mTorr인 것을 특징으로 하는 방법.
According to claim 4,
The deposition pressure is characterized in that 4.0 to 4.2 mTorr.
제3항의 방법에 따라 제조된 RMS 값 5 내지 10nm를 갖는 몰리브덴 박막.
A molybdenum thin film having an RMS value of 5 to 10 nm prepared according to the method of claim 3.
제6항의 몰리브덴 박막을 포함하는 스마트 온실의 내·외벽 부착재료.
A material for attaching inner and outer walls of a smart greenhouse comprising the molybdenum thin film of claim 6.
제7항에 있어서,
상기 부착재료는 스마트 온실 내 광합성의 균일성을 향상시키는 것을 특징으로 하는 스마트 온실의 내·외벽 부착재료.
The method of claim 7,
The adhesive material is an inner and outer wall adhesive material of a smart greenhouse, characterized in that to improve the uniformity of photosynthesis in the smart greenhouse.
기판 바이어스 전압 0 내지 -250V, 증착압력 2.0 내지 3.0 mTorr의 증착조건으로 마그네트론 스퍼터링 방법에 의해 몰리브덴 박막을 증착하여 표면 거칠기 RMS(Root Mean Square Roughness) 값을 0.1 내지 2nm로 평탄하게 제어하는 방법.
A method of smoothly controlling the surface roughness RMS (Root Mean Square Roughness) value by 0.1 to 2 nm by depositing a molybdenum thin film by a magnetron sputtering method with deposition conditions of a substrate bias voltage of 0 to -250 V and a deposition pressure of 2.0 to 3.0 mTorr.
제9항에 있어서,
상기 증착압력은 2.2 내지 2.8 mTorr인 것을 특징으로 하는 방법.
The method of claim 9,
The deposition pressure is characterized in that 2.2 to 2.8 mTorr.
제10항에 있어서,
상기 증착압력은 2.4 내지 2.6 mTorr인 것을 특징으로 하는 방법.
The method of claim 10,
The deposition pressure is characterized in that 2.4 to 2.6 mTorr.
제9항의 방법에 따라 제조된 RMS 값 0.1 내지 2nm를 갖는 몰리브덴 박막.
A molybdenum thin film having an RMS value of 0.1 to 2 nm prepared according to the method of claim 9.
제12항의 몰리브덴 박막을 포함하는 박막형 태양전지용 배면 전극.
A thin film type solar cell back electrode comprising the molybdenum thin film of claim 12.
제12항의 몰리브덴 박막을 포함하는 전자소자용 저저항 전극.



A low-resistance electrode for an electronic device comprising the molybdenum thin film of claim 12.



KR1020180119937A 2018-10-08 2018-10-08 Microstructure control method of molybdenum thin film surface KR102154899B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180119937A KR102154899B1 (en) 2018-10-08 2018-10-08 Microstructure control method of molybdenum thin film surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180119937A KR102154899B1 (en) 2018-10-08 2018-10-08 Microstructure control method of molybdenum thin film surface

Publications (2)

Publication Number Publication Date
KR20200040092A true KR20200040092A (en) 2020-04-17
KR102154899B1 KR102154899B1 (en) 2020-09-10

Family

ID=70460734

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180119937A KR102154899B1 (en) 2018-10-08 2018-10-08 Microstructure control method of molybdenum thin film surface

Country Status (1)

Country Link
KR (1) KR102154899B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287071A (en) * 1986-06-06 1987-12-12 Tadahiro Omi Semiconductor producing apparatus
KR20090018598A (en) * 2007-02-26 2009-02-20 가부시키가이샤 무라타 세이사쿠쇼 Conductive film and method for manufacturing the same
KR20170059421A (en) * 2015-11-20 2017-05-30 쎄코 툴스 에이비 Coated cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287071A (en) * 1986-06-06 1987-12-12 Tadahiro Omi Semiconductor producing apparatus
KR20090018598A (en) * 2007-02-26 2009-02-20 가부시키가이샤 무라타 세이사쿠쇼 Conductive film and method for manufacturing the same
KR20170059421A (en) * 2015-11-20 2017-05-30 쎄코 툴스 에이비 Coated cutting tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
'DC 마그네트론 스퍼터링 방법에 의해 증착된 Mo 박막의 특성', 공선미 등, Korea Chem. Eng. Res. Vol. 49, No. 2, April, 2011, pp. 195-199. *

Also Published As

Publication number Publication date
KR102154899B1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
EP1352987B1 (en) Transparent conductive laminate and process of producing the same
US5477088A (en) Multi-phase back contacts for CIS solar cells
JP5005772B2 (en) Conductive laminate and manufacturing method thereof
JP4397511B2 (en) Low resistance ITO thin film and manufacturing method thereof
Lee et al. Dependence of the electrical and optical properties on the bias voltage for ZnO: Al films deposited by rf magnetron sputtering
KR20150051181A (en) PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD
US7763151B2 (en) Process for producing transparent conductive laminate
WO2010140362A1 (en) Film-formed article and method for manufacturing film-formed article
Adurodija et al. Effects of stress on the structure of indium-tin-oxide thin films grown by pulsed laser deposition
Cao et al. The effect of working gas pressure and deposition power on the properties of molybdenum films deposited by DC magnetron sputtering
KR102154899B1 (en) Microstructure control method of molybdenum thin film surface
Aliyu et al. High quality indium tin oxide (ITO) film growth by controlling pressure in RF magnetron sputtering
Kavei et al. The effects of surface roughness and nanostructure on the properties of indium tin oxide (ITO) designated for novel optoelectronic devices fabrication
JP4229803B2 (en) Method for producing transparent conductive film
Zweigart et al. CuInSe 2 film growth using precursors deposited at low temperature
Dhere et al. Morphology and semiconducting properties of vacuum-evaporated thick cadmium sulphide films prepared by the hot wall technique
US20050155675A1 (en) Amorphous ferrosilicide film exhibiting semiconductor characteristics and method of for producing the same
Dhere et al. Morphology of precursors and CuIn1− x Ga x Se2 thin films prepared by a two‐stage selenization process
Igasaki et al. The effects of deposition conditions on the structural properties of ZnO sputtered films on sapphire substrates
Chen et al. Room-temperature fabrication of highly transparent conductive aluminum-doped zinc oxide films
Grice et al. Close-Space Sublimated CdTe Solar Cells with Co-Sputtered CdS x Se 1-x Alloy Window Layers
KR101831700B1 (en) Fabrication method of cigs absorber layer and thin film solar cell using double intrelayers and thin film solar cell
KR20110111369A (en) Method of forming an indium-containing transparent conductive oxide film, metal targets used in the method and photovoltaic devices utilizing said films
Han et al. Influence of seed layers on microstructure and electrical properties of indium-tin oxide films
Kim et al. CIGS thin film solar cell prepared by reactive co-sputtering

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right