KR20200036492A - Superhydrophobic - superoleophilic nickel foams and method for making same - Google Patents

Superhydrophobic - superoleophilic nickel foams and method for making same Download PDF

Info

Publication number
KR20200036492A
KR20200036492A KR1020180116189A KR20180116189A KR20200036492A KR 20200036492 A KR20200036492 A KR 20200036492A KR 1020180116189 A KR1020180116189 A KR 1020180116189A KR 20180116189 A KR20180116189 A KR 20180116189A KR 20200036492 A KR20200036492 A KR 20200036492A
Authority
KR
South Korea
Prior art keywords
nickel foam
superhydrophobic
superoleophilic
foam
slurry
Prior art date
Application number
KR1020180116189A
Other languages
Korean (ko)
Other versions
KR102177314B1 (en
Inventor
고장면
Original Assignee
한밭대학교 산학협력단
한밭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한밭대학교 산학협력단, 한밭대학교 산학협력단 filed Critical 한밭대학교 산학협력단
Priority to KR1020180116189A priority Critical patent/KR102177314B1/en
Publication of KR20200036492A publication Critical patent/KR20200036492A/en
Application granted granted Critical
Publication of KR102177314B1 publication Critical patent/KR102177314B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/32Materials not provided for elsewhere for absorbing liquids to remove pollution, e.g. oil, gasoline, fat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2506/00Halogenated polymers
    • B05D2506/10Fluorinated polymers
    • B05D2506/15Polytetrafluoroethylene [PTFE]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention relates to a superhydrophobic-superoleophilic nickel foam coated with a coating mixture comprising polytetrafluoroethylene (PTFE) and hydrophobic fumed silica, as well as a method for preparing the same. The method for preparing a superhydrophobic-superoleophilic nickel foam comprises steps of: preparing slurry; providing a nickel foam to be coated with the slurry; and dip coating the nickel foam with the slurry. According to the present invention, the nickel foam may be coated with a coating mixture comprising polytetrafluoroethylene (PTFE) and hydrophobic fumed silica to prepare a superhydrophobic-superoleophilic nickel foam, thus having an effect of facilitating a separation between water and oil.

Description

초소수성-초친유성 니켈 발포체 및 그 제조방법{SUPERHYDROPHOBIC - SUPEROLEOPHILIC NICKEL FOAMS AND METHOD FOR MAKING SAME }Superhydrophobic-superoleophilic nickel foam and its manufacturing method {SUPERHYDROPHOBIC-SUPEROLEOPHILIC NICKEL FOAMS AND METHOD FOR MAKING SAME}

본 발명은 초소수-초친유성 기능을 가지는 니켈 발포 폼 제조방법에 관한 것으로서, 더욱 상세하게는 간단한 딥 코팅 방법을 이용한 초소수-초친유성 기능을 가지는 니켈 발포 폼 제조방법에 관한 것이다.The present invention relates to a method for producing a nickel foam having a superhydrophobic-superoleophilic function, and more particularly, to a method for producing a nickel foam having a superhydrophobic-superoleophilic function using a simple dip coating method.

기름 유출로 인한 환경오염으로 인해 물과 기름을 분리하는 기술은 점점 더 많이 연구되고 있으며, 이와 더불어 기름 유출이 환경에 미치는 영향이 많이 연구되고 보고되었다. 이러한 물과 기름 혼합물은 석유, 제조, 광산, 금속 가공 및 가공 산업, 섬유, 가죽가공 및 가공 산업, 식품가공 및 음식점과 같은 다양한 산업부문에서 유출되고 있으며, 이때 포함된 기름들은 분산 된 미세한 기름 입자로 인해 에너지 집약적으로 분리하기가 매우 어렵습니다. 특히 멕시코만의 Deepwater Horizon 유출과 같은 사고에서 비롯된 대량의 기름유출은 대량 생산된 석유 및 물 혼합물을 분리하는 견고하면서 경제적인 방법을 필요로 했습니다. 이에 물과 기름 혼합물을 분리하는 한 가지 방법으로 최근에 관심을 모으고 있는 Superoleophilic 및 Superhydrophobic 표면의 사용이었다. Barthlott와 Neinhuis에 의한 연꽃잎의 표면 화학에 대한 연구 후, 초 소수성 물질이 제조되었다. 이것은 대부분 표면 자유 에너지를 낮추거나 고체의 표면 거칠기를 증가시킴으로서 가능하게 하였으며, 지금까지 사용된 초소수성 표면 제조방법은 딥 코팅, 전기방사, 전기화학증착, 무전해 증착, 층별 자기 조립, 화학식각, 화학 기상 증착을 이용한 제조된 초소수성/초친유성 mesh를 이용한 물과 기름 분리가 가능하였다. 이는 산업폐수와 같은 대략의 분리에도 접합하였다. 분리의 효율은 유체의 점도, 기공 크기, 표면 장력 및 유체 흐름 속도를 포함하나 이에 한정되지 않는 요소의 조합에 달려 있었다. 그렇지만 기존 폴리우레탄(PU) 스펀지로 제조된 초소수성/초친유성 mesh는 연속 흐름 중에 우수한 분리 효율을 가지지만 높은 유연성으로 인해 공정이 커지면 무게를 지탱할 수 없는 단점이 발생했다. 따라서 흡착된 기름의 무게를 극복 할 수 있으면서 기존의 기능은 유지할 수 있는 초소수성/초친유성 바인더에 대한 발명이 필요하였다. Technology for separating water and oil due to environmental pollution due to oil spill is being studied more and more, and the effect of oil spill on the environment has been studied and reported. These water and oil mixtures are emanating from a variety of industrial sectors such as the petroleum, manufacturing, mining, metal processing and processing industries, textiles, leather processing and processing industries, food processing and restaurants, where the oils contained are dispersed fine oil particles. Due to this, it is very difficult to separate energy intensively. In particular, the massive oil spills from accidents such as the Deepwater Horizon spill in the Gulf of Mexico required a robust and economical way to separate the mass-produced oil and water mixtures. One method for separating water and oil mixtures was the use of superoleophilic and superhydrophobic surfaces, which have recently attracted attention. After studying the surface chemistry of the lotus leaf by Barthlott and Neinhuis, a super hydrophobic material was prepared. This is mostly possible by lowering the surface free energy or increasing the surface roughness of the solid, and the superhydrophobic surface manufacturing method used so far is dip coating, electrospinning, electrochemical deposition, electroless deposition, self-assembly by layer, chemical angle, It was possible to separate water and oil using a superhydrophobic / superoleophilic mesh manufactured using chemical vapor deposition. It also joined rough separation, such as industrial wastewater. The efficiency of separation depended on a combination of factors including, but not limited to, fluid viscosity, pore size, surface tension and fluid flow rate. However, the superhydrophobic / superoleophilic mesh made of the existing polyurethane (PU) sponge has excellent separation efficiency during continuous flow, but due to its high flexibility, it has a disadvantage that it cannot support the weight when the process is increased. Therefore, there is a need for an invention for a superhydrophobic / superoleophilic binder that can overcome the weight of adsorbed oil and maintain its existing function.

G. Kwon, E. Post, A. Tuteja, Membranes with selective wettability for the separation of oil/water mixtures, MRS Communications, 5 (2015) 475-494. G. Kwon, E. Post, A. Tuteja, Membranes with selective wettability for the separation of oil / water mixtures, MRS Communications, 5 (2015) 475-494. A. S. K. Kumar, S. S. Kakan, and N. Rajesh, A novel amine impregnated graphene oxide adsorbent for the removal of hexavalent chromium, Chem. Eng. J., 230 (2013) 328-337. A. S. K. Kumar, S. S. Kakan, and N. Rajesh, A novel amine impregnated graphene oxide adsorbent for the removal of hexavalent chromium, Chem. Eng. J., 230 (2013) 328-337.

본 발명의 목적은, 기존의 폴리우레탄(PU)으로 제조된 초소수성/초친유성 바인더 보다 강성이 강한 발포 폼에 유/수 분리용 바인더 혼합물을 딥 코팅함으로써, 흡수된 기름의 무게를 극복하면서도 기존의 유/수 분리용 바인더 역할을 할 수 있는 발포 폼을 제공함에 있다.The object of the present invention is to overcome the weight of the absorbed oil while overcoming the weight of the absorbed oil by dip-coating the binder mixture for oil / water separation in a foam foam having stronger rigidity than a superhydrophobic / superoleophilic binder made of a conventional polyurethane (PU). It is to provide a foam that can serve as a binder for oil / water separation of.

상기 목적을 달성하기 위하여, 본 발명은 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE)과 소수성 훈증 실리카(hydrophobic fumed silica)를 포함하는 코팅혼합물로 코팅된 초소수성-초친유성 니켈 발포 폼 및 슬러리를 제조하는 단계, 상기 슬러리로 코팅 할 니켈 발포 폼을 준비하는 단계 및 상기 니켈 발포 폼을 상기 슬러리에 딥 코팅하는 단계를 포함하는 초소수성-초친유성 니켈 발포 폼 제조방법을 제공한다.In order to achieve the above object, the present invention is to prepare a superhydrophobic-superoleophilic nickel foam and slurry coated with a coating mixture comprising polytetrafluoroethylene (PTFE) and hydrophobic fumed silica. , Preparing a nickel foam to be coated with the slurry, and dip coating the nickel foam to the slurry provides a superhydrophobic-superoleophilic nickel foam production method.

상기와 같은 본 발명에 따르면, 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE)과 소수성 훈증 실리카(hydrophobic fumed silica)를 포함하는 코팅혼합물로 니켈 발포 폼 코팅함으로써, 초소수성-초친유성 니켈 발포 폼을 제조할 수 있고, 이를 통해 물과 기름 분리를 용이하게 할 수 있게 하는 효과가 있다.According to the present invention as described above, by coating a nickel foam foam with a coating mixture comprising polytetrafluoroethylene (polytetrafluoroethylene, PTFE) and hydrophobic fumed silica (hydrophobic fumed silica), superhydrophobic-superoleophilic nickel foam can be produced There is an effect to facilitate the separation of water and oil through this.

도 1은 니켈 발포 폼의 준비 단계 및 코팅 공정의 개략도를 도시하였다.
도 2는 코팅처리하지 않은 니켈 발포 폼과 코팅 처리한 니켈 발포 폼 각각 이미지 및 각각의 FE-SEM 이미지를 도시하고, 코팅 처리한 니켈 발포 폼의 TGA 분석 값도 도시하였다.
도 3은 각기 다른 수용액의 접촉각 이미지와 코팅처리하지 않은 니켈 발포 폼과 코팅 처리한 니켈 발포 폼의 물 및 헥산의 대한 젖음성 테스트 결과를 도시하였다.
도 4는 각기 다른 기름과 물의 혼합액이 코팅 처리한 니켈 발포 폼을 통해 유수 분리되는 과정을 도시하였다.
도 5는 코팅 처리한 니켈 발포 폼의 분리효율, 사이클 시간에 따른 분리 효율 및 WCA(water contact angle), 각기 다른 기름에 대한 유량을 도시하였다.
도 6은 코팅 처리한 니켈 발포 폼에서의 액체 습윤 모델의 개략도를 도시하였다.
1 shows a schematic view of the preparation step and coating process of the nickel foam.
FIG. 2 shows an image of each of the uncoated nickel foam and the coated nickel foam and each FE-SEM image, and also shows the TGA analysis values of the coated nickel foam.
Figure 3 shows the wettability test results for water and hexane of the nickel foam and the non-coated nickel foam and the contact angle image of different aqueous solutions.
4 shows a process in which oil and water mixtures are separated from each other through coated nickel foam.
5 illustrates separation efficiency of the coated nickel foam, separation efficiency according to cycle time, water contact angle (WCA), and flow rates for different oils.
6 shows a schematic diagram of a liquid wetting model in a coated nickel foam.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 형태에 따라 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE)과 소수성 훈증 실리카(hydrophobic fumed silica)를 포함하는 코팅혼합물로 코팅된 초소수성-초친유성 니켈 발포 폼(Ni foam)을 제공한다. According to an embodiment of the present invention, a superhydrophobic-superoleophilic nickel foam (Ni foam) coated with a coating mixture containing polytetrafluoroethylene (polytetrafluoroethylene, PTFE) and hydrophobic fumed silica (hydrophobic fumed silica) is provided.

상기 코팅혼합물은 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF)를 더 포함할 수 있다. The coating mixture may further include polyvinylidenefluoride (PVDF).

상기 폴리테트라플루오르에틸렌은 상기 코팅혼합물 100wt% 대비 60wt%일 수 있다. The polytetrafluoroethylene may be 60 wt% compared to 100 wt% of the coating mixture.

상기 소수성 훈증 실리카는 표면을 silanol group 처리한 실리카일 수 있으며, 상기 코팅혼합물 100wt% 대비 20wt%일 수 있다. The hydrophobic fumed silica may be silica treated with a silanol group on the surface, and may be 20 wt% compared to 100 wt% of the coating mixture.

상기 폴리비닐리덴플루오라이드는 DMSO에 8wt% 용해되어 있을 수 있다. The polyvinylidene fluoride may be dissolved in 8% by weight of DMSO.

상기 니켈 발포 폼(Ni foam)은 다공성이고, The nickel foam (Ni foam) is porous,

상기 다공성은 상호 연결된 3차원 구조를 가질 수 있다. The porosity may have a three-dimensional structure interconnected.

상기 니켈 발포 폼(Ni foam)은 침입 압력이 7.5 내지 8.0 kPa일 수 있다. The nickel foam (Ni foam) may have an intrusion pressure of 7.5 to 8.0 kPa.

본 발명은 다른 형태에 따라 초소수성-초친유성 니켈 발포 폼 제조방법을 제공한다. The present invention provides a method for producing superhydrophobic-superoleophilic nickel foam according to another aspect.

상기 초소수성-초친유성 니켈 발포 폼 제조방법은 슬러리를 제조하는 단계, 상기 슬러리로 코팅 할 니켈 발포 폼을 준비하는 단계 및 상기 니켈 발포 폼을 상기 슬러리에 딥 코팅하는 단계를 포함할 수 있다. The superhydrophobic-superoleophilic nickel foam production method may include preparing a slurry, preparing a nickel foam to be coated with the slurry, and dipping the nickel foam into the slurry.

상기 슬러리는 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE)과 소수성 훈증 실리카(hydrophobic fumed silica) 및 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF)를 포함할 수 있다. The slurry may include polytetrafluoroethylene (PTFE), hydrophobic fumed silica, and polyvinylidenefluoride (PVDF).

상기 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE)과 소수성 훈증 실리카(hydrophobic fumed silica) 및 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF)의 혼합비는 60 : 20:20 wt% 중량비 일 수 있다. The polytetrafluoroethylene (polytetrafluoroethylene, PTFE) and hydrophobic fumed silica (hydrophobic fumed silica) and polyvinylidene fluoride (polyvinylidenefluoride, PVDF) mixing ratio may be 60: 20: 20 wt% weight ratio.

상기 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF)는 DMSO에 8wt% 용해되어 있을 수 있다.The polyvinylidene fluoride (PVDF) may be dissolved in 8 wt% of DMSO.

상기 슬러리를 제조하는 단계는 볼 분쇄를 더 포함할 수 있다. The manufacturing of the slurry may further include ball grinding.

상기 니켈 발포 폼은 기공 크기가 250 내지 450 μm로 불균일한 다공성 구조이고, 상기 다공성 구조는 상호 연결된 3차원 구조일 수 있다. The nickel foam has a pore size of 250 to 450 μm, a non-uniform porous structure, and the porous structure may be an interconnected three-dimensional structure.

상기 니켈 발포 폼을 준비하는 단계는, 니켈 발포 폼을 아세톤에서 초음파 세척하는 단계, 상기 초음파 세척된 니켈 발포 폼을 HCl 용액에서 초음파 에칭하는 단계 및 건조시키는 단계를 더 포함할 수 있다. The step of preparing the nickel foam may further include ultrasonic washing the nickel foam with acetone, ultrasonic etching the ultrasonic foam with the HCl solution, and drying.

상기 딥 코팅하는 단계는, 상기 슬러리에 상기 니켈 발포 폼을 침지하는 단계 및 상기 침지한 니켈 발포 폼을 오븐에서 건조시키는 단계를 3회 반복할 수 있다. In the dip coating step, the step of immersing the nickel foam in the slurry and the step of drying the immersed nickel foam in the oven may be repeated three times.

니켈 발포 폼(Ni foam)은 최근 저밀도, 높은 기계적 성능 및 높은 열 안정성을 갖는 다공성 물질이기 때문에 기름 수분 분리 물질의 기재로 사용하였다. 또한 니켈 발포 폼(Ni foam)은 multi-linked 구조를 가지고 있기 때문에, superhydrophobic 및 superoleophilic을 부과한 니켈 발포 폼(Ni foam)은 물과 기름 혼합물에 대한 다층 분리를 효과적 수행 할 수 있었다. 또한 비금속인 스펀지 대신 금속 폼을 사용하는 장점은 폴리우레탄 (PU) 스펀지보다 많은 기름의 무게를 지탱하는 것이다. PU 스펀지는 물과 기름 혼합물의 연속 흐름 중에 우수한 분리 효율을 가지지만 높은 유연성으로 인해 공정이 커지고 길어질수록 무게를 지탱할 수 없게 된다. 따라서 이러한 단점을 극복하지 위해 금속 발포 폼인 니켈 발포 폼을 선택하였으며, 실제로 니켈 발포 폼은 흡착 된 기름의 무게를 극복 할 수 있는 강성을 제공하였다. Nickel foam (Ni foam) has recently been used as a substrate for oil moisture separation material because it is a porous material having a low density, high mechanical performance and high thermal stability. In addition, since nickel foam has a multi-linked structure, nickel foam impregnated with superhydrophobic and superoleophilic was able to effectively perform multi-layer separation of water and oil mixtures. In addition, the advantage of using a metal foam instead of a non-metallic sponge is that it supports the weight of more oil than a polyurethane (PU) sponge. PU sponges have good separation efficiency during continuous flow of water and oil mixtures, but due to their high flexibility, the process becomes larger and longer and thus unable to support its weight. Therefore, in order to overcome these drawbacks, a metal foam was selected as a nickel foam, and in fact, the nickel foam provided stiffness to overcome the weight of the adsorbed oil.

PTFE는 표면 에너지가 낮고, 소수성 훈증 실리카(hydrophobic fumed silica)(R805)가 표면 거칠기를 증가시키기 때문에 사용되었다. PVDF는 낮은 자유 에너지, 열 안정성, 내마모성, 화학적 불활성 및 기계적 성질을 갖는 소수성 불소화 중합체이다. PVDF 금속 표면과의 밀착성이 강하기 때문에 리튬 이온 배터리 전극 준비에서 결합제로 사용되기 때문에 본 발명에서는 바인더 및 표면 에너지를 낮추는 역할을 하였다. PTFE was used because of its low surface energy and hydrophobic fumed silica (R805) to increase the surface roughness. PVDF is a hydrophobic fluorinated polymer with low free energy, thermal stability, wear resistance, chemical inertness and mechanical properties. Since the adhesion to the PVDF metal surface is strong, it is used as a binder in the preparation of the lithium ion battery electrode, and thus, in the present invention, it serves to lower the binder and the surface energy.

딥 코팅 방법은 간단하고 빠르며 플루오르 알킬 실란과 같은 값 비싼 시약의 사용을 사용하지 않아도 되고, 그러면서도 실시예 1 내지 3을 통해 제조된 코팅 된 니켈 발포 폼은 coactively flororine으로 덮인 표면을 만들 수 있어, 거칠고 단단한 연결 구조가 생성되어 초 소수성을 향상시켰다. The dip coating method is simple and fast and does not require the use of expensive reagents such as fluoroalkyl silanes, yet the coated nickel foam produced through Examples 1 to 3 can create a surface that is coactively covered with flororine, making it rough and A solid connection structure was created to improve super hydrophobicity.

실시예를 수행하기 위해 사용된 실험 기재는 분말 형태의 poly vinylidene uoride(PVDF, MW = 534,000), 분말 형태의 polytetrafluoroethylene (PTFE, FW = 100.0), AEROSIL 훈증 개질 된 실리카 (R805) 및 니켈 발포 폼은(volume density: 0.32 g/cm3, thickness 1.35 mm, average pore diameter:130 μm, pore number: 110 PPI) Sigma Aldrich에서 구입하였다. 염화칼슘 (99.0 %), 수산화 칼륨 (최소 85.0 %), 염산 (35.0 ~ 37.0 %), 헥산 (최소 95.0 %) 및 디메틸 술폭 시드 (dimethyl sulfoxide ,DMSO) 덕산 시약에서 구입하였으며, 올리 타니아 엑스트라 버진 올리브 오일과 콩기름은 현지 시장에서 구입하였다. 모든 화학 물질은 더 이상의 정제 없이 그대로 사용되었으며, 탈 이온수는 AquaMax-Ultra 탈 이온수기를 사용하여 제조되었다. Experimental substrates used to carry out the examples are poly vinylidene uoride in powder form (PVDF, MW = 534,000), polytetrafluoroethylene in powder form (PTFE, FW = 100.0), AEROSIL fumigated modified silica (R805) and nickel foam (volume density: 0.32 g / cm 3 , thickness 1.35 mm, average pore diameter: 130 μm, pore number: 110 PPI) was purchased from Sigma Aldrich. Calcium chloride (99.0%), potassium hydroxide (at least 85.0%), hydrochloric acid (35.0 to 37.0%), hexane (at least 95.0%) and dimethyl sulfoxide (DMSO) were purchased from Deoksan reagent, Olitania Extra Virgin Olive Oil And soybean oil were purchased from local markets. All chemicals were used as is without further purification, and deionized water was prepared using AquaMax-Ultra deionized water.

소수성 R805는 표면의 silanol groups 그룹 처리를 통해 훈증 실리카 입자 사이의 수소 결합이 형성되어 응집체를 형성하고, 이러한 응집체는 PTFE와 PVDF에서 -CF2- 그룹과 R805의 소수성 사슬 (-C8H17)의 존재로 인한 반 데르 발스 힘의 인력으로 PTFE와 PVDF에 강한 접착력을 가졌다. 코팅 혼합물에 분산 된 이러한 소형 응집체는 표면이 거칠어져서 초 소수성을 향상시켰다.Hydrophobic R805 forms agglomerates by forming hydrogen bonds between fumed silica particles through surface silanol groups group treatment, and these agglomerates form -CF2- groups and hydrophobic chains of R805 (-C 8 H 17 ) in PTFE and PVDF. It has strong adhesion to PTFE and PVDF due to the attraction of van der Waals forces due to its presence. These small agglomerates dispersed in the coating mixture resulted in a roughened surface, improving super hydrophobicity.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.

실시예 1. (dip-coating 혼합물 제조)Example 1. (Preparation of dip-coating mixture)

60 중량%의 PTFE, 20 중량 %의 R805, 20 중량%의 PVDF를 혼합하되, 상기 PVDF는 DMSO에 8wt% 용해되어 있는 것을 사용하였다. 그리고 상기 물질들을 혼합할 때 MSG-D500 볼밀에서 2mm의 지르코늄 볼을 사용하여 1000 rpm으로 30분 동안 볼 분쇄를 수행하여 슬러리를 제조하였다.60 wt% of PTFE, 20 wt% of R805, and 20 wt% of PVDF were mixed, and the PVDF was dissolved in 8 wt% of DMSO. And when mixing the above materials, a slurry was prepared by performing ball grinding at 1000 rpm for 30 minutes using a 2 mm zirconium ball in an MSG-D500 ball mill.

실시예 2. (PTFE 코팅할 니켈 발포 폼 준비)Example 2. (Preparation of nickel foam to be coated with PTFE)

4cm x 4cm의 니켈 발포 폼 조각을 아세톤에서 10분 동안 초음파 세정하여 그리스를 제거한 다음 1mole HCl에서 다시 10 분간 초음파 에칭하여 산화물 층을 제거한다. 그 다음 니켈 발포 폼을 압축 공기를 사용하여 30초간 건조시킨 다음 100℃ 오븐에서 15분간 오븐 건조 시켰다. A piece of 4 cm x 4 cm nickel foam was ultrasonically cleaned for 10 minutes in acetone to remove grease, and then etched again in 1mole HCl for 10 minutes to remove the oxide layer. Then, the nickel foam was dried for 30 seconds using compressed air, and then dried in an oven at 100 ° C. for 15 minutes.

실시예 3. (니켈 발포 폼 dip coating)Example 3. (Nickel foam dip coating)

실시예 1에서 제조한 상기 슬러리를 약 20ml 페트리 디쉬(직경 85 mm, 높이 10mm)에 붓고, 실시예 2에서 준비한 상기 4cm x 4cm의 니켈 발포 폼을 상기 페트리 디쉬 안에 담겨져 있는 슬러리에 1분 동안 침지시키고 즉시 115℃의 오븐에서 120분 동안 건조시켰다. 상기 침지 과정과 건조 과정을 3회 반복하여 비교적 균일한 코딩을 얻었다. The slurry prepared in Example 1 was poured into about 20 ml Petri dish (85 mm diameter, 10 mm height), and the 4 cm x 4 cm nickel foam prepared in Example 2 was immersed in the slurry contained in the Petri dish for 1 minute. And immediately dried in an oven at 115 ° C. for 120 minutes. The immersion process and the drying process were repeated three times to obtain relatively uniform coding.

상기 실시예 1내지 3의 과정을 요약한 이미지를 도1에 도시하였으며, 니켈 발포 폼의 준비 단계 및 코팅 공정의 개략도를 도시하고 있다. The images summarizing the processes of Examples 1 to 3 are shown in FIG. 1, and schematic diagrams of a preparation step and a coating process of the nickel foam are shown.

측정예 1. (유수 분리 실험)Measurement Example 1. (Water separation experiment)

우선 기름과 물을 각각 20ml씩 1:1 부피비로 혼합하여 제조하였다. 이때 사용된 기름은 서로 다른 기름으로 헥산, 콩기름 및 올리브유 등을 사용하여 기름/물 혼합물을 제조하였다. 그리고 상기 실시예 3에서 제조된 니켈 발포 폼을 직경 20mm의 두 개의 유리관 사이에 고정하였다(니켈 발포 폼의 유효 면적,

Figure pat00001
㎡). 상부 유리관에 기름/물 혼합물을 넣고 분리하되, 분리 공정은 기름이 물보다 비중이 낮아 물 위에 위치함으로, 기름과 발포 폼을 접촉시키기 위해 유리관을 기울였다. First, oil and water were prepared by mixing 20 ml each in a 1: 1 volume ratio. At this time, the oil used was hexane, soybean oil, and olive oil as different oils to prepare an oil / water mixture. And the nickel foam prepared in Example 3 was fixed between two glass tubes having a diameter of 20 mm (effective area of the nickel foam),
Figure pat00001
㎡). The oil / water mixture was added to the upper glass tube and separated, but the separation process was performed because the oil had a lower specific gravity than water, so the glass tube was inclined to contact the oil and foam.

분리 효율은 필터에서 기름이 더 이상 떨어지지 않을 때 혼합물의 초기 부피에 대한 잔류 부피의 비율로 계산되며 아래 계산식 1을 사용하여 계산하였다. The separation efficiency was calculated as the ratio of the residual volume to the initial volume of the mixture when the oil no longer drips from the filter and was calculated using Equation 1 below.

[계산식 1] [Calculation formula 1]

Figure pat00002
(1)
Figure pat00002
(One)

여기서 V1은 분리 후의 기름의 부피이고 V0는 분리 전의 초기 부피이다. 고정된 중력 압력 하에서 Flux(F) 측정을 앞서 언급 한 기름에 대해 수행하고 아래 계산식2를 사용하여 계산하였다. Where V 1 is the volume of oil after separation and V 0 is the initial volume before separation. Flux (F) measurements under fixed gravity pressure were performed on the aforementioned oil and calculated using Equation 2 below.

[계산식 2][Calculation formula 2]

Figure pat00003
Figure pat00003

여기서 ΔV는 체적 변화(Liter)이고, Δt 는 시간 변화(hour)이고

Figure pat00004
는 코팅 된 니켈 발포 폼의 유효 면적 (㎡)이다.Where ΔV is the volume change (Liter) and Δt is the time change (hour)
Figure pat00004
Is the effective area (m²) of the coated nickel foam.

코팅 된 니켈 발포 폼이 버틸 수 있는 물의 최대 무게를 나타내는 침입 압력(

Figure pat00005
)은 아래의 계산식 3을 이용하여 계산되었다. Intrusion pressure indicating the maximum weight of water that the coated nickel foam can withstand (
Figure pat00005
) Was calculated using Equation 3 below.

[계산식 3][Calculation formula 3]

Figure pat00006
Figure pat00006

여기서

Figure pat00007
는 물의 밀도, g는 중력의 가속도이며, h는 코팅 된 니켈 발포 폼이 지탱할 수 있는 물의 최대 높이이다. here
Figure pat00007
Is the density of water, g is the acceleration of gravity, and h is the maximum height of water that can be supported by the coated nickel foam.

측정 결과는 도4에 도시하였으며, 계산 결과는 도5에 도시하였다. The measurement results are shown in FIG. 4, and the calculation results are shown in FIG.

도 4를 참조하면 (a)는 코팅 된 Ni 폼을 두 개의 유리 튜브 사이에 고정된 모습이다. (b)는 코팅 된 폼을 물이 통화하지 못하는 장면이다. (c)는 헥산이 코팅 된 폼을 통과 하는 장면이다. (d)는 헥산과 물 혼합물이다. (e)는 콩기름과 물 혼합물이다. (f)는 올리브기름과 물 혼합물이다. (g)는 도 4의(d) 헥산과 물 혼합물이 분리되는 장면이다. (h)는 도 4의 (e) 콩기름과 물 혼합물이 분리되는 장면이다. (i)는 도 4의 (f) 올리브기름과 물 혼합물이 분리되는 장면이다. Referring to Figure 4 (a) is a coated Ni foam is fixed between two glass tubes. (b) is a scene where water does not pass through the coated foam. (c) is a scene where hexane passes through the foam. (d) is a mixture of hexane and water. (e) is a mixture of soybean oil and water. (f) is a mixture of olive oil and water. (g) is a scene in which the mixture of hexane and water in FIG. 4 (d) is separated. (h) is a scene in which (e) soybean oil and water mixture in FIG. 4 are separated. (i) is a scene of (f) olive oil and water mixture of Figure 4 is separated.

도 5를 참조하면 (a)는 기름과 물을 분리할 때, 코팅 된 니켈 발포 폼의 분리 효율을 도시하였다. (b)는 기름과 물 분리 횟수에 따라 코팅 된 니켈 발포 폼의 분리 효율 및 WCA을 도시하였다. (c)는 각기 다른 기름에 대한 코팅 된 니켈 발포 폼의 유량을 도시하였다. 5, (a) shows the separation efficiency of the coated nickel foam when separating oil and water. (b) shows the separation efficiency and WCA of the coated nickel foam according to the number of oil and water separations. (c) shows the flow rate of the coated nickel foam for different oils.

측정예 2. (접촉각, 접촉력, 습윤 에너지 및 확산 계수측정)Measurement example 2. (Measurement of contact angle, contact force, wet energy and diffusion coefficient)

상기 코팅된 니켈 발포 폼의 접촉각, 접촉력, 습윤 에너지 및 확산 계수는 SEO Phoenix 300 touch 접촉각 분석기를 사용하여 측정 및 확인하였다. 그리고 상기 코팅된 니켈 발포 폼은 전계 방출 주사 전사 현미경(Thermal type FE-SEM Hitachi S-5000)을 사용하여 관찰하고, Lumia DMC 1x10 카메라를 사용하여 디지털 이미지를 촬영하였다. The contact angle, contact force, wet energy and diffusion coefficient of the coated nickel foam were measured and confirmed using a SEO Phoenix 300 touch contact angle analyzer. And the coated nickel foam was observed using a field emission scanning transcription microscope (Thermal type FE-SEM Hitachi S-5000), and digital images were taken using a Lumia DMC 1x10 camera.

측정 결과는 아래 표 1과 도2와 도3에 도시하였으며, 표 1에는 PTFE 코팅한 니켈 발포 폼의 습윤 특성을 도시하였다. The measurement results are shown in Tables 1 and 2 and 3 below, and Table 1 shows the wetting properties of the PTFE-coated nickel foam.

PropertyProperty WaterWater HClHCl KOHKOH NaClNaCl HexaneHexane olive oilolive oil Wetting Energy[mNm-1]Wetting Energy [mNm -1 ] -48.32-48.32 -44.38-44.38 -41.39-41.39 -41.57-41.57 76.7976.79 72.0472.04 Spreading Coefficient[mNm-1]Spreading Coefficient [mNm -1 ] -121.12-121.12 -117.18-117.18 -114.19-114.19 -114.37-114.37 -0.69-0.69 -0.76-0.76 Work of Adhesion[mNm-1]Work of Adhesion [mNm -1 ] 24.4824.48 28.4228.42 31.4131.41 31.2331.23 148.15148.15 144.84144.84

상기 표 1을 참조하면, 기름에 대한 습윤 에너지, 퍼짐 계수 및 접착력은 각각 72, -0.76 및 144 mNm-1 이상이었다. 또한 수용액에 대한 습윤 에너지, 퍼짐 계수 및 접착력이 순수한 물은 -48, -121 및 24mNm-1로 가장 낮은 수치를 기록함을 알 수 있었다. 따라서 코팅 된 Ni 폼이 초저수성 친화력을 갖는다는 것을 확인함으로써 역으로 초발수성을 확인하였다.도 2를 참고하면, (a)는 코팅처리 하지 않은 니켈 발포 폼이고, (b)와 (c)는 (a)를 FE-SEM으로 촬영한 이미지이다. (d)는 코팅된 니켈 발포 폼이고, (e)와 (f)는 (d)를 FE-SEM으로 촬영한 이미지이다. (g)는 코팅 된 니켈 발포 폼에 대한 TGA 분석결과이다. Referring to Table 1 above, wetting energy, spreading coefficient, and adhesion to oil were 72, -0.76, and 144 mNm -1 or higher, respectively. In addition, it was found that water having a wet energy, spreading coefficient, and adhesion to an aqueous solution had the lowest values of -48, -121 and 24mNm -1 . Therefore, the superhydrophobicity was confirmed by confirming that the coated Ni foam has an ultra-low water affinity. Referring to FIG. 2, (a) is a nickel foam without coating, and (b) and (c) are (a) is an image taken with FE-SEM. (d) is a coated nickel foam, and (e) and (f) are images of (d) taken with FE-SEM. (g) shows the results of TGA analysis on the coated nickel foam.

그리고 코팅처리 하지 않은 니켈 발포 폼과, 실시예 1내지 3에 따라 코팅한 니켈 발포 폼은 그림 2 (a)와 (d)에서 보여지는 것처럼 코팅 후 니켈 발포 폼의 색이 극적으로 변했음을 확인 할 수 있었다.And the nickel foam without coating, and the nickel foam foam coated according to Examples 1 to 3, as shown in Figures 2 (a) and (d), can be confirmed that the color of the nickel foam changed dramatically after coating. Could.

도 2를 참고하면, (g)는 TGA 결과를 나타내었다. 코팅 된 니켈 발포 폼은

Figure pat00008
가 405 ℃이고
Figure pat00009
가 523 ℃ 이며, 250 ℃ 이하의 온도에서 열 안정성을 나타내었다. R805와 PTFE의 탄화수소 사슬은 연소되어 고온에서의 무게 손실을 보였다. TGA 분석이 대기 중에서 수행되었기 때문에
Figure pat00010
이후, 니켈 발포 폼 표면의 니켈 산화물의 형성으로 인해 백분율 중량이 다시 상승하기 시작하였다.Referring to Figure 2, (g) shows the TGA results. Coated nickel foam
Figure pat00008
Is 405 ℃
Figure pat00009
Is 523 ° C, and showed thermal stability at a temperature of 250 ° C or less. The hydrocarbon chains of R805 and PTFE burned and showed weight loss at high temperatures. Because the TGA analysis was done in the air
Figure pat00010
Thereafter, the percentage weight began to rise again due to the formation of nickel oxide on the surface of the nickel foam.

도 3을 참고하면 (a)는 탈 이온수의 접촉각 이미지이다. (b)는 1M HCl의 접촉각 이미지이다. (c)는 1M KOH의 접촉각 이미지이다. (d)는 1M NaCl의 접촉각 이미지이다(각각 물방울은 21.58 μL). (e)는 코팅 처리한 니켈 발포 폼의 물 및 헥산에 대한 젖음성 테스트결과이다. (f)는 코팅처리 하지 않은 니켈 발포 폼의 물 및 헥산에 대한 젖음성 테스트결과이다. (f)에서 도시한 바와 같이 친 유성 및 친수성 모두 가지고 있었다. 코팅 된 니켈 발포 폼은 헥산 및 올리브 기름의 OCA(oil contact angle)가 모두 0 ° 였다. 도 3 (a) 내지 도 3 (d)에 도시 된 바와 같이, 상이한 수용액에 대한 WCA는 각각 순수한 물, 1M HCl, 1M KOH 및 1M NaCl에 대해 155 °, 153 °, 152 ° 및 152 °이었다. Referring to Figure 3 (a) is a contact angle image of deionized water. (b) is a contact angle image of 1M HCl. (c) is a contact angle image of 1M KOH. (d) is a contact angle image of 1M NaCl (21.58 μL of water droplets each). (e) is a test result of wettability for water and hexane of the coated nickel foam. (f) is the test result of wettability of water and hexane of nickel foam without coating treatment. As shown in (f), it had both lipophilicity and hydrophilicity. The coated nickel foam had both OCA (oil contact angle) of hexane and olive oil at 0 °. 3 (a) to 3 (d), the WCAs for different aqueous solutions were 155 °, 153 °, 152 ° and 152 ° for pure water, 1M HCl, 1M KOH and 1M NaCl, respectively.

도 3의 실험결과를 참조하여 코팅 된 니켈 발포 폼의 초친유성 성질은 다음과 같이 Wenzel equation 에 의해 설명 될 수 있다.The superoleophilic properties of the coated nickel foam with reference to the experimental results in FIG. 3 can be described by the Wenzel equation as follows.

[계산식 4][Calculation formula 4]

Figure pat00011
Figure pat00011

여기서, θc는 거친 기판의 겉보기 WCA, θ0는 고유 평면의 WCA, r은 표면 조도 인자이다. 실험에서 θ0은 113 ° 인 것으로 확인하였다. Wenzel 방정식은 코팅 된 니켈 발포 폼의 표면 거칠기와 낮은 표면 에너지를 증가시킴으로써 폼의 친 유성을 향상시킬 수 있음을 보여준다.Here, θ c is the apparent WCA of the rough substrate, θ 0 is the WCA of the intrinsic plane, and r is the surface roughness factor. In the experiment, θ 0 was confirmed to be 113 °. The Wenzel equation shows that the lipophilicity of the foam can be improved by increasing the surface roughness and low surface energy of the coated nickel foam.

Cassie 모델은 니켈 발포 폼의 초 소수성을 설명하는 데 사용할 수 있습니다. 거칠기와 표면의 낮은 표면 에너지로 인해 물방울은 거친 표면에 침투되어 공기가 물과 거품 사이에 갇혀 공기층을 형성하여 초소수성을 띄게한다. Cassie 방정식은 다음과 같이 나타낼 수 있습니다.Cassie models can be used to illustrate the super hydrophobicity of nickel foam. Due to the roughness and the low surface energy of the surface, water droplets penetrate the rough surface, trapping the air between water and bubbles, forming an air layer, making it superhydrophobic. The Cassie equation can be written as:

[계산식 5][Calculation formula 5]

Figure pat00012
Figure pat00012

여기서

Figure pat00013
는 WCA (155 °),
Figure pat00014
는 평평한 표면의 WCA (113 °),
Figure pat00015
는 표면의 면적 분율이다. 따라서, 더 큰 거칠기 표면에 대해
Figure pat00016
가 감소하면 WCA가 증가한다. 코팅 된 니켈 발포 폼은 표면이 거칠고 WCA가 크기 때문에 상대적으로 작은 면적 분율을 나타냅니다. 이러한 관찰은 코팅이 니켈을 초 흡수성 및 초 소수성으로 만든다는 것을 보여준다.here
Figure pat00013
WCA (155 °),
Figure pat00014
WCA (113 °) on a flat surface,
Figure pat00015
Is the surface area fraction. Thus, for larger roughness surfaces
Figure pat00016
Decreases, WCA increases. Coated nickel foam has a relatively small area fraction due to its rough surface and large WCA. These observations show that the coating makes nickel super absorbent and super hydrophobic.

또한 도 6은 코팅 된 니켈 발포 폼에서의 액체 습윤 공정의 개략도를 도시하여 실시예 1 내지 3의 방법으로 제조된 니켈 발포 폼의 초소수성과 초친유성을 갖는 원리는 나타내었다. In addition, FIG. 6 shows a schematic diagram of a liquid wetting process in a coated nickel foam, showing the principle of superhydrophobicity and superoleophilicity of the nickel foam produced by the methods of Examples 1 to 3.

도 6을 참고하면, (a)는 대기 중에서 침입 압력이 ΔP> 0 인 물이 거품을 통해 침투 할 수 없기 때문에 발포 폼은 초소수성을 나타낸다. (b)는 대기 중에서 침입 압력은 ΔP <0 이므로 기름이 대기의 압력을 견딜 수 없어, 오일이 발포 폼을 통과할 수 있는 초친유성을 나타낸다. (b)에 도시 된 바와 같이 10 사이클 반복 된 분리를 수행한 후에 분리 효율이 약간 감소되었다는 것을 확인하였다. 코팅 된 니켈 발포 폼의 WCA는 싸이클이 증가함에 따라초 소수성에서 소수성으로 감소하였다. 유량은 예상대로 기름 점도가 증가함에 따라 감소했으며, 헥산은 상업용 여과막(20-200 Lm-2h-1)보다 63 배 높은 12525 Lm-2h-1의 매우 높은 유속을 갖고, 대두유는 2191 Lm-2h-1의 유속을 가지며, 마지막으로 가장 낮은 유속을 가진 올리브유는 1860 Lm-2h-1의 가장 낮은 유속을 가졌다. Referring to FIG. 6, (a) shows that the foamed foam exhibits superhydrophobicity because water having an intrusion pressure of ΔP> 0 in the atmosphere cannot penetrate through the foam. In (b), since the intrusion pressure in the atmosphere is ΔP <0, the oil cannot withstand the pressure of the atmosphere, and thus exhibits superoleophilicity in which the oil can pass through the foam. As shown in (b), it was confirmed that the separation efficiency was slightly decreased after 10 cycles of repeated separation were performed. The WCA of the coated nickel foam decreased from super hydrophobic to hydrophobic as the cycle increased. The flow rate decreased as oil viscosity increased as expected, and hexane had a very high flow rate of 12525 Lm -2 h -1 , 63 times higher than that of commercial filtration membranes (20-200 Lm -2 h -1 ), and soybean oil 2191 Lm. -2 it has a flow rate of h -1, olive oil and finally with the lowest flow rate had the lowest flow rate of 1860 Lm -2 h -1.

(c)는 오일 침투 후, 일부 오일은 PTFE, R805 및 PVDF 분자 사이의 간격 사이에 갇힐 수 있고, 침입 압력이 ΔP> 0이기 때문에 발포 폼은 초소수성을 나타내며 물에 견딜 수 있다. 여기서 O는 메니스커스의 구형의 중심이고, O1과 O2는 폼의 횡단면 중심이다.(c) After the oil penetration, some oils can be trapped between the gaps between PTFE, R805 and PVDF molecules, and the foam foam is superhydrophobic and water resistant because the intrusion pressure is ΔP> 0. Where O is the center of the meniscus sphere and O 1 and O 2 are the centers of the cross-section of the foam.

높은 유속은 발포 폼의 높은 다공성뿐만 아니라 코팅 된 발포 폼의 초친수성 및 초친유성에 기인한다.The high flow rate is attributed not only to the high porosity of the foam, but also to the superhydrophilicity and superoleophilicity of the coated foam.

그러나 일반적으로 침투 압력 (ΔP)을 초과하면 기공 바닥이 젖을 수 있다. 이것은 다음과 같이 설명 할 수 있다.However, in general, if the penetration pressure (ΔP) is exceeded, the pore bottom may get wet. This can be explained as follows.

[계산식 6][Calculation formula 6]

Figure pat00017
Figure pat00017

여기서 γ는 표면 장력, R은 반월경 반경, l은 기공의 둘레, θ_A는 기포의 전진 접촉각, A는 기공 면적이다. 계산식 6으로부터, θA> 90 °이면 △ P> 0이기 때문에 어느 정도 침입이 없을 것이다. WCA는 도 3에 도시 된 바와 같이 코팅 된 니켈 발포 폼에서 각기 다른 pH 수용액에 대해> 150 °이었고, 따라서 코팅 된 ?켈 폼은 초소수성이었고, 물은 도 4 (b)에 도시 된 바와 같이 코팅 된 폼을 통과 할 수 없었다. 오일 접촉각 (OCA)은 거의 0 ° 였는데, 이는 ΔP <0이 오일이 니켈 발포 폼을 신속하게 통과 할 수 있다는 것을 의미한다 (그림 4 (c)). 오일이 기공을 통해 침투함에 따라, 코팅 된 폼의 수 성질 때문에 코팅 된 니켈 발포 폼에서 초소수성 및 높은 WCA를 향상시켜 오일을 가두게 된다(그러나 니켈 발포 폼의 기공이 막히지 않을 정도로 충분히 작음). ΔP는 수학 식 3을 사용하여 계산하였으며, 이는 약 7.8 kPa이었고, 이 정도 침입 압력 이하로 코팅 된 발포 폼에는 물이 침투 할 수 없음을 시사한다. Where γ is the surface tension, R is the radius of menstruation, l is the perimeter of the pore, θ_A is the forward contact angle of the bubble, and A is the pore area. From Equation 6, if θ A > 90 °, there will be no intrusion to some extent because Δ P> 0. WCA was> 150 ° for different pH aqueous solutions in the coated nickel foam as shown in Figure 3, thus the coated? Ll foam was superhydrophobic, and the water was coated as shown in Figure 4 (b). Could not pass through the foam. The oil contact angle (OCA) was almost 0 °, which means that ΔP <0 can allow the oil to quickly pass through the nickel foam (Figure 4 (c)). As the oil penetrates through the pores, the water properties of the coated foam improve the superhydrophobicity and high WCA in the coated nickel foam, which confines the oil (but it is small enough that the pores of the nickel foam are not blocked). ΔP was calculated using Equation 3, which was about 7.8 kPa, suggesting that water could not penetrate the foam foam coated below this intrusion pressure.

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. As described above, specific parts of the present invention have been described in detail. For those skilled in the art, this specific technique is only a preferred embodiment, and it is obvious that the scope of the present invention is not limited thereby. something to do. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (16)

폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE)와 소수성 훈증 실리카(hydrophobic fumed silica)를 포함하는 코팅혼합물로 코팅된 초소수성-초친유성 니켈 발포 폼.
A superhydrophobic-superoleophilic nickel foam foam coated with a coating mixture comprising polytetrafluoroethylene (PTFE) and hydrophobic fumed silica.
제1항에 있어서,
상기 코팅혼합물은 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF) 더 포함하는 초소수성-초친유성 니켈 발포 폼.
According to claim 1,
The coating mixture is polyvinylidene fluoride (polyvinylidenefluoride, PVDF) superhydrophobic-superoleophilic nickel foam.
제1항에 있어서,
상기 폴리테트라플루오르에틸렌은 상기 코팅혼합물 100wt% 대비 60wt%인 것을 특징으로 하는 초소수성-초친유성 니켈 발포 폼.
According to claim 1,
The polytetrafluoroethylene is a superhydrophobic-superoleophilic nickel foam, characterized in that the coating mixture is 60wt% compared to 100wt%.
제1항에 있어서,
상기 소수성 훈증 실리카는 표면을 silanol group 처리한 실리카인 것을 특징으로 하는 초소수성-초친유성 니켈 발포 폼.
According to claim 1,
The hydrophobic fumed silica is a superhydrophobic-superoleophilic nickel foam, characterized in that the surface is a silanol group-treated silica.
제1항에 있어서,
상기 코팅혼합물 100wt% 대비 20wt%인 것을 특징으로 하는 초소수성-초친유성 니켈 발포 폼.
According to claim 1,
Superhydrophobic-superoleophilic nickel foam, characterized in that the coating mixture is 20wt% compared to 100wt%.
제2항에 있어서,
상기 폴리비닐리덴플루오라이드는 DMSO에 8wt% 용해되어 있는 것을 특징으로 하는 초소수성-초친유성 니켈 발포 폼.
According to claim 2,
The polyvinylidene fluoride is a superhydrophobic-superoleophilic nickel foam, characterized in that 8wt% dissolved in DMSO.
제1항에 있어서,
상기 니켈 발포 폼은 다공성이고,
상기 다공성은 상호 연결된 3차원 구조를 특징으로 하는 초소수성-초친유성 니켈 발포 폼.
According to claim 1,
The nickel foam is porous,
The porosity is a superhydrophobic-superoleophilic nickel foam, characterized by an interconnected three-dimensional structure.
제1항에 있어서,
상기 니켈 발포 폼은 침입 압력이 7.5 내지 8.0 kPa인 것을 특징으로 하는 초소수성-초친유성 니켈 발포 폼.
According to claim 1,
The nickel foam is a superhydrophobic-superoleophilic nickel foam, characterized in that the intrusion pressure is 7.5 to 8.0 kPa.
초소수성-초친유성 발포 폼에 있어서,
슬러리를 제조하는 단계;
상기 슬러리로 코팅 할 니켈 발포 폼을 준비하는 단계 및
상기 니켈 발포 폼을 상기 슬러리에 딥 코팅하는 단계를 포합하는 초소수성-초친유성 니켈 발포 폼 제조방법.
In the superhydrophobic-superoleophilic foam,
Preparing a slurry;
Preparing a nickel foam to be coated with the slurry and
A method of manufacturing a superhydrophobic-superoleophilic nickel foam that includes dipping the nickel foam into the slurry.
제9항에 있어서,
상기 슬러리는 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE)과 소수성 훈증 실리카(hydrophobic fumed silica) 및 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF)를 포함하는 초소수성-초친유성 니켈 발포 폼 제조방법.
The method of claim 9,
The slurry is polytetrafluoroethylene (polytetrafluoroethylene, PTFE) and hydrophobic fumed silica (hydrophobic fumed silica) and polyvinylidene fluoride (polyvinylidenefluoride, PVDF) superhydrophobic-super lipophilic nickel foam production method.
제10항에 있어서,
상기 폴리테트라플루오르에틸렌(polytetrafluoroethylene, PTFE)과 소수성 훈증 실리카(hydrophobic fumed silica) 및 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF)의 혼합비는 60 : 20:20 wt% 중량비인 것을 특징으로 하는 초소수성-초친유성 니켈 발포 폼 제조방법.
The method of claim 10,
The polytetrafluoroethylene (polytetrafluoroethylene, PTFE) and hydrophobic fumed silica (hydrophobic fumed silica) and polyvinylidene fluoride (polyvinylidenefluoride, PVDF) mixing ratio of 60: 20: 20 wt% superhydrophobic-chochin characterized in that the weight ratio Method for manufacturing oily nickel foam.
제10항에 있어서,
상기 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF)는 DMSO에 8wt% 용해되어 있는 것을 특징으로 하는 초소수성-초친유성 니켈 발포 폼 제조방법.
The method of claim 10,
The polyvinylidene fluoride (polyvinylidenefluoride, PVDF) is a superhydrophobic-superoleophilic nickel foam manufacturing method characterized in that 8wt% dissolved in DMSO.
제9항에 있어서,
상기 슬러리를 제조하는 단계는 볼 분쇄를 더 포함하는 초소수성-초친유성 니켈 발포 폼 제조방법.
The method of claim 9,
The manufacturing method of the slurry further comprises a super-hydrophobic-superoleophilic nickel foam foam manufacturing method further comprising ball grinding.
제9항에 있어서,
상기 니켈 발포 폼은 기공 크기가 250 내지 450 μm로 불균일한 다공성 구조이고,
상기 다공성 구조는 상호 연결된 3차원 구조인 것을 특징으로 하는 초소수성-초친유성 니켈 발포 폼 제조방법.
The method of claim 9,
The nickel foam has a non-uniform porous structure with a pore size of 250 to 450 μm,
The porous structure is a superhydrophobic-superoleophilic nickel foam production method characterized in that the interconnected three-dimensional structure.
제9항에 있어서,
상기 니켈 발포 폼을 준비하는 단계는,
니켈 발포 폼을 아세톤에서 초음파 세척하는 단계;
상기 초음파 세척된 니켈 발포 폼을 HCl 용액에서 초음파 에칭하는 단계 및
건조시키는 단계를 더 포함하는 초소수성-초친유성 니켈 발포 폼 제조방법.
The method of claim 9,
The step of preparing the nickel foam,
Ultrasonic cleaning the nickel foam in acetone;
Ultrasonically etching the ultrasonically cleaned nickel foam in an HCl solution, and
A method of producing a superhydrophobic-superoleophilic nickel foam, further comprising drying.
제9항에 있어서,
상기 딥 코팅하는 단계는,
상기 슬러리에 상기 니켈 발포 폼을 침지하는 단계 및
상기 침지한 니켈 발포 폼을 오븐에서 건조시키는 단계를 3회 반복하는 것을 특징으로 하는 초소수성-초친유성 니켈 발포 폼 제조방법.
The method of claim 9,
The dip coating step,
Immersing the nickel foam in the slurry, and
A method of manufacturing a superhydrophobic-superoleophilic nickel foam, characterized in that the step of drying the immersed nickel foam in an oven is repeated three times.
KR1020180116189A 2018-09-28 2018-09-28 Superhydrophobic - superoleophilic nickel foams and method for making same KR102177314B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180116189A KR102177314B1 (en) 2018-09-28 2018-09-28 Superhydrophobic - superoleophilic nickel foams and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180116189A KR102177314B1 (en) 2018-09-28 2018-09-28 Superhydrophobic - superoleophilic nickel foams and method for making same

Publications (2)

Publication Number Publication Date
KR20200036492A true KR20200036492A (en) 2020-04-07
KR102177314B1 KR102177314B1 (en) 2020-11-10

Family

ID=70290765

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180116189A KR102177314B1 (en) 2018-09-28 2018-09-28 Superhydrophobic - superoleophilic nickel foams and method for making same

Country Status (1)

Country Link
KR (1) KR102177314B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113521884A (en) * 2021-06-30 2021-10-22 中海油能源发展股份有限公司 Cylindrical oil-water separation filter element, assembly, preparation method and application thereof
CN116102928A (en) * 2023-02-15 2023-05-12 三峡大学 Preparation method of radiation refrigeration coating with superhydrophobic performance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140053127A (en) * 2011-07-28 2014-05-07 킴벌리-클라크 월드와이드, 인크. Superhydrophobic surfaces
CN105879429A (en) * 2016-05-19 2016-08-24 东北石油大学 Novel oil-water separation material and application method thereof
KR20160137812A (en) * 2015-05-22 2016-12-01 단국대학교 산학협력단 Method of fabricating sponge having superhydrophobic and superoleophilic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140053127A (en) * 2011-07-28 2014-05-07 킴벌리-클라크 월드와이드, 인크. Superhydrophobic surfaces
KR20160137812A (en) * 2015-05-22 2016-12-01 단국대학교 산학협력단 Method of fabricating sponge having superhydrophobic and superoleophilic
CN105879429A (en) * 2016-05-19 2016-08-24 东北石油大学 Novel oil-water separation material and application method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. S. K. Kumar, S. S. Kakan, and N. Rajesh, A novel amine impregnated graphene oxide adsorbent for the removal of hexavalent chromium, Chem. Eng. J., 230 (2013) 328-337.
G. Kwon, E. Post, A. Tuteja, Membranes with selective wettability for the separation of oil/water mixtures, MRS Communications, 5 (2015) 475-494.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113521884A (en) * 2021-06-30 2021-10-22 中海油能源发展股份有限公司 Cylindrical oil-water separation filter element, assembly, preparation method and application thereof
CN116102928A (en) * 2023-02-15 2023-05-12 三峡大学 Preparation method of radiation refrigeration coating with superhydrophobic performance
CN116102928B (en) * 2023-02-15 2024-03-12 三峡大学 Preparation method of radiation refrigeration coating with superhydrophobic performance

Also Published As

Publication number Publication date
KR102177314B1 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
Gupta et al. Directional fluid gating by janus membranes with heterogeneous wetting properties for selective oil–water separation
Li et al. The role of electrode wettability in electrochemical reduction of carbon dioxide
Cortese et al. Superhydrophobic fabrics for oil–water separation through a diamond like carbon (DLC) coating
Hu et al. Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation
Ma et al. Electrospun fibers for oil–water separation
Wang et al. A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation
Li et al. Facile immobilization of Ag nanocluster on nanofibrous membrane for oil/water separation
Eum et al. Superhydrophobic and superoleophilic nickel foam for oil/water separation
Wu et al. Continuous oil–water separation with surface modified sponge for cleanup of oil spills
Zhang et al. One-step method for fabrication of superhydrophobic and superoleophilic surface for water-oil separation
US10940438B2 (en) Omniphobic membranes and application thereof
JPH04507112A (en) Composite molded products, their applications and manufacturing methods
KR102177314B1 (en) Superhydrophobic - superoleophilic nickel foams and method for making same
Fan et al. A facile strategy towards developing amphiphobic polysulfone membrane with double Re-entrant structure for membrane distillation
Zhang et al. Facile fabrication of zinc oxide coated superhydrophobic and superoleophilic meshes for efficient oil/water separation
Li et al. Superwetting pH-responsive polyaniline coatings: toward versatile separation of complex oil–water mixtures
EP3337859A1 (en) Liquid-repellent coatings
Qin et al. High-performance oil-water separation polytetrafluoroethylene membranes prepared by picosecond laser direct ablation and drilling
Chen et al. Facile fabrication of a robust superwetting three-dimensional (3D) nickel foam for oil/water separation
Wang et al. Enabling phase transition of infused lubricant in porous structure for exceptional oil/water separation
CN109173346B (en) Oil-water separation membrane with smooth surface
Satilmis et al. Superhydrophobic hexamethylene diisocyanate modified hydrolyzed polymers of intrinsic microporosity electrospun ultrafine fibrous membrane for the adsorption of organic compounds and oil/water separation
CN111530126B (en) Preparation method and application of super-hydrophobic foam iron
Zhu et al. Sprayed superamphiphilic copper foams for long term recoverable oil-water separation
Sutar et al. Efficient separation of oil-water emulsions: competent design of superwetting materials for practical applications

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant