KR20200034465A - graphene quantum dots-semiconducting oxide-carbon nanofiber composite photocatalyst manufacturing method - Google Patents

graphene quantum dots-semiconducting oxide-carbon nanofiber composite photocatalyst manufacturing method Download PDF

Info

Publication number
KR20200034465A
KR20200034465A KR1020180114279A KR20180114279A KR20200034465A KR 20200034465 A KR20200034465 A KR 20200034465A KR 1020180114279 A KR1020180114279 A KR 1020180114279A KR 20180114279 A KR20180114279 A KR 20180114279A KR 20200034465 A KR20200034465 A KR 20200034465A
Authority
KR
South Korea
Prior art keywords
graphene quantum
titanium dioxide
gqds
tio2
carbon
Prior art date
Application number
KR1020180114279A
Other languages
Korean (ko)
Inventor
황숙현
전민현
조형호
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Priority to KR1020180114279A priority Critical patent/KR20200034465A/en
Publication of KR20200034465A publication Critical patent/KR20200034465A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • B01J35/004
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J35/0006
    • B01J35/06
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

The present invention includes graphene quantum dots (GQDs)-semiconducting oxide-carbon nanofiber. The present invention includes: an oxidation step of performing oxidation by primarily heating a pan; a GQDs and titanium dioxide (TiO_2) attachment step of attaching GQDs and TiO_2; and a heat treatment step of performing heat treatment by secondary heating. The present invention minimizes loss of a photocatalytic amount by preventing the separation of GQDs and TiO_2 particles from carbon nanofibers as polyacrylonitrile (PAN) is carbonized and results in an amorphous carbon film during a heat treatment process. The present invention has a remarkable effect of being used in various industrial sites and everyday life such as decomposition of bacteria such as antibacterial, sterilization, and deodorization under outdoor sunlight and indoor fluorescent lamps, decomposition of non-degradable chemicals, antibacterial tiles, air purifiers, lighting equipment, water and sewage treatment, water treatment such as ballast water treatment, carbon dioxide conversion, etc.

Description

그래핀양자점-산화물반도체-탄소나노섬유 복합 광촉매 제조방법 {graphene quantum dots-semiconducting oxide-carbon nanofiber composite photocatalyst manufacturing method}Graphene quantum dots-oxide semiconductor-carbon nanofiber composite photocatalyst manufacturing method {graphene quantum dots-semiconducting oxide-carbon nanofiber composite photocatalyst manufacturing method}

본 발명은 그래핀양자점(graphene quantum dots, GQDs)-산화물반도체(semiconducting oxide)-탄소나노섬유(carbon nanofiber) 복합 광촉매 제조방법에 관한 것으로, 보다 구체적으로는 그래핀양자점-산화물반도체-탄소나노섬유로 이루어져 가시광선 영역의 실내용 인공광원에서 높은 광촉매활성을 갖는 복합 광촉매 제조방법에 관한 것이다.The present invention relates to a graphene quantum dots (GQDs) -semiconducting oxide-carbon nanofiber composite photocatalyst manufacturing method, and more specifically, graphene quantum dots-oxide semiconductor-carbon nanofiber It consists of a method for manufacturing a composite photocatalyst having high photocatalytic activity in an artificial light source for indoor use in the visible light region.

일반적으로 광촉매는 "빛을 조사하였을 때 자신의 상태는 그대로 유지한 채 반응 속도를 빠르게 하거나 느리게 하는 물질"로서, ZnO, WO3, SnO2, ZrO2, TiO2, CdS 등과 같은 반도체성 금속 산화물이나 황 화합물이 이용된다.In general, a photocatalyst is a substance that accelerates or slows the reaction rate while maintaining its state when irradiated with light. As a result, semiconductor metal oxides or sulfur compounds such as ZnO, WO3, SnO2, ZrO2, TiO2, CdS, etc. Is used.

광촉매 소재로 활용되기 위해서는 다음과 같은 조건을 만족시켜야 한다. (1)광촉매는 광학적으로 활성이 있으면서도 광부식이 없는 물질이어야 한다. (2)빛 외에는 반응하지 않는 물질로 내구성이 뛰어나고 화학적,생물학적으로 비활성인 물질이 유리하다. (3)가시광선이나 자외선 영역의 빛 등 다양한 종류의 빛을 이용할 수 있는 물질이어야 한다.In order to be used as a photocatalyst material, the following conditions must be satisfied. (1) The photocatalyst should be a material that is optically active and has no photocorrosion. (2) As a material that does not react except light, a material having excellent durability and chemically and biologically inactive is advantageous. (3) It should be a material that can use various types of light, such as visible light or ultraviolet light.

위의 조건을 고려해보았을 때 광촉매로써 가장 적합한 물질로 현재 티타늄디옥사이드(titanium dioxide, TiO2)가 가장 많이 상용되고 있다.Considering the above conditions, titanium dioxide (TiO2) is the most commonly used material as a photocatalyst.

티타늄디옥사이드(titanium dioxide, TiO2)는 온도에 따라 다른 결정 구조를 가지며, 일반적으로 루틸(rutile)과 아나타제(anatase) 형태로 존재한다.Titanium dioxide (Titanium dioxide, TiO2) has a different crystal structure depending on the temperature, and is generally present in the form of rutile and anatase.

티타늄디옥사이드(titanium dioxide, TiO2), 아나타제(anatase), 루틸(rutile) 모두 광촉매이다. 티타늄디옥사이드(titanium dioxide, TiO2), 루틸(rutile)에서 가시광영역에서는 효율이 낮아 티타늄디옥사이드(titanium dioxide, TiO2) 광촉매에서 아나타제(anatase)가 루틸(rutile)에 비해 상대적으로 (1)작은 유효질량에 따른 높은 전하 이동도, (2)작은 결정립 크기, (3)긴 전하 수명, (4)높은 전도대 바닥(conduction band bottom) 위치 등의 장점을 가지고 있어 자외선 광원에서 높은 광촉매 활성 효과를 나타낸다고 알려져 있다.Titanium dioxide (TiO2), anatase, and rutile are all photocatalysts. In titanium dioxide (Titanium dioxide, TiO2) and rutile, the efficiency is low in the visible light region, so in the titanium dioxide (TiO2) photocatalyst, anatase (1) has a relatively small effective mass compared to rutile. It is known to exhibit high photocatalytic activity in ultraviolet light sources due to its advantages such as high charge mobility, (2) small grain size, (3) long charge life, and (4) high conduction band bottom position.

현재 티타늄디옥사이드(titanium dioxide, TiO2)의 광촉매 효율은 티타늄디옥사이드(titanium dioxide, TiO2) 분말의 종류 및 입도, 분해물질, 조건 등에 따라 달라지기 때문에 객관적인 비교수치는 나와 있지 않으며, 단지 루틸(rutile) (Eg=3.0 eV)보다 더 많은 에너지를 흡수할 수 있는 아나타제(anatase) (Eg=3.2 eV)가 광촉매 활성이 높은 것으로 나타나 있을 뿐이다. 그러나 두 상이 혼합된 경우에는 아직 확립된 결과가 나오지 않은 상태이다. 많은 연구자들의 연구에 따라 100% 아나타제(anatase) 보다는 루틸(rutile)이 섞인 것이 효율이 좋다는 연구(P25-graphene composite as a high performance photocatalyst, Hao Zhang, et al., ACS Nano 4 (2010) 380-386.)가보고 되었으며, 루틸(rutile)을 단독으로 사용하였을 때에도 광촉매 효과가 나타나는 것을 보여주는 연구 결과(TiO2 광촉매 활성에서 rutile 구조의 영향, 김승민, 윤태관, 홍대일, Journal of the Korean Chemical Society, 49 (6) (2005) 567-574)도 있다. 현재 가장 광분해 효율이 좋다고 알려진 티타늄디옥사이드(titanium dioxide, TiO2)는 Degussa사의 P-25 라는 제품으로, 70% 아나타제(anatase)와 30% 루틸(rutile)이 섞인 혼합상의 형태이다.Currently, the photocatalytic efficiency of titanium dioxide (Titanium dioxide, TiO2) varies depending on the type and particle size of the titanium dioxide (Titanium dioxide (TiO2) powder, decomposition products, conditions, etc., so there is no objective comparative value, only rutile ( Only anatase (Eg = 3.2 eV), which can absorb more energy than Eg = 3.0 eV), is shown to have high photocatalytic activity. However, when the two phases are mixed, no established results have been obtained. According to the research of many researchers, it is more efficient to mix rutile than 100% anatase (P25-graphene composite as a high performance photocatalyst, Hao Zhang, et al., ACS Nano 4 (2010) 380- 386.) has been reported, and studies showing that the photocatalytic effect appears even when rutile is used alone (influence of rutile structure in TiO2 photocatalytic activity, Seungmin Kim, Tae-Kwan Yoon, Daeil Hong, Journal of the Korean Chemical Society, 49 ( 6) (2005) 567-574). Titanium dioxide (TiO2), which is currently known to have the best photodegradation efficiency, is a product of Degussa P-25, which is a mixed phase mixture of 70% anatase and 30% rutile.

특히 자외선이 주 에너지가 되는 티타늄디옥사이드(titanium dioxide, TiO2) 광촉매에 있어서 실외 항균, 방오 등의 목적으로 광촉매 사용시 태양광에 포함된 극히 일부분의 자외선만을 이용하여야 한다는 제한이 있고, 기상변화에 따라 자외선 양이 일정하지 않는 단점을 갖는다. 또한 실내 공기정화 또는 유기화합물 분해 등으로 티타늄디옥사이드(titanium dioxide, TiO2) 광촉매 사용시, 일반적으로 사용되는 형광등은 자외선의 발생을 억제하기 때문에 자외선을 공급해 줄 수 있는 광원이 반드시 필요한 실정이다. 그러므로 태양광 또는 가시광을 효과적으로 이용하여 광촉매의 고유 특성인 방오, 항균, 오염물질 분해 초친수(superhydrophilicity) 등의 성능을 향상시키기 위한 연구와 이를 통한 가시광 응답형 광촉매의 실용화가 절실히 필요한 실정이다.In particular, in titanium dioxide (TiO2) photocatalyst, where UV is the main energy, when using a photocatalyst for the purpose of outdoor antibacterial and antifouling, there is a limitation that only a small portion of ultraviolet rays contained in sunlight should be used. It has the disadvantage that the amount is not constant. In addition, when using titanium dioxide (TiO2) photocatalyst for indoor air purification or decomposition of organic compounds, the fluorescent light generally used suppresses the generation of ultraviolet light, so a light source capable of supplying ultraviolet light is essential. Therefore, there is an urgent need for research to improve the performance of anti-fouling, antibacterial, and pollutant decomposition superhydrophilicities, which are the unique properties of photocatalysts, by effectively using sunlight or visible light, and thus to make practical use of visible light-responsive photocatalysts.

가시광 반응형 티타늄디옥사이드(titanium dioxide, TiO2) 광촉매는 금속 원소를 도핑하여 얻을 수 있는데,이를 위한 대표적인 두가지 방법의 장단점은 다음과 같다. (1) 졸-겔 법(Sol-gel method): 상업적인 광촉매 제조방법으로 널리 이용되는 방법 중의 하나로 출발원료에 다양한 금속 또는 귀금속 원소의 도핑이 용이하나 이종원소 도핑에 따른 격자간 뒤틀림 공공등과 같은 격자 결함을 새로이 생성하며 이러한 결함은 결과적으로 광촉매 분말의 성능을 저해시키는 원인으로 작용하게 된다. (2) 이온주입법(ion implantation method): 금속원소의 물리적인 주입으로 광촉매의 활성을 가시광 영역으로 크게 이동시킬 수 있지만 분말 또는 박막형성 후 이온을 주입하기 위한 2차공정과 장비가 필요하고 이에 따른 비싼 가격에 의해 실용화가 되기 어렵다. The visible light-reactive titanium dioxide (TiO2) photocatalyst can be obtained by doping a metal element, and the pros and cons of two representative methods for this are as follows. (1) Sol-gel method (Sol-gel method): one of the methods widely used as a commercial photocatalyst manufacturing method. It is easy to do various metal or noble metal elements into the starting material, but it is easy to do different elements, such as interstitial warping due to doping of different elements. New lattice defects are generated, and these defects consequently act as a cause of impairing the performance of the photocatalyst powder. (2) Ion implantation method: Physical implantation of a metal element can greatly shift the activity of a photocatalyst into the visible light region, but a secondary process and equipment for implanting ions after powder or thin film formation are required. It is difficult to commercialize due to the high price.

티타늄디옥사이드(titanium dioxide, TiO2)는 자외선을 촉매반응의 에너지원으로 사용하므로 자외선을 투과할 수 없는 거대입자의 경우 촉매 성능 저하의 원인이 될 수 있기 때문에 티타늄디옥사이드(titanium dioxide, TiO2)의 형태 및 크기를 제어하는 기술이 요구된다. 게다가 열공정 조건에 따라 아나타제(anatase)에서 루틸(rutile)로 비가역적 상전이가 일어나게 되어 광촉매 활성에 영향을 미치게 된다. 또한, 금속/비금속 도핑을 하여 티타늄디옥사이드(titanium dioxide, TiO2)의 띠 간격에너지(bandgap energy)를 줄여 가시광 흡수율을 높일 수 있으나, 촉매의 열적 안정성이 떨어져 전자-정공 재결합 속도(electron-hole recombination rate)를 촉진시켜 순수한 티타늄디옥사이드(titanium dioxide, TiO2)에 비해 오히려 활성이 저하된다.Since titanium dioxide (TiO2) uses ultraviolet rays as an energy source for catalytic reactions, the shape of titanium dioxide (TiO2) and A technique for controlling size is required. In addition, irreversible phase transition from anatase to rutile occurs depending on the thermal process conditions, which affects the photocatalytic activity. In addition, it is possible to increase the visible light absorption rate by reducing the bandgap energy of titanium dioxide (Titanium dioxide, TiO2) by doping with metal / nonmetal, but the thermal stability of the catalyst decreases and the electron-hole recombination rate ), And the activity is lowered compared to pure titanium dioxide (TiO2).

티타늄디옥사이드(titanium dioxide, TiO2)는 낮은 흡광도를 가지고 있어 이에 따라 촉매 특성이 저하될 수 있다. 따라서 이를 해결하기 위한 수단으로 높은 흡광도를 가지는 물질과의 결합을 통하여 티타늄디옥사이드(titanium dioxide, TiO2)의 흡광도를 높이는 기술이 요구된다.Titanium dioxide (Titanium dioxide, TiO2) has a low absorbance and thus the catalyst properties may be deteriorated. Therefore, a technique for increasing the absorbance of titanium dioxide (TiO2) through a combination with a material having a high absorbance as a means to solve this is required.

탄소나노섬유(carbon nanofibers, CNFs)는 90% 이상의 탄소원소 질량 함유율을 보유하면서 수백 nm 굵기를 갖는 섬유상의 탄소재료를 지칭하는 것으로 비표면적이 크고, 작은 세공을 이용한 흡착특성이 뛰어나며, 탄소원소의 sp, sp2, sp3의 혼성 결합에 의한 높은 기계적 강도, 우수한 열/전기 전도성, 화학적 안정성 및 생체친화적인 특성을 바탕으로 에너지 저장 및 변환재료(이차전지 전극재료, 슈퍼캐패시터 전극재료, 직접 메탄올 연료전지 촉매 지지체, 염료감응형 태양전지 촉매), 센서, 생체재료, 수 처리 필터, 분리막 등 보다 넒은 응용분야로 그 쓰임이 촉진되어 향후 수요 증가가 예상되고 있다.Carbon nanofibers (CNFs) refers to a fibrous carbon material having a mass content of more than 90% and having a thickness of several hundred nm, and has a large specific surface area, excellent adsorption properties using small pores, and Energy storage and conversion material (secondary battery electrode material, supercapacitor electrode material, direct methanol fuel cell) based on high mechanical strength, excellent thermal / electrical conductivity, chemical stability and bio-friendly properties by sp, sp2, sp3 hybrid bonding Catalyst support, dye-sensitized solar cell catalysts), sensors, biomaterials, water treatment filters, separators, etc. are used in a wider range of applications.

최근 많은 연구그룹에서 티타늄디옥사이드(titanium dioxide, TiO2)를 졸-겔 방법으로 탄소나노섬유 표면에 증착하거나(Preparation of titanium dioxide nanoparticles immobilized on polyacrylonitrile nanofibers for the photodegradation of methyl orange, International Journal of Photoenergy, 2016 (2016) Article ID9 page), 탄소나노섬유의 전구체인 폴리아크릴로니트릴(polyacrylonitrile, PAN)로 티타늄디옥사이드(titanium dioxide, TiO2)의 표면처리(TIO2/cyclized polyacrylonitrile hybridized nanocomposite: An efficient visible-light photocatalyst prepared by a facile "in situ" approach, Qingzhi Luo, et al., Materials Science and Engineering B 199 (2015) 96-104)를 하거나, 전기방사(electrospinning)(Electrospinning of PAN/DMF/H2O containing TiO2 and photocatalytic activity of theirwebs, Chureerat Prahsarn, et al., Materials Letters 65 (2011) 2498-2501.)하여 복합체를 만들어 가시광 활성 광촉매로 연구하고 있다.Many recent research groups have deposited titanium dioxide (TiO2) on the surface of carbon nanofibers using a sol-gel method (Preparation of titanium dioxide nanoparticles immobilized on polyacrylonitrile nanofibers for the photodegradation of methyl orange, International Journal of Photoenergy, 2016 ( 2016) Article ID9 page), surface treatment of titanium dioxide (TiO2) with polyacrylonitrile (PAN), a precursor to carbon nanofibers (TIO2 / cyclized polyacrylonitrile hybridized nanocomposite: An efficient visible-light photocatalyst prepared by a facile "in situ" approach, Qingzhi Luo, et al., Materials Science and Engineering B 199 (2015) 96-104), or electrospinning (Electrospinning of PAN / DMF / H2O containing TiO2 and photocatalytic activity of Theirwebs, Chureerat Prahsarn, et al., Materials Letters 65 (2011) 2498-2501.) are making complexes and researching them as visible light active photocatalysts. All.

종래기술로써 등록특허공보 등록번호 제10-1334294호의 광촉매-그래핀-탄소나노섬유복합체 및 상기 복합체를 포함하는 필터에 의하면, 우수한 전기적 성질과 높은 비표면적을 갖는 그래핀의 장점을 이용하여 가시광에 반응하는 광촉매를 제작하였다. 실험으로 그래핀은 폴리아크릴로니트릴(polyacrylonitrile, PAN)과 함께 전계방사(electrospinning)한 후 탄화시켜 탄소나노섬유로 제작하였고, 탄소나노섬유의 표면에 증착된 티타늄디옥사이드(titanium dioxide, TiO2)는 아나타제(anatase) : 루틸(rutile) = 1 : 1의 비율로 혼재되어 있다. 이 때, 그래핀은 광촉매 입자가 탄소나노섬유 표면에 도포될 때 나노크기로 균일하게 형성시켜 자외선 영역뿐만 아니라 가시광선 영역에서도 높은 광촉매 활성을 보인다고 기술하고 있다.According to the filter comprising the photocatalyst-graphene-carbon nanofiber composite and the composite of the registered patent publication No. 10-1334294 as a prior art, in the visible light using the advantages of graphene having excellent electrical properties and high specific surface area A reactive photocatalyst was prepared. As an experiment, graphene was made of carbon nanofibers by carbonization after electrospinning with polyacrylonitrile (PAN), and titanium dioxide (TiO2) deposited on the surface of the carbon nanofibers was an anatase. (anatase): Rutile = 1: 1 is mixed. At this time, graphene is described that it shows high photocatalytic activity in the visible region as well as in the ultraviolet region by uniformly forming nano-scale when photocatalyst particles are applied to the surface of carbon nanofibers.

그러나, 티타늄디옥사이드(titanium dioxide, TiO2)-폴리아크릴로니트릴(polyacrylonitrile, PAN) 혼합액을 동시에 전기방사할 경우 티타늄디옥사이드(titanium dioxide, TiO2)가 폴리아크릴로니트릴(polyacrylonitrile, PAN) 섬유에 묻혀 광 흡수 유효 표면적이 감소하게 되며, 졸-겔 방법으로 제조된 광촉매는 입도가 작고 화학적 균일도가 크다는 장점이 있는 반면 공정에 따른 고비용이 단점으로 지적된다. 또한 광 여기로 형성된 전자 및 정공을 전기전도도가 높은 그래핀을 통해 이동, 분리시켜 전자-정공의 재결합을 막아 효율을 증가시키는 방법이지만 여전히 가시광 영역의 광 흡수율을 증가시킬 수 있는 좁은 밴드갭을 가지는 광촉매의 적용이 요구된다.However, when titanium dioxide (TiO2) -polyacrylonitrile (PAN) mixture is electrospun simultaneously, titanium dioxide (TiO2) is embedded in polyacrylonitrile (PAN) fiber to absorb light. The effective surface area is reduced, and the photocatalyst prepared by the sol-gel method has the advantage of small particle size and high chemical uniformity, while high cost according to the process is pointed out as a disadvantage. Also, it is a method to increase the efficiency by preventing electron-hole recombination by moving and separating electrons and holes formed by light excitation through graphene with high electrical conductivity, but it still has a narrow band gap that can increase the light absorption in the visible region. Application of photocatalyst is required.

그래핀양자점(graphene quantum dots, GQDs)은 수 나노미터(nm) 크기의 그래핀 입자로 값싸고 안전한 재료로 이용할 뿐만 아니라 생체적합성과 안정성을 두루 갖추고 있어 최근 다양한 분야에서 연구되고 있다.(Synthesis and properties of photoluminescent carbon quantum dot/polyacrylonitrile composite nanofibers, Smart Science (2017) DOI: 10.1080/23080477.2017.1399318.). 그래핀양자점(graphene quantum dots, GQDs)의 크기 및 표면 상태에 따라 띠 간격에너지(bandgap)를 조절할 수 있어 가시광원을 사용하는 광촉매 분야에서 주목하는 소재이다.Graphene quantum dots (GQDs) are graphene particles of several nanometers (nm) in size, and are used as cheap and safe materials, as well as have biocompatibility and stability, and have been studied in various fields in recent years (Synthesis and properties of photoluminescent carbon quantum dot / polyacrylonitrile composite nanofibers, Smart Science (2017) DOI: 10.1080 / 23080477.2017.1399318.). Graphene quantum dots (GQDs) can be controlled according to the size and surface condition of the bandgap energy (bandgap), so it is a material of interest in the photocatalytic field using a visible light source.

그래핀양자점(graphene quantum dots, GQDs)-티타늄디옥사이드(titanium dioxide, TiO2)가 적용된 가시광 활성 광촉매에 대한 연구가 다양하게 이루어지고 있으나 대부분 아나타제(anatase)에 대한 연구(Quantum-confined bandgap narrowing of TiO2 nanoparticles by graphene quantum dots for visible-light-driven applications, Chem. Commun., 52 (2016) 9208-9211.이)며, 최근에 와서야 루틸(rutile) TiO2가 적용된 광촉매 연구(Surface disordered 루틸(rutile) TiO2-graphene quantum dot hybrids: a new multifunctional material with superior photocatalytic and biofilm eradication properties, A. Biswas, et al., J. Chem. 41 (2017) 2642-2657.)가 이루어지고 있으나 아직 많이 부족한 실정이다.Graphene quantum dots (GQDs) -titanium dioxide (TiO2) -applied visible light-activated photocatalysts have been variously studied, but most have been studied with anatase (Quantum-confined bandgap narrowing of TiO2 nanoparticles by graphene quantum dots for visible-light-driven applications, Chem. Commun., 52 (2016) 9208-9211.), and recently only a photocatalytic study with rutile TiO2 applied (Surface disordered rutile TiO2) -graphene quantum dot hybrids: a new multifunctional material with superior photocatalytic and biofilm eradication properties, A. Biswas, et al., J. Chem. 41 (2017) 2642-2657.), but still lacking.

따라서 본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로, 본 발명의 목적은 가시광 촉매 활성이 우수한 광촉매용 그래핀양자점(graphene quantum dots, GQDs)-산화물반도체(semiconducting oxide)-탄소나노섬유(carbon nanofiber) 복합체를 제작하는데 있다.Therefore, the present invention has been devised to solve the above problems, and the object of the present invention is graphene quantum dots (GQDs) for photocatalysts having excellent visible light catalytic activity-semiconducting oxide-carbon nanofibers (carbon). nanofiber) complex.

또한, 아나타제(anatase)에 비해 광촉매 효율이 낮은 루틸(rutile)을 이용하여 탄소나노섬유, 그래핀양자점 등의 탄소소재를 통해 광촉매 활성의 반응속도를 증가시킨 그래핀양자점-루틸형 티타늄디옥사이드(rutile titanium dioxide)-탄소나노섬유 복합체를 포함하는 광촉매를 제공한다.In addition, graphene quantum dots-rutile-type titanium dioxide (rutile) which increased the reaction rate of photocatalytic activity through carbon materials such as carbon nanofibers and graphene quantum dots using rutile, which has lower photocatalytic efficiency than anatase titanium dioxide) -to provide a photocatalyst comprising a carbon nanofiber composite.

또한, 광촉매 입자의 응집효과를 최소화하고, 광흡수율(rutile+GQDs>anatase+GQDs)을 높이며, 가시광선 영역의 빛을 흡수할 수 있는 광촉매 제조방법을 제공한다.In addition, it provides a method for manufacturing a photocatalyst that minimizes the aggregation effect of photocatalyst particles, increases light absorption (rutile + GQDs> anatase + GQDs), and absorbs light in the visible region.

본 발명의 또 다른 목적은 그래핀양자점-티타늄디옥사이드-탄소나노섬유 복합체에서 광촉매 입자의 유실은 효율 저하를 초래하므로 탄소나노섬유로부터 그래핀양자점-티타늄디옥사이드 입자의 이탈은 비정질 탄소막으로 방지하는 광촉매 제조방법을 제공하고자 하는 것이다.Another object of the present invention is a graphene quantum dot-titanium dioxide-the loss of photocatalyst particles in the carbon nanofiber composite causes an efficiency decrease, so the separation of graphene quantum dot-titanium dioxide particles from the carbon nanofibers is prepared as a photocatalyst to prevent the amorphous carbon film Is to provide a method.

본발명 그래핀양자점-산화물반도체-탄소나노섬유 복합 광촉매 제조방법은, 그래핀양자점(graphene quantum dots, GQDs)-산화물반도체(semiconducting oxide)-탄소나노섬유(carbon nanofiber)를 포함하는 것으로, 팬을 1차가열하여 산화시키는 산화단계; 그래핀양자점(graphene quantum dots, GQDs)과 티타늄디옥사이드(titanium dioxide, TiO2)를 부착하는 GQDs와 TiO2 부착단계; 2차가열하여 열처리 하는 열처리단계; 를 포함하여, 상기 열처리 공정 중에서 폴리아크릴로니트릴(polyacrylonitrile, PAN)이 탄화되면서 비정질 탄소막이 발생되어 탄소나노섬유로부터 그래핀양자점(graphene quantum dots, GQDs)과 티타늄디옥사이드(titanium dioxide, TiO2) 입자의 이탈을 막아 광촉매 양의 손실을 최소화하는 것을 특징으로 한다.The present invention graphene quantum dots-oxide semiconductor-carbon nanofiber composite photocatalyst manufacturing method, graphene quantum dots (graphene quantum dots, GQDs)-oxide semiconductors (semiconducting oxide)-carbon nanofibers (carbon nanofiber), including a fan An oxidation step of oxidizing by primary heating; GQDs and TiO2 attachment step of attaching graphene quantum dots (GQDs) and titanium dioxide (TiO2); Heat treatment step of heat treatment by secondary heating; Including, during the heat treatment process, polyacrylonitrile (PAN) is carbonized, and an amorphous carbon film is generated to form graphene quantum dots (GQDs) and titanium dioxide (TiO2) particles from carbon nanofibers. It is characterized by minimizing the loss of the amount of photocatalyst by preventing escape.

따라서 본발명은 야외의 태양광과 실내의 형광등 하에서 항균,살균,탈취 등 박테리아 분해,난분해성 화학물질 분해,항균 타일,공기청정기,조명 기구, 상하수 처리,선박평형수 처리 등의 수처리, 이산화탄소 전환 등 다양한 산업현장과 일상생활에서 활용되는 현저한 효과가 있다.Therefore, the present invention decomposes bacteria such as antibacterial, sterilization, deodorization, non-degradable chemicals, antibacterial tiles, air purifiers, lighting equipment, water and sewage treatment, ship ballast water treatment, etc. It has a remarkable effect that is used in various industrial sites and everyday life.

도 1은 (a) 전기방사된 폴리아크릴로니트릴 섬유 사진, (b) 산화 열처리 후 산화된 폴리아크릴로니트릴 섬유 사진, (c) 산화 폴리아크릴로니트릴 섬유에 그래핀 양자점-TiO2 도포 후 아르곤 분위기에서 열처리 한 복합체 실시 예도 2는 (a) 복합체 투과전자현미경 사진, (b) TiO2 표면에 형성된 비정질 탄소막의 투과전자현미경 사진
도 3은 루틸 TiO2와 GQD의 고분해능 투과전자현미경 사진
도 4는 복합체의 HAADF 이미지와 EDS를 이용한 element mapping 결과(carbon, nitrogen, titanium, oxygen)
도 5는 본 발명의 그래핀양자점-산화물반도체-탄소나노섬유 복합체의 실시예로 가시광선 조사 하에서 연속 사용에 따른 10mg/L 메틸렌블루 용액의 분해성능을 나타낸 그래프
1 is (a) a photo of an electrospun polyacrylonitrile fiber, (b) a photo of a polyacrylonitrile fiber oxidized after an oxidation heat treatment, and (c) an argon atmosphere after application of graphene quantum dots-TiO 2 to the oxide polyacrylonitrile fiber. Example 2 of the composite heat-treated in (a) a composite transmission electron microscope photograph, (b) a transmission electron microscope photograph of the amorphous carbon film formed on the TiO2 surface
3 is a high-resolution transmission electron micrograph of rutile TiO2 and GQD
Figure 4 is the result of element mapping using the HAADF image and EDS of the complex (carbon, nitrogen, titanium, oxygen)
5 is a graph showing the decomposition performance of 10mg / L methylene blue solution according to continuous use under visible light irradiation as an example of the graphene quantum dot-oxide semiconductor-carbon nanofiber composite of the present invention

본 발명은 그래핀양자점(graphene quantum dots, GQDs)-산화물반도체(semiconducting oxide)-탄소나노섬유(carbon nanofiber)를 포함하는 것으로, 팬을 1차가열하여 산화시키는 산화단계; 그래핀양자점(graphene quantum dots, GQDs)과 티타늄디옥사이드(titanium dioxide, TiO2)를 부착하는 GQDs와 TIO2 부착단계; 2차가열하여 열처리 하는 열처리단계; 를 포함하여, 상기 열처리 공정 중에서 폴리아크릴로니트릴(polyacrylonitrile, PAN)이 탄화되면서 비정질 탄소막이 발생되어 탄소나노섬유로부터 그래핀양자점(graphene quantum dots, GQDs)과 티타늄디옥사이드(titanium dioxide, TiO2) 입자의 이탈을 막아 광촉매 양의 손실을 최소화하는 것을 특징으로 한다.The present invention comprises graphene quantum dots (GQDs) -semiconducting oxide-carbon nanofibers, an oxidation step of primary heating and oxidizing a fan; GQDs and TIO2 attachment steps to attach graphene quantum dots (GQDs) and titanium dioxide (TiO2); Heat treatment step of heat treatment by secondary heating; Including, during the heat treatment process, polyacrylonitrile (PAN) is carbonized, and an amorphous carbon film is generated to form graphene quantum dots (GQDs) and titanium dioxide (TiO2) particles from carbon nanofibers. It is characterized by minimizing the loss of the amount of photocatalyst by preventing escape.

또한, 상기 산화물반도체는 아나타제(anatase) 또는 루틸형 티타늄디옥사이드(rutile titanium dioxide)인 것을 특징으로 한다.In addition, the oxide semiconductor is characterized in that it is an anatase or rutile titanium dioxide.

또한, 상기 탄소나노섬유는 폴리아크릴로니트릴(polyacrylonitrile, PAN)섬유인 것을 특징으로 한다.In addition, the carbon nanofibers are characterized by being polyacrylonitrile (PAN) fibers.

본 발명을 첨부도면에 의해 상세히 설명하면 다음과 같다.The present invention will be described in detail with reference to the accompanying drawings.

도 1은 (a) 전기방사된 폴리아크릴로니트릴 섬유 사진, (b) 산화 열처리 후 산화된 폴리아크릴로니트릴 섬유 사진, (c) 산화 폴리아크릴로니트릴 섬유에 그래핀 양자점-TiO2 도포 후 아르곤 분위기에서 열처리 한 복합체 실시 예도 2는 (a) 복합체 투과전자현미경 사진, (b) TiO2 표면에 형성된 비정질 탄소막의 투과전자현미경 사진, 도 2는 (a) 복합체 투과전자현미경 사진, (b) TiO2 표면에 형성된 비정질 탄소막의 투과전자현미경 사진, 도 3은 루틸 TiO2와 GQD의 고분해능 투과전자현미경 사진, 도 4는 복합체의 HAADF 이미지와 EDS를 이용한 element mapping 결과(carbon, nitrogen, titanium, oxygen), 도 5는 본 발명의 그래핀양자점-산화물반도체-탄소나노섬유 복합체의 실시예로 가시광선 조사 하에서 연속 사용에 따른 10mg/L 메틸렌블루 용액의 분해성능을 나타낸 그래프이다. 특히, 도 5는 루틸형 TiO2이 적용된 그래핀양자점-rTiO2-탄소나노섬유 복합체가 아나타제형 TiO2가 적용된 복합체에 비해 메틸렌블루 용액의 분해 성능이 상대적으로 우수함을 보여준다.1 is (a) a photo of an electrospun polyacrylonitrile fiber, (b) a photo of a polyacrylonitrile fiber oxidized after an oxidation heat treatment, and (c) an argon atmosphere after application of graphene quantum dots-TiO 2 to the oxide polyacrylonitrile fiber. Example 2 of the composite heat-treated in (a) a composite transmission electron microscope photograph, (b) a transmission electron microscope photograph of an amorphous carbon film formed on the TiO2 surface, Figure 2 (a) a composite transmission electron microscope photograph, (b) on the TiO2 surface Transmission electron micrograph of the formed amorphous carbon film, FIG. 3 is a high resolution transmission electron micrograph of rutile TiO2 and GQD, FIG. 4 is an element mapping result (carbon, nitrogen, titanium, oxygen) using HAADF image and EDS of the complex, FIG. Graphene quantum dot of the present invention-an oxide semiconductor-a graph showing the decomposition performance of 10mg / L methylene blue solution according to continuous use under visible light irradiation as an example of a carbon nanofiber composite. In particular, FIG. 5 shows that the graphene quantum dot-rTiO2-carbon nanofiber composite to which the rutile type TiO2 is applied has relatively better decomposition performance of the methylene blue solution than the composite to which the anatase type TiO2 is applied.

본 발명은 그래핀양자점(graphene quantum dots, GQDs)-산화물반도체(semiconducting oxide)-탄소나노섬유(carbon nanofiber) 복합 광촉매에 관한 것으로, 그래핀양자점-산화물반도체-탄소나노섬유를 포함하여 가시광 촉매 활성이 우수한 것이다.The present invention relates to graphene quantum dots (GQDs) -semiconducting oxide-carbon nanofiber composite photocatalyst, including graphene quantum dots-oxide semiconductor-carbon nanofibers for visible light catalytic activity This is excellent.

또한, 상기 산화물반도체는 아나타제(anatase) 또는 루틸형 티타늄디옥사이드(rutile titanium dioxide)인 것이다.Further, the oxide semiconductor is an anatase or rutile titanium dioxide.

또한, 상기 탄소나노섬유는 전계방사된 폴리아크릴로니트릴(polyacrylonitrile, PAN)섬유인 것이다.In addition, the carbon nanofibers are electrospun polyacrylonitrile (PAN) fibers.

또한, 상기 루틸형 티타늄디옥사이드(rutile titanium dioxide)는 순수한 루틸형 티타늄디옥사이드(rutile titanium dioxide)를 사용하거나, 아나타제(anatase) 분말을 열처리하여 상전이(Phase transition)된 루틸(rutile) 분말을 사용하는 것이다.In addition, the rutile titanium dioxide is to use pure rutile titanium dioxide, or heat-translating anatase powder to use phase transitioned rutile powder. .

또한, 상기 그래핀양자점-산화물 반도체-탄소나노섬유의 함량비는 그래핀양자점(graphene quantum dots, GQDs) 8 ~ 12 중량%: 루틸형 티타늄디옥사이드(rutile titanium dioxide) 0.5 ~ 2중량% : 폴리아크릴로니트릴(polyacrylonitrile, PAN) 91.5 ~ 95중량% 인 것이다.In addition, the content ratio of the graphene quantum dot-oxide semiconductor-carbon nanofiber is 8 to 12% by weight of graphene quantum dots (GQDs): 0.5 to 2% by weight of rutile titanium dioxide: polyacrylic The nitrile (polyacrylonitrile, PAN) is 91.5 to 95% by weight.

또한, 상기 그래핀양자점(graphene quantum dots, GQDs)-루틸형 티타늄디옥사이드(rutile titanium dioxide) 입자는 전계방사된 폴리아크릴로니트릴(polyacrylonitrile, PAN)섬유 표면에 스핀코팅(spin coating) 혹은 딥 코팅(dip coating)법으로 도포되는 것이다.In addition, the graphene quantum dots (GQDs)-rutile titanium dioxide particles are spin-coated or dip coated on the surface of the electrospun polyacrylonitrile (PAN) fiber. dip coating) method.

또한, 상기 산화물반도체는 루틸형 티타늄디옥사이드(rutile titanium dioxide)인 것이다.In addition, the oxide semiconductor is rutile titanium dioxide.

또한, 열처리 공정 중에서 폴리아크릴로니트릴(polyacrylonitrile, PAN)이 탄화되면서 비정질 탄소막이 발생되어 탄소나노섬유로부터 그래핀양자점(graphene quantum dots, GQDs)-티타늄디옥사이드(titanium dioxide, TiO2) 입자의 이탈을 막아 광촉매 양의 손실을 최소화하는 것이다.In addition, during the heat treatment process, polyacrylonitrile (PAN) is carbonized to form an amorphous carbon film to prevent the separation of graphene quantum dots (GQDs) -titanium dioxide (TiO2) particles from carbon nanofibers. It is to minimize the loss of photocatalyst amount.

본발명의 티타늄디옥사이드(titanium dioxide, TiO2)는 20-50 nm 크기의 아나타제(anatase) 분말(powder), 루틸(rutile) 분말을 이용한다. 이는 광촉매의 함량을 조절하기 용이하고 광촉매 입자의 응집효과를 최소화하는 효과가 있다.Titanium dioxide (Titanium dioxide, TiO2) of the present invention uses an anatase (powder), rutile (rutile) powder having a size of 20-50 nm. This has an effect of easily controlling the content of the photocatalyst and minimizing the aggregation effect of the photocatalyst particles.

탄소나노섬유는 그래핀양자점(graphene quantum dots, GQDs)-티타늄디옥사이드(titanium dioxide, TiO2)의 지지체이면서 동시에 질소와 탄소의 도펀트(dopant)로서 역할을 한다. 그래핀양자점(graphene quantum dots, GQDs)는 화학적 박리법을 통해 합성되었으며, 티타늄디옥사이드(titanium dioxide, TiO2)는 그래핀양자점(graphene quantum dots, GQDs)이 도포된 루틸(rutile) 입자를 사용한다. 즉, 순수 루틸(rutile) 입자, 또는 열처리를 통해 아나타제(anatase)에서 루틸로 상전이를 한 입자, 그리고 그래핀양자점(graphene quantum dots, GQDs)이 탄소나노섬유에 결합된 광촉매 복합체를 이용하여 실내용 인공광원에서 광분해 반응에 의한 수질 오염물을 효과적으로 제거할 수 있다.Carbon nanofibers are graphene quantum dots (GQDs)-a support for titanium dioxide (TiO2) and at the same time serve as a dopant for nitrogen and carbon. Graphene quantum dots (GQDs) were synthesized through chemical exfoliation, and titanium dioxide (TiO2) uses rutile particles coated with graphene quantum dots (GQDs). That is, pure rutile particles, or particles that have undergone phase transition from anatase to rutile through heat treatment, and graphene quantum dots (GQDs) are used for indoor use using photocatalytic composites bonded to carbon nanofibers. It is possible to effectively remove water pollutants caused by photolysis reactions from artificial light sources.

그래핀양자점(graphene quantum dots, GQDs)은 화학적 박리법을 통해 얻는다. 공정 온도는 오일 배스(oil bath) 기준 80~200℃이다.Graphene quantum dots (GQDs) are obtained by chemical exfoliation. Process temperature is 80 ~ 200 ℃ based on oil bath.

그래핀양자점(graphene quantum dots, GQDs)-티타늄디옥사이드(titanium dioxide, TiO2) 입자는 수용액 상태에서 두 재료를 스터링(stirring)과 초음파 처리를 하여 얻는다.Graphene quantum dots (GQDs) -titanium dioxide (TiO2) particles are obtained by stirring and sonication the two materials in aqueous solution.

그래핀양자점-티타늄디옥사이드-탄소나노섬유 복합체의 티타늄디옥사이드는 루틸(rutile)의 형태를 이용하는데, 루틸(rutile)을 얻는 방법으로는 순수한 루틸(rutile) 분말을 그대로 사용하는 것과 아나타제(anatase) 분말을 열처리하여 상전이(Phase transition)된 루틸(rutile) 분말을 사용한다.The graphene quantum dot-titanium dioxide-titanium dioxide of the carbon nanofiber composite uses the form of rutile. As a method of obtaining rutile, pure rutile powder is used as it is and anatase powder By heat treatment, a rutile powder with phase transition is used.

전계방사된 폴리아크릴로니트릴(polyacrylonitrile, PAN)섬유 표면에 스핀코팅(spin coating) 혹은 딥 코팅(dip coating)법으로 그래핀양자점-티타늄디옥사이드 입자를 도포한다. 특히 폴리아크릴로니트릴(polyacrylonitrile, PAN)은 그대로 사용할 수 있으나, 전계방사하면 3d 형태 탬플릿 만들 수 있게 표면적이 넓어지고 붙이는 입자가 많아진다. 표면적 넓어지므로 반응성 좋으므로 전극으로 활용이 좋다.Graphene quantum dot-titanium dioxide particles are coated on the surface of the electrospun polyacrylonitrile (PAN) fiber by spin coating or dip coating. In particular, polyacrylonitrile (PAN) can be used as it is, but when the electric field is radiated, the surface area is widened and the number of particles to be attached increases to make a 3d template. As the surface area is wide, it has good reactivity, so it can be used as an electrode.

준비된 그래핀양자점-티타늄디옥사이드-폴리아크릴로니트릴은 진공 도가니(vacuum furnace)로 열처리 하여 그래핀양자점-티타늄디옥사이드-탄소나노섬유 복합체를 제작한다. 본발명은 내부에 팬을 230 ~ 250℃로 산화시킨후 팬에 그래핀양자점과 티타늄디옥사이드를 부착하는 것으로, 통상 300℃ 이후에서 붙이며, 300℃이후부터 붙이는 이유는 그 전 산화온도에서는 그래핀양자점이 산화되면서 떨어져나가므로 목적달성이 안 된다. 이후 열처리 온도는 300 ~ 600℃으로 한다.The prepared graphene quantum dot-titanium dioxide-polyacrylonitrile is heat-treated with a vacuum crucible to prepare a graphene quantum dot-titanium dioxide-carbon nanofiber composite. The present invention is to attach the graphene quantum dots and titanium dioxide to the pan after oxidizing the pan to 230 ~ 250 ° C in the inside. Usually, it is pasted after 300 ° C. As it oxidizes and falls off, it does not achieve its purpose. Thereafter, the heat treatment temperature is set to 300 to 600 ° C.

높은 전기전도도를 지닌 탄소나노섬유와 그래핀양자점-티타늄디옥사이드 광촉매의 결합은 광전극으로 제작 가능하여 물 분해 수소제조용 광전극으로 활용될 수 있다. 곧 그래핀양자점-산화물반도체-탄소나노섬유 복합 광촉매를 이용하여 광전극으로 사용하는 것은 결과물 자체가 전극이다. 그리고 구리, 인디움, 전도성고분자물질 도포, 등 외부전극을 부착하여 광전극으로 사용, 목적 분해용 전극, 빛을 받아 오염물질 분해용 전극, 수소분해, 가스 분해용으로 효과적으로 사용할 수 있다.The combination of carbon nanofiber with high electrical conductivity and graphene quantum dot-titanium dioxide photocatalyst can be manufactured as a photoelectrode, and thus can be used as a photoelectrode for water-decomposition hydrogen production. Soon, the use of graphene quantum dot-oxide semiconductor-carbon nanofiber composite photocatalyst as the photoelectrode is the result itself. In addition, copper, indium, conductive polymer material coating, etc. can be used as an optical electrode by attaching an external electrode, an electrode for purpose decomposition, an electrode for decomposing pollutants under light, hydrogen decomposition, and gas decomposition.

또한, 제조된 그래핀양자점-산화물반도체-탄소나노섬유 복합 광촉매를 분말제품으로 사용하는 것으로, 2나노미터(nm) 크기의 그래핀양자점-30나노미터(nm) 크기의 산화물반도체-탄소나노섬유 복합 광촉매를 소닉이나 볼밀 분말로 사용하는 것으로 분말화된 결과물의 크기는 10 ~ 300나노미터(nm)이다.In addition, the prepared graphene quantum dot-oxide semiconductor-carbon nanofiber composite photocatalyst is used as a powder product, and a 2 nanometer (nm) -sized graphene quantum dot-30 nanometer (nm) -sized oxide semiconductor-carbon nanofiber By using a composite photocatalyst as a sonic or ball mill powder, the size of the powdered product is 10 to 300 nanometers (nm).

한편, 본발명은 패드로 사용하는 것으로, 그래핀양자점-산화물반도체-탄소나노섬유 복합 광촉매를 300 ~ 600℃로 가열하여 가요성이 있는 패드로 사용하는 것이다.On the other hand, the present invention is to be used as a pad, the graphene quantum dot-oxide semiconductor-carbon nanofiber composite photocatalyst is heated to 300 ~ 600 ℃ to use as a flexible pad.

좁은 밴드갭을 가지는 그래핀양자점(graphenequantum dots, GQD)은 가시광 영역을 흡수하는 광흡수체 역할을 하며, 동시에 티타늄디옥사이드(titanium dioxide, TiO2)와의 계면에서 쇼트키 장벽을 만들어 전자-정공의 재결합을 막아 광촉매 효율을 높인다. 또한, 단일 열처리 공정을 통해 탄소나노섬유(carbon nanofiber)를 도펀트로 활용하여 광촉매의 탄소 및 질소의 도핑을 통해 루틸형 티타늄디옥사이드(rutile titanium dioxide)의 광흡수율을 높이고 가시광 영역에서 반응하는 광촉매를 얻을 수 있다.Graphene quantum dots (GQD) with a narrow band gap act as a light absorber absorbing the visible light region, and at the same time create a Schottky barrier at the interface with titanium dioxide (TiO2) to prevent electron-hole recombination. Increase photocatalytic efficiency. In addition, the carbon nanofiber is used as a dopant through a single heat treatment process to increase the light absorption of rutile titanium dioxide through doping of carbon and nitrogen of the photocatalyst and obtain a photocatalyst that reacts in the visible light region. You can.

폴리아크릴로니트릴(polyacrylonitrile, PAN)이 탄화되는 과정에서 아나타제(anatase)가 루틸(rutile)로 상전이 하면서 폴리아크릴로니트릴(polyacrylonitrile, PAN)로부터 탄소,질소 도핑이 동시에 이루어져 별도의 도핑을 위한 조건이 요구되지 않는다.In the process of polyacrylonitrile (PAN) carbonization, anatase phase changes to rutile, while carbon and nitrogen doping are simultaneously performed from polyacrylonitrile (PAN) to provide separate doping conditions. Is not required.

열처리 공정 중에서 폴리아크릴로니트릴이 탄화되면서 발생되는 비정질 탄소막은 탄소나노섬유로부터 그래핀양자점(graphene quantum dots, GQDs)-티타늄디옥사이드(titanium dioxide, TiO2) 입자의 이탈을 막아 광촉매 양의 손실을 최소화한다.The amorphous carbon film generated by carbonization of polyacrylonitrile during the heat treatment process minimizes the loss of photocatalyst amount by preventing the separation of graphene quantum dots (GQDs) -titanium dioxide (TiO2) particles from carbon nanofibers. .

곧, 비정질에 대해 설명하면, 팬이 탄화되며, 일부 탄소는 티타늄디옥사이드(titanium dioxide, TiO2)에 탄소도펀트로 도핑에 참여하고, 나머지 내부 탄소들이 기화되며 방출되며 표면에 달라붙는데 , 곧 재흡착되는 것으로 이는 완벽한 박막은 아니다 어느 정도 얼기설기되어 전체적으로 표면을 덮는다. 표면의 입자들이 떨어지지 않게 바인딩역할을 한다.Soon, when it comes to amorphous, the fan is carbonized, some carbon participates in doping with titanium dioxide (TiO2) as a carbon dopant, and the remaining internal carbons are vaporized and released and stick to the surface. As such, it is not a perfect thin film and is somewhat frozen to cover the entire surface. It serves as a binding so that the particles on the surface do not fall off.

구체적으로 본발명의 그래핀양자점(graphene quantum dots, GQDs),TIO2,PAN-기반 탄소나노섬유에 대해 설명하면 본발명의 그래핀양자점(graphene quantum dots, GQDs)은 광흡수체(가시광선으로 확산)이며, 티타늄디옥사이드(titanium dioxide, TiO2)는 광촉매, 광흡수체이며, 폴리아크릴로니트릴-기반 탄소나노섬유는 탄소/질소도핑(가시광선활성 높인다)에 의해 티타늄디옥사이드(titanium dioxide, TiO2)의 새로운 도핑준위를 형성하여 가시광선에도 잘반응하는 밴드구조로 바꾼다. 높은 전도도로 그래핀양자점(graphene quantum dots, GQDs)나 티타늄디옥사이드(titanium dioxide, TiO2)에 만들어진 전자정공쌍을 빨리 다른 곳으로 이동시켜 전자도 정공 재결합하여 사라지므로 존재하게 할 목적으로 재결합방지 효율 향상한다. 본래 알려진 목적은 표면흡착되므로 분해 활성도를 높이는데 참여한다.Specifically, the graphene quantum dots (GQDs), TIO2, and PAN-based carbon nanofibers of the present invention are described. The graphene quantum dots (GQDs) of the present invention are light absorbers (diffuse with visible light). , Titanium dioxide (Titanium dioxide, TiO2) is a photocatalyst, light absorber, polyacrylonitrile-based carbon nanofibers are doped with titanium / titanium dioxide (TiO2) by carbon / nitrogen doping (enhances visible light activity) It forms a level and changes to a band structure that responds well to visible light. With high conductivity, electron hole pairs made in graphene quantum dots (GQDs) or titanium dioxide (TiO2) are quickly moved to other places, and electrons recombine and disappear, so the efficiency of recombination prevention is improved. do. The originally known purpose is surface adsorption and therefore participates in increasing the decomposition activity.

Claims (3)

그래핀양자점(graphene quantum dots, GQDs)-산화물반도체(semiconducting oxide)-탄소나노섬유(carbon nanofiber)를 포함하는 것으로, 팬을 1차가열하여 산화시키는 산화단계; 그래핀양자점(graphene quantum dots, GQDs)과 티타늄디옥사이드(titanium dioxide, TiO2)를 부착하는 GQDs와 TiO2 부착단계; 2차가열하여 열처리 하는 열처리단계; 를 포함하여, 상기 열처리 공정 중에서 폴리아크릴로니트릴(polyacrylonitrile, PAN)이 탄화되면서 비정질 탄소막이 발생되어 탄소나노섬유로부터 그래핀양자점(graphene quantum dots, GQDs)과 티타늄디옥사이드(titanium dioxide, TiO2) 입자의 이탈을 막아 광촉매 양의 손실을 최소화하는 것을 특징으로 하는 그래핀양자점-산화물반도체-탄소나노섬유 복합 광촉매 제조방법It includes graphene quantum dots (GQDs)-oxide semiconductor (semiconducting oxide)-carbon nanofibers (carbon nanofiber), an oxidation step of primary heating the fan to oxidize; GQDs and TiO2 attachment step of attaching graphene quantum dots (GQDs) and titanium dioxide (TiO2); Heat treatment step of heat treatment by secondary heating; Including, during the heat treatment process, polyacrylonitrile (PAN) is carbonized, and an amorphous carbon film is generated to form graphene quantum dots (GQDs) and titanium dioxide (TiO2) particles from carbon nanofibers. Graphene quantum dot-oxide semiconductor-carbon nanofiber composite photocatalyst manufacturing method characterized by minimizing loss of photocatalyst by preventing separation 제1항에 있어서, 상기 산화물반도체는 아나타제(anatase) 또는 루틸형 티타늄디옥사이드(rutile titanium dioxide)인 것을 특징으로 하는 그래핀양자점-산화물반도체-탄소나노섬유 복합 광촉매 제조방법The method of claim 1, wherein the oxide semiconductor is anatase (anatase) or rutile titanium dioxide (rutile titanium dioxide), characterized in that the graphene quantum dot-oxide semiconductor-carbon nanofiber composite photocatalyst manufacturing method 제2항에 있어서, 상기 탄소나노섬유는 폴리아크릴로니트릴(polyacrylonitrile, PAN)섬유인 것을 특징으로 하는 그래핀양자점-산화물반도체-탄소나노섬유 복합 광촉매 제조방법The method of claim 2, wherein the carbon nanofiber is a polyacrylonitrile (polyacrylonitrile, PAN) fiber, a graphene quantum dot-oxide semiconductor-carbon nanofiber composite photocatalyst production method
KR1020180114279A 2018-09-21 2018-09-21 graphene quantum dots-semiconducting oxide-carbon nanofiber composite photocatalyst manufacturing method KR20200034465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180114279A KR20200034465A (en) 2018-09-21 2018-09-21 graphene quantum dots-semiconducting oxide-carbon nanofiber composite photocatalyst manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180114279A KR20200034465A (en) 2018-09-21 2018-09-21 graphene quantum dots-semiconducting oxide-carbon nanofiber composite photocatalyst manufacturing method

Publications (1)

Publication Number Publication Date
KR20200034465A true KR20200034465A (en) 2020-03-31

Family

ID=70002114

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180114279A KR20200034465A (en) 2018-09-21 2018-09-21 graphene quantum dots-semiconducting oxide-carbon nanofiber composite photocatalyst manufacturing method

Country Status (1)

Country Link
KR (1) KR20200034465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113398966A (en) * 2021-04-16 2021-09-17 同济大学 Photocatalyst with porous nitrogen-doped carbon nanofiber dispersed nickel and molybdenum phosphide, and preparation and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113398966A (en) * 2021-04-16 2021-09-17 同济大学 Photocatalyst with porous nitrogen-doped carbon nanofiber dispersed nickel and molybdenum phosphide, and preparation and application thereof

Similar Documents

Publication Publication Date Title
Zeng et al. Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance
Cai et al. Soft BiOBr@ TiO 2 nanofibrous membranes with hierarchical heterostructures as efficient and recyclable visible-light photocatalysts
Naseri et al. Tuning composition of electrospun ZnO/CuO nanofibers: toward controllable and efficient solar photocatalytic degradation of organic pollutants
Han et al. In situ synthesis of graphitic-C 3 N 4 nanosheet hybridized N-doped TiO 2 nanofibers for efficient photocatalytic H 2 production and degradation
Liu et al. Tailored fabrication of thoroughly mesoporous BiVO4 nanofibers and their visible-light photocatalytic activities
Shi et al. Highly porous SnO2/TiO2 electrospun nanofibers with high photocatalytic activities
Nah et al. Doped TiO2 and TiO2 nanotubes: synthesis and applications
Kim et al. TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis
Shang et al. 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synthesis and enhanced visible photocatalytic degradation performances
Adhikari et al. Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation
Sundaramurthy et al. Perspective of electrospun nanofibers in energy and environment
Liu et al. Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers
Biswal et al. Rationally designed Ti3C2/N, S-TiO2/g-C3N4 ternary heterostructure with spatial charge separation for enhanced photocatalytic hydrogen evolution
Mohamed et al. In-depth understanding of core-shell nanoarchitecture evolution of g-C3N4@ C, N co-doped anatase/rutile: efficient charge separation and enhanced visible-light photocatalytic performance
Ahn et al. Bandgap-designed TiO2/SnO2 hollow hierarchical nanofibers: Synthesis, properties, and their photocatalytic mechanism
Lee et al. Facile synthesis of SnO 2 nanofibers decorated with N-doped ZnO nanonodules for visible light photocatalysts using single-nozzle co-electrospinning
Liu et al. Synthesis of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances
Wang et al. p-BiOI/n-SnS 2 heterojunction flowerlike structure with enhanced visible-light photocatalytic performance
Yang et al. Engineering of Z-scheme 2D/3D architectures with Bi2MoO6 on TiO2 nanosphere for enhanced photocatalytic 4-nitrophenol degradation
Zhao et al. Efficient visible light photocatalytic activity of p–n junction CuO/TiO 2 loaded on natural zeolite
Wang et al. Enhancement in the photocatalytic activity of TiO2 nanofibers hybridized with g-C3N4 via electrospinning
Xu et al. C, N-codoped TiO2 with a nitrogen-doped carbon coating derived from 2, 6-diaminopyridine for visible light-induced photocatalytic hydrogen evolution
Sarngan et al. Influence of anatase-rutile ratio on band edge position and defect states of TiO2 homojunction catalyst
Gong et al. Electrochemical synthesis of perovskite LaFeO 3 nanoparticle-modified TiO 2 nanotube arrays for enhanced visible-light photocatalytic activity
Zhou et al. In situ fabrication of Bi 2 Ti 2 O 7/TiO 2 heterostructure submicron fibers for enhanced photocatalytic activity

Legal Events

Date Code Title Description
E601 Decision to refuse application