KR20200034147A - Surface treating composition for cathod active material and manufacturing method of the same - Google Patents

Surface treating composition for cathod active material and manufacturing method of the same Download PDF

Info

Publication number
KR20200034147A
KR20200034147A KR1020180113503A KR20180113503A KR20200034147A KR 20200034147 A KR20200034147 A KR 20200034147A KR 1020180113503 A KR1020180113503 A KR 1020180113503A KR 20180113503 A KR20180113503 A KR 20180113503A KR 20200034147 A KR20200034147 A KR 20200034147A
Authority
KR
South Korea
Prior art keywords
active material
positive electrode
electrode active
surface treatment
composition
Prior art date
Application number
KR1020180113503A
Other languages
Korean (ko)
Other versions
KR102125766B1 (en
Inventor
김점수
이창우
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Priority to KR1020180113503A priority Critical patent/KR102125766B1/en
Priority to PCT/KR2018/012382 priority patent/WO2020059941A1/en
Publication of KR20200034147A publication Critical patent/KR20200034147A/en
Application granted granted Critical
Publication of KR102125766B1 publication Critical patent/KR102125766B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a composition for the surface treatment of a positive electrode active material, a manufacturing method thereof, and a positive electrode active material surface-treated thereby. More specifically, the present invention relates to a composition for the surface treatment of a positive electrode active material, capable of conducting a process of coating titanium on a surface while reducing residual lithium when conducting the surface treatment using the composition for the surface treatment of the present invention by containing titanium dioxide coated with an ionic activator. The present invention also relates to a manufacturing method thereof and a positive electrode active material surface-treated thereby.

Description

양극활물질 표면처리용 조성물, 이의 제조방법 및 이에 의하여 표면 처리된 양극활물질{SURFACE TREATING COMPOSITION FOR CATHOD ACTIVE MATERIAL AND MANUFACTURING METHOD OF THE SAME}Composition for surface treatment of positive electrode active material, method for manufacturing the same, and positive electrode active material surface-treated thereby {SURFACE TREATING COMPOSITION FOR CATHOD ACTIVE MATERIAL AND MANUFACTURING METHOD OF THE SAME}

본 발명은 양극활물질 표면처리용 조성물, 이의 제조방법 및 이에 의하여 표면 처리된 양극활물질에 관한 것으로서, 더욱 상세하게는 이온 활성제로 코팅된 이산화티탄을 포함하여 표면 처리시 잔류 리튬을 저감시키면서도 표면에 일정 두께 이하의 티탄을 코팅하는 공정을 동시에 수행할 수 있는 양극활물질 표면처리용 조성물, 이의 제조 방법 및 이에 의하여 표면처리된 양극활물질에 관한 것이다. The present invention relates to a composition for surface treatment of a positive electrode active material, a method for manufacturing the same, and a positive electrode active material surface-treated thereby, and more particularly, including titanium dioxide coated with an ionic activator, while reducing residual lithium during surface treatment, while remaining constant on the surface. The present invention relates to a composition for surface treatment of a positive electrode active material capable of simultaneously performing a process of coating titanium having a thickness or less, a manufacturing method thereof, and a positive electrode active material surface-treated thereby.

현재, 고에너지 밀도의 이차전지로서, 전해질염을 비수용매(非水溶媒)에 용해시킨 비수 전해액을 사용하고, 리튬 이온을 양극과 음극 사이에서 이동시켜 충·방전이 이루어지도록 한 리튬 이온 이차전지가 많이 이용되고 있다. 리튬 이차 전지는 전기 자동차, 하이브리드 자동차 등의 자동차용 대형 전원이나 분산형 전력 저장용 전원 등의 대형 이차 전지용으로서 사용 가능하기 때문에 그에 따른 수요가 증대되고 있다. Currently, as a secondary battery of high energy density, a lithium ion secondary battery in which a lithium salt is dissolved in a non-aqueous solvent and a non-aqueous electrolyte solution is used to move lithium ions between the positive electrode and the negative electrode to allow charging and discharging. Is used a lot. Since lithium secondary batteries can be used for large-sized secondary batteries, such as large-sized power supplies for automobiles, such as electric vehicles and hybrid vehicles, and power sources for distributed power storage, the demand is increasing.

이차전지는 양극, 음극 및 전해액 등으로 구성되어 있는데, 그 중 양극의 비율이 가장 높고 중요하다. 양극재료는 양극활물질로서 일반적으로 충방전시 높은 에너지밀도를 가지는 동시에, 가역 리튬이온의 층간 삽입, 탈리에 의해 구조가 파괴되지 않아야 한다. 또한, 전기전도도가 높아야 하며, 전해질로 사용되는 유기용매에 대한 화학적 안정성이 높아야 한다. 그리고 제조비용이 낮고, 환경오염 문제가 최소가 되는 물질이어야 한다.The secondary battery is composed of an anode, a cathode, and an electrolyte, among which the proportion of the anode is the highest and is important. The positive electrode material is a positive electrode active material and generally has a high energy density during charging and discharging, and the structure should not be destroyed by intercalation and desorption of reversible lithium ions. In addition, the electrical conductivity should be high, and the chemical stability of the organic solvent used as the electrolyte should be high. And it should be a material with low manufacturing cost and minimal environmental pollution problems.

이러한 리튬이온 이차전지의 양극활물질로서는 리튬이온의 삽입, 탈리가 가능한 층상화합물인 니켈산리튬(LiNiO2), 코발트산리튬(LiCoO2), 망간산리튬(LiMnO2)등이 있다. 이중 니켈산리튬(LiNiO2)은 전기용량이 높으나 충, 방전시 수명특성, 안정성 등에 문제가 있어서 실용화되지 못하고 있는 실정이다. 또한, 코발트산리튬(LiCoO2)은 용량이 클 뿐만 아니라 수명특성과 율특성(rate capability)이 우수하고 합성이 쉽다는 장점을 가지고 있지만, 코발트 가격이 높고 인체에 유해하며 고온에서 열적 불안정성 등의 단점을 가지고 있다.Examples of the positive electrode active material of the lithium ion secondary battery include lithium nickel oxide (LiNiO2), lithium cobaltate (LiCoO2), and lithium manganate (LiMnO2), which are layered compounds capable of intercalating and deintercalating lithium ions. Among them, lithium nickel oxide (LiNiO2) has a high electric capacity, but it has not been put into practical use due to problems such as life characteristics and stability during charging and discharging. In addition, lithium cobalt oxide (LiCoO2) has not only a large capacity, but also has the advantage of excellent lifespan and rate capability and easy synthesis, but has disadvantages such as high cobalt price, harmful to the human body, and thermal instability at high temperatures. Have

최근 Ni 함량이 65% 이상인 니켈-리치(Ni-rich) 양극소재가 전지의 에너지 향상을 위해 연구 개발되어 높은 방전용량의 전지 특성을 나타내고 있으나, Li과 전이금속 간의 양이온 혼합(cation mixing) 문제로 인해 전기화학적 성능이 우수한 소재 합성이 매우 어려우며, 그에 따라 출력(rate) 특성에 큰 문제점이 있다.Recently, a nickel-rich (Ni-rich) anode material with a Ni content of 65% or more has been researched and developed to improve the energy of the battery, and exhibits high discharge capacity battery characteristics. However, due to cation mixing problems between Li and transition metals, Therefore, it is very difficult to synthesize a material having excellent electrochemical performance, and accordingly, there is a big problem in output characteristics.

니켈-리치(Ni-rich) 양극활물질은 전구체에 수산화리튬을 혼합하여 열처리하여 제조되게 되는데, 상기의 양이온 혼합을 억제하기 위해 양론대비 많은 수산화리튬을 사용해야 한다. 이로 인해 열처리 과정 후 양극활물질 제조 반응에 참여하지 못한 리튬이 남게 되며 LiOH와 Li2CO3 상태로 존재하게 된다. 이러한 잔류리튬화합물인 LiOH 및 Li2CO3는 전지 내에서 전해액 등과 반응하여 가스 발생 및 스웰링(swelling) 현상을 유발함으로써, 전지의 신뢰성 및 안전성이 심각하게 저하되는 문제를 야기시킨다. 또한, 잔류리튬화합물은 전극 제조과정 중 슬러리 혼합 공정에서 겔화를 야기시켜 슬러리 품질을 저하시키기도 한다.Nickel-rich (Ni-rich) positive electrode active material is prepared by mixing lithium hydroxide with a precursor and heat-treating. In order to suppress the cation mixing, lithium hydroxide having a large amount of stoichiometry must be used. As a result, after the heat treatment process, lithium that has not participated in the positive electrode active material manufacturing reaction remains and exists in LiOH and Li2CO3. The residual lithium compounds LiOH and Li2CO3 react with an electrolyte in the battery to cause gas generation and swelling, thereby causing a serious decrease in reliability and safety of the battery. In addition, the residual lithium compound may cause gelation in the slurry mixing process during the electrode manufacturing process, thereby lowering the slurry quality.

특히, Ni 함량이 65% 이상인 니켈 리치 시스템(Ni rich system)은 코발트산리튬(LiCoO2) 제조 대비 저온에서 반응시켜야 하므로 양극활물질 표면에 LiOH와 Li2CO3형태로 존재하는 잔류 리튬량이 높다는 문제점이 있다. 종래 이러한 잔류 리튬을 제거하기 위해 양극활물질 제조 후 수세 공정을 실시하였다. 그러나, 이러한 수세 공정은 수명 특성을 열화시키는 문제점이 있었다.In particular, the nickel rich system (Ni rich system) having a Ni content of 65% or more needs to be reacted at a low temperature compared to lithium cobalt oxide (LiCoO2), so there is a problem that the amount of residual lithium present in the form of LiOH and Li2CO3 on the surface of the positive electrode active material is high. In order to remove such residual lithium, a water washing process was performed after preparing the positive electrode active material. However, this water washing process has a problem of deteriorating the life characteristics.

본 발명은 상기와 같은 종래 양극활물질, 특히 Ni 함량이 65% 이상인 니켈 리치 양극활물질의 문제점을 해결하기 위하여 양극활물질의 수세 공정을 통하여 잔류 리튬을 저감시키면서도 수명 특성이 개선될 수 있는 새로운 양극활물질 표면처리용 조성물을 제공하는 것을 목적으로 한다. The present invention is a surface of a new positive electrode active material capable of improving the life characteristics while reducing residual lithium through the washing process of the positive electrode active material, in order to solve the problems of the conventional positive electrode active material, especially the nickel-rich positive electrode active material having a Ni content of 65% or more. It is an object to provide a composition for treatment.

본 발명은 상기와 같은 과제를 해결하기 위하여 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물을 제공한다. The present invention provides a composition for surface treatment of a positive electrode active material comprising titanium dioxide surface-treated with an amphiphilic compound in order to solve the above problems.

도 1에 본 발명에 의한 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물 및 이에 의하여 잔류 리튬이 저감되는 과정을 개략적으로 나타내었다. 도 1에서 보는 바와 같이 본 발명에 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물은 조성물 내에서 양친매성 화합물로 표면처리된 이산화티탄이 고르게 분산된 상태를 유지할 수 있다. 본 발명에 의한 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물은 용매로서 증류수를 포함하여, 이러한 증류수는 양극활물질 표면의 잔류리튬을 제거하는 역할을 하고, 양친매성 화합물로 표면처리되어 균일하게 분산된 이산화티탄은 잔존 리튬화합물이 제거된 양극소재 표면을 효과적으로 둘러싸는 반응할 수 있게 된다. 1 schematically shows a composition for surface treatment of a positive electrode active material containing titanium dioxide surface-treated with an amphipathic compound according to the present invention and a process in which residual lithium is reduced. As shown in FIG. 1, the composition for surface treatment of a positive electrode active material comprising titanium dioxide surface-treated with an amphiphilic compound in the present invention can maintain a state in which titanium dioxide surface-treated with an amphiphilic compound is uniformly dispersed in the composition. The positive electrode active material surface treatment composition containing titanium dioxide surface-treated with the amphiphilic compound according to the present invention includes distilled water as a solvent, and such distilled water serves to remove residual lithium on the positive electrode active material surface, and is used as an amphiphilic compound. The surface-treated and uniformly dispersed titanium dioxide can react effectively surrounding the surface of the positive electrode material from which the residual lithium compound has been removed.

본 발명에 의한 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물은 100 중량부당 상기 양친매성 화합물로 표면처리된 이산화티탄을 0.1 내지 1.0 중량부의 비율로 포함하는 것을 특징으로 한다. The positive electrode active material surface treatment composition comprising titanium dioxide surface-treated with the amphiphilic compound according to the present invention is characterized in that it contains 0.1 to 1.0 parts by weight of titanium dioxide surface-treated with the amphiphilic compound per 100 parts by weight. .

본 발명에 의한 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물에 있어서, 상기 양친매성 화합물은 1차 아민, 2차 아민, 3차 아민, 4차 아민, 및 암모늄염으로 이루어진 그룹에서 선택되는 화합물인 것을 특징으로 한다. 본 발명에 의한 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물에 있어서, 상기 양친매성 화합물은 구체적으로는 TBAOH(Tetrabutylammonium hydroxide)- (C4H9)4NOH 인 것이 바람직하다. In the composition for surface treatment of a positive electrode active material containing titanium dioxide surface-treated with an amphiphilic compound according to the present invention, the amphiphilic compound is composed of a primary amine, a secondary amine, a tertiary amine, a quaternary amine, and an ammonium salt It is characterized by being a compound selected from the group. In the composition for surface treatment of the positive electrode active material containing titanium dioxide surface-treated with the amphiphilic compound according to the present invention, it is preferable that the amphiphilic compound is specifically TBAOH (Tetrabutylammonium hydroxide)-(C4H9) 4NOH.

본 발명에 의한 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물에 있어서, 상기 이산화티탄의 입경은 1 내지 50 nm 인 것을 특징으로 한다.In the composition for surface treatment of the positive electrode active material containing titanium dioxide surface-treated with the amphiphilic compound according to the present invention, the particle size of the titanium dioxide is 1-50 nm.

본 발명에 의한 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물 용매로서 증류수를 더 포함하는 것을 특징으로 한다. 이와 같이 증류수를 포함하여 양극활물질 표면을 기존 방식과 같이 수세 처리하는 효과를 나타낸다. Characterized in that it further comprises distilled water as a composition solvent for surface treatment of the positive electrode active material containing titanium dioxide surface-treated with the amphiphilic compound according to the present invention. In this way, the surface of the positive electrode active material including distilled water is washed with water in the same manner as in the conventional method.

본 발명은 또한, The present invention also

알코올기를 포함하는 용매에 분산된 티탄 전구체 용액을 준비하는 제 1 단계; A first step of preparing a titanium precursor solution dispersed in a solvent containing an alcohol group;

양친매성 화합물 용액을 준비하는 제 2 단계; A second step of preparing an amphiphilic compound solution;

상기 알코올에 분산된 티탄 전구체 용액을 상기 양친매성 화합물 용액에 혼합하는 제 3 단계; A third step of mixing the titanium precursor solution dispersed in the alcohol into the amphiphilic compound solution;

상기 혼합 용액을 교반하면서 제 1 열처리하여 콜로이드 분산 용액을 제조하는 제 4 단계; 및 A fourth step of preparing a colloidal dispersion solution by first heat treatment while stirring the mixed solution; And

상기 콜로이드 분산 용액을 130 내지 170 ℃의 온도에서 2시간 내지 3시간 동안 열처리 하는 제 5 단계; 를 포함하는 본 발명에 의한 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물의 제조 방법을 제공한다. A fifth step of heat-treating the colloidal dispersion solution at a temperature of 130 to 170 ° C. for 2 to 3 hours; Provided is a method for preparing a composition for surface treatment of a positive electrode active material comprising titanium dioxide surface-treated with an amphipathic compound according to the present invention.

본 발명에 의한 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물의 제조 방법에 있어서, 상기 티탄 전구체는 티탄이소프로폭사이드 Ti[OCH(CH3)2]4인 것을 특징으로 한다. In the method for producing a composition for surface treatment of a positive electrode active material containing titanium dioxide surface-treated with an amphiphilic compound according to the present invention, the titanium precursor is titanium isopropoxide Ti [OCH (CH 3 ) 2 ] 4 Is done.

본 발명에 의한 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물의 제조 방법에 있어서, 상기 양친매성 화합물은 1차 아민, 2차 아민, 3차 아민, 4차 아민, 및 암모늄염으로 이루어진 그룹에서 선택되는 양친매성 화합물인 것을 특징으로 한다. 본 발명에 의한 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물에 있어서, 상기 양친매성 화합물은 구체적으로는 TBAOH(Tetrabutylammonium hydroxide)- (C4H9)4NOH 인 것이 바람직하다. In the method of preparing a composition for surface treatment of a positive electrode active material containing titanium dioxide surface-treated with an amphiphilic compound according to the present invention, the amphiphilic compound is a primary amine, secondary amine, tertiary amine, quaternary amine, and It is characterized by being an amphiphilic compound selected from the group consisting of ammonium salts. In the composition for surface treatment of the positive electrode active material containing titanium dioxide surface-treated with the amphiphilic compound according to the present invention, it is preferable that the amphiphilic compound is specifically TBAOH (Tetrabutylammonium hydroxide)-(C4H9) 4NOH.

본 발명에 의한 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물의 제조 방법에 있어서, 상기 제 3 단계에서는 전체 조성물 100 중량부당 상기 이산화티탄의 비율이 0.1 내지 1 중량부의 비율로 포함되는 것을 특징으로 한다.In the method of preparing a composition for surface treatment of a positive electrode active material containing titanium dioxide surface-treated with an amphiphilic compound according to the present invention, in the third step, the ratio of the titanium dioxide per 100 parts by weight of the total composition is 0.1 to 1 part by weight It is characterized by being included.

본 발명은 또한, 본 발명에 의한 양극활물질 표면처리용 조성물로 표면 처리된 양극활물질을 제공한다. The present invention also provides a positive electrode active material surface-treated with the positive electrode active material surface treatment composition according to the present invention.

본 발명에 의한 양극활물질 표면처리용 조성물로 표면 처리된 양극활물질은 특별히 제한되지 않고 자유롭게 사용될 수 있으며, 바람직하게는 상기 양극활물질은 아래 화학식 1 내지 9로 표시되는 것이 바람직하다. The positive electrode active material surface-treated with the positive electrode active material surface treatment composition according to the present invention is not particularly limited and can be used freely, preferably, the positive electrode active material is preferably represented by the following formulas 1 to 9.

[화학식 1] Lix Mn1-y M'y A2 [Formula 1] Lix Mn1-y M'y A2

[화학식 2] Lix Mn1-y M'y O2-z Az[Formula 2] Lix Mn1-y M'y O2-z Az

[화학식 3]Lix Mn2 O4-z Az[Formula 3] Lix Mn2 O4-z Az

[화학식 4]Lix Mn2-y M'y A4[Formula 4] Lix Mn2-y M'y A4

[화학식 5]Lix B1-y M"y A2[Formula 5] Lix B1-y M "y A2

[화학식 6]Lix BO2-z Az[Formula 6] Lix BO2-z Az

[화학식 7]Lix Ni1-y Coy O2-z Az[Formula 7] Lix Ni1-y Coy O2-z Az

[화학식 8]Lix Ni1-y-z Coy M"zAα[Formula 8] Lix Ni1-y-z Coy M "zAα

[화학식 9]Lix Ni1-y-z MnyM'zAα[Formula 9] Lix Ni1-y-z MnyM'zAα

(상기 식에서, 0.95 ≤ x ≤ 1.1, 0 ≤ y ≤ 0.5, 0 ≤ z ≤ 0.5, 0 < α ≤ 2이고, M'은 Al, Co, Cr, Fe, Mg, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu로 이루어진 군에서 선택되는 하나 또는 하나 이상의 원소이고, M" 은 Al, Cr, Mn, Fe, Mg, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb및 Lu로 이루어진 군에서 선택되고, B는 Ni 또는 Co이다.) 선택되는 하나 또는 하나 이상의 원소이며, A는 O, F, S 및 P로 이루어진 군에서 선택되는 하나 또는 하나 이상의 원소임)(In the above formula, 0.95 ≤ x ≤ 1.1, 0 ≤ y ≤ 0.5, 0 ≤ z ≤ 0.5, 0 <α ≤ 2, M 'is Al, Co, Cr, Fe, Mg, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and one or more elements selected from the group consisting of Lu, M "is Al, Cr, Mn, Fe, Mg , Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, B is Ni or Co.) Is one or more elements, and A is one or more elements selected from the group consisting of O, F, S and P)

본 발명에 의한 양극활물질 표면처리용 조성물로 표면 처리된 양극활물질은 NaMnO2또는 Nax[M11-y-zM2yM3z]O2+a(여기서, M1,M2,M3는 전이 금속, x+y+z=1, 0≤x<1, 0≤y<1, 0≤z<1, 0≤a<0.1)로 표시되는 것이 가능하다. The positive electrode active material surface-treated with the positive electrode active material surface treatment composition according to the present invention is NaMnO2 or Nax [M11-y-zM2yM3z] O2 + a (where M1, M2, M3 are transition metals, x + y + z = 1, 0≤x <1, 0≤y <1, 0≤z <1, 0≤a <0.1).

본 발명에 의한 양극활물질 표면처리용 조성물로 표면 처리된 양극활물질은 표면에 10 nm 이하의 이산화티탄층을 포함하는 것을 특징으로 한다. 본 발명에 의한 양극활물질 표면처리용 조성물은 티탄이 양친매성 화합물로 처리되어 조성물 내에서 고르게 분산된 상태이므로 본 발명에 의한 양극활물질 표면처리용 조성물로 표면처리된 양극활물질의 표면에는 종래 방법과는 다르게 표면처리층의 두께가 얇은 10 nm 이하의 이산화티탄층이 형성되는 것을 특징으로 한다. The positive electrode active material surface-treated with the positive electrode active material surface treatment composition according to the present invention is characterized by including a titanium dioxide layer of 10 nm or less on the surface. The positive electrode active material surface treatment composition according to the present invention is treated with an amphiphilic compound and is evenly dispersed in the composition, so the surface of the positive electrode active material surface treated with the positive electrode active material surface treatment composition according to the present invention is different from the conventional method. Differently, a thickness of the surface treatment layer is characterized in that a titanium dioxide layer having a thickness of 10 nm or less is formed.

본 발명에 의한 양극활물질 표면처리용 조성물로 표면 처리된 양극활물질은 XPS 분석시 450 내지 460 eV 범위에서 피크가 검출되는 것을 특징으로 한다.The positive electrode active material surface-treated with the positive electrode active material surface treatment composition according to the present invention is characterized in that a peak is detected in the range of 450 to 460 eV during XPS analysis.

본 발명은 또한, 본 발명에 의한 양극활물질 표면처리용 조성물로 표면 처리된 양극활물질을 포함하는 전기 화학 소자를 제공한다. The present invention also provides an electrochemical device comprising the positive electrode active material surface-treated with the positive electrode active material surface treatment composition according to the present invention.

본 발명에 의한 전기 화학 소자는 상기 전기화학 소자는 리튬이차전지, 나트륨 전지, 황전지, 리튬이온커패시터를 포함한다. The electrochemical device according to the present invention includes the lithium secondary battery, a sodium battery, a sulfur battery, and a lithium ion capacitor.

본 발명에 의한 양극활물질 표면처리용 조성물은 양친매성 화합물로 코팅된 이산화티탄을 포함하여 조성물 자체의 저장 안정성이 우수할 뿐만 아니라, 본 발명에 의한 양극활물질 표면처리용 조성물로 표면처리된 양극활물질은 조성물 내에 용매로서 포함된 증류수에 의한 수세에 의하여 잔류 리튬을 저감시키고, 티탄산화물에 의한 표면 개질에 의하여 상온 및 고온에서도 수명 특성이 개선되는 효과를 나타낸다. The composition for surface treatment of the positive electrode active material according to the present invention includes titanium dioxide coated with an amphiphilic compound, as well as excellent storage stability of the composition itself, and the positive electrode active material surface treated with the composition for surface treatment of the positive electrode active material according to the present invention Residual lithium is reduced by water washing with distilled water contained as a solvent in the composition, and the surface life of the titanium oxide improves the lifespan characteristics even at room temperature and high temperature.

도 1은 본 발명에 의한 양극활물질 표면처리용 조성물에 의한 양극활물질 표면 처리 과정을 나타낸다.
도 2는 본 발명에 의한 양극활물질 표면처리용 조성물을 나타낸다.
도 3은 본 발명에 의한 양극활물질 표면처리용 조성물의 저장 안정성을 측정한 결과를 나타낸다.
도 4는 본 발명의 일 실시예 및 비교예에 의하여 제조된 양극활물질의 SEM 및 EDS를 측정한 결과를 나타낸다.
도 5는 본 발명의 실시예에 의하여 제조된 양극활물질 및 비교예의 양극활물질에 대하여 잔류 리튬을 측정한 결과를 나타낸다.
도 6은 본 발명의 실시예에 의하여 제조된 양극활물질 및 비교예의 양극활물질에 대하여 XRD 측정 결과를 나타낸다.
도 7은 본 발명의 실시예에 의하여 제조된 양극활물질 및 비교예의 양극활물질에 대하여 TEM 측정 결과를 나타낸다.
도 8은 본 발명의 실시예에 의하여 제조된 양극활물질 및 비교예의 양극활물질에 대하여 EDS 측정 결과를 나타낸다.
도 9는 본 발명의 실시예에 의하여 제조된 양극활물질 및 비교예의 양극활물질에 대하여 XPS 측정 결과를 나타낸다.
도 10 및 도 11은 본 발명의 실시예에 의하여 제조된 양극활물질 및 비교예의 양극활물질을 포함하여 제조된 전지에 대해 용량 특성, 충방전 특성 및 수명 특성을 측정한 결과를 나타낸다.
도 12는 본 발명의 일 실시예 및 비교예에 의하여 제조된 양극활물질의 SEM 측정한 결과를 나타낸다.
도 13은 본 발명의 실시예에 의하여 제조된 양극활물질 및 비교예의 양극활물질에 대하여 잔류 리튬을 측정한 결과를 나타낸다.
도 14는 본 발명의 실시예에 의하여 제조된 양극활물질 및 비교예의 양극활물질을 포함하여 제조된 전지에 대해 용량 특성, 충방전 특성 및 수명 특성을 측정한 결과를 나타낸다.
1 shows a surface treatment process of the positive electrode active material by the composition for surface treatment of the positive electrode active material according to the present invention.
2 shows a composition for surface treatment of a positive electrode active material according to the present invention.
Figure 3 shows the results of measuring the storage stability of the positive electrode active material surface treatment composition according to the present invention.
Figure 4 shows the results of measuring the SEM and EDS of the positive electrode active material prepared by an embodiment and a comparative example of the present invention.
Figure 5 shows the results of measuring the residual lithium for the positive electrode active material prepared in Example of the present invention and the positive electrode active material of a comparative example.
Figure 6 shows the XRD measurement results for the positive electrode active material of the positive electrode active material and a comparative example prepared by an embodiment of the present invention.
Figure 7 shows the results of TEM measurements for the positive electrode active material of the positive electrode active material and a comparative example prepared by an embodiment of the present invention.
8 shows the results of EDS measurement for the positive electrode active material prepared by the Example of the present invention and the positive electrode active material of the comparative example.
Figure 9 shows the results of XPS measurement for the positive electrode active material of the positive electrode active material and a comparative example prepared by an embodiment of the present invention.
10 and 11 show the results of measuring the capacity characteristics, charge and discharge characteristics, and life characteristics for a battery manufactured by including the positive electrode active material of the present invention and the positive electrode active material of the comparative example.
Figure 12 shows the results of SEM measurements of the positive electrode active material prepared by an embodiment and a comparative example of the present invention.
13 shows the results of measuring residual lithium for the positive electrode active material prepared according to the embodiment of the present invention and the positive electrode active material of the comparative example.
14 shows a result of measuring capacity characteristics, charge / discharge characteristics, and life characteristics for a battery manufactured by including a positive electrode active material prepared according to an embodiment of the present invention and a positive electrode active material of a comparative example.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by examples. However, the present invention is not limited by the following examples.

<실시예> 양극활물질 표면처리용 조성물 제조 <Example> Preparation of cathode active material composition for surface treatment

티탄 전구체로서 티타늄 이소프로폭사이드를 용매로서 이소프로필알코올에 혼합하여 이산화티탄의 농도는 각각 0.1, 0.3, 0.5 중량%가 되도록 티타늄 이소프로폭사이드-이소프로필알코올 혼합 용액을 제조하였다. 테트라부틸암모늄 하이드록사이드 0.212 g 을 75 mL 증류수에 희석하여 용액을 제조하였다. Titanium isopropoxide as a titanium precursor was mixed with isopropyl alcohol as a solvent to prepare a titanium isopropoxide-isopropyl alcohol mixed solution so that the concentrations of titanium dioxide were 0.1, 0.3, and 0.5% by weight, respectively. A solution was prepared by diluting 0.212 g of tetrabutylammonium hydroxide in 75 mL distilled water.

상기 티타늄 이소프로폭사이드 - 이소프로필알코올 혼합 용액을 양친매성 용매로서 상기 테트라부틸암모늄 하이드록사이드에 교반하면서 천천히 첨가하고, 완전히 혼합되어 콜로이드 분산되도록 가열하면서 교반하였다. 가열하는 동안 흰색 탁한 용액은 푸른색 투명한 용액으로 변하다가, 수시간 뒤에는 노란색 투명 용액으로 변하였다. The titanium isopropoxide-isopropyl alcohol mixed solution was slowly added to the tetrabutylammonium hydroxide as an amphipathic solvent while stirring, and stirred while heating to thoroughly mix and colloidally disperse. During heating, the white cloudy solution turned into a blue transparent solution, and after a few hours it turned into a yellow transparent solution.

재응집되는 것을 방지하기 위해 40 ml 의 증류수를 추가하였다. 만들어진 이산화티탄 투명 용액을 오토클레이브에서 150℃ 에서 2.5 시간동안 열처리 하였다. 40 ml of distilled water was added to prevent re-agglomeration. The resulting titanium dioxide transparent solution was heat treated in an autoclave at 150 ° C for 2.5 hours.

<실험예> 양극활물질 표면처리용 조성물 저장 안정성 실험<Experimental Example> Storage stability test for the composition for surface treatment of positive electrode active material

상기 실시예에 의하여 제조된 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물을 상온에서 방치시키면서 현탁도를 실험한 결과를 도 3에 나타내었다.The results of experimenting the suspension while leaving the composition for surface treatment of the positive electrode active material containing titanium dioxide surface-treated with the amphiphilic compound prepared by the above example at room temperature are shown in FIG. 3.

도 3에서 보는 바와 같이 본 발명의 양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물은 이산화티탄이 양친매성 화합물로 표면처리되어 용액 내에서 고르게 분산된 상태를 유지하기 때문에 상온에서 저장시간이 12시간 이상 되어도 현탁도가 유지되는 것을 확인할 수 있다. As shown in FIG. 3, the composition for surface treatment of the positive electrode active material containing titanium dioxide surface-treated with the amphiphilic compound of the present invention is treated at room temperature because titanium dioxide is surface-treated with the amphiphilic compound and uniformly dispersed in the solution. It can be seen that the storage time is maintained even if the storage time is longer than 12 hours.

<실시예> 양극활물질 표면 처리 <Example> Surface treatment of positive electrode active material

양극활물질로 엘앤에프에서 구입한 입경 10 um 크기의 LiNi0 . 8Co0 . 1Mn0 . 1O2 (NCM811, L&F materials) 50g 을 상기 실시예에서 제조된 표면 처리용 조성물에 첨가하고 10분간 교반하였다. 이후 필터로 분리한 후 8시간 동안 120℃ 에서 건조하고, 5시간동안 500℃ 에서 열처리하였다. LiNi 0 with a particle size of 10 um purchased from L & F as a positive electrode active material . 8 Co 0 . 1 Mn 0 . 50 g of 1 O 2 (NCM811, L & F materials) was added to the surface treatment composition prepared in the above example and stirred for 10 minutes. Thereafter, the mixture was separated by a filter, dried at 120 ° C for 8 hours, and heat treated at 500 ° C for 5 hours.

비교예로서 표면처리하지 않은 양극활물질 및 종래 일반적으로 적용되는 방법인 증류수로 수세한 양극활물질을 제조하였다. As a comparative example, a positive electrode active material without surface treatment and a positive electrode active material washed with distilled water, which is a conventionally applied method, were prepared.

비교예로서 티탄 전구체로서 티타늄 이소프로폭사이드를 용매로서 이소프로필알코올에 혼합하여, 별도로 양친매성 화합물로 표면처리되지 않은 이산화티탄을 포함하는 조성물로 코팅된 양극활물질을 제조하였다. As a comparative example, titanium isopropoxide as a titanium precursor was mixed with isopropyl alcohol as a solvent to prepare a positive electrode active material coated with a composition containing titanium dioxide that was not surface-treated with an amphiphilic compound.

<실험예> SEM 및 EDS 측정<Experimental Example> SEM and EDS measurement

본 발명의 실시예에 의하여 제조된 이산화티탄을 포함하는 표면처리용 조성물로 처리된 양극활물질 및 비교예의 양극활물질에 대하여 SEM 측정 결과를 도 3 및 도 4에 나타내었다. SEM measurement results are shown in FIGS. 3 and 4 for the positive electrode active material of the comparative example and the positive electrode active material treated with the composition for surface treatment containing titanium dioxide prepared according to the embodiment of the present invention.

도 4에서 본 발명의 표면처리 조성물로 표면처리된 양극활물질의 경우 표면이 개질되며 Ti 가 양극활물질 표면에 고르게 분포되어 있는 것을 확인할 수 있다. 4, in the case of the positive electrode active material surface-treated with the surface treatment composition of the present invention, it can be seen that the surface is modified and Ti is evenly distributed on the positive electrode active material surface.

표면 처리되지 않은 비교예의 양극활물질의 경우 도 4b 에서 보는 바와 같이 표면에 잔류 리튬이 다량 남아있으나, 증류수로 세정하는 비교예의 양극활물질의 경우 도 4c 에서 보는 바와 같이 잔류리튬화합물이 제거되는 것을 확인할 수 있다. 이에 비해 본 발명의 조성물로 표면처리되는 경우 도 4d 내지 도 4f 에서 보는 바와 같이 잔류리튬화합물은 제거되고 조성물 내의 이산화티탄 입자가 양극활물질 표면에 고르게 코팅되는 것을 확인할 수 있다. In the case of the positive electrode active material of the comparative example that was not surface treated, a large amount of residual lithium remained on the surface as shown in FIG. 4B, but in the case of the positive electrode active material of the comparative example washed with distilled water, it was confirmed that the residual lithium compound was removed. have. On the other hand, when surface treated with the composition of the present invention, it can be seen that residual lithium compounds are removed and titanium dioxide particles in the composition are evenly coated on the surface of the positive electrode active material, as shown in FIGS. 4D to 4F.

<실험예> 잔류 리튬 측정<Experimental Example> Measurement of residual lithium

본 발명의 실시예에 의하여 제조된 표면처리용 조성물로 처리된 양극활물질 및 비교예의 양극활물질에 대하여 잔류 리튬을 측정하고 그 결과를 아래 표 1 및 도 5에 나타내었다. Residual lithium was measured for the positive electrode active material and the positive electrode active material of the comparative example treated with the composition for surface treatment prepared by Examples of the present invention, and the results are shown in Table 1 and FIG. 5 below.

SampleSample LiOHLiOH LiLi 22 COCO 33 TotalTotal B-NCM811B-NCM811 37603760 44004400 81608160 W-NCM811W-NCM811 14101410 34503450 48604860 T-0.1wt%T-0.1wt% 25402540 18701870 44104410 T-0.3wt%T-0.3wt% 31803180 16601660 48404840 T-0.5wt%T-0.5wt% 38403840 20602060 59005900

도 5 에서 표면처리하지 않은 비교예의 양극활물질의 경우 잔류리튬이 8160ppm 인데 비해, 증류수로 세정한 비교예의 양극활물질의 경우 잔류리튬이 4860ppm 으로 감소하였다. In the case of the positive electrode active material of the comparative example without surface treatment in FIG. 5, the residual lithium was 8160 ppm, whereas in the positive electrode active material of the comparative example washed with distilled water, the residual lithium was reduced to 4860 ppm.

본 발명의 실시예에서 제조된 표면처리용 조성물로 처리된 양극활물질의 경우 조성물 내의 이산화티탄의 함량에 반비례하여 잔류리튬이 저감되는 효과를 나타내었다. In the case of the positive electrode active material treated with the composition for surface treatment prepared in Examples of the present invention, the residual lithium was reduced in inverse proportion to the content of titanium dioxide in the composition.

<실험예> XRD 측정<Experimental Example> XRD measurement

상기 실시예 및 표면처리하지 않은 비교예의 양극활물질에 대해 XRD 를 측정하고 그 결과를 도 6에 나타내었다. XRD was measured for the positive electrode active material of the examples and the comparative examples without surface treatment, and the results are shown in FIG. 6.

도 6에서 실시예 및 비교예의 양극활물질은 모두 층상 구조를 나타내고, 표면처리용 조성물 내의 티탄의 농도가 증가하더라도 구조적인 차이점이 나타나지 않는 것을 알 수 있다. It can be seen from FIG. 6 that the positive electrode active materials of Examples and Comparative Examples all exhibit a layered structure, and structural differences do not appear even when the concentration of titanium in the composition for surface treatment increases.

또한, 세정을 하지 않은 비교예의 경우 LiOH 및 Li2CO3 에 의해 20.6˚ 및 22.3 ˚에서 피크가 나타나는데 비해 본 발명의 실시예의 경우 피크가 나타나지 않는 것을 확인할 수 있다. In addition, it can be confirmed that in the case of the comparative example without washing, peaks appeared at 20.6 degrees and 22.3 degrees due to LiOH and Li2CO3, but the peaks did not appear in the example of the present invention.

<실험예> TEM 측정<Experimental Example> TEM measurement

상기 실시예 및 표면처리하지 않은 비교예의 양극활물질에 대해 TEM 을 측정하고 그 결과를 도 7에 나타내었다. The TEM was measured for the positive electrode active material of the Example and the comparative example without surface treatment, and the results are shown in FIG. 7.

도 7에서 표면처리를 실시하지 않은 양극활물질의 표면이 본 발명에 의해 표면처리를 한 실시예의 양극활물질 보다 매끄러운 것을 알 수 있다. 본 발명에 의해 표면처리된 양극활물질의 경우 표면에 이산화티탄 코팅층이 균일하게 형성되고 코팅층의 두께는 10 nm 이하인 것으로 측정되었다. It can be seen from FIG. 7 that the surface of the positive electrode active material not subjected to the surface treatment is smoother than the positive electrode active material of the embodiment subjected to the surface treatment according to the present invention. In the case of the positive electrode active material surface-treated by the present invention, the titanium dioxide coating layer was uniformly formed on the surface, and the thickness of the coating layer was measured to be 10 nm or less.

<실험예> EDS 측정<Experimental Example> EDS measurement

상기 실시예 및 표면처리하지 않은 비교예의 양극활물질에 대해 EDS 를 측정하고 그 결과를 도 8에 나타내었다. EDS was measured for the positive electrode active material of the examples and the comparative examples without surface treatment, and the results are shown in FIG. 8.

도 8에서 보는 바와 같이 표면에서의 Ti 이온의 농도가 1.24 원자% 인 것을 확인할 수 있다. As shown in Figure 8, it can be confirmed that the concentration of Ti ions on the surface is 1.24 atomic%.

<실험예> XPS 측정<Experimental Example> XPS measurement

상기 실시예 및 표면처리하지 않은 비교예의 양극활물질에 대해 XPS 를 측정하고 그 결과를 도 9에 나타내었다. XPS was measured for the positive electrode active material of the Example and the comparative example without surface treatment, and the results are shown in FIG. 9.

도 9에서 표면처리되지 않은 양극활물질의 경우 LiOH 및 Li2CO3 에 의하여 바인딩 에너지 53.7 eV 및 55.4eV 에서 피크가 나타나는데 비해, 본 발명에 의한 표면처리된 양극활물질의 경우 해당 위치에서 피크가 나타나지 않는 것을 알 수 있다. In the case of the positive electrode active material not surface-treated in FIG. 9, peaks appear at binding energy 53.7 eV and 55.4 eV by LiOH and Li 2 CO 3 , whereas in the case of the surface-treated positive electrode active material according to the present invention, there is no peak at the corresponding position. You can see that

또한, 본 발명의 경우 454.2 eV 에서 피크가 검출되는데 비해, 비교예에 의하여 표면처리되지 않은 양극활물질의 경우 피크가 검출되지 않았다. 본 발명에 의하여 표면처리된 양극활물질의 경우 주로 티탄산화물의 형태로 존재하며, 이때 티탄의 산화수는 4가인 상태로 존재하는 것을 알 수 있다. In addition, in the case of the present invention, the peak was detected at 454.2 eV, whereas the peak was not detected in the case of the positive electrode active material that was not surface-treated by the comparative example. In the case of the positive electrode active material surface-treated according to the present invention, it is mainly present in the form of titanium oxide, and it can be seen that the oxidation number of titanium exists in a tetravalent state.

<제조예> 전지 제조<Production Example> Battery Manufacturing

상기 제조된 양극 활물질의 평균입자 크기 입경이 25㎛가 되도록 분급하고, 상기 양극 활물질 90 중량%, 도전재로 아세틸렌 블랙 5 중량%, 바인더로 PVdF 5 중량%를 NMP에 용해시켜, 슬러리를 제조하였다. The average particle size particle size of the prepared positive electrode active material was classified to be 25 μm, and 90% by weight of the positive electrode active material, 5% by weight of acetylene black as a conductive material, and 5% by weight of PVdF as a binder were dissolved in NMP to prepare a slurry. .

이 슬러리를 두께 20㎛의 알루미늄 포일(foil)에 도포하여 건조 후 프레스로 압착시킨 뒤, 진공에서 120℃로 16시간 건조해 직경 16mm의 원판으로 전극을 제조하였다. 상대극으로는 직경 16mm로 펀칭(punching)한 리튬 금속박을 사용하고, 분리막으로는 PP 필름을 사용하였다. The slurry was applied to an aluminum foil having a thickness of 20 µm, dried, pressed with a press, and then dried in vacuum at 120 ° C. for 16 hours to prepare an electrode with a diameter of 16 mm. A lithium metal foil punched to a diameter of 16 mm was used as the counter electrode, and a PP film was used as the separator.

전해액으로는 1M의 LiPF6의 EC/DMC 1:1 v/v의 혼합 용액을 사용하였다. 분리막을 전해액에 함침시켜 이 분리막을 작용극과 상대극 사이에 끼운 후 스테인레스스틸(SUS) 케이스(모델명 CR2032)를 사용하여 리튬 이차전지를 제조하였다.As the electrolyte, a mixed solution of 1M LiPF6 EC / DMC 1: 1 v / v was used. A lithium secondary battery was manufactured by impregnating the separator with an electrolyte solution, sandwiching the separator between the working electrode and the counter electrode, and then using a stainless steel (SUS) case (model name CR2032).

<실험예> 전지 특성 평가 <Experimental Example> Battery characteristics evaluation

상기 제조예에서 제조된 전지에 대해 용량 특성(도 10, 도 11a), 충방전 특성(도 11b), 수명 특성(도 11c) 및 율특성(도 11d)을 측정한 결과를 도 11 에 나타내었다. 도 11 에서 본 발명의 일 실시예에 의하여 이산화티탄 입자를 포함하는 표면 처리용 조성물로 처리된 양극활물질을 포함하는 전지의 경우 상온 및 고온에서 수명 특성이 개선되었으며, 초기 방전용량도 증가됨을 확인할 수 있다. The results of measuring the capacity characteristics (FIG. 10, 11A), charge / discharge characteristics (FIG. 11B), life characteristics (FIG. 11C), and rate characteristics (FIG. 11D) for the battery manufactured in the above manufacturing example are shown in FIG. . In FIG. 11, in the case of a battery including a positive electrode active material treated with a composition for surface treatment containing titanium dioxide particles according to an embodiment of the present invention, it was confirmed that life characteristics were improved at room temperature and high temperature, and the initial discharge capacity was also increased. have.

도 11b 에서 50 사이클 이후의 수명의 경우 본 발명에 의하여 표면 처리된 양극활물질은 89.2% 로 측정되어 비교예의 표면처리되지 않은 양극활물질의 83.0% 보다 크게 개선되는 것을 알 수 있다. In the case of life after 50 cycles in FIG. 11B, it can be seen that the positive electrode active material surface-treated by the present invention was measured to be 89.2%, which is significantly greater than 83.0% of the non-surface positive electrode active material of the comparative example.

본 발명의 실시예에 의한 경우 Ti 함량이 높아질수록 초기 50 사이클 이후의 수명 특성이 열화되는데 이는 Ti 함량이 높아질수록 표면 코팅층의 두께가 증가하여 리튬 이온이 이동하는데 저항이 증가함에 따른 것이라고 판단된다. In the case of an embodiment of the present invention, as the Ti content increases, the life characteristics after the initial 50 cycles deteriorate. It is determined that the thickness of the surface coating layer increases as the Ti content increases, resulting in an increase in resistance to movement of lithium ions.

45℃ 의 고온에서의 수명 특성을 측정한 도 11c 에서 비교예의 표면처리되지 않은 양극활물질의 경우 용량유지율이 72.8% 인데 비해, 본 발명의 실시예에 의하여 Ti 가 0.1중량%로 포함된 조성물로 표면 코팅되는 경우 용량유지율이 80.4% 로 크게 개선되는 것을 확인할 수 있다. In the case of the positive electrode active material which is not surface-treated in Comparative Example in FIG. 11C, which measured the lifespan characteristic at a high temperature of 45 ° C., the capacity retention rate is 72.8%, whereas the surface of the composition containing Ti at 0.1% by weight according to the embodiment of the present invention When coated, it can be seen that the capacity retention rate is significantly improved to 80.4%.

<실험예> SEM 및 EDS 측정<Experimental Example> SEM and EDS measurement

상기 실시예에 의하여 제조된 이산화티탄을 포함하는 표면처리용 조성물로 처리된 양극활물질 및 비교예로서 기존의 Ti 코팅법에 의하여 코팅된 양극활물질에 대하여 SEM 측정 결과를 도 12에 나타내었다. The results of SEM measurements are shown in FIG. 12 for the positive electrode active material treated with the composition for surface treatment containing titanium dioxide prepared by the above example and the positive electrode active material coated by the conventional Ti coating method as a comparative example.

도 12에서 본 발명의 표면처리 조성물의 경우 Ti 가 양친매성 용매에 의해 분산된 상태이나, 비교예의 경우 Ti 가 응집되어 있으며, 이에 따라 코팅된 양극활물질의 경우 본 발명의 표면처리 조성물로 코팅된 양극활물질의 Ti 코팅층의 경우 Ti 입자가 골고루 분산된 상태로 표면에 코팅되므로 Ti 코팅층의 두께가 비교예의 양극활물질의 Ti 코팅층보다 크게 감소하는 것을 확인할 수 있다. In FIG. 12, in the case of the surface treatment composition of the present invention, Ti is dispersed by an amphiphilic solvent, but in the case of the comparative example, Ti is aggregated, and accordingly, in the case of the coated positive electrode active material, the anode coated with the surface treatment composition of the present invention In the case of the Ti coating layer of the active material, since Ti particles are evenly dispersed on the surface, it can be seen that the thickness of the Ti coating layer is significantly reduced than the Ti coating layer of the positive electrode active material of the comparative example.

<실험예> 잔류 리튬 측정<Experimental Example> Measurement of residual lithium

본 발명의 실시예에 의하여 제조된 표면처리용 조성물로 처리된 양극활물질 및 종래 일반적인 Ti 코팅법에 의하여 코팅된 비교예의 양극활물질에 대하여 잔류 리튬을 측정하고 그 결과를 도 13에 나타내었다. Residual lithium was measured for the positive electrode active material treated with the composition for surface treatment prepared by the example of the present invention and the positive electrode active material of the comparative example coated by the conventional general Ti coating method, and the results are shown in FIG. 13.

본 발명에 의한 양친매성 용매로 처리된 티타늄으로 처리된 경우 종래 일반적인 방법으로 처리된 경우 감소되는 21.7% 보다 잔류 리튬이 2배 이상 많이 감소하는 것을 확인할 수 있다. When treated with titanium treated with an amphipathic solvent according to the present invention, it can be seen that the residual lithium is reduced more than 2 times more than the reduced 21.7% when treated with the conventional method.

<실험예> 전지 특성 평가 <Experimental Example> Battery characteristics evaluation

본 발명의 실시예에 의하여 제조된 표면처리용 조성물로 처리된 양극활물질 및 종래 일반적인 Ti 코팅법에 의하여 코팅된 비교예의 양극활물질을 포함하는 전지극 각각 제조하고, 제조된 전지에 대해 용량 특성, 충방전 특성, 수명 특성 및 율특성을 측정한 결과를 도 14 에 나타내었다.Each electrode electrode comprising the positive electrode active material treated with the composition for surface treatment prepared by the embodiment of the present invention and the positive electrode active material of the comparative example coated by the conventional general Ti coating method is prepared, and the capacity characteristics and charge of the prepared battery The results of measuring discharge characteristics, life characteristics and rate characteristics are shown in FIG. 14.

Claims (15)

양친매성 화합물로 표면처리된 이산화티탄을 포함하는 양극활물질 표면처리용 조성물
Composition for surface treatment of positive electrode active material containing titanium dioxide surface-treated with amphiphilic compound
제 1 항에 있어서,
상기 조성물은 100 중량부당 상기 양친매성 화합물로 표면처리된 이산화티탄을 0.1 내지 1.0 중량부의 비율로 포함하는 것인
양극활물질 표면처리용 조성물
According to claim 1,
The composition comprises titanium dioxide surface-treated with the amphiphilic compound per 100 parts by weight of 0.1 to 1.0 parts by weight
Anode active material surface treatment composition
제 1 항에 있어서,
상기 양친매성 화합물은 1차 아민, 2차 아민, 3차 아민, 4차 아민, 및 암모늄염으로 이루어진 그룹에서 선택되는 것인
양극활물질 표면처리용 조성물
According to claim 1,
The amphiphilic compound is selected from the group consisting of primary amine, secondary amine, tertiary amine, quaternary amine, and ammonium salt.
Anode active material surface treatment composition
제 1 항에 있어서,
상기 이산화티탄의 입경은 1 내지 10 nm 인 것인
양극활물질 표면처리용 조성물
According to claim 1,
The particle size of the titanium dioxide is 1 to 10 nm
Anode active material surface treatment composition
제 1 항에 있어서,
상기 조성물은 용매로서 증류수를 더 포함하는 것인
양극활물질 표면처리용 조성물
According to claim 1,
The composition is to further include distilled water as a solvent
Anode active material surface treatment composition
알코올에 분산된 티탄 전구체 용액을 준비하는 제 1 단계;
양친매성 화합물 용액을 준비하는 제 2 단계;
상기 알코올에 분산된 티탄 전구체 용액을 상기 양친매성 화합물 용액에 혼합하는 제 3 단계;
상기 혼합 용액을 교반하면서 제 1 열처리하여 콜로이드 분산 용액을 제조하는 제 4 단계; 및
상기 콜로이드 분산 용액을 130 내지 170 ℃의 온도에서 2시간 내지 3시간 동안 열처리 하는 제 5 단계; 를 포함하는
제 1 항에 의한 양극활물질 표면처리용 조성물의 제조 방법
A first step of preparing a titanium precursor solution dispersed in alcohol;
A second step of preparing an amphiphilic compound solution;
A third step of mixing the titanium precursor solution dispersed in the alcohol into the amphiphilic compound solution;
A fourth step of preparing a colloidal dispersion solution by first heat treatment while stirring the mixed solution; And
A fifth step of heat-treating the colloidal dispersion solution at a temperature of 130 to 170 ° C. for 2 to 3 hours; Containing
Method for producing a composition for surface treatment of a positive electrode active material according to claim 1
제 6 항에 있어서,
상기 티탄 전구체는 티탄이소프로폭사이드인 것인
양극활물질 표면처리용 조성물의 제조 방법
The method of claim 6,
The titanium precursor is titanium isopropoxide
Method for preparing a positive electrode active material surface treatment composition
제 6 항에 있어서,
상기 이온 계면 활성제는 1차 아민, 2차 아민, 3차 아민, 4차 아민, 및 암모늄염으로 이루어진 그룹에서 선택되는 양친매성 화합물인 것인
양극활물질 표면처리용 조성물의 제조 방법
The method of claim 6,
The ionic surfactant is an amphiphilic compound selected from the group consisting of primary amines, secondary amines, tertiary amines, quaternary amines, and ammonium salts.
Method for preparing a positive electrode active material surface treatment composition
제 6 항에 있어서,
상기 제 3 단계에서는 상기 알코올에 분산된 티탄 전구체 용액 100 중량부당 상기 양친매성 화합물 용액을 0. 1 내지 1.0 중량부의 비율로 혼합하는 것인
양극활물질 표면처리용 조성물의 제조 방법
The method of claim 6,
In the third step, the amphiphilic compound solution per 100 parts by weight of the titanium precursor solution dispersed in the alcohol is mixed at a ratio of 0.1 to 1.0 parts by weight.
Method for preparing a positive electrode active material surface treatment composition
제 1 항의 양극활물질 표면처리용 조성물로 표면 처리된 양극활물질
A positive electrode active material surface-treated with the composition for surface treatment of claim 1
제 10 항에 있어서,
상기 양극활물질은 아래 화학식 1 내지 9로 표시되는 것인
[화학식 1] Lix Mn1-y M'y A2
[화학식 2] Lix Mn1-y M'y O2-z Az
[화학식 3]Lix Mn2 O4-z Az
[화학식 4]Lix Mn2-y M'y A4
[화학식 5]Lix B1-y M"y A2
[화학식 6]Lix BO2-z Az
[화학식 7]Lix Ni1-y Coy O2-z Az
[화학식 8]Lix Ni1-y-z Coy M"zAα
[화학식 9]Lix Ni1-y-z MnyM'zAα
(상기 식에서, 0.95 ≤ x ≤ 1.1, 0 ≤ y ≤ 0.5, 0 ≤ z ≤ 0.5, 0 < α ≤ 2이고,
M'은 Al, Co, Cr, Fe, Mg, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu로 이루어진 군에서 선택되는 하나 또는 하나 이상의 원소이고,
M" 은 Al, Cr, Mn, Fe, Mg, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb및 Lu로 이루어진 군에서 선택되고,
B는 Ni 또는 Co이고,
A는 O, F, S 및 P로 이루어진 군에서 선택되는 하나 또는 하나 이상의 원소임)
The method of claim 10,
The positive electrode active material is represented by the formulas 1 to 9 below
[Formula 1] Lix Mn1-y M'y A2
[Formula 2] Lix Mn1-y M'y O2-z Az
[Formula 3] Lix Mn2 O4-z Az
[Formula 4] Lix Mn2-y M'y A4
[Formula 5] Lix B1-y M "y A2
[Formula 6] Lix BO2-z Az
[Formula 7] Lix Ni1-y Coy O2-z Az
[Formula 8] Lix Ni1-yz Coy M "zAα
[Formula 9] Lix Ni1-yz MnyM'zAα
(In the above formula, 0.95 ≤ x ≤ 1.1, 0 ≤ y ≤ 0.5, 0 ≤ z ≤ 0.5, 0 <α ≤ 2,
M 'is in the group consisting of Al, Co, Cr, Fe, Mg, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu Is one or more elements selected,
M "is in the group consisting of Al, Cr, Mn, Fe, Mg, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu Being selected,
B is Ni or Co,
A is one or more elements selected from the group consisting of O, F, S and P)
제 10 항에 있어서,
상기 양극활물질은 표면에 10 nm 이하의 산화티탄층을 포함하는 것인
양극활물질
The method of claim 10,
The positive electrode active material is to include a titanium oxide layer of 10 nm or less on the surface
Cathode active material
제 10 항에 있어서,
상기 양극활물질은 XPS 분석시 450 내지 460 eV 범위에서 피크가 검출되는 것인
양극활물질
The method of claim 10,
In the positive electrode active material, a peak is detected in a range of 450 to 460 eV during XPS analysis.
Cathode active material
제 10 항의 양극활물질을 포함하는 전기화학 소자
An electrochemical device comprising the positive electrode active material of claim 10
제 14 항에 있어서,
상기 전기화학 소자는 리튬이차전지, 나트륨 전지, 황전지, 리튬이온커패시터를 포함하는 것인 전기화학 소자

The method of claim 14,
The electrochemical device includes a lithium secondary battery, a sodium battery, a sulfur battery, and a lithium ion capacitor.

KR1020180113503A 2018-09-21 2018-09-21 Surface treating composition for cathod active material and manufacturing method of the same KR102125766B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180113503A KR102125766B1 (en) 2018-09-21 2018-09-21 Surface treating composition for cathod active material and manufacturing method of the same
PCT/KR2018/012382 WO2020059941A1 (en) 2018-09-21 2018-10-19 Composition for cathode active material surface treatment, method for preparing same, and cathode active material surface-treated with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180113503A KR102125766B1 (en) 2018-09-21 2018-09-21 Surface treating composition for cathod active material and manufacturing method of the same

Publications (2)

Publication Number Publication Date
KR20200034147A true KR20200034147A (en) 2020-03-31
KR102125766B1 KR102125766B1 (en) 2020-06-23

Family

ID=69887558

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180113503A KR102125766B1 (en) 2018-09-21 2018-09-21 Surface treating composition for cathod active material and manufacturing method of the same

Country Status (2)

Country Link
KR (1) KR102125766B1 (en)
WO (1) WO2020059941A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110092599A (en) * 2010-02-09 2011-08-18 영남대학교 산학협력단 Method for manufacturing cubic tio2 nano particle for dye-sensitized solar cell
KR20170090196A (en) * 2016-01-28 2017-08-07 주식회사 엘지화학 Cathode active material having high electrochemical properties and lithium secondary battery comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101326659B1 (en) * 2011-10-25 2013-11-07 주식회사 포톤와트 A method for preparing nano-tube of titanium dioxide and a photoelectrode for dye-sensitized solar cell comprising the nano-tube
KR101893959B1 (en) * 2011-12-30 2018-09-03 삼성에스디아이 주식회사 Cathode Active Material for Lithium Secondary Battery, Method for Preparing Cathode Active Material, and Lithium Secondary Battery Using the Same
KR102201686B1 (en) * 2014-06-17 2021-01-11 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110092599A (en) * 2010-02-09 2011-08-18 영남대학교 산학협력단 Method for manufacturing cubic tio2 nano particle for dye-sensitized solar cell
KR20170090196A (en) * 2016-01-28 2017-08-07 주식회사 엘지화학 Cathode active material having high electrochemical properties and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
KR102125766B1 (en) 2020-06-23
WO2020059941A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
CN108390022B (en) Carbon-metal oxide composite coated lithium battery ternary positive electrode material, preparation method thereof and lithium battery
Zheng et al. Improved electrochemical performance of Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 cathode material by fluorine incorporation
KR101403828B1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
CN110931768A (en) Ternary positive electrode material of high-nickel monocrystal lithium ion battery and preparation method
EP3930052A1 (en) Low gas-producing high capacity ternary positive electrode material
WO2011065464A1 (en) Particulate powder of positive active material for nonaqueous-electrolyte secondary battery, process for producing same, and nonaqueous-electrolyte secondary battery
CN111762768B (en) Spinel type lithium manganate-phosphate composite cathode material and preparation method thereof
CN110233250A (en) A kind of preparation method of single crystal grain tertiary cathode material
CN111653761A (en) Preparation method of high-nickel cathode material with improved washing
CN113363476B (en) Ternary cathode material of lithium ion battery and preparation method thereof
KR20130125124A (en) Fabrication method of nanocomposite for lithium secondary battery
JP2022529760A (en) Positive electrode material, its manufacturing method and lithium secondary battery
CN111009654A (en) Mo-doped LiNi0.6Co0.2Mn0.2O2Positive electrode material and preparation method thereof
Jin et al. Improved electrochemical performances of li-and Mn-Rich layered oxides 0.4 Li4/3Mn2/3O2· 0.6 LiNi1/3Co1/3Mn1/3O2 cathode material by Co3O4 coating
CN114079086A (en) Positive electrode lithium supplement additive, positive electrode plate, preparation method of positive electrode plate and lithium ion battery
Deng et al. Preparation of porous Li1. 2Mn0. 54Ni0. 13Co0. 13O2 micro-cubes for high-capacity lithium-ion batteries
Zong et al. Flux preparation of LiNi0. 6Co0. 2Mn0. 2O2 micron‐sized crystals as cathode materials for highly reversible lithium storage
Wu et al. Electrochemical properties of submicro-sized layered LiNi0. 5Mn0. 5O2
CN111293286A (en) Coating modified lithium ion battery anode material and preparation method thereof
CN116805680A (en) Composite positive electrode material and preparation method and application thereof
Xie et al. Excellent electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 with good crystallinity and submicron primary dispersed particles
CN114639824B (en) High-safety ternary cathode material and preparation method thereof
CN114561686B (en) Method for improving compaction density of cobalt-free positive electrode material, cobalt-free positive electrode material and lithium ion battery
CN115939362A (en) Positive electrode material, preparation method thereof, positive electrode piece and secondary battery
Liu et al. Investigation of the structural and electrochemical performance of Li 1.2 Ni 0.2 Mn 0.6 O 2 with Cr doping

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant