KR20200032947A - Positive material formed silicone oxide coating layer, positive electrode and sodium ion battery containing the same and method for manufacturing thereof - Google Patents

Positive material formed silicone oxide coating layer, positive electrode and sodium ion battery containing the same and method for manufacturing thereof Download PDF

Info

Publication number
KR20200032947A
KR20200032947A KR1020180112222A KR20180112222A KR20200032947A KR 20200032947 A KR20200032947 A KR 20200032947A KR 1020180112222 A KR1020180112222 A KR 1020180112222A KR 20180112222 A KR20180112222 A KR 20180112222A KR 20200032947 A KR20200032947 A KR 20200032947A
Authority
KR
South Korea
Prior art keywords
ion battery
sodium ion
positive electrode
metal oxide
silicon oxide
Prior art date
Application number
KR1020180112222A
Other languages
Korean (ko)
Inventor
조우석
김경수
정구진
유지상
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Priority to KR1020180112222A priority Critical patent/KR20200032947A/en
Publication of KR20200032947A publication Critical patent/KR20200032947A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a positive electrode material with a silicon oxide coating layer formed thereon, capable of improving battery characteristics of a sodium ion battery. The present invention also relates to a positive electrode and a sodium ion battery comprising the same, and a manufacturing method thereof. More specifically, provided is a positive electrode material for a sodium ion battery, comprising: metal oxide having an O_3 layered structure represented by Na_(1-x)MeO_2 (Me = Ni, Fe and Mn, 0<x<1); and a silicon oxide coated layer coated with silicon oxide on a surface of the metal oxide.

Description

실리콘산화물 코팅층이 형성된 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법{Positive material formed silicone oxide coating layer, positive electrode and sodium ion battery containing the same and method for manufacturing thereof}A positive electrode material on which a silicon oxide coating layer is formed, a positive electrode and a sodium ion battery containing the same, and a manufacturing method therefor {Positive material formed silicone oxide coating layer, positive electrode and sodium ion battery containing the same and method for manufacturing thereof}

본 발명은 나트륨이온전지 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 양극 소재의 표면에 실리콘산화물을 코팅하여 전지 특성을 향상시킨 실리콘산화물 코팅층이 형성된 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법에 관한 것이다.The present invention relates to a sodium ion battery and a method for manufacturing the same, and more specifically, a positive electrode material having a silicon oxide coating layer on which the silicon oxide is coated on the surface of the positive electrode material to improve battery characteristics, the positive electrode and the sodium ion battery comprising the same, and It relates to a manufacturing method.

전자제품의 디지털화와 고성능화 등으로 소비자의 요구가 바뀜에 따라 시장요구도 박형, 경량화와 고에너지 밀도에 의한 고용량을 지니는 전지의 개발로 흐름이 바뀌고 있는 상황이다. 또한, 미래의 에너지 및 환경 문제를 대처하기 위하여 하이브리드 전기 자동차나 전기 자동차, 및 연료전지 자동차의 개발이 활발히 진행되고 있는 바, 자동차 전원용으로 전지의 대형화가 요구되고 있다.As the demand of consumers changes due to the digitization and high performance of electronic products, the market demand is changing with the development of batteries with high capacity due to thin, light weight and high energy density. In addition, the development of hybrid electric vehicles, electric vehicles, and fuel cell vehicles has been actively progressed in order to cope with future energy and environmental problems.

소형 경량화 및 고용량으로 충방전 가능한 전지로서 리튬이차전지가 실용화되고 있으며, 소형 비디오 카메라, 휴대전화, 노트퍼스컴 등의 휴대용 전자 및 통신기기 등에 이용되고 있다. 리튬이차전지는 양극, 음극, 전해질로 구성되며, 충전에 의해 양극 소재로부터 나온 리튬이온이 음극 소재에 삽입되고 방전시 다시 탈리되는 등의 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하다.Lithium secondary batteries have been put into practical use as batteries that can be charged and discharged in a compact, lightweight and high capacity, and are used in portable electronic and communication devices such as small video cameras, mobile phones, and notebook computers. The lithium secondary battery is composed of a positive electrode, a negative electrode, and an electrolyte, and it charges and discharges because lithium ions from the positive electrode material are inserted into the negative electrode material by charging and resorption when discharged. This is possible.

한편, 최근에는 리튬 대신에 나트륨을 이용한 나트륨 기반 이차전지(이하 '나트륨이온전지'라 함)의 연구가 다시 재조명 되고 있다. 나트륨은 자원 매장량이 풍부하기 때문에 리튬 대신에 나트륨을 이용한 이차전지를 제작할 수 있다면 이차전지를 낮은 비용으로 제조할 수 있게 된다.Meanwhile, in recent years, research on a sodium-based secondary battery (hereinafter referred to as “sodium ion battery”) using sodium instead of lithium has been reexamined. Since sodium has a rich resource reserve, if a secondary battery using sodium instead of lithium can be manufactured, the secondary battery can be manufactured at a low cost.

나트륨이온전지의 상용화를 위해 중요 소재인 양극 소재에 대한 연구가 활발하게 진행되고 있다. 양극 소재 중 층상계 구조를 가지는 금속산화물 Na1-xMeO2(Me = Mn, Fe, Co, Ni 등)이 상용화 가능성이 높은 양극 소재로 주목받고 있다.For the commercialization of sodium ion batteries, research on positive electrode materials, which are important materials, is being actively conducted. Among the positive electrode materials, metal oxide Na 1-x MeO 2 (Me = Mn, Fe, Co, Ni, etc.) having a layered structure is attracting attention as a positive electrode material with high commercialization potential.

이러한 양극 소재 중 고가의 Co를 포함하지 않는 Ni-Fe-Mn계 양극 소재는 O3구조를 가지며 높은 가역용량의 확보가 가능한 것으로 알려져 있다. 하지만 Ni-Fe-Mn계 양극 소재는 출력 및 수명 특성과 관련된 전지 특성이 현저히 떨어지는 단점을 가지고 있다.Among these positive electrode materials, the Ni-Fe-Mn-based positive electrode material that does not contain expensive Co has an O 3 structure and is known to be capable of securing a high reversible capacity. However, the Ni-Fe-Mn-based positive electrode material has a disadvantage in that battery characteristics related to output and life characteristics are significantly reduced.

공개특허공보 제2017-0098529호 (2017.08.30. 공개)Published Patent Publication No. 2017-0098529 (released on August 30, 2017)

이러한 Ni-Fe-Mn계 양극 소재의 단점은, 양극 소재의 표면에 나트륨 잔존물이 존재하며, 대기 노출 시 그 양이 현저히 증가하여 전지 특성을 저하시키는 요인으로 작용한다. The disadvantage of the Ni-Fe-Mn-based positive electrode material is that a sodium residue is present on the surface of the positive electrode material, and when exposed to the atmosphere, the amount is significantly increased, thereby acting as a factor that deteriorates battery characteristics.

따라서 본 발명의 목적은 양극 소재의 표면 개질을 통해서 나트륨 잔존물과 같은 표면 부산물에 의한 저항을 저감시켜 안정적인 수명 특성을 확보하여 전지 특성을 향상시킬 수 있는 실리콘산화물 코팅층이 형성된 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to reduce the resistance by surface by-products such as sodium residue through surface modification of the positive electrode material to secure a stable lifespan characteristic, thereby forming a positive electrode material having a silicon oxide coating layer capable of improving battery characteristics, and a positive electrode comprising the same. And a sodium ion battery and a method for manufacturing the same.

상기 목적을 달성하기 위하여, 본 발명은 표면에 실리콘산화물 코팅층이 형성된 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법을 제공한다.In order to achieve the above object, the present invention provides a positive electrode material having a silicon oxide coating layer formed on its surface, a positive electrode and a sodium ion battery comprising the same, and a method for manufacturing the same.

본 발명은 Na1-xMeO2 (Me = Ni, Fe and Mn, 0<x<1)로 표시되는 O3 층상계 구조를 갖는 금속산화물; 및 상기 금속산화물의 표면에 실리콘산화물로 코팅된 실리콘산화물 코팅층;을 포함하는 나트륨이온전지용 양극 소재를 제공한다.The present invention is a metal oxide having an O 3 layered structure represented by Na 1-x MeO 2 (Me = Ni, Fe and Mn, 0 <x <1); And a silicon oxide coating layer coated with silicon oxide on the surface of the metal oxide.

상기 금속산화물은 Na1-xNiaFebMncO2 (a+b+c=1)으로 표시될 수 있다.The metal oxide may be represented by Na 1-x Ni a Fe b Mn c O 2 (a + b + c = 1).

본 발명은 또한, Na1-xMeO2 (Me = Ni, Fe and Mn, 0<x<1)로 표시되는 O3 층상계 구조를 갖는 금속산화물을 준비하는 단계; 및 상기 금속산화물의 표면에 실리콘산화물로 코팅하여 실리콘산화물 코팅층을 형성하는 단계;를 포함하는 나트륨이온전지용 양극 소재의 제조 방법을 제공한다.The present invention also, Na 1-x MeO 2 (Me = Ni, Fe and Mn, preparing a metal oxide having a layer structure of O 3 represented by 0 <x <1); And coating the surface of the metal oxide with silicon oxide to form a silicon oxide coating layer.

상기 형성하는 단계는, 상기 금속산화물에 TEOS(tetraethyl orthosilicate)를 투입하는 단계; 상기 TEOS를 열처리로 실리콘산화물로 변환하는 단계; 및 상기 실리콘산화물이 상기 금속산화물의 표면에 코팅되어 실리콘산화물 코팅층을 형성하는 단계;를 포함할 수 있다.The forming step may include adding tetraethyl orthosilicate (TEOS) to the metal oxide; Converting the TEOS into silicon oxide by heat treatment; And forming the silicon oxide coating layer by coating the silicon oxide on the surface of the metal oxide.

상기 투입하는 단계에서, 상기 금속산화물 95 내지 99.5 wt%에 상기 TEOS 0.5 내지 5 wt%가 투입될 수 있다.In the introducing step, the TEOS 0.5 to 5 wt% may be added to the metal oxide 95 to 99.5 wt%.

본 발명은 또한, 상기의 양극 소재를 포함하는 나트륨이온전지용 양극을 제공한다.The present invention also provides a positive electrode for a sodium ion battery comprising the positive electrode material.

그리고 본 발명은 상기 양극을 포함하는 나트륨이온전지를 제공한다.And the present invention provides a sodium ion battery comprising the positive electrode.

본 발명에 따르면, O3 층상계 구조를 갖는 금속산화물의 표면에 실리콘산화물 코팅층을 형성함으로써, 양극 소재의 표면에 존재할 수 있는 나트륨 잔존물과 같은 표면 부산물에 의한 저항을 저감시켜 안정적인 수명 특성을 확보하여 전지 특성을 향상시킬 수 있다.According to the present invention, by forming a silicon oxide coating layer on the surface of the metal oxide having the O 3 layered structure, reducing the resistance by surface by-products such as sodium residue that may be present on the surface of the anode material to secure a stable life characteristics Battery characteristics can be improved.

도 1은 본 발명에 따른 나트륨이온전지용 양극 소재의 제조 방법에 따른 흐름도이다.
도 2는 도 1의 실리콘산화물 코팅층을 형성하는 단계를 보여주는 상세 흐름도이다.
도 3은 비교예에 따른 나트륨이온전지용 양극 소재를 보여주는 사진이다.
도 4는 실시예에 따른 나트륨이온전지용 양극 소재를 보여주는 사진이다.
도 5는 실시예에 따른 나트륨이온전지용 양극 소재의 SEM-EDS 분석 결과를 보여주는 사진이다.
도 6은 비교예 및 실시예에 따른 양극 소재를 사용한 나트륨이온전지의 충방전 특성을 보여주는 그래프이다.
도 7은 비교예 및 실시예에 따른 양극 소재를 사용한 나트륨이온전지의 출력 특성을 보여주는 그래프이다.
도 8은 비교예 및 실시예에 따른 양극 소재를 사용한 나트륨이온전지의 수명 특성을 보여주는 그래프이다.
1 is a flow chart according to a method of manufacturing a positive electrode material for a sodium ion battery according to the present invention.
FIG. 2 is a detailed flow chart showing the steps of forming the silicon oxide coating layer of FIG. 1.
3 is a photograph showing a cathode material for a sodium ion battery according to a comparative example.
4 is a photograph showing a cathode material for a sodium ion battery according to an embodiment.
5 is a photograph showing the results of SEM-EDS analysis of the positive electrode material for a sodium ion battery according to the embodiment.
6 is a graph showing charge and discharge characteristics of a sodium ion battery using a cathode material according to Comparative Examples and Examples.
7 is a graph showing output characteristics of a sodium ion battery using a positive electrode material according to Comparative Examples and Examples.
8 is a graph showing the life characteristics of a sodium ion battery using a cathode material according to Comparative Examples and Examples.

하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.It should be noted that in the following description, only parts necessary for understanding the embodiments of the present invention are described, and descriptions of other parts will be omitted without detracting from the gist of the present invention.

이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in the present specification and claims described below should not be construed as being limited to ordinary or dictionary meanings, and the inventor is appropriate as a concept of terms to describe his or her invention in the best way. It should be interpreted as a meaning and a concept consistent with the technical idea of the present invention based on the principle that it can be defined as such. Therefore, the configuration shown in the embodiments and drawings described in this specification is only a preferred embodiment of the present invention, and does not represent all of the technical spirit of the present invention, and various equivalents that can replace them at the time of this application It should be understood that there may be and variations.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 나트륨이온전지용 양극 소재의 제조 방법에 따른 흐름도이다. 도 2는 도 1의 실리콘산화물 코팅층을 형성하는 단계를 보여주는 상세 흐름도이다.1 is a flow chart according to a method of manufacturing a positive electrode material for a sodium ion battery according to the present invention. FIG. 2 is a detailed flow chart showing the steps of forming the silicon oxide coating layer of FIG. 1.

도 1 및 도 2를 참조하면, 본 발명에 따른 나트륨이온전지용 양극 소재의 제조 방법은 Na1-xMeO2(Me = Ni, Fe and Mn, 0<x<1)로 표시되는 층상계 구조를 갖는 금속산화물을 준비하는 단계(S10)와, 금속산화물의 표면에 실리콘산화물로 코팅하여 실리콘산화물 코팅층을 형성하는 단계(S30)를 포함한다.1 and 2, a method of manufacturing a cathode material for a sodium ion battery according to the present invention provides a layered structure represented by Na 1-x MeO 2 (Me = Ni, Fe and Mn, 0 <x <1). It includes a step of preparing a metal oxide having (S10), and forming a silicon oxide coating layer by coating the surface of the metal oxide with silicon oxide (S30).

S10단계에 대해서 구체적으로 설명하면 다음과 같다. S10단계에서는 금속산화물은 분말 형태로 제조한다.Step S10 will be described in detail as follows. In step S10, the metal oxide is manufactured in powder form.

먼저 (Me)OH2(Me = Ni, Fe and Mn)로 표시되는 금속산화물 전구체와 Na2CO3를 포함하는 나트륨 전구체를 혼합하여 전구체 혼합물을 제조한다.First, a precursor mixture is prepared by mixing a metal oxide precursor represented by (Me) OH 2 (Me = Ni, Fe and Mn) and a sodium precursor containing Na 2 CO 3 .

그리고 전구체 혼합물을 소성하여 O3 층상계 구조를 갖는 금속산화물을 제조한다. 이때 소성은 760 내지 960℃에서 14 내지 34시간 수행될 수 있다.Then, the precursor mixture is fired to prepare a metal oxide having an O 3 layered structure. At this time, the firing may be performed at 760 to 960 ° C for 14 to 34 hours.

이때 금속산화물의 나트륨 함량이 1미만이 되도록 Na2CO3의 투입 양을 조절할 수 있다.At this time, the input amount of Na 2 CO 3 may be adjusted so that the sodium content of the metal oxide is less than one.

S10단계에서 제조된 금속산화물은 분말 형태로, Na1-xMeO2(Me = Ni, Fe and Mn, 0<x<1)로 표시되는 O3 층상계 구조를 갖는다.The metal oxide prepared in step S10 has a O 3 layered structure represented by Na 1-x MeO 2 (Me = Ni, Fe and Mn, 0 <x <1) in powder form.

S30단계에 대해서 구체적으로 설명하면 다음과 같다. Step S30 will be described in detail as follows.

먼저 S31단계에서 금속산화물에 TEOS(tetraethyl orthosilicate)를 투입한다. 즉 금속산화물 95 내지 99.5 wt%에 TEOS 0.5 내지 5 wt%가 투입한다. TEOS는 열처리를 통해서 실리콘산화물로 변환된다.First, in step S31, tetraethyl orthosilicate (TEOS) is added to the metal oxide. That is, 0.5 to 5 wt% of TEOS is added to 95 to 99.5 wt% of metal oxide. TEOS is converted to silicon oxide through heat treatment.

이때 S31단계는 용액 공정으로 진행되며, 금속산화물과 TEOS을 투입한 혼합액을 제조한 후, 금속산화물과 TEOS가 균일하게 혼합될 수 있도록 상온에서 일정 시간 교반한다. 그리고 혼합물을 필터링한 후 건조시켜 용매를 제거함으로써, 금속산화물의 표면에 TEOS가 흡착된 분말을 획득할 수 있다.At this time, step S31 proceeds as a solution process, and after preparing a mixed solution in which metal oxide and TEOS are added, the mixture is stirred for a certain time at room temperature so that the metal oxide and TEOS can be uniformly mixed. Then, the mixture is filtered and dried to remove the solvent, whereby TEOS adsorbed powder can be obtained on the surface of the metal oxide.

그리고 S33단계 TEOS를 열처리로 실리콘산화물로 변환시킨 후, S35단계에서 실리콘산화물을 금속산화물의 표면에 코팅하여 실리콘산화물 코팅층을 형성한다. 즉 금속산화물의 표면에 TEOS가 흡착된 분말을 열처리 설비에 투입한 후 공기 분위기에서 열처리 함으로써, 금속산화물의 표면에 흡착된 TEOS가 실리콘산화물로 변환되어 실리콘산화물 코팅층으로 형성된다.Then, after converting TEOS in step S33 to silicon oxide by heat treatment, in step S35, the silicon oxide is coated on the surface of the metal oxide to form a silicon oxide coating layer. That is, the TEOS adsorbed on the surface of the metal oxide is converted into silicon oxide and formed into a silicon oxide coating layer by putting the powder adsorbed on the surface of the metal oxide into the heat treatment facility and then heat treating it in an air atmosphere.

본 발명의 제조 방법으로 제조된 양극 소재의 전기화학적 특성을 확인하기 위해서, 아래와 같이 실시예 및 비교예에 따른 양극 소재를 제조하였다.In order to confirm the electrochemical properties of the positive electrode material produced by the manufacturing method of the present invention, a positive electrode material according to Examples and Comparative Examples was prepared as follows.

비교예에 따른 양극 소재로는 Na 함량이 0.9인 Na0.9(Ni0.25Fe0.25Mn0.5)O2를 사용하였다. 비교예에 따른 양극 소재의 합성은 전구체인 (Ni0.25Fe0.25Mn0.5)OH2와 Na2CO3와 함께 정량비로 혼합한 후, 860℃에서 24시간 소성함으로서 제조하였다.As the positive electrode material according to the comparative example, Na 0.9 (Ni 0.25 Fe 0.25 Mn 0.5 ) O 2 having a Na content of 0.9 was used. Synthesis of the positive electrode material according to the comparative example was prepared by mixing the precursor (Ni 0.25 Fe 0.25 Mn 0.5 ) OH 2 and Na 2 CO 3 in a quantitative ratio, followed by baking at 860 ° C. for 24 hours.

실시예에 따른 양극 소재는 비교예에 따른 양극 소재에 대해서 아래와 같이 실리콘산화물 코팅층을 형성하는 공정을 추가적으로 수행하여 제조하였다.The positive electrode material according to the embodiment was prepared by additionally performing a process of forming a silicon oxide coating layer as follows for the positive electrode material according to the comparative example.

먼저 무수 에탄올 70 mL에 금속산화물 무게 대비 1wt%의 TEOS를 투입하여 약 10분간 교반하여 코팅 용액을 제조하였다. 제조된 코팅 용액을 상온에서 1시간 교반시킨 후, 필터링 후 80도에서 용매를 건조하여 금속산화물의 표면에 TEOS가 흡착된 분말을 제조하였다.First, 1 wt% of TEOS was added to 70 mL of absolute ethanol to the weight of the metal oxide, followed by stirring for about 10 minutes to prepare a coating solution. After stirring the prepared coating solution for 1 hour at room temperature, the solvent was dried at 80 degrees after filtering to prepare a powder with TEOS adsorbed on the surface of the metal oxide.

그리고 금속산화물의 표면에 TEOS가 흡착된 분말을 튜브 전기로에서 열처리함으로써, 실시예에 따른 양극 소재를 제조하였다. 이때 열처리는 700도에서 4시간 동안 공기 분위기에서 진행하였다. 열처리 과정에서 금속산화물의 표면에 흡착된 TEOS는 실리콘산화물로 변환되어 실리콘산화물 코팅층을 형성한다.Then, the powder adsorbed on the surface of the metal oxide was heat-treated in a tube electric furnace to prepare a positive electrode material according to an embodiment. At this time, the heat treatment was performed in an air atmosphere at 700 degrees for 4 hours. In the heat treatment process, TEOS adsorbed on the surface of the metal oxide is converted to silicon oxide to form a silicon oxide coating layer.

실시예 및 비교예에 따른 양극 소재를 이용한 나트륨이온전지의 전기화학적 특성 평가를 위하여, CR2032 코인셀을 제조하였다. 이때 음극은 Na 금속, 분리막은 글래스 파이버(glass fiber), 전해액은 1M의 NaClO4가 용해된 EC:PC(1:1)을 사용하였다.To evaluate the electrochemical properties of a sodium ion battery using a cathode material according to Examples and Comparative Examples, CR2032 coin cells were prepared. At this time, Na: metal as the cathode, glass fiber (glass fiber) as the separator, and electrolyte: 1 M of NaClO 4 dissolved in EC: PC (1: 1) was used.

도 3은 비교예에 따른 나트륨이온전지용 양극 소재를 보여주는 사진이다. 도 4는 실시예에 따른 나트륨이온전지용 양극 소재를 보여주는 사진이다. 도 3 및 도 4의 사진은 SEM 사진이며, (b) 사진은 (a) 사진을 확대한 것이다.3 is a photograph showing a cathode material for a sodium ion battery according to a comparative example. 4 is a photograph showing a cathode material for a sodium ion battery according to an embodiment. 3 and 4 are SEM pictures, and (b) is an enlarged picture of (a).

도 3 및 도 4에 도시된 바와 같이, 실시예에 따른 양극 소재와 비교예에 따른 양극 소재를 비교하면, 실시예에 따른 양극 소재의 표면에 실리콘산화물 코팅층이 형성되어 있는 것을 확인할 수 있었다.3 and 4, when comparing the positive electrode material according to the embodiment with the positive electrode material according to the comparative example, it was confirmed that a silicon oxide coating layer was formed on the surface of the positive electrode material according to the embodiment.

도 5는 실시예에 따른 나트륨이온전지용 양극 소재의 SEM-EDS 분석 결과를 보여주는 사진이다.5 is a photograph showing the results of SEM-EDS analysis of the positive electrode material for a sodium ion battery according to the embodiment.

도 5를 참조하면, 실시예에 따른 양극 소재가 Na, Ni, Fe, Mn, Si를 포함하고, 양극 소재의 표면에 Si가 균일하게 분포되어 있는 것을 확인할 수 있다.5, it can be seen that the positive electrode material according to the embodiment includes Na, Ni, Fe, Mn, and Si, and Si is uniformly distributed on the surface of the positive electrode material.

즉 실시예에 따른 양극 소재는 표면에 실리콘산화물 소재의 실리콘산화물 코팅층이 형성되어 있음을 확인할 수 있다.That is, the positive electrode material according to the embodiment can be confirmed that a silicon oxide coating layer of a silicon oxide material is formed on the surface.

도 6은 비교예 및 실시예에 따른 양극 소재를 사용한 나트륨이온전지의 충방전 특성을 보여주는 그래프이다.6 is a graph showing charge and discharge characteristics of a sodium ion battery using a cathode material according to Comparative Examples and Examples.

도 6을 참조하면, 0.1C에서의 충방전 특성을 평가한 그래프로부터, 실시예에따른 양극 소재를 사용한 나트륨이온전지의 과전압이 개선된 것을 확인 할 수 있다.Referring to FIG. 6, it can be seen from the graph evaluating the charge / discharge characteristics at 0.1C that the overvoltage of the sodium ion battery using the positive electrode material according to the embodiment is improved.

따라서 비교예에 따른 나트륨이온전지의 방전 용량은 161 mAh/g이지만, 실시예에 따른 나트륨이온전지의 방전 용량은 175 mAh/g으로 향상된 것을 확인할 수 있다.Therefore, although the discharge capacity of the sodium ion battery according to the comparative example is 161 mAh / g, it can be seen that the discharge capacity of the sodium ion battery according to the embodiment is improved to 175 mAh / g.

표 1은 비교예 및 실시예에 따른 양극 소재를 사용한 나트륨이온전지의 0.1C 내지 5C에서의 출력 특성을 측정한 값이다. 표 1에서 Na 0.9.는 비교예를 나타내고, H.TEOS는 실시예를 나타낸다.Table 1 is a measurement value of the output characteristics at 0.1C to 5C of a sodium ion battery using a cathode material according to Comparative Examples and Examples. In Table 1, Na 0.9. Represents a comparative example, and H.TEOS represents an example.

Figure pat00001
Figure pat00001

도 7은 비교예 및 실시예에 따른 양극 소재를 사용한 나트륨이온전지의 출력 특성을 보여주는 그래프이다.7 is a graph showing output characteristics of a sodium ion battery using a positive electrode material according to Comparative Examples and Examples.

표 1 및 도 7을 참조하면, 실시예가 우수한 출력 특성을 나타내는 것을 확인할 수 있다. 특히 방전 곡선을 보면, 실시예에 따른 나트륨이온전지가 과전압이 현저히 개선되어 용량이 증가하는 것을 알 수 있다. 이것은 실시예에 따른 나트륨이온전지가 에너지밀도(Wh) 측면에서도 더욱 우수한 특성을 나타내는 것을 의미한다.Referring to Table 1 and Figure 7, it can be seen that the embodiment shows excellent output characteristics. In particular, looking at the discharge curve, it can be seen that the overvoltage of the sodium ion battery according to the embodiment is significantly improved and the capacity is increased. This means that the sodium ion battery according to the embodiment exhibits better properties in terms of energy density (Wh).

표 2는 비교예 및 실시예에 따른 양극 소재를 사용한 나트륨이온전지의 1회, 50 및 100회 사이클 후 용량 유지율을 측정한 값이다. 이때 수명 향상 여부 확인을 위한 0.5C에서 상온 사이클 특성 평가로 진행하였다.Table 2 is a value obtained by measuring the capacity retention rate after one, 50, and 100 cycles of the sodium ion battery using the positive electrode material according to Comparative Examples and Examples. At this time, the evaluation was performed at room temperature cycle characteristics at 0.5C to confirm whether the life was improved.

Figure pat00002
Figure pat00002

도 8은 비교예 및 실시예에 따른 양극 소재를 사용한 나트륨이온전지의 수명 특성을 보여주는 그래프이다.8 is a graph showing the life characteristics of a sodium ion battery using a cathode material according to Comparative Examples and Examples.

표 2 및 도 8을 참조하면, 100 사이클 후 용량 유지율을 비교하면, 비교예는 82%, 실시예는 88%로 실리콘산화물 코팅으로 수명 특성이 개선된 것을 확인할 수 있다.Referring to Table 2 and Figure 8, comparing the capacity retention rate after 100 cycles, it can be seen that the comparative example is 82%, and the example is 88%, which improves the lifespan characteristics with a silicon oxide coating.

이와 같이 본 발명에는 O3 층상계 구조를 갖는 금속산화물의 표면에 실리콘산화물 코팅층을 형성함으로써, 양극 소재의 표면에 존재할 수 있는 나트륨 잔존물과 같은 표면 부산물에 의한 저항을 저감시키고, 이를 통해서 나트륨이온전지의 안정적인 수명 특성을 확보하여 전지 특성을 향상시킬 수 있다.As described above, in the present invention, by forming a silicon oxide coating layer on the surface of a metal oxide having an O 3 layered structure, the resistance by surface by-products such as sodium residues that may be present on the surface of the anode material is reduced, through which the sodium ion battery It is possible to improve the battery characteristics by securing the stable life characteristics of.

한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in the specification and the drawings are merely presented as specific examples for ease of understanding, and are not intended to limit the scope of the present invention. It is obvious to those skilled in the art to which the present invention pertains that other modifications based on the technical spirit of the present invention can be implemented in addition to the embodiments disclosed herein.

Claims (10)

Na1-xMeO2 (Me = Ni, Fe and Mn, 0<x<1)로 표시되는 O3 층상계 구조를 갖는 금속산화물; 및
상기 금속산화물의 표면에 실리콘산화물로 코팅된 실리콘산화물 코팅층;
을 포함하는 나트륨이온전지용 양극 소재.
A metal oxide having an O 3 layered structure represented by Na 1-x MeO 2 (Me = Ni, Fe and Mn, 0 <x <1); And
A silicon oxide coating layer coated with silicon oxide on the surface of the metal oxide;
A cathode material for a sodium ion battery comprising a.
제1항에 있어서,
상기 금속산화물은 Na1-xNiaFebMncO2 (a+b+c=1)으로 표시되는 것을 특징으로 하는 나트륨이온전지용 양극 소재.
According to claim 1,
The metal oxide is a Na 1-x Ni a Fe b Mn c O 2 (a + b + c = 1) is a cathode material for a sodium ion battery, characterized in that represented by.
Na1-xMeO2 (Me = Ni, Fe and Mn, 0<x<1)로 표시되는 O3 층상계 구조를 갖는 금속산화물을 준비하는 단계; 및
상기 금속산화물의 표면에 실리콘산화물로 코팅하여 실리콘산화물 코팅층을 형성하는 단계;
를 포함하는 나트륨이온전지용 양극 소재의 제조 방법.
Preparing a metal oxide having an O 3 layered structure represented by Na 1-x MeO 2 (Me = Ni, Fe and Mn, 0 <x <1); And
Forming a silicon oxide coating layer by coating with silicon oxide on the surface of the metal oxide;
Method for producing a positive electrode material for a sodium ion battery comprising a.
제3항에 있어서, 상기 준비하는 단계에서,
상기 금속산화물은 Na1-xNiaFebMncO2 (a+b+c=1)으로 표시되는 것을 특징으로 하는 나트륨이온전지용 양극 소재의 제조 방법.
According to claim 3, In the preparing step,
The metal oxide is Na 1-x Ni a Fe b Mn c O 2 (a + b + c = 1) Method for producing a cathode material for a sodium ion battery, characterized in that represented by.
제4항에 있어서, 상기 형성하는 단계에서,
상기 금속산화물에 TEOS(tetraethyl orthosilicate)를 투입하는 단계;
상기 TEOS를 열처리로 실리콘산화물로 변환하는 단계; 및
상기 실리콘산화물이 상기 금속산화물의 표면에 코팅되어 실리콘산화물 코팅층을 형성하는 단계;
를 포함하는 것을 특징으로 하는 나트륨이온전지용 양극 소재의 제조 방법.
According to claim 4, In the forming step,
Adding tetraethyl orthosilicate (TEOS) to the metal oxide;
Converting the TEOS into silicon oxide by heat treatment; And
Forming a silicon oxide coating layer by coating the silicon oxide on the surface of the metal oxide;
Method for producing a cathode material for a sodium ion battery comprising a.
제5항에 있어서,
상기 투입하는 단계에서,
상기 금속산화물 95 내지 99.5 wt%에 상기 TEOS 0.5 내지 5 wt%가 투입되는 것을 특징으로 하는 나트륨이온전지용 양극 소재의 제조 방법.
The method of claim 5,
In the step of injecting,
Method for manufacturing a cathode material for a sodium ion battery, characterized in that the TEOS 0.5 to 5 wt% is added to the metal oxide 95 to 99.5 wt%.
Na1-xMeO2 (Me = Ni, Fe and Mn, 0<x<1)로 표시되는 O3 층상계 구조를 갖는 금속산화물과, 상기 금속산화물의 표면에 실리콘산화물로 코팅된 실리콘산화물 코팅층을 구비하는 양극 소재를 포함하는 나트륨이온전지용 양극.A metal oxide having an O 3 layered structure represented by Na 1-x MeO 2 (Me = Ni, Fe and Mn, 0 <x <1), and a silicon oxide coating layer coated with silicon oxide on the surface of the metal oxide A positive electrode for a sodium ion battery comprising a positive electrode material. 제7항에 있어서,
상기 금속산화물은 Na1-xNiaFebMncO2 (a+b+c=1)으로 표시되는 것을 특징으로 하는 나트륨이온전지용 양극.
The method of claim 7,
The metal oxide is a Na 1-x Ni a Fe b Mn c O 2 (a + b + c = 1) is a positive electrode for a sodium ion battery.
Na1-xMeO2 (Me = Ni, Fe and Mn, 0<x<1)로 표시되는 O3 층상계 구조를 갖는 금속산화물과, 상기 금속산화물의 표면에 실리콘산화물로 코팅된 실리콘산화물 코팅층을 구비하는 양극 소재를 함유하는 양극을 포함하는 나트륨이온전지.A metal oxide having an O 3 layered structure represented by Na 1-x MeO 2 (Me = Ni, Fe and Mn, 0 <x <1), and a silicon oxide coating layer coated with silicon oxide on the surface of the metal oxide A sodium ion battery comprising an anode containing a cathode material. 제9항에 있어서,
상기 금속산화물은 Na1-xNiaFebMncO2 (a+b+c=1)으로 표시되는 것을 특징으로 하는 나트륨이온전지.
The method of claim 9,
The metal oxide is a sodium ion battery, characterized in that represented by Na 1-x Ni a Fe b Mn c O 2 (a + b + c = 1).
KR1020180112222A 2018-09-19 2018-09-19 Positive material formed silicone oxide coating layer, positive electrode and sodium ion battery containing the same and method for manufacturing thereof KR20200032947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180112222A KR20200032947A (en) 2018-09-19 2018-09-19 Positive material formed silicone oxide coating layer, positive electrode and sodium ion battery containing the same and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180112222A KR20200032947A (en) 2018-09-19 2018-09-19 Positive material formed silicone oxide coating layer, positive electrode and sodium ion battery containing the same and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
KR20200032947A true KR20200032947A (en) 2020-03-27

Family

ID=69959295

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180112222A KR20200032947A (en) 2018-09-19 2018-09-19 Positive material formed silicone oxide coating layer, positive electrode and sodium ion battery containing the same and method for manufacturing thereof

Country Status (1)

Country Link
KR (1) KR20200032947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115566184A (en) * 2022-11-11 2023-01-03 深圳中芯能科技有限公司 Sodium ion battery positive electrode material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170098529A (en) 2016-02-22 2017-08-30 한국전기연구원 Prussian white positive electrode active material and a manufacturing method thereof using Taylor vortex

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170098529A (en) 2016-02-22 2017-08-30 한국전기연구원 Prussian white positive electrode active material and a manufacturing method thereof using Taylor vortex

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115566184A (en) * 2022-11-11 2023-01-03 深圳中芯能科技有限公司 Sodium ion battery positive electrode material and preparation method thereof
CN115566184B (en) * 2022-11-11 2023-03-24 深圳中芯能科技有限公司 Sodium ion battery positive electrode material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6997216B2 (en) Solid electrolyte
KR101807583B1 (en) Sulfide-based solid electrolyte for lithium ion batteries
JP2012018792A (en) Solid electrolyte material and lithium battery
CN108886169A (en) Nonaqueous electrolyte and lithium secondary battery including the nonaqueous electrolyte
CN109346710B (en) Lithium titanate nitride-aluminum oxide nitride composite material and preparation method and application thereof
CN104659346A (en) Germanium/carbon composite negative electrode material and preparation method thereof
CN108336353A (en) One kind mixing lithium/sodium-ion battery
KR102006164B1 (en) Positive active material for sodium ion rechargeable battery and method of manufacturing thereof
CN111484247B (en) Glass positive electrode material and preparation method and application thereof
KR20140070407A (en) Composite and manufacturing method of anode slurry comprising the same
CN108808005B (en) Method for preparing lithium battery cathode additive and preparing cathode by calcining mixture
JP2012230810A (en) Lithium titanate, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
KR20200032947A (en) Positive material formed silicone oxide coating layer, positive electrode and sodium ion battery containing the same and method for manufacturing thereof
CN102593428A (en) Method for preparing cathode material of lithium ion battery
JP7284666B2 (en) All-solid battery
CN109088057B (en) Method for preparing lithium battery cathode additive by calcining organic tin compound
KR20180082006A (en) Anode materials with high rate-capability and preparation method thereof and lithium secondary battery using the same
WO2020059902A1 (en) Cathode material having silicon oxide coating layer formed thereon, cathode comprising same, sodium ion battery, and manufacturing method therefor
CN110690417A (en) Positive electrode active material, positive electrode for lithium ion secondary battery, and method for producing positive electrode active material
CN104716299B (en) A kind of unformed germanium/carbon compound cathode materials and preparation method thereof
CN108493416A (en) A kind of ZrO2Nickel cobalt aluminium ternary anode material for lithium-ion batteries, the Preparation method and use of cladding
JP6283171B2 (en) Carbon black for lithium ion secondary battery and its use
KR101999570B1 (en) Cathode containing solid superacid and lithium-sulfur secondary battery comprising the same
KR101604908B1 (en) Method of manufacturing cathode material for lithium rechargeable batteries
CN114127993B (en) Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, and method for producing positive electrode active material for all-solid-state lithium ion battery

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination