KR20200031845A - Method of manufacturing carbon fiber paper used in gas diffusion layer of fuel cell - Google Patents

Method of manufacturing carbon fiber paper used in gas diffusion layer of fuel cell Download PDF

Info

Publication number
KR20200031845A
KR20200031845A KR1020180110821A KR20180110821A KR20200031845A KR 20200031845 A KR20200031845 A KR 20200031845A KR 1020180110821 A KR1020180110821 A KR 1020180110821A KR 20180110821 A KR20180110821 A KR 20180110821A KR 20200031845 A KR20200031845 A KR 20200031845A
Authority
KR
South Korea
Prior art keywords
carbon fiber
fiber web
thermoplastic resin
paper
fuel cell
Prior art date
Application number
KR1020180110821A
Other languages
Korean (ko)
Inventor
용다경
윤준영
하지민
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to KR1020180110821A priority Critical patent/KR20200031845A/en
Publication of KR20200031845A publication Critical patent/KR20200031845A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/35Polyalkenes, e.g. polystyrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention includes: a process (i) of producing a carbon fiber web by a wet papermaking method of dispersing carbon fibers in the form of short fibers in water or aqueous solution and then, lifting the carbon fibers with a screen to dehydrate the carbon fibers; a process (ii) of impregnating thermoplastic resin in the carbon fiber web; a process (iii) of crosslinking and stabilizing the carbon fiber web with the thermoplastic resin impregnated therein in sulfuric acid; and a process (iv) of carbonizing the crosslinked and stabilized carbon fiber web to produce carbon fiber paper. The present invention greatly improves the electrical conductivity of produced carbon fiber paper while effectively preventing problems of the greatly reduced mechanical properties of carbon fiber paper as thermosetting resin impregnated in a carbon fiber web is carbonized. The carbon fiber paper produced by the present invention has excellent mechanical properties and electrical conductivity at the same time and thus, is particularly useful as a material for producing a gas diffusion layer of a fuel cell.

Description

연료전지의 가스확산층용 탄소섬유 페이퍼의 제조방법{Method of manufacturing carbon fiber paper used in gas diffusion layer of fuel cell}Method of manufacturing carbon fiber paper used in gas diffusion layer of fuel cell}

본 발명은 연료전지용 가스확산층용 탄소섬유 페이퍼의 제조방법에 관한 것으로서, 구체적으로는 전기전도성과 기계적 물성이 동시에 뛰어나 고분자 전해질형 연료전지의 가스확산층(Gas Diffusion Layer : 이하 "GDL" 이라고 함) 제조용 재료로 유용한 탄소섬유 페이퍼의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a carbon fiber paper for a gas diffusion layer for a fuel cell, specifically for manufacturing a gas diffusion layer (hereinafter referred to as "GDL") of a polymer electrolyte fuel cell having excellent electrical conductivity and mechanical properties at the same time. It relates to a method for producing carbon fiber paper useful as a material.

이하, 본 발명에서는 "탄소섬유 페이퍼"는 습식 초지공정을 거쳐 제조된 탄소섬유 웹(Web)에 수지를 함침한 후 건조 및 가압하고 이를 고온에서 탄화한 종이(Paper) 형태로서 단섬유 형태의 탄소섬유들로 구성되는 재료를 의미하는 용어로 사용한다.Hereinafter, in the present invention, the "carbon fiber paper" is a carbon in the form of a short fiber as a paper form that is impregnated with a resin in a carbon fiber web manufactured through a wet papermaking process, dried and pressurized, and carbonized at high temperature. It is used as a term to mean a material composed of fibers.

고분자 전해질형 연료전지(Proton exchange membrane fuel cell)는 부피가 작고 가벼워 핸드폰, 노트북 등 휴대용 기구나 자동차의 동력원으로 적용하고 있어 현재 연료전지 관련 연구개발의 90%를 차지하고 있다.The polymer electrolyte fuel cell (Proton exchange membrane fuel cell) has a small volume and light weight, and is used as a power source for portable devices such as mobile phones and laptops, and automobiles, and currently accounts for 90% of fuel cell research and development.

고분자 전해질형 연료전지의 원리는 연료인 수소와 공기 중의 산소에 의한 전기 화학반응에 의해 전기를 발생시키는 기술로서 수소와 산소가 결합되면서 전기, 물, 열이 생성되는 친환경적인 기술이다. 이러한 연료전지의 발전효율은 40% 이상이며 열효율을 포함하면 약 80%의 에너지 효율을 얻을 수 있고 이는 화력 발전 대비 최대 50%의 연비 향상 효과가 있다.The principle of the polymer electrolyte fuel cell is a technology that generates electricity by an electrochemical reaction by hydrogen as fuel and oxygen in air, and is an eco-friendly technology in which electricity, water, and heat are generated while hydrogen and oxygen are combined. The power generation efficiency of such a fuel cell is more than 40%, and when the thermal efficiency is included, an energy efficiency of about 80% can be obtained, which has an effect of improving fuel efficiency of up to 50% compared to thermal power generation.

고분자 전해질형 연료전지는 분리판, 전극, 고분자 전해질막(Polymer electrolyte membrane)으로 구성되며 고분자 전해질 막의 전극은 다시 촉매층, 고분자 전해질, 가스확산층(Gas diffusion layer)로 구성된다. 가스확산층은 연료전지 스택(Stack) 내 막 전극 어셈블리(Membrane electrode assembly)에서 가스확산의 통로가 되며 막 전극 어셈블리 지지체, 전기 이동 통로, 반응 시 생성된 물의 배출 통로 등의 역할을 하는 소재이다. 따라서, 이 때 사용되는 물질은 소수성, 우수한 전기전도성 및 기체 투과도, 충분한 기계적 강도를 가진 물질이어야 하므로 다공질이면서도 전도성이 높은 탄소섬유 페이퍼 및 탄소섬유 직물이 가스확산층의 소재로 주로 사용되고 있다.The polymer electrolyte fuel cell is composed of a separator, an electrode, and a polymer electrolyte membrane, and the electrode of the polymer electrolyte membrane is further composed of a catalyst layer, a polymer electrolyte, and a gas diffusion layer. The gas diffusion layer serves as a passage for gas diffusion in a membrane electrode assembly in a fuel cell stack, and is a material that serves as a membrane electrode assembly support, an electrophoretic passage, and a discharge passage of water generated during reaction. Therefore, since the material used at this time should be a material having hydrophobicity, excellent electrical conductivity and gas permeability, and sufficient mechanical strength, porous and highly conductive carbon fiber paper and carbon fiber fabric are mainly used as materials for the gas diffusion layer.

연료전지의 가스확산층용 탄소섬유 페이퍼를 제조하는 종래기술로는 탄소섬유 페이퍼의 전기전도성을 향상시킬 목적으로 습식 초지법으로 제조되어 단섬유 형태의 탄소섬유들로 구성된 탄소섬유 웹(Web)에 열경화성 수지를 함침한 다음, 이를 건조 및 압착한 후, 고온에서 탄화시켜 가스확산용 탄소섬유 페이퍼를 제조하는 방법이 널리 사용되고 있으나, 상기 종래기술은 제조된 탄소섬유 페이퍼의 전기전도도는 향상시킬 수 있지만 제조된 탄소섬유 페이퍼의 기계적 물성이 크게 저하되는 문제가 있었다.As a prior art for manufacturing carbon fiber paper for gas diffusion layer of a fuel cell, it is manufactured by wet papermaking for the purpose of improving the electrical conductivity of carbon fiber paper. After impregnating, drying and pressing it, carbonization at a high temperature to produce a carbon fiber paper for gas diffusion is widely used, but the prior art can improve the electrical conductivity of the produced carbon fiber paper, but is manufactured. There was a problem in that the mechanical properties of the carbon fiber paper were significantly reduced.

또 다른 종래기술로서, 일본 공개특허 특제 2014-100106호 등에서는 탄소섬유 웹(Web)에 열경화성 수지를 함침한 다음, 이를 고온에서 탄화시켜 탄소섬유 페이퍼를 제조하는 방법을 게재하고 있으나, 상기 종래기술 역시 제조전 탄소섬유 페이퍼의 전기전도도는 향상되나 기계적 물성이 크게 저하되는 문제가 있었다.As another prior art, Japanese Patent Laid-Open No. 2014-100106 discloses a method for preparing carbon fiber paper by impregnating a carbon fiber web with a thermosetting resin and then carbonizing it at a high temperature. Also, the electrical conductivity of the carbon fiber paper before manufacturing was improved, but there was a problem in that mechanical properties were significantly reduced.

또 다른 종래기술로서 대한민국 공개특허 제10-2018-31529호에서는 탄소섬유 웹(Web)에 바인더 피치(석탄 / 석유계 첨가제)를 함침한 후 이를 탄화시켜 전기전도도와 기계적 강도가 양호한 탄소섬유 페이퍼를 제조하는 방법을 게재하고 있으나, 상기 종래기술은 제조원가가 높아 상업화가 어려운 문제가 있었다.As another prior art, in Korean Patent Publication No. 10-2018-31529, carbon fiber paper having good electrical conductivity and mechanical strength is impregnated by impregnating a carbon fiber web with a binder pitch (coal / petroleum additive) and carbonizing it. Although a method of manufacturing is published, the prior art has a problem in that it is difficult to commercialize due to high manufacturing cost.

한편, 대한민국 등록특허 제10-1683006호에서는 폴리올레핀 황산으로 가교 후 고온에서 탄화시킨 다음 수증기로 활성화시켜 활성탄을 저렴하게 제조하는 방법을 게재하고 있으나, 상기 종래방법은 가스확산층용 탄소섬유 페이퍼의 제조에 관한 기술이 아니며, 목적도 가스확산층용 탄소섬유 페이퍼의 전기전도도와 기계적 물성을 동시에 향상시키는 것과는 크게 상이하다.On the other hand, Korean Patent Registration No. 10-1683006 discloses a method of manufacturing activated carbon inexpensively by crosslinking with polyolefin sulfuric acid and then carbonizing at high temperature and then activating it with water vapor, but the conventional method is used for the production of carbon fiber paper for gas diffusion layers. It is not a related technology, and its purpose is also significantly different from simultaneously improving the electrical conductivity and mechanical properties of the carbon fiber paper for the gas diffusion layer.

한편, 대한민국 공개특허 제10-2017-0033708호에서는 폴리올레핀 섬유를 황산에 담지하여 가교시킨 후 고온에서 탄화시켜 탄소섬유를 제조하는 방법을 게재하고 있으나, 상기 종래방법은 종래 아크릴로니트릴계 전구체 대신에 폴리올레핀 섬유를 사용하여 탄소섬유를 제조하는 것으로서 가스확산층용 탄소섬유 페이퍼의 제조에 관한 기술이 아니며, 목적도 가스확산층용 탄소섬유 페이퍼의 전기전도도와 기계적 물성을 동시에 향상시키는 것과는 크게 상이하다.On the other hand, Korean Patent Publication No. 10-2017-0033708 discloses a method for preparing carbon fibers by carbonizing at high temperature after crosslinking by supporting polyolefin fibers in sulfuric acid, but the prior art method replaces the conventional acrylonitrile-based precursors. As a method of manufacturing carbon fibers using polyolefin fibers, it is not a technique for manufacturing carbon fiber paper for a gas diffusion layer, and its purpose is also significantly different from simultaneously improving electrical conductivity and mechanical properties of the carbon fiber paper for a gas diffusion layer.

본 발명의 과제는 종래 탄소섬유 웹(Web)에 열경화성 수지를 함침한 후 이를 탄화시켜 제조된 가스확산층용 탄소섬유 페이퍼 보다 전기전도도 및 기계적 물성이 상대적으로 우수한 연료전지의 가스확산층용 탄소섬유 페이퍼를 제조하는 방법을 제공하는 것이다.An object of the present invention is to provide a carbon fiber paper for a gas diffusion layer of a fuel cell having a relatively superior electrical conductivity and mechanical properties than a carbon fiber paper for a gas diffusion layer prepared by impregnating a carbon fiber web with a thermosetting resin and then carbonizing it. It is to provide a manufacturing method.

이와 같은 과제를 해결하기 위해서, 본 발명에서는 습식 초지화 방법으로 제조되고 단섬유 형태인 탄소섬유들로 이루어진 탄소섬유 웹(Web)에 열가소성 수지를 함침시킨 다음, 이를 황산으로 처리하여 가교화 및 안정화시킨 다음, 고온에서 탄화시켜 탄소섬유 페이퍼를 제조한다.In order to solve the above problems, in the present invention, a thermoplastic resin is impregnated into a carbon fiber web made of carbon fibers in the form of short fibers and produced by a wet papermaking method, and then treated with sulfuric acid to crosslink and stabilize. And then carbonized at high temperature to produce carbon fiber paper.

본 발명으로 제조된 탄소섬유 페이퍼는 탄화수율이 높고 C=C 결합 함량이 증가해서 우수한 전기전도도를 발현한다.The carbon fiber paper produced by the present invention has a high carbonization yield and an increased C = C bond content, thereby exhibiting excellent electrical conductivity.

그로인해, 상기 탄소섬유 페이퍼로 제조된 연료전지의 가스확산층을 포함하는 연료전지는 연료전지 효율이 크게 향상된다.Therefore, the fuel cell including the gas diffusion layer of the fuel cell made of the carbon fiber paper is greatly improved fuel cell efficiency.

또한, 본 발명으로 제조된 탄소섬유 페이퍼는 기계적 물성이 뛰어나 롤(Roll) 타입의 탄소섬유 페이퍼를 제조하거나 가스확산층을 제조시 작업이 용이하고, 연료전지 스택(Stack) 내에서의 내구성 또한 향상된다.In addition, the carbon fiber paper produced by the present invention has excellent mechanical properties, and thus it is easy to manufacture a roll type carbon fiber paper or to manufacture a gas diffusion layer, and also improves durability in a fuel cell stack. .

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 (ⅰ) 단섬유 형태인 탄소섬유를 습식 초지화 방법으로 탄소섬유 웹(Web)을 제조하는 공정; (ⅱ) 상기 탄소섬유 웹(Web)에 열가소성 수지를 함침시켜주는 공정; (ⅲ) 열가소성 수지가 함침된 탄소섬유 웹(Web)을 황산에 담지하여 가교화 및 안정화 시켜주는 공정; 및 (ⅳ) 가교화 및 안정화된 탄소섬유 웹(Web)을 탄화시켜 탄소섬유 페이퍼를 제조하는 공정;을 포함한다.The present invention (i) a process for producing a carbon fiber web (Web) by a wet papermaking method of carbon fiber in the form of short fibers; (Ii) a process of impregnating the carbon fiber web with a thermoplastic resin; (Iii) a process of crosslinking and stabilizing a carbon fiber web impregnated with a thermoplastic resin by supporting it in sulfuric acid; And (iii) carbonizing the crosslinked and stabilized carbon fiber web to produce carbon fiber paper.

본 발명의 구현일례로서 단섬유 형태인 탄소섬유를 물 또는 수용액에 분산시킨 후 스크린으로 상기 탄소섬유를 건져올린 후 탈수하는 습식 초지화 방법으로 탄소섬유 웹(Web)을 제조한 다음, 제조된 탄소섬유 웹(Web)에 열가소성 수지를 함침시켜 준다.As an example of implementation of the present invention, after dispersing the carbon fibers in the form of a short fiber in water or an aqueous solution, the carbon fibers are webted by a wet papermaking method in which the carbon fibers are lifted with a screen and then dehydrated. The thermoplastic resin is impregnated into the fiber web.

이때, 열가소성 수지로는 폴리올레핀계 수지를 사용하는 것이 바람직하다.At this time, it is preferable to use a polyolefin-based resin as the thermoplastic resin.

상기 폴리올레핀계 수지로는 폴리프로필렌 수지 또는 저밀도 폴리에틸렌(Low Density Polyethylene : LDPE) 수지 또는 이들의 혼합물 등을 사용한다.As the polyolefin-based resin, polypropylene resin or low density polyethylene (LDPE) resin or a mixture thereof is used.

탄소섬유 웹(Web)에 열가소성 수지를 함침시켜 주는 첫번째 구현일례로는 열가소성 수지를 용매에 용해시켜 제조한 열가소성 수지 용액(함침액)에 탄소섬유 웹(Web)을 디핑(Dipping) 시켜주는 방법이 사용될 수 있다.The first implementation example of impregnating a thermoplastic resin in a carbon fiber web is a method of dipping a carbon fiber web in a thermoplastic resin solution (impregnation solution) prepared by dissolving a thermoplastic resin in a solvent. Can be used.

상기 열가소성 수지 용액의 구현일례로는 폴리프로필렌 수지 또는 저밀도 폴리에틸렌 수지를 오소-디클로로벤젠(Ortho-dichlorobenzene) 용매에 용해시킨 용액이 사용되며, 이때 상기 용액의 점도는 10 센티포아즈(Centi poise) 이하이고, 용액내 수지 고형분의 농도는 5~10%인 것이 바람직하다.As an example of the implementation of the thermoplastic resin solution, a solution in which a polypropylene resin or a low density polyethylene resin is dissolved in an ortho-dichlorobenzene solvent is used, wherein the viscosity of the solution is 10 centipoise or less. , And the concentration of the resin solid content in the solution is preferably 5 to 10%.

또한, 폴리프로필렌 또는 저밀도 폴리에틸렌이 상기 용매에 용해된 용액의 무정형 상태를 유지하기 위해, 상기 용액을 액체질소에 부어 급냉시켜 겔(Gel)을 제조한뒤, 일정 온도 및 시간동안 안정화시켜준 다음, 재교반하여 탄소섬유 웹(Web)을 디핑(Dipping) 시킬 함침액을 준비할 수 있다.In addition, in order to maintain the amorphous state of the solution in which polypropylene or low density polyethylene is dissolved in the solvent, the solution is poured into liquid nitrogen and quenched to prepare a gel, and then stabilized for a certain temperature and time. By re-stirring, an impregnation liquid for dipping the carbon fiber web can be prepared.

이때 상기 안정화시 온도는 -16 내지 -8℃범위가 바람직하다. 만약 -16℃보다 낮은 경우 용매인 1,2-디클로로벤젠(ortho-dichlorobenzene)의 어는점이 -17℃이기 때문에 용액이 완전히 얼게 되는 문제점이 있고, -8℃ 초과 온도에서는 겔(Gel)이 아니라 액체 상태가 될 수 있다. 즉, 상기 범위를 벗어나는 경우 무정형을 유지하기 어렵기 때문에 상기 범위 안에서 안정화하는 것이 바람직하다. 또한, 상기 안정화 시간은 20~30시간 동안 이루어지는 것이 액체 질소 안에서 무정형으로 급냉된 시료가 천천히 녹아 무정형을 유지한 상태로 겔(Gel)을 얻을 수 있기 때문에 바람직하며, 상기 시간을 벗어나 빠르게 녹으면 결정이 생길 수 있어 바람직하지 않다. 아울러 안정화 완료 후 재교반시 1~4시간 동안 40~60℃ 정도에서 재교반하는 것이 함침액의 점도를 10 센티포아즈(Centi poise) 이하로 적절하게 낮출 수 있어 바람직하다.At this time, the temperature during the stabilization is preferably in the range of -16 to -8 ℃. If it is lower than -16 ℃, there is a problem that the solution is completely frozen because the freezing point of the solvent 1,2-dichlorobenzene (ortho-dichlorobenzene) is -17 ℃, and if the temperature exceeds -8 ℃, it is not a gel, but a liquid. It can become a state. That is, it is preferable to stabilize within the above range because it is difficult to maintain the amorphous form outside the above range. In addition, the stabilization time is preferably 20 to 30 hours because the sample rapidly cooled to amorphous form in liquid nitrogen slowly melts to obtain a gel while maintaining the amorphous form. This may occur and is undesirable. In addition, after stabilization is complete, re-stirring for 1 to 4 hours at about 40 to 60 ° C is preferable because the viscosity of the impregnation liquid can be appropriately lowered to 10 centipoises or less.

탄소섬유 웹(Web)을 열가소성 수지 용액(함침액)에 약 1분~3분 정도 디핑(Dipping) 시켜 주는 것이 바람직하다.It is preferable to dip the carbon fiber web into a thermoplastic resin solution (impregnation solution) for about 1 minute to 3 minutes.

탄소섬유 웹(Web)에 열가소성 수지를 함침시켜 주는 두번째 구현일례로는 열가소성 필름을 탄소섬유 웹(Web)의 양면에 라미네이팅시킨 후 핫 프레스(Hot press)로 가압 고온 처리하여 라미네이팅된 상기 열가소성 필름을 녹여 탄소섬유 웹(Web) 내부로 함침시켜 주는 방법이 사용될 수 있다.As a second implementation example of impregnating a thermoplastic resin in a carbon fiber web, the thermoplastic film is laminated to both sides of a carbon fiber web, and then hot-pressed with a hot press to heat the laminated thermoplastic film. A method of melting and impregnating the carbon fiber web inside may be used.

다음으로는, 열가소성 수지가 함침된 탄소섬유 웹(Web)을 황산에 담지하여 가교화 및 안정화 시켜준다.Next, the carbon fiber web impregnated with the thermoplastic resin is supported on sulfuric acid to crosslink and stabilize.

열가소성 고분자는 유리전이온도(Tg) 이상에서 연화되는 특성을 가지고 있으므로, 고온 탄화 공정 시 이를 방지하기 위해 내열성을 향상시켜야 한다. 저밀도 폴리에틸렌을 황산처리시 발생하는 탈수소화 반응은 하기 반응식과 같고, 이때 C=C 이중결합이 증가하고 말단 이중 결합의 파이 결합이 열리면서 이웃하는 분자 사슬의 이중 결합과 서로 연결되어 가교된다. Since the thermoplastic polymer has a property of softening at a glass transition temperature (Tg) or higher, it is necessary to improve heat resistance to prevent this during a high temperature carbonization process. The dehydrogenation reaction that occurs when sulfuric acid treatment of low density polyethylene is as shown in the following reaction formula, wherein C = C double bond increases and the pi bond of the terminal double bond opens and cross-links with the double bonds of neighboring molecular chains.

Figure pat00001
Figure pat00001

상기 가교 과정에서 저밀도 폴리에틸렌 사슬 구조의 고리화가 일어나게 되며 이는 분자사슬이 서로 연결될 경우 다각형 구조를 형성함에 따라 기계적 물성이 향상된다. 또한, 폴리올레핀은 구조적으로 O와 N을 가지고 있지 않기 때문에 탄화 시, 산화물이 적게 발생하므로 열경화성 수지 대비 탄화수율이 상대적으로 더 높아 전기전도성이 향상된다.In the crosslinking process, cyclization of the low-density polyethylene chain structure occurs, and when the molecular chains are connected to each other, mechanical properties are improved by forming a polygonal structure. In addition, since the polyolefin does not have O and N structurally, when carbonized, less oxide is generated, so that the carbonization yield is relatively higher than that of the thermosetting resin, thereby improving electrical conductivity.

이때, 열가소성 수지가 함침된 탄소섬유 웹(Web)을 150~180℃에서 10~60분 동안, 바람직하기로는 10분~30분 동안 황산에 담지시켜주는 것이 바람직하다.At this time, it is preferable to support the carbon fiber web impregnated with the thermoplastic resin at 150 to 180 ° C. for 10 to 60 minutes, preferably 10 to 30 minutes in sulfuric acid.

상기 담지온도가 150℃ 미만인일 경우에는 가교반응이 일어나지 않아 탄화수율이 감소되고, 탄소섬유 웹(Web)을 열가소성 수지 용액 디핑시켜 탄소섬유 웹(Web)에 열가소성 수지를 함침한 경우 상기 담지온도가 180℃를 초과하게되면 열가소성 수지 용액(함침액)내의 용매가 기화되어 바람직하지 않다.When the loading temperature is less than 150 ° C, a crosslinking reaction does not occur and the carbonization yield is reduced, and when the carbon fiber web is impregnated with a thermoplastic resin solution, the carbon fiber web is impregnated with the thermoplastic resin. When it exceeds 180 ° C, the solvent in the thermoplastic resin solution (impregnation solution) is vaporized, which is not preferable.

다음으로는, 가교화 및 안정화된 탄소섬유 웹(Web)을 탄화시켜 탄소섬유 페이퍼를 제조한다.Next, carbon fiber paper is prepared by carbonizing a crosslinked and stabilized carbon fiber web.

이때, 열가소성 수지가 함침된 탄소섬유 웹(Web)dmf 800~1,000℃에서 20~40분간 1차 탄화시킨 후 계속해서 2,000~2,400℃에서 7~15분간 2차 탄화시켜주는 것이 탄화수율을 높혀주는데 바람직하다.At this time, the primary carbonization of the carbon fiber web impregnated with the thermoplastic resin at 800 to 1,000 ° C for 20 to 40 minutes, followed by secondary carbonization at 2,000 to 2,400 ° C for 7 to 15 minutes increases the carbonization yield. desirable.

한편, 본 발명에서는 선택적으로 가교화 및 안정화된 탄소섬유 웹(Web)을 탄화시키기 이전에 탄소섬유 웹(Web)에 잔존하는 황산을 세척 및 중화시켜줄 수도 있다. 이때 세척은 상기 탄소섬유 웹(Web)의 pH가 7이 될때까지 실시한 후 180℃ 이상의 온도로 열처리하여 열가소성 수지 용액(함침액)에 포함된 용매까지 제거해 줄 수 있다.Meanwhile, in the present invention, sulfuric acid remaining on the carbon fiber web may be washed and neutralized before carbonization of the crosslinked and stabilized carbon fiber web is selectively performed. At this time, washing may be performed until the pH of the carbon fiber web is 7 and heat-treated at a temperature of 180 ° C. or higher to remove even the solvent contained in the thermoplastic resin solution (impregnation solution).

이하, 실시예 및 비교실시예를 통하여 본 발명을 보다 구체적으로 살펴본다.Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples.

그러나 본 발명의 보호범위가 하기 실시예 만으로 한정되게 해석되어서는 안된다.However, the protection scope of the present invention should not be construed as being limited to the following examples.

실시예 1Example 1

평균길이가 10㎜인 탄소섬유를 물에 분산시킨 후 스크린으로 상기 탄소섬유를 건져올려 탄소섬유 웹을 제조하였다.After dispersing the carbon fiber having an average length of 10 mm in water, the carbon fiber was raised by a screen to prepare a carbon fiber web.

다음으로, 폴리프로필렌 수지가 오소-디클로로벤젠(Ortho-dichlorobenzene) 용매에 7% 고형분 농도로 용해되어 점도가 7 센티포아즈(Centi poise)인 폴리프로필렌 수지 용액(함침액)에 상기 탄소섬유 웹을 1분간 디핑(Dipping) 시켜 상기 탄소섬유 웹에 폴리프로필렌 수지를 함침시켜 주었다.Next, the carbon fiber web was added to a polypropylene resin solution (impregnation solution) having a viscosity of 7 centipoise (impregnation solution) by dissolving a polypropylene resin in an ortho-dichlorobenzene solvent at a concentration of 7% solids. Dipping was performed for 1 minute to impregnate the carbon fiber web with a polypropylene resin.

다음으로, 폴리프로필렌 수지가 함침된 탄소섬유 웹(Web)을 160℃의 황산에 25분 동안 담지하여 가교화 및 안정화 시켜주었다.Next, the carbon fiber web impregnated with the polypropylene resin was supported in sulfuric acid at 160 ° C for 25 minutes to crosslink and stabilize.

다음으로, 가교화 및 안정화된 탄소섬유 웹(Web)을 세척 및 중화시킨 후 900℃에서 30분 동안 1차 탄화시킨 후 계속해서 2,400℃에서 10분간 2차 탄화시켜 탄소섬유 페이퍼를 제조하였다.Next, after washing and neutralizing the crosslinked and stabilized carbon fiber web, the first carbonization was performed at 900 ° C for 30 minutes, followed by secondary carbonization at 2,400 ° C for 10 minutes to prepare carbon fiber paper.

제조된, 탄소섬유 페이퍼의 표면저항(전기전도도) 및 밴딩 스티프리스(Bending stiffness)를 측정한 결과는 표 1과 같았다.Table 1 shows the results of measuring the surface resistance (electric conductivity) and bending stiffness of the manufactured carbon fiber paper.

실시예 2Example 2

평균길이가 10㎜인 탄소섬유를 물에 분산시킨 후 스크린으로 상기 탄소섬유를 건져올려 탄소섬유 웹을 제조하였다.After dispersing the carbon fiber having an average length of 10 mm in water, the carbon fiber was raised by a screen to prepare a carbon fiber web.

다음으로, 저밀도 폴리에틸렌 수지가 오소-디클로로벤젠(Ortho-dichlorobenzene) 용매에 7% 고형분 농도로 용해되어 점도가 7 센티포아즈(Centi poise)인 저밀도 폴리에틸렌 수지 용액(함침액)에 상기 탄소섬유 웹을 1분간 디핑(Dipping) 시켜 상기 탄소섬유 웹에 저밀도 폴리에틸렌 수지를 함침시켜 주었다.Next, the carbon fiber web is placed in a low density polyethylene resin solution (impregnation solution) having a viscosity of 7 centipoise (impregnation solution) by dissolving a low density polyethylene resin in an ortho-dichlorobenzene solvent at a concentration of 7% solids. Dipping was performed for 1 minute to impregnate the carbon fiber web with a low density polyethylene resin.

다음으로, 저밀도 폴리에틸렌 수지가 함침된 탄소섬유 웹(Web)을 160℃의 황산에 25분 동안 담지하여 가교화 및 안정화 시켜주었다.Next, the carbon fiber web impregnated with the low-density polyethylene resin was supported in sulfuric acid at 160 ° C for 25 minutes to crosslink and stabilize.

다음으로, 가교화 및 안정화된 탄소섬유 웹(Web)을 세척 및 중화시킨 후 900℃에서 30분 동안 1차 탄화시킨 후 계속해서 2,400℃에서 10분간 2차 탄화시켜 탄소섬유 페이퍼를 제조하였다.Next, after washing and neutralizing the crosslinked and stabilized carbon fiber web, the first carbonization was performed at 900 ° C for 30 minutes, followed by secondary carbonization at 2,400 ° C for 10 minutes to prepare carbon fiber paper.

제조된, 탄소섬유 페이퍼의 표면저항(전기전도도) 및 밴딩 스티프리스(Bending stiffness)를 측정한 결과는 표 1과 같았다.Table 1 shows the results of measuring the surface resistance (electric conductivity) and bending stiffness of the manufactured carbon fiber paper.

실시예 3Example 3

평균길이가 10㎜인 탄소섬유를 물에 분산시킨 후 스크린으로 상기 탄소섬유를 건져올려 탄소섬유 웹을 제조하였다.After dispersing the carbon fiber having an average length of 10 mm in water, the carbon fiber was raised by a screen to prepare a carbon fiber web.

다음으로, 저밀도 폴리에틸렌 필름 2장을 준비하여 탄소섬유 웹(Web)의 양면에 겹친 후, 핫 프레스로 150℃에서 5분 동안 700KGS로 가압하여 상기 탄소섬유 웹에 저밀도 폴리에틸렌 수지를 함침시켜 주었다.Next, two pieces of low-density polyethylene films were prepared, overlapped on both sides of the carbon fiber web, and pressurized at 700KGS at 150 ° C for 5 minutes with a hot press to impregnate the carbon fiber web with low-density polyethylene resin.

다음으로, 저밀도 폴리에틸렌 수지가 함침된 탄소섬유 웹(Web)을 160℃의 황산에 25분 동안 담지하여 가교화 및 안정화 시켜주었다.Next, the carbon fiber web impregnated with the low-density polyethylene resin was supported in sulfuric acid at 160 ° C for 25 minutes to crosslink and stabilize.

다음으로, 가교화 및 안정화된 탄소섬유 웹(Web)을 세척 및 중화시킨 후 900℃에서 30분 동안 1차 탄화시킨 후 계속해서 2,400℃에서 10분간 2차 탄화시켜 탄소섬유 페이퍼를 제조하였다.Next, after washing and neutralizing the crosslinked and stabilized carbon fiber web, the first carbonization was performed at 900 ° C for 30 minutes, followed by secondary carbonization at 2,400 ° C for 10 minutes to prepare carbon fiber paper.

제조된, 탄소섬유 페이퍼의 표면저항(전기전도도) 및 밴딩 스티프니스(Bending stiffness)를 측정한 결과는 표 1과 같았다.Table 1 shows the results of measuring the surface resistance (electric conductivity) and bending stiffness of the manufactured carbon fiber paper.

비교실시예 1Comparative Example 1

평균길이가 10㎜인 탄소섬유를 물에 분산시킨 후 스크린으로 상기 탄소섬유를 건져올려 탄소섬유 웹을 제조하였다.After dispersing the carbon fiber having an average length of 10 mm in water, the carbon fiber was raised by a screen to prepare a carbon fiber web.

다음으로, 열경화성 수지인 페놀수지가 용매에 7% 고형분 농도로 용해되어 점도가 7 센티포아즈(Centi poise)인 페놀수지 용액(함침액)에 상기 탄소섬유 웹을 1분간 디핑(Dipping) 시켜 상기 탄소섬유 웹에 페놀수지를 함침시켜 주었다.Next, the phenol resin, a thermosetting resin, is dissolved in a solvent at a concentration of 7% solids, and the carbon fiber web is dipping for 1 minute in a phenol resin solution (impregnation solution) having a viscosity of 7 centipoise. The carbon fiber web was impregnated with phenol resin.

탄소섬유 웹에 남아있는 페놀 수지의 용매를 제거하기 위해 150℃ 오븐에서 5분간 건조하고, 페놀수지의 경화를 위해 150°C의 핫프레스(Hot Press)에서 5분간 압착 및 경화 하였다.In order to remove the solvent of the phenol resin remaining on the carbon fiber web, it was dried in an oven at 150 ° C. for 5 minutes, and pressed and cured for 5 minutes in a hot press at 150 ° C. for curing of the phenol resin.

다음으로, 페놀수지가 함침된 탄소섬유 웹(Web)을 2,400℃에서 10분간 2차 탄화시켜 탄소섬유 페이퍼를 제조하였다.Next, the carbon fiber paper impregnated with phenol resin was secondary carbonized at 2,400 ° C. for 10 minutes to prepare carbon fiber paper.

제조된, 탄소섬유 페이퍼의 표면저항(전기전도도) 및 밴딩 스티프리스(Bending stiffness)를 측정한 결과는 표 1과 같았다.Table 1 shows the results of measuring the surface resistance (electric conductivity) and bending stiffness of the manufactured carbon fiber paper.

비교실시예 2Comparative Example 2

평균길이가 10㎜인 탄소섬유를 물에 분산시킨 후 스크린으로 상기 탄소섬유를 건져올려 탄소섬유 웹을 제조하였다.After dispersing the carbon fiber having an average length of 10 mm in water, the carbon fiber was raised by a screen to prepare a carbon fiber web.

다음으로, 상기와 같이 제조된 탄소섬유 웹(Web)을 2,400℃에서 탄화시켜 탄소섬유 페이퍼를 제조하였다.Next, carbon fiber paper was prepared by carbonizing the carbon fiber web manufactured as described above at 2,400 ° C.

제조된, 탄소섬유 페이퍼의 표면저항(전기전도도) 및 밴딩 스티프리스(Bending stiffness)를 측정한 결과는 표 1과 같았다.Table 1 shows the results of measuring the surface resistance (electric conductivity) and bending stiffness of the manufactured carbon fiber paper.

구분division 표면저항(Ω/sq)Surface resistance (Ω / sq) 밴딩 스티프니스(g·㎝)Banding stiffness (g · ㎝) 실시예 1Example 1 0.43±0.040.43 ± 0.04 5.025.02 실시예 2Example 2 0.48±0.060.48 ± 0.06 6.046.04 실시예 3Example 3 0.45±0.040.45 ± 0.04 5.585.58 비교실시예 1Comparative Example 1 0.76±0.220.76 ± 0.22 3.533.53 비교실시예 2Comparative Example 2 3.65±0.273.65 ± 0.27 1.061.06

표 1의 표면저항 및 밴딩 스티프니스(Bending stiffness)는 아래 방법으로 측정하였다.The surface resistance and bending stiffness of Table 1 were measured by the following method.

표면저항Surface resistance

4-프로브(Probe) 측정기구를 사용하여 10×10㎝ 샘플의 9개 지점(Pint)를 측정하였다.Nine points (Pint) of 10 × 10 cm samples were measured using a 4-probe measuring instrument.

밴딩 스티프니스Banding stiffness

데이버 스티프니스 테스터(Taber stiffness tester : 모델 150E)를 사용하여 1.5×2.75인치 샘플을 15°각도로 밴딩(Bending)시의 부하(load)값을 측정하였다.Using a Taber stiffness tester (model 150E), the load value when bending a 1.5 × 2.75 inch sample at an angle of 15 ° was measured.

Claims (9)

(ⅰ) 단섬유 형태인 탄소섬유를 습식 초지화 방법으로 탄소섬유 웹(Web)을 제조하는 공정;
(ⅱ) 상기 탄소섬유 웹(Web)에 열가소성 수지를 함침시켜주는 공정;
(ⅲ) 열가소성 수지가 함침된 탄소섬유 웹(Web)을 황산에 담지하여 가교화 및 안정화 시켜주는 공정; 및
(ⅳ) 가교화 및 안정화된 탄소섬유 웹(Web)을 탄화시켜 탄소섬유 페이퍼를 제조하는 공정;을 포함하는 것을 특징으로 하는 연료전지 가스확산층용 탄소 페이퍼의 제조방법.
(Iii) a process of manufacturing a carbon fiber web in a wet papermaking method using carbon fiber in the form of a short fiber;
(Ii) a process of impregnating the carbon fiber web with a thermoplastic resin;
(Iii) a process of crosslinking and stabilizing a carbon fiber web impregnated with a thermoplastic resin by supporting it in sulfuric acid; And
(I) carbonizing the crosslinked and stabilized carbon fiber web to produce carbon fiber paper; a method for producing a carbon paper for a fuel cell gas diffusion layer, comprising:
제1항에 있어서, 열가소성 수지는 폴리올레핀계 수지인 것을 특징으로 하는 연료전지 가스확산층용 탄소 페이퍼의 제조방법.The method of claim 1, wherein the thermoplastic resin is a polyolefin-based resin. 제2항에 있어서, 폴리올레핀계 수지는 폴리프로필렌 수지, 저밀도 폴리에틸렌(Low Density Polyethylene : LDPE) 수지 및 폴리프로필렌수지와 저밀도 폴리에틸렌 수지의 혼합물 중에서 선택된 1종의 수지인 것을 특징으로 하는 연료전지 가스확산층용 탄소 페이퍼의 제조방법.[3] The fuel cell gas diffusion layer according to claim 2, wherein the polyolefin-based resin is a resin selected from polypropylene resin, low density polyethylene (LDPE) resin, and a mixture of polypropylene resin and low density polyethylene resin. Method of manufacturing carbon paper. 제1항에 있어서, 탄소섬유 웹(Web)을 열가소성 수지 용액에 디핑(Dipping) 시켜 주는 방법으로 탄소섬유 웹(Web)에 열가소성 수지를 함침시켜 주는 것을 특징으로 하는 연료전지 가스확산층용 탄소 페이퍼의 제조방법.The method of claim 1, wherein the carbon fiber web (Web) of the carbon paper for the fuel cell gas diffusion layer, characterized in that by impregnating the thermoplastic resin to the carbon fiber web (Web) by dipping (Dipping) in a thermoplastic resin solution Manufacturing method. 제4항에 있어서, 상기 열가소성 수지 용액은 점도가 10 센티포아즈(Centi poise) 이하인 것을 특징으로 하는 연료전지 가스확산층용 탄소 페이퍼의 제조방법.The method of claim 4, wherein the thermoplastic resin solution has a viscosity of 10 centipoise or less. 제4항에 있어서, 상기 열가소성 수지 용액은 열가소성 수지 고형분 농도가 5~10%인 것을 특징으로 하는 연료전지 가스확산층용 탄소 페이퍼의 제조방법.The method of claim 4, wherein the thermoplastic resin solution has a thermoplastic resin solids concentration of 5 to 10%. 제1항에 있어서, 탄소섬유 웹(Web)의 양면에 열가소성 수지 필름을 라미네이팅시킨 후 라미네이팅된 열가소성 수지 필름이 용융되어 탄소섬유 웹(Web)의 내부로 함침되도록 고온으로 가열 및 가압해 주는 것을 특징으로 하는 연료전지 가스확산층용 탄소 페이퍼의 제조방법.The method of claim 1, wherein after laminating the thermoplastic resin film on both sides of the carbon fiber web, the laminated thermoplastic resin film is melted and heated and pressed at a high temperature to be impregnated into the interior of the carbon fiber web. Manufacturing method of carbon paper for fuel cell gas diffusion layer. 제1항에 있어서, 열가소성 수지가 함침된 탄소섬유 웹(Web)dmf 800~1,000℃에서 20~40분간 1차 탄화시킨 후 계속해서 2,000~2,400℃에서 7~15분간 2차 탄화시켜 탄소섬유 페이퍼를 제조하는 것을 특징으로 하는 연료전지 가스확산층용 탄소 페이퍼의 제조방법.The carbon fiber paper according to claim 1, wherein the carbon fiber paper impregnated with the thermoplastic resin is first carbonized at 800 to 1,000 ° C for 20 to 40 minutes and then continuously carbonized at 2,000 to 2,400 ° C for 7 to 15 minutes. Method for producing a carbon paper for a fuel cell gas diffusion layer, characterized in that to manufacture. 제1항에 있어서, 가교화 및 안정화된 탄소섬유 웹(Web)을 탄화시키기 이전에 탄소섬유 웹(Web)에 잔존하는 황산을 세척 및 중화시켜주는 것을 특징으로 하는 연료전지 가스확산층용 탄소 페이퍼의 제조방법.
The carbon paper for a fuel cell gas diffusion layer according to claim 1, wherein the sulfuric acid remaining on the carbon fiber web is washed and neutralized before carbonization of the crosslinked and stabilized carbon fiber web. Manufacturing method.
KR1020180110821A 2018-09-17 2018-09-17 Method of manufacturing carbon fiber paper used in gas diffusion layer of fuel cell KR20200031845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180110821A KR20200031845A (en) 2018-09-17 2018-09-17 Method of manufacturing carbon fiber paper used in gas diffusion layer of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180110821A KR20200031845A (en) 2018-09-17 2018-09-17 Method of manufacturing carbon fiber paper used in gas diffusion layer of fuel cell

Publications (1)

Publication Number Publication Date
KR20200031845A true KR20200031845A (en) 2020-03-25

Family

ID=70001932

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180110821A KR20200031845A (en) 2018-09-17 2018-09-17 Method of manufacturing carbon fiber paper used in gas diffusion layer of fuel cell

Country Status (1)

Country Link
KR (1) KR20200031845A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220090828A (en) 2020-12-23 2022-06-30 현대자동차주식회사 Gas diffusion layer structure for fuel cell
CN115418880A (en) * 2022-08-10 2022-12-02 中南大学 Impregnating resin material for densifying and modifying carbon fiber paper, high-performance carbon fiber paper and preparation method thereof
KR20230096283A (en) 2021-12-23 2023-06-30 현대자동차주식회사 Gas diffusion layer structure for fuel cell
CN117638107A (en) * 2024-01-18 2024-03-01 湖南隆深氢能科技有限公司 Preparation method of carbon fiber paper for fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220090828A (en) 2020-12-23 2022-06-30 현대자동차주식회사 Gas diffusion layer structure for fuel cell
KR20230096283A (en) 2021-12-23 2023-06-30 현대자동차주식회사 Gas diffusion layer structure for fuel cell
CN115418880A (en) * 2022-08-10 2022-12-02 中南大学 Impregnating resin material for densifying and modifying carbon fiber paper, high-performance carbon fiber paper and preparation method thereof
CN115418880B (en) * 2022-08-10 2023-11-24 中南大学 Impregnating resin material for densification modification of carbon fiber paper, high-performance carbon fiber paper and preparation method thereof
CN117638107A (en) * 2024-01-18 2024-03-01 湖南隆深氢能科技有限公司 Preparation method of carbon fiber paper for fuel cell
CN117638107B (en) * 2024-01-18 2024-04-09 湖南隆深氢能科技有限公司 Preparation method of carbon fiber paper for fuel cell

Similar Documents

Publication Publication Date Title
KR20200031845A (en) Method of manufacturing carbon fiber paper used in gas diffusion layer of fuel cell
JP6300985B2 (en) Method for producing polymer electrolyte membrane
KR100877161B1 (en) A multi-porous separator for secondary battery with enhanced heat stability and high power output
KR101376362B1 (en) Polymer Electrolyte Membrane for Fuel Cell and Method of manufacturing the same
CN104701560B (en) A kind of fuel battery proton exchange film and preparation method thereof
KR20110021217A (en) Polymer electrolyte membrane for fuel cell and method of manufacturing the same
KR20180023830A (en) A manufacturing method of carbon paper for fuel cell gas diffusion layers which adds pitch-based carbon fibers and aqueous binders, and carbon paper for the fuel cell gas diffusion layers using the same
KR101304489B1 (en) Method for preparing carbon paper by controling specific charge density and viscosity in solution, the carbon paper prepared using the method and fuel cell comprising the carbon paper
CN113270622A (en) Polymer-based double-layer nanofiber composite proton exchange membrane and preparation method thereof
CN111525080A (en) Preparation method of diaphragm with high porosity and safety performance
KR101550204B1 (en) Preparation method of carbon paper for fuel cell gas diffusion layer by addition of conducting polymers and carbon paper for fuel cell gas diffusion layer using the same
KR101666887B1 (en) Crosslinked Polymer, Polymer Electrolyte Membrane Comprising the Same and Method for Manufacturing Polymer Electrolyte Membrane Comprising the Same
CN112709093A (en) Preparation method of carbon fiber paper
Thangarasu et al. Feasibilities and electrochemical performance of surface-modified polyester separator for Lead-acid battery applications
KR101468866B1 (en) Method for preparing carbon paper for fuel cell, the carbon paper prepared using the method and fuel cell comprising the carbon paper
US20160079612A1 (en) Carbon Paper With Conducting Polymers And Polyols For Fuel Cell And Preparation Method Thereof
KR20180077472A (en) Method of manufacturing roll type gas diffusion layer with excellent spreading property
JP2007504609A (en) Low cost gas diffusion media for use in PEM fuel cells
CN112259771B (en) Proton exchange membrane with wide operating temperature, and preparation method and application thereof
KR20130004615A (en) Composite electrolyte membrane for fuel cell and method for manufacturing the same
CN113948716A (en) Fuel cell gas diffusion layer and preparation method and application thereof
KR20140120600A (en) Active carbon for supercapacitor electrode and manufacturing method of the same
KR102097507B1 (en) Proton conducting polymer fiber embedded electrode and membrane-electrode assembly employing the same for polymer electrolyte membrane fuel cell
KR102568609B1 (en) Substrate for Gas Diffusion Layer and method thereof
KR102568601B1 (en) Substrate for Gas Diffusion Layer and method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application