KR20200031333A - Process for producing porous biodegradable polymer microspheres with low endotoxin content - Google Patents
Process for producing porous biodegradable polymer microspheres with low endotoxin content Download PDFInfo
- Publication number
- KR20200031333A KR20200031333A KR1020180110218A KR20180110218A KR20200031333A KR 20200031333 A KR20200031333 A KR 20200031333A KR 1020180110218 A KR1020180110218 A KR 1020180110218A KR 20180110218 A KR20180110218 A KR 20180110218A KR 20200031333 A KR20200031333 A KR 20200031333A
- Authority
- KR
- South Korea
- Prior art keywords
- biodegradable polymer
- endotoxin content
- microparticles
- porous biodegradable
- low endotoxin
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0059—Cosmetic or alloplastic implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/0005—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
- A61L2/0011—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
- A61L2/0029—Radiation
- A61L2/0035—Gamma radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2202/00—Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
- A61L2202/20—Targets to be treated
- A61L2202/21—Pharmaceuticals, e.g. medicaments, artificial body parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/18—Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/34—Materials or treatment for tissue regeneration for soft tissue reconstruction
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
본 발명은 성형필러용 주사제에 사용할 수 있는 엔도톡신 함량이 저감된 다공성의 생분해성 고분자 미세입자의 제조방법에 관한 것이다.The present invention relates to a method for producing porous biodegradable polymer microparticles with reduced endotoxin content that can be used in injections for molding fillers.
본 발명은 다공성의 생분해성 고분자 미세입자는 생분해성 고분자를 원료로 하는 마이크로 크기의 다공성 입자로서 국내외에서 조직 수복용 재료로서 관심이 증대되고 있으며, 그에 관한 연구도 활발하게 이루어지고 있으나 산업화를 위한 대량공정 개발의 한계 등으로 극히 일부만 산업화로 진행 중인 실정이다. The present invention is a porous biodegradable polymer microparticle as a micro-sized porous particle using a biodegradable polymer as a raw material for tissue repair at home and abroad, and interest in it is increasing. Due to the limitations of process development, only a very small portion is being industrialized.
생체적합성 생체재료 소재로서 다공성 생분해성 고분자 지지체(Scaffold)는 조직수복을 위한 주형으로 널리 사용되고 있다. 생분해성 고분자 지지체의 재료로는 폴리글리콜산(PGA), 폴리락트산(PLA), 폴리락트산-글리콜산 공중합체(PLGA), 폴리-ε-카프로락톤(PCL), 폴리아미노산, 폴리안하이드라이드, 폴리오르쏘에스테르 및 이들의 공중합체 등이 알려져 있다. 그러나, 현재까지는 PGA, PLA, PLGA 등만이 미국 식품의약청(FDA)으로부터 인체에 사용가능한 생분해성 고분자로 승인되어 인체 조직의 체내 재생을 위한 다공성 고분자 지지체의 재료로 사용되고 있다.As a biocompatible biomaterial material, porous biodegradable polymer scaffolds are widely used as templates for tissue repair. Materials of the biodegradable polymer support include polyglycolic acid (PGA), polylactic acid (PLA), polylactic acid-glycolic acid copolymer (PLGA), poly-ε-caprolactone (PCL), polyamino acid, polyanhydride, Polyorthoesters and copolymers thereof are known. However, until now, only PGA, PLA, PLGA, etc. have been approved as biodegradable polymers usable by the United States Food and Drug Administration (FDA) and are used as materials for porous polymer supports for the regeneration of human tissues in the body.
이러한 생분해성 고분자 지지체(Scaffold) 중에서도 마이크로 크기의 다공성 입자(porous microsphere)는 인체에 무해하며, 조직 수복력이 좋아 의약품, 의료기기, 화장품 등에 사용되고 있으며 응용 제품 개발을 위한 연구가 지속적으로 이루어 지고 있다. 그러나 다공성의 생분해성 고분자 마이크로스피어는 제조단계별로 발열성 물질인 엔도톡신에 노출될 위험이 높다. Among these biodegradable polymer scaffolds, micro-sized porous microspheres are harmless to the human body and have good tissue repair ability, so they are used in medicines, medical devices, cosmetics, etc., and research for application product development continues. . However, the porous biodegradable polymer microspheres have a high risk of exposure to the exothermic endotoxin at each manufacturing step.
발열성 물질이란, 그 본질에 대하여 아직 상세히 규명되어 있지는 않으나, 체내에서 이상 발열을 일으키는 물질을 통칭하는 것으로, 현재까지 공지된 바에 의하면 그람 음성 세균의 세포막 성분인 지질다당체(Lipopolysaccharide)가 그 주성분으로 일명 내독소(Endotoxin)라 불리기도 한다.The pyrogenic substance, although not yet elucidated in detail about its nature, refers to a substance that causes abnormal fever in the body, and to date, it has been known that Lipopolysaccharide, a cell membrane component of Gram-negative bacteria, is the main component. It is also called endotoxin.
엔도톡신은 그 자체로서는 외부세포막의 조직화, 안정성 및 장벽 기능에 있어서 중요한 역할을 하며, 다수 박테리오파지는 그들의 숙주 박테리아를 찾는 특이방법으로서 엔도톡신이나 일반적인 리포다당체를 사용한다. 그러나 엔도톡신은 별도의 예방수단 없이 거의 모든 수용성 용액에서 발견될 수 있는 생체분자로서, 사람과 동물에 있어서 엔도톡신은 면역계통의 강력한 오반응을 야기할 수 있으며, 이는 조직감염, 혈압저하, 맥박증 혈전증, 쇼크, 면역부전, 패혈증 등을 일으킨다.Endotoxins themselves play an important role in the organization, stability and barrier function of the outer cell membrane, and many bacteriophage use endotoxins or general lipopolysaccharides as a specific method for finding their host bacteria. However, endotoxins are biomolecules that can be found in almost all aqueous solutions without additional precautions, and in humans and animals, endotoxins can cause potent misreactions of the immune system, such as tissue infection, hypotension, and pulse thrombosis. , Shock, immune failure, and sepsis.
따라서, 의약품 등에 있어서, 특히 주사제용 제품에 있어서는 엔도톡신 수준에 대해 특정 경계값 미만으로 할 것을 요구하고 있다(예를 들어, 면역 혈청글로불린 0.91EU/㎖. 이는 5EU/kg 체중 및 시간에 해당한다(투여량 EU/kg*h); EU 엔도톡신 단위; 미국식품의약국(FDA); Guideline on Validation of LAL as End Product).Therefore, for pharmaceuticals, etc., especially for injectable products, the endotoxin level is required to be below a certain threshold (e.g., 0.91 EU / ml of immune serum globulin. This corresponds to 5 EU / kg body weight and time ( Dosage EU / kg * h); EU endotoxin units; US Food and Drug Administration (FDA); Guideline on Validation of LAL as End Product).
엔도톡신은 대부분의 단백질이 변성되는 조건인 고온에서도 활성이 유지되는 등 생물학적으로 상당히 안정된 상태를 유지하고 있어, 엔도톡신을 효율적으로 파괴하기 위해서는 섭씨 200℃이상의 고온이나 최소한 강산 또는 강염기에 의한 분해, UF(ultrafiltration) 또는 RO (reverse osmosis)에 의한 분리 등의 물리적인 방법, 폴리믹신 B(polymixin B), LAL (Limulus Amebocyte Lysate)와의 반응에 의한 생화학적 방법 등이 있다.Endotoxin maintains a biologically stable state, such as maintaining activity even at high temperature, which is a condition where most proteins are denatured, and in order to efficiently destroy endotoxin, high temperature of 200 ° C or higher or at least decomposition by strong acid or strong base, UF ( There are physical methods such as separation by ultrafiltration (RO) or reverse osmosis (RO), and biochemical methods by reaction with polymixin B (Limulus Amebocyte Lysate).
이와 같은 의약품 등의 제조에 사용되는 엔도톡신의 제거 방법에는 각각의 장단점이 존재하는데, 고온, 강산/강염기의 사용시 생분해성 고분자의 분해가 생기며, UF와 RO에 의한 분리는 고분자의 미세입자에는 적합하지 않으며, 고정 수지를 사용하는 폴리믹신 B, LAL과의 반응도 엔도톡신을 제거한 후의 다공성의 고분자 미세입자 만을 분리하는 데에 매우 어려움이 있다.Each of the pros and cons of the method of removing endotoxins used in the manufacture of such pharmaceuticals has the advantages and disadvantages of decomposition of biodegradable polymers when using high temperature and strong acids / bases, and separation by UF and RO is not suitable for polymer microparticles Also, the reaction with polymyxin B and LAL using a fixed resin is very difficult to separate only the porous polymer microparticles after removing endotoxin.
특히 다공성의 생분해성 고분자 미세입자는 미세입자내의 기공으로 인해 물리적인 방법의 적용이 어려우며, 폴리믹신 B등과의 반응 역시 반응 후에 잔류물의 제거에 어려움이 있다.Particularly, the porous biodegradable polymer microparticles are difficult to apply physical methods due to the pores in the microparticles, and the reaction with polymyxin B is also difficult to remove residues after the reaction.
본 발명의 목적은 다공성의 생분해성 미세입자(microsphere)로부터 효과적으로 엔도톡신을 제거하여 성형필러용 주사제로 사용할 수 있는 조성물의 제조방법을 제공하는 것이다.An object of the present invention is to provide a method for preparing a composition that can be used as an injection for a molding filler by effectively removing endotoxin from porous biodegradable microspheres.
상기 목적을 달성하기 위하여,In order to achieve the above object,
본 발명은 생분해성 고분자 용액을 원액으로 하여 비이온성 계면활성제를 포함하는 분산욕에 방사하는 단계, The present invention is a step of spinning a biodegradable polymer solution as a stock solution in a dispersion bath containing a nonionic surfactant,
상기 분산욕에서 응고된 고분자 미세입자를 수세하는 단계,Washing the polymer fine particles solidified in the dispersion bath,
상시 수세된 미세입자를 동결건조시키고 감마선으로 처리하는 단계를 포함하는 것을 특징으로 하는 엔도톡신 함량이 낮은 다공성의 생분해성 고분자 미세입자의 제조방법이 제공된다.Provided is a method of manufacturing porous biodegradable polymer microparticles having a low endotoxin content, comprising the steps of lyophilizing the always washed microparticles and treating them with gamma rays.
본 발명에 통해 제조되는 엔도톡신이 저감된 성형필러 주사제용 다공성의 생분해성 미세입자는 인체에 직접 적용할 수 있는 생분해성 고분자의 종류 범위를 확대할 수 있으며, 인체에 적용할 수 있는 응용범위도 확대할 수 있다.Porous biodegradable microparticles for injection molded fillers with reduced endotoxin produced by the present invention can expand the range of types of biodegradable polymers that can be directly applied to the human body, and also expand the application range applicable to the human body. can do.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에서는 다공성의 생분해성 고분자 미세입자는 입자내의 공극과 생분해성 고분자의 특성으로 인해 엔도톡신 제거에 어려움이 있었던 미세입자 제조방법에서 비이온성 계면활성제가 포함된 분산욕, 수세 단계에서 세척액의 pH조절과 초음파 처리 및 입자의 동결건조 후 감마레이 조사 공정을 도입하여 효과적으로 엔도톡신을 제거할 수 있는 방법을 제시한다.In the present invention, the porous biodegradable polymer microparticles have a dispersion bath containing a nonionic surfactant in the method for preparing microparticles, which is difficult to remove endotoxin due to the pores in the particle and the properties of the biodegradable polymer, and adjusts the pH of the washing liquid in the washing step And it proposes a method to effectively remove endotoxin by introducing a gamma ray irradiation process after ultrasonic treatment and freeze-drying of the particles.
구체적으로, 본 발명의 생분해성 고분자 미세입자를 제조하기 위해서 생분해성 고분자 원료를 기공유도제를 포함하는 dichloromethane에 용해시켜 생분해성 고분자 용액을 준비한다. 준비된 용액을 다공성 투과막을 통해 양이온성 계면활성제와 음이온성 계면활성제, 그리고 비이온성 계면활성제가 녹아있는 분사욕에서 분사한다. 상기 제조된 생분해성 고분자 미세입자의 건고를 위해 pH 4~6의 약산성의 물을 분사욕에 포함시켜 교반하여 입자화 하고, 입자화가 완료된 후 분사욕을 pH 4~6의 약산성의 물로 수세한다. 수세 단계에서 계면활성제가 남아있지 않도록 pH 4~6의 약산성의 물을 포함하는 미세입자 용액을 초음파 처리한다. 수세가 완료된 입자를 동결건조하여 다공성의 미세입자를 만들고 용기에 담아 감마레이를 조사하여 미세입자 내 외부에 존재하고 있는 엔도톡신을 획기적으로 저감시킬 수 있게 된다.Specifically, in order to prepare the biodegradable polymer microparticles of the present invention, a biodegradable polymer solution is prepared by dissolving a biodegradable polymer raw material in dichloromethane containing a pore-forming agent. The prepared solution is sprayed through a porous permeable membrane in a spray bath in which cationic surfactant, anionic surfactant, and nonionic surfactant are dissolved. For the dryness of the prepared biodegradable polymer microparticles, water with a pH of 4 to 6 is included in a spray bath and stirred to form particles, and after the particle formation is completed, the spray bath is washed with water with a pH of 4 to 6. In the water washing step, the microparticle solution containing weakly acidic water having a pH of 4 to 6 is sonicated so that no surfactant remains. Freeze-dried particles are lyophilized to make porous microparticles, and they can be stored in a container to irradiate gamma-rays, thereby significantly reducing endotoxins existing outside the microparticles.
본 발명에 따른 엔도톡신이 저감된 성형필러 주사제용 다공성의 생분해성 고분자 미세입자의 제조방법에 대한 비한정적인 예시를 하고 있다.It provides a non-limiting example of a method for producing porous biodegradable polymer microparticles for injection molding molding with reduced endotoxin according to the present invention.
<< 실시예1Example 1 ~5> 조직수복용 다공성 미세입자의 제조~ 5> Preparation of porous microparticles for tissue repair
단계 1: Step 1: 모액의Mother liquor 준비 Ready
평균분자량이 110,000인 폴리카프로락톤(PCL)을 porogen을 포함하는 메틸렌 클로라이드(Methylene Chloride, MC) 용액에 녹여서 고분자 용액을 제조하였다.A polymer solution was prepared by dissolving polycaprolactone (PCL) having an average molecular weight of 110,000 in a methylene chloride (MC) solution containing porogen.
단계 2: Step 2: 연속상Continuous phase 분산액의 준비 Preparation of dispersion
계면활성제를 물에 녹여 분산액을 제조하였다.A surfactant was dissolved in water to prepare a dispersion.
단계 3: 용기에 Step 3: into the container 모액Mother liquor 및 And 연속상Continuous phase 분산액을 충전 Fill dispersion
다공성 투과막으로 공간이 분리되는 용기의 일부에는 상기 단계 1의 고분자 용액을 충전하고, 다른 일부에는 상기 단계 2의 연속상 분산액을 충전하였다.The polymer solution of step 1 was filled in a part of the container where the space was separated by a porous permeable membrane, and the continuous phase dispersion of step 2 was filled in another part.
단계 4: 다공성 미세입자를 형성Step 4: Form porous microparticles
상기 연속상 분산액을 교반하면서, 모액에 질소 가스 주입을 통해 압력을 가하여, 다공성 투과막의 기공을 통해 고분자 용액을 다공성 미세입자 형태로 연속상 분산욕에 분사하였다.While stirring the continuous phase dispersion liquid, pressure was applied to the mother liquid through nitrogen gas injection, and the polymer solution was sprayed into the continuous phase dispersion bath in the form of porous microparticles through the pores of the porous permeable membrane.
단계 5: Step 5: 유기용매Organic solvent 제거 및 세척 Removal and cleaning
연속상 분산액으로 넘어온 유기용매를 증발시키고, pH 4~6의 물을 넣고 교반하여 미세입자를 건고 시킨 후 pH 4~6의 물을 넣고 초음파 처리하여 계면활성제를 제거하고 여과한 다음, 동결건조하였다.The organic solvent that has passed into the continuous phase dispersion was evaporated, water was added with a pH of 4-6, stirred to dry the fine particles, and then water was added with a pH of 4-6 to remove the surfactant by ultrasonic treatment, filtered and lyophilized. .
단계 6: Step 6: 감마레이Gamma ray 조사 Research
동결건조한 미세입자에 감마레이를 조사하여 다공성의 생분해성 고분자 미세입자를 제조하였다. Gamma-ray was irradiated to the lyophilized microparticles to prepare porous biodegradable polymer microparticles.
<< 실험예Experimental example 1> 1>
상기 실시예 1~5 의 미세입자의 엔도톡신 함유량을 측정하여 다음 표 2에 나타내었다. 시험방법은 대한약전 일반시험법내의 엔도톡신 시험법에 준하여 수행하였다.The endotoxin content of the fine particles of Examples 1 to 5 was measured and is shown in Table 2 below. The test method was performed according to the endotoxin test method in the general test method of the Korean Pharmacopoeia.
상기 실시예 1~5 의 미세입자의 엔도톡신 함유량을 측정결과 실시예1 이 가장 엔도톡신 함량이 저감되었다.As a result of measuring the endotoxin content of the fine particles of Examples 1 to 5, the endotoxin content of Example 1 was most reduced.
<< 비교예Comparative example 1> 1>
상기 실시예 1의 공정 중 단계 5의 세척공정에서 pH4~6의 약산성 물 대신에 pH 7의 중성의 물을 사용하고, 동결건조 후 감마레이의 조사없이 미세입자를 제조하였다.In the washing process of step 5 of the process of Example 1, neutral water of pH 7 was used instead of weakly acidic water of pH 4 to 6, and microparticles were prepared without γ-ray irradiation after lyophilization.
<< 실험예Experimental example 2> 2>
상기 실시예 1 및 비교예 1의 미세입자의 엔도톡신 함유량을 측정하여 다음 표 1에 나타내었다. 시험방법은 대한약전 일반시험법내의 엔도톡신 시험법에 준하여 수행하였다.The endotoxin content of the fine particles of Example 1 and Comparative Example 1 was measured and is shown in Table 1 below. The test method was performed according to the endotoxin test method in the general test method of the Korean Pharmacopoeia.
상기 표 3에 나타낸 바와 같이, 실시예 1의 경우 비교예 1에 비해 1/10,000 수준의 엔도톡신 함량을 나타내어, 실시예의 공정이 효과적임을 확인할 수 있었다. As shown in Table 3, Example 1 showed an endotoxin content of 1 / 10,000 level compared to Comparative Example 1, and it was confirmed that the process of the Example was effective.
Claims (6)
상기 분산욕에서 응고된 생분해성 고분자 미세입자를 수세하는 단계,
상기 수세된 미세입자를 동결건조하고 감마레이로 조사하는 단계를 포함하는 것을 특징으로 하는 엔도톡신 함량이 낮은 다공성의 생분해성 고분자 미세입자의 제조방법.Spraying a biodegradable polymer solution into a dispersion bath containing a nonionic surfactant,
Washing the coagulated biodegradable polymer microparticles in the dispersion bath,
A method of manufacturing a porous biodegradable polymer microparticle with low endotoxin content, comprising lyophilizing the washed microparticles and irradiating with gamma ray.
상기 분산단계에서 분산욕은 비이온성 계면활성제인 폴리비닐알코올을 포함하는 분산액을 사용하는 것을 특징으로 하는 엔도톡신 함량이 낮은 다공성의 생분해성 고분자 미세입자의 제조방법.According to claim 1,
In the dispersing step, the dispersion bath is a method for producing a porous biodegradable polymer microparticle having a low endotoxin content, characterized in that a dispersion containing polyvinyl alcohol, which is a nonionic surfactant, is used.
상기 분산단계에서 분산욕은 비이온성 계면활성제인 폴리비닐알코올은 함량이 3~6%인 것을 특징으로 하는 엔도톡신 함량이 낮은 다공성의 생분해성 고분자 미세입자의 제조방법.According to claim 2,
In the dispersing step, the dispersion bath is a nonionic surfactant, and polyvinyl alcohol is a method of manufacturing a porous biodegradable polymer microparticle with low endotoxin content, characterized in that the content is 3 to 6%.
상기 분산단계 이후에 분산욕에서 응고된 미세입자를 수세하는 단계에서 수세액은 pH 4~6의 약산성 물을 사용하는 것을 특징으로 하는 엔도톡신 함량이 낮은 다공성의 생분해성 고분자 미세입자의 제조방법.According to claim 1,
In the step of washing the coagulated fine particles in the dispersion bath after the dispersing step, the washing solution is a method for producing porous biodegradable polymer microparticles with low endotoxin content, characterized by using weakly acidic water having a pH of 4 to 6.
상기 분산단계 이후에 분산욕에서 응고된 미세입자를 수세하는 단계에서 pH 4~6의 약산성 물과 미세입자를 초음파 처리하여 엔도톡신과 비이온성 계면활성제를 제거하는 것을 특징으로 하는 엔도톡신 함량이 낮은 다공성의 생분해성 고분자 미세입자의 제조방법.According to claim 4,
In the step of washing the coagulated fine particles in the dispersion bath after the dispersing step, ultrasonic treatment of weakly acidic water and fine particles having a pH of 4 to 6 removes endotoxins and nonionic surfactants. Method for producing biodegradable polymer microparticles.
상기 감마레이는 파장범위가 10-11~10-14 μm인 것을 특징으로 하는 엔도톡신 함량이 낮은 다공성의 생분해성 고분자 미세입자의 제조방법.According to claim 1,
The gamma ray has a wavelength range of 10 -11 ~ 10 -14 μm, characterized in that the production method of the porous biodegradable polymer microparticles with low endotoxin content.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180110218A KR20200031333A (en) | 2018-09-14 | 2018-09-14 | Process for producing porous biodegradable polymer microspheres with low endotoxin content |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180110218A KR20200031333A (en) | 2018-09-14 | 2018-09-14 | Process for producing porous biodegradable polymer microspheres with low endotoxin content |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20200031333A true KR20200031333A (en) | 2020-03-24 |
Family
ID=70004624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180110218A KR20200031333A (en) | 2018-09-14 | 2018-09-14 | Process for producing porous biodegradable polymer microspheres with low endotoxin content |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20200031333A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101170363B1 (en) | 2008-11-26 | 2012-08-01 | 주식회사 파이버엔텍 | Process Of Producing Alginate Fiber Having Ultra Low Contents of Endotoxin |
KR101442684B1 (en) | 2013-03-28 | 2014-09-23 | 주식회사 마크로케어 | A method for removing endotoxin from beta-glucan aqueous solution |
-
2018
- 2018-09-14 KR KR1020180110218A patent/KR20200031333A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101170363B1 (en) | 2008-11-26 | 2012-08-01 | 주식회사 파이버엔텍 | Process Of Producing Alginate Fiber Having Ultra Low Contents of Endotoxin |
KR101442684B1 (en) | 2013-03-28 | 2014-09-23 | 주식회사 마크로케어 | A method for removing endotoxin from beta-glucan aqueous solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101929661B1 (en) | Injectable composition for filler comprising porous biodegradable microspheres and water soluble natural polymers | |
Cheng et al. | Characterization and in vitro release of praziquantel from poly (ɛ-caprolactone) implants | |
JP7213205B2 (en) | denatured collagen | |
CN109621003A (en) | A kind of preparation method of the injectable hyaluronic acid sodium gel containing microballoon | |
JP2012504550A (en) | Stabilization of amorphous drugs using a sponge-like carrier matrix. | |
CZ296072B6 (en) | Process for preparing solid dispersion of hardly soluble medicine and process for preparing pharmaceutical composition containing thereof | |
CN106963743B (en) | PLGA nano composite and preparation method thereof | |
KR102237737B1 (en) | Methods for preparation of donepezil loaded sustained-release PLGA microsphere | |
JP5698296B2 (en) | Biocompatible alginate microparticle composition for controlled release of active ingredients by intravenous administration | |
JP6808777B2 (en) | Sustained release microsphere and its manufacturing method | |
KR101486132B1 (en) | A method for preparing microspheres by using a polymer having sol-gel transition property and microspheres prepared thereby | |
KR20200031333A (en) | Process for producing porous biodegradable polymer microspheres with low endotoxin content | |
CN101485904A (en) | Injectable calcium sulphate-based sustained-release implantation component containing medicine-carrying particle and application | |
KR101695440B1 (en) | A Method for manufacturing a biodegradable polymeric microsphere type sustained-release formulation having comprising a fluoroquinolone antibiotics | |
HU220617B1 (en) | Dissolution-free process for producing particles containing active ingredient, the produced particles, and pharmaceutical compositions containing them | |
WO2019073363A1 (en) | Processing method for biopolymers using solvent combinations | |
KR20090116494A (en) | Poly(lactide-co-glycolide) microsphere, a process for the preparatrion thereof, and a protein or peptide drug formulation comprising the same | |
WO2013033815A1 (en) | Cellulosic gel material as a pharmaceutical excipient | |
KR101721625B1 (en) | Dextran nanoparticle and method for producing it | |
RU2457863C2 (en) | Antiviral and antimicrobial composition containing consortium of immunoglobulins | |
Szewczyk et al. | Drug-loaded mesoporous silica/calcium phosphate composites for bone regeneration | |
RU2356581C1 (en) | Method for making porous chitosan sponges for bone defect filling | |
KR101631110B1 (en) | Nano structure and a method for producing the same | |
CN105694067A (en) | Method for preparing polyvinyl alcohol-poly (lactic acid-glycolic acid)-polycaprolactone bi-grafted copolymer micelle | |
Abdel-Bar et al. | Optimized formulation of vancomycin loaded thermoreversible hydrogel for treatment of orthopedic infections |