KR20200031014A - Synthesis method of water electrolysis catalyst using ultrasonic spray pyrolysis - Google Patents

Synthesis method of water electrolysis catalyst using ultrasonic spray pyrolysis Download PDF

Info

Publication number
KR20200031014A
KR20200031014A KR1020190014947A KR20190014947A KR20200031014A KR 20200031014 A KR20200031014 A KR 20200031014A KR 1020190014947 A KR1020190014947 A KR 1020190014947A KR 20190014947 A KR20190014947 A KR 20190014947A KR 20200031014 A KR20200031014 A KR 20200031014A
Authority
KR
South Korea
Prior art keywords
catalyst
iro
spray pyrolysis
ultrasonic spray
electrolysis
Prior art date
Application number
KR1020190014947A
Other languages
Korean (ko)
Other versions
KR102180882B1 (en
Inventor
한상범
이용수
김수현
Original Assignee
주식회사 보야스에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 보야스에너지 filed Critical 주식회사 보야스에너지
Publication of KR20200031014A publication Critical patent/KR20200031014A/en
Application granted granted Critical
Publication of KR102180882B1 publication Critical patent/KR102180882B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • B01J35/1019
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

The present invention relates to a method for synthesizing a water electrolysis catalyst using ultrasonic spray pyrolysis, wherein the method comprises the steps of: preparing a porous iridium oxide (IrO_x) catalyst by ultrasonic spray pyrolysis; preparing an antimony doped tin oxide support by ultrasonic spray pyrolysis; and carrying the iridium oxide (IrO_x) catalyst on the antimony doped tin oxide support. The present invention can maintain the performance of a unit cell even though the amount of a noble metal catalyst is reduced, thereby being economical.

Description

초음파 분무 열분해법을 이용한 수전해 촉매 합성방법{Synthesis method of water electrolysis catalyst using ultrasonic spray pyrolysis}Synthesis method of water electrolysis catalyst using ultrasonic spray pyrolysis}

본 발명은 초음파 분무 열분해법을 이용한 수전해 촉매 합성방법에 관한 것이다.The present invention relates to a method for synthesizing a water electrolytic catalyst using an ultrasonic spray pyrolysis method.

수전해는 크게 알칼리 전해질을 사용하는 알칼리 수전해와 산성 전해질막을 사용하는 고분자 전해질 수전해가 있다. 고분자 전해질 수전해는 고가의 귀금속 촉매[양극(anode) : IrOx, 음극(cathode) : Pt/C]를 이용하여 물을 전기분해 하는 시스템이다. The aqueous electrolyte is largely divided into an alkaline electrolyte using an alkaline electrolyte and a polymer electrolyte using an acid electrolyte membrane. Polymer electrolyte water electrolysis is a system that electrolyzes water using expensive noble metal catalysts (anode: IrO x , cathode: Pt / C).

종래에 귀금속 촉매의 제조는 Adam's Fusion 방법을 주로 사용하였으며, 일반 열처리 도가니에서 열처리하여 합성했기 때문에 입자의 크기가 크고 비표면적이 50 m2 이하였다. 또한, 안정한 촉매 담지체가 많지 않아 촉매의 비율을 70% 이하로 낮추기가 어렵고, 대부분의 상용 수전해에는 담지체가 사용되고 있지 못하며, 이로 인해 귀금속 촉매의 사용량이 2~4 mg/cm2 수준이다. 이에, 촉매의 사용량을 줄이기 위해서는 담지체와 고효율 촉매 개발이 필요한 실정이다.In the past, the production of a noble metal catalyst was mainly used by the Adam's Fusion method, and because it was synthesized by heat treatment in a general heat treatment crucible, the particle size was large and the specific surface area was 50 m 2 or less. In addition, since there are not many stable catalyst carriers, it is difficult to lower the ratio of the catalyst to 70% or less, and carriers are not used in most commercial water electrolysis, and thus, the amount of the noble metal catalyst used is 2-4 mg / cm 2 . Accordingly, in order to reduce the amount of catalyst, it is necessary to develop a carrier and a high-efficiency catalyst.

고분자 전해질 수전해는 알칼리 수전해보다 전류밀도가 5 내지 10배 정도 높은 장점이 있으나, 고가의 촉매 사용으로 인해 초기 비용이 50% 정도 더 높고, 시스템 단가가 높아 상용화가 어려운 단점이 있다. 특히, 양극에는 4 mg/cm2 정도의 많은 사용량을 필요로 하는 바, 이를 줄여야 경제성을 확보할 수 있다. 또한, 고분자 전해질 수전해의 양극은 높은 산성 조건과 높은 전압으로 인해 적절한 지지체 확보가 어려운 단점이 있다. 이에, 고분자 전해질 수전해에 적절한 지지체의 사용은 귀금속 촉매의 사용량을 감소시킬 수 있으며, 소재의 단가를 낮추어야 고분자 전해질 수전해의 상업화가 가능하다. The polymer electrolyte electrolytic solution has an advantage that the current density is about 5 to 10 times higher than that of the alkaline electrolytic electrolyte, but the initial cost is about 50% higher due to the use of expensive catalyst, and the system cost is high, making it difficult to commercialize. In particular, the positive electrode requires a large amount of 4 mg / cm 2 , so it can be reduced to secure economic efficiency. In addition, the positive electrode of the polymer electrolyte water electrolyte has a disadvantage that it is difficult to secure an appropriate support due to high acidic conditions and high voltage. Accordingly, the use of a support suitable for the polymer electrolyte faucet can reduce the amount of the noble metal catalyst used, and commercialization of the polymer electrolyte faucet is possible only when the unit cost of the material is lowered.

따라서 귀금속 촉매의 사용량을 줄여 수전해 단위전지의 효율을 높일 수 있는 귀금속 촉매 및 지지체의 제조 및 이의 제조방법에 대한 연구가 필요한 실정이다.Therefore, there is a need to study the production of a noble metal catalyst and a support and a method for manufacturing the noble metal catalyst and support that can increase the efficiency of the electrolysis unit cell by reducing the amount of noble metal catalyst used.

1. 대한민국 공개특허 제10-2011-0084225호 (2011.07.21 공개)1. Republic of Korea Patent Publication No. 10-2011-0084225 (published on July 21, 2011)

본 발명의 목적은 초음파 분무 열분해법을 이용한 수전해용 촉매 및 이의 제조방법을 제공하는 데에 있다.An object of the present invention is to provide a catalyst for water electrolysis using the ultrasonic spray pyrolysis method and a method for manufacturing the same.

상기 목적을 달성하기 위하여, 본 발명은 초음파 분무 열분해법으로 다공성 산화이리듐(IrOx) 촉매를 제조하는 단계; 초음파 분무 열분해법으로 안티몬주석산화물(antimony doped tin oxide) 지지체를 제조하는 단계; 및 상기 산화이리듐(IrOx) 촉매를 안티몬주석산화물(antimony doped tin oxide) 지지체에 담지하는 단계; 를 포함하며, 상기 산화이리듐(IrOx)의 x는 2이하인 것을 특징으로 하는 수전해용 촉매의 제조방법을 제공한다.In order to achieve the above object, the present invention is to prepare a porous iridium oxide (IrO x ) catalyst by ultrasonic spray pyrolysis; Preparing an antimony doped tin oxide support by ultrasonic spray pyrolysis; And supporting the iridium oxide (IrO x ) catalyst on an antimony doped tin oxide support. Provides a method for producing a catalyst for electrolysis, characterized in that x of the iridium oxide (IrO x ) is 2 or less.

본 발명에서는 초음파 분무 열분해법을 수전해 촉매 합성에 사용하였으며, 메쉬(mesh) 초음파 발생기를 이용하여 분무 입자의 크기를 줄여(기존 25 μm -> 5 μm) 촉매의 크기를 감소시켰다.In the present invention, the ultrasonic spray pyrolysis method was used for electrolytic catalyst synthesis, and the size of the catalyst was reduced by reducing the size of the spray particles (existing 25 μm-> 5 μm) using a mesh ultrasonic generator.

또한, 본 발명은 전도성 산화물 지지체인 안티몬주석산화물(antimony doped tin oxide;ATO)에 산화이리듐(iridium oxide;IrOx) 촉매를 담지하여 귀금속 촉매의 사용량을 줄이고도 높은 전류밀도의 단위전지 성능을 얻을 수 있다.In addition, the present invention is a conductive oxide support antimony tin oxide (antimony doped tin oxide; ATO) by supporting an iridium oxide (iridium oxide; IrO x ) catalyst to reduce the amount of noble metal catalyst to obtain a high current density unit cell performance You can.

또한, 본 발명의 고효율 고분자 전해질 수전해용 촉매는 귀금속 촉매의 사용량을 감소시켜 단위 전지의 효율을 높일 수 있어 경제적이다.In addition, the high-efficiency polymer electrolyte electrolytic catalyst of the present invention is economical because it can increase the efficiency of the unit cell by reducing the amount of the noble metal catalyst.

도 1은 귀금속 산화물인 산화이리듐(IrOx) 촉매 및 전도성 산화물 지지체인 안티몬주석산화물(antimony doped tin oxide;ATO)을 제조하는 초음파 분무 열분해 시스템을 도시하여 나타낸 것이다.
도 2는 촉매 합성에 초음파 분무 열분해법을 적용하여 고효율 촉매를 합성(비표면적 253 m2/g)한 후, IrOx 촉매의 BET 측정 결과를 나타낸 것이다.
도 3은 IrOx 촉매와 ATO 지지체를 7:3, 5:5, 3:7의 질량비로 합성한 후, IrOx 촉매와의 수전해 단위전지 성능을 평가한 결과를 나타낸 것이다.
1 is a diagram illustrating an ultrasonic spray pyrolysis system for preparing a precious metal oxide, iridium oxide (IrO x ) catalyst, and a conductive oxide support, antimony doped tin oxide (ATO).
2 shows the result of BET measurement of IrO x catalyst after synthesizing a high-efficiency catalyst (specific surface area 253 m 2 / g) by applying ultrasonic spray pyrolysis to catalyst synthesis.
FIG. 3 shows the results of evaluating the performance of the electrolytic unit cell with the IrO x catalyst after synthesizing the IrO x catalyst and the ATO support at a mass ratio of 7: 3, 5: 5, 3: 7.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 발명자들은 고분자 전해질 양극 촉매의 새로운 합성방법으로 초음파 분무 열분해법을 이용하여 고비표면적의 IrOx 촉매와 전도성 산화물인 ATO 지지체를 합성하여 수전해용 IrOx/ATO 촉매를 제조하였으며, 상기 IrOx/ATO 촉매는 촉매 사용량을 줄이고도 높은 전류밀도의 단위전지 성능을 나타내어 수전해 전지에 유용하게 활용될 수 있음을 밝혀내어 본 발명을 완성하였다.The inventors of the present invention synthesized a high specific surface area IrO x catalyst and a conductive oxide ATO support using an ultrasonic spray pyrolysis method as a new method for synthesizing a polymer electrolyte positive electrode catalyst to prepare IrO x / ATO catalyst for electrolysis, and the IrO x The / ATO catalyst has completed the present invention by finding out that it can be usefully used in an electrolytic cell by showing a high current density unit cell performance even when the catalyst usage is reduced.

본 발명은 초음파 분무 열분해법으로 다공성 산화이리듐(IrOx) 촉매를 제조하는 단계; 초음파 분무 열분해법으로 안티몬주석산화물(antimony doped tin oxide) 지지체를 제조하는 단계; 및 상기 산화이리듐(IrOx) 촉매를 안티몬주석산화물(antimony doped tin oxide) 지지체에 담지하는 단계; 를 포함하며, 상기 산화이리듐(IrOx)의 x는 2이하인 것을 특징으로 하는 수전해용 촉매의 제조방법을 제공한다.The present invention comprises the steps of preparing a porous iridium oxide (IrO x ) catalyst by ultrasonic spray pyrolysis; Preparing an antimony doped tin oxide support by ultrasonic spray pyrolysis; And supporting the iridium oxide (IrO x ) catalyst on an antimony doped tin oxide support. Provides a method for producing a catalyst for electrolysis, characterized in that x of the iridium oxide (IrO x ) is 2 or less.

이때, 상기 초음파 분무 열분해법은 전구체를 용매에 용해시켜 전구체 용액을 제조하는 단계; 상기 전구체 용액을 초음파 발생기가 장착된 용액조에 주입하여 1 내지 5㎛ 크기의 입자로 분무하는 단계; 상기 형성된 입자를 열분해 후 건조하는 단계; 를 포함할 수 있으며, 상기 입자는 메쉬 초음파를 이용하여 1 내지 30kHz의 초음파 범위에서 형성되고, 상기 열분해는 300 내지 600℃의 온도에서 수행될 수 있다. 바람직하게 상기 메쉬 초음파 처리는 24kHz에서 수행될 수 있다.At this time, the ultrasonic spray pyrolysis method comprises preparing a precursor solution by dissolving the precursor in a solvent; Injecting the precursor solution into a solution tank equipped with an ultrasonic generator and spraying particles having a size of 1 to 5 μm; Drying the formed particles after thermal decomposition; It may include, the particles are formed in the ultrasonic range of 1 to 30kHz using mesh ultrasound, the thermal decomposition may be performed at a temperature of 300 to 600 ℃. Preferably, the mesh ultrasonic treatment may be performed at 24 kHz.

상기와 같이 초음파 분무 열분해법으로 생성된 다공성 산화이리듐(IrOx)의 평균 기공 크기는 1 내지 5nm 이며, BET 표면적은 200 내지 300 m2/g 일 수 있다.The average pore size of the porous iridium oxide (IrO x ) produced by the ultrasonic spray pyrolysis method as described above is 1 to 5 nm, and the BET surface area may be 200 to 300 m 2 / g.

또한, 본 발명은 상기 다공성 산화이리듐(IrOx) 촉매와 안티몬주석산화물(antimony doped tin oxide) 지지체의 질량비가 7:3 내지 3:7일 수 있으며, 바람직하게는 5 : 5일 수 있다.In addition, the present invention may have a mass ratio of the porous iridium oxide (IrO x ) catalyst and the antimony doped tin oxide support from 7: 3 to 3: 7, and preferably 5: 5.

이때, 상기와 같은 초음파 분무 열분해법의 조건 및 상기와 같은 다공성 산화이리듐(IrOx) 촉매와 안티몬주석산화물(antimony doped tin oxide) 지지체의 질량비를 벗어나면 본 발명에 따른 표면적이 넓으며, 나노 크기를 갖는 산화이리듐(IrOx) 촉매 및 안티몬주석산화물(antimony doped tin oxide) 지지체가 제대로 형성되지 않으며, 수전해 단위전지에서의 효율 및 성능이 우수한 수전해용 촉매가 제조될 수 없는 문제가 야기될 수 있다.At this time, if the conditions of the ultrasonic spray pyrolysis method as described above and the mass ratio of the porous iridium oxide (IrO x ) catalyst and the antimony tin oxide (antimony doped tin oxide) support are out, the surface area according to the present invention is wide and nano-sized The iridium oxide (IrO x ) catalyst and the antimony tin oxide (antimony doped tin oxide) support may not be properly formed, and a problem that a catalyst for water electrolysis having excellent efficiency and performance in a water electrolytic unit cell may not be produced may be caused. have.

상기 초음파 분무 열분해법으로 형성된 산화이리듐(IrOx) 촉매는 열처리에 의해 다공성 구조를 가지게 되어 표면적이 증가됨으로써 산소 발생 활성을 더욱 증가시킬 수 있으며, 상기 안티몬주석산화물(antimony doped tin oxide) 지지체를 사용할 경우, 상기 다공성 산화이리듐(IrOx) 촉매끼리 뭉치는 현상을 방지할 수 있고 전도도를 증가시킬 수 있어, 상기 안티몬주석산화물(antimony doped tin oxide) 지지체를 사용하지 않을 경우에 비해 수전해용 단위전지의 성능 및 효율이 더 뛰어날 수 있다.The iridium oxide (IrO x ) catalyst formed by the ultrasonic spray pyrolysis method has a porous structure by heat treatment, and thus the surface area is increased to further increase the oxygen generating activity, and the antimony doped tin oxide support may be used. In the case, the porous iridium oxide (IrO x ) catalyst can prevent agglomeration and increase the conductivity, so that the unit cell for electrolysis compared to the case where the antimony doped tin oxide support is not used Performance and efficiency may be better.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이며 본 발명의 내용을 예시하는 것일 뿐이므로 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, examples will be described in detail to help understanding of the present invention. However, the following examples are provided to more fully explain the present invention to those having average knowledge in the art, and are merely illustrative of the contents of the present invention, so the scope of the present invention is limited to the following examples. no.

<< 제조예Manufacturing example 1>  1> IrOIrO xx (iridium oxide)/(iridium oxide) / ATOATO (antimony doped tin oxide) 수전해 촉매의 제조(antimony doped tin oxide) Preparation of water electrolytic catalyst

1-1. 1-1. IrOIrO xx (iridium oxide) 촉매의 제조Preparation of (iridium oxide) catalyst

염화 이리듐(Iridium Chloride)을 순수에 용해 시켜 제조한 촉매 전구체 용액을 메쉬 초음파 발생기를 이용한 초음파 분무 열분해(ultrasonic spray pyrolysis)(도 1) 방법을 이용하여 24 kHz의 초음파 하에서 5㎛의 입자로 분무하고, 300℃의 공기와 혼합한 후 500℃의 전기로에 주입해 순간적으로 열처리하여 IrOx 촉매를 제조하였다.A catalyst precursor solution prepared by dissolving iridium chloride in pure water is sprayed with 5 μm particles under ultrasonic waves at 24 kHz using an ultrasonic spray pyrolysis (FIG. 1) method using a mesh ultrasonic generator. After mixing with 300 ° C of air and injecting it into a 500 ° C electric furnace, an instant heat treatment was performed to prepare an IrO x catalyst.

1-2. ATO(antimony doped tin oxide) 지지체의 제조1-2. Preparation of ATO (antimony doped tin oxide) support

염화안티몬(Antimony Chloride)과 염화주석(Tin chloride)을 1:9 몰비로 순수에 용해 시켜 제조한 지지체 전구체 용액을 이용한 것을 제외하고는, 상기 제조예 1과 동일한 조건으로 전도성 산화물 ATO 지지체를 제조하였다.A conductive oxide ATO support was prepared under the same conditions as in Preparation Example 1, except that a support precursor solution prepared by dissolving Antimony Chloride and Tin chloride in pure water at a 1: 9 molar ratio was used. .

1-3. 1-3. IrOIrO xx (iridium oxide)/(iridium oxide) / ATOATO (antimony doped tin oxide) 수전해 촉매의 제조(antimony doped tin oxide) Preparation of water electrolytic catalyst

상기 제조예 1-1에서 제조한 IrOx 촉매를 제조예 1-2에서 제조한 ATO 지지체에 질량비 7:3, 5:5, 3:7의 비율이 되도록 담지하여 수전해 촉매(이하 'IrOx/ATO (7:3)', 'IrOx/ATO (5:5)', 'IrOx/ATO (3:7)')를 제조하였다.The IrO x catalyst prepared in Preparation Example 1-1 was supported on the ATO support prepared in Preparation Example 1-2 to have a ratio of 7: 3, 5: 5, 3: 7 in mass ratio, and the water electrolysis catalyst (hereinafter referred to as' IrO x / ATO (7: 3) ',' IrO x / ATO (5: 5) ',' IrO x / ATO (3: 7) ').

<비교예 1> <Comparative Example 1>

상기 제조예 1-1에서 제조한 IrOx 촉매만을 이용하여 수전해 촉매(이하 'IrOx')를 제조하였다.A water electrolytic catalyst (hereinafter, “IrO x ”) was prepared using only the IrO x catalyst prepared in Preparation Example 1-1.

<< 실시예Example 1>  1> IrOIrO xx // ATOATO 수전해 촉매의 단위전지 측정 Unit cell measurement of water electrolytic catalyst

상기 제조예 1 및 비교예에서 제조한 수전해 촉매 IrOx/ATO (7:3), IrOx/ATO (5:5), IrOx/ATO (3:7) 및 IrOx를 동량 이용하여 수전해 단위전지를 제조하고, 성능을 측정하였다.The water electrolysis catalysts prepared in Preparation Example 1 and Comparative Example IrO x / ATO (7: 3), IrO x / ATO (5: 5), IrO x / ATO (3: 7), and IrO x were received in equal amounts. A unit cell was prepared and performance was measured.

단위전지는 활성면적 5cm2으로 제조하였으며, 전해질막은 Dupont사의 Nafion 212를 이용하였고, 음극(Cathode, 수소전극)은 GDL(Gas diffusion layer)에 상용 Pt/C 촉매를 코팅하여 제조하였다. 양극(Anode, 산소극)에는 GDL(Gas diffusion layer)에 상기 제조예 1에서 제조한 IrOx/ATO 촉매를 2 mg/cm2 으로 담지한 후, 음극, 전해질막, 양극의 순으로 단위전지를 조립하였으며, 50 oC 조건에서 전압-전류 분석을 수행하였다.The unit cell was prepared with an active area of 5 cm 2 , the electrolyte membrane was made of Nafion 212 from Dupont, and the cathode (Cathode, hydrogen electrode) was prepared by coating a commercial diffusion of Pt / C catalyst on a gas diffusion layer (GDL). On the anode (Anode, oxygen electrode), after supporting the IrO x / ATO catalyst prepared in Preparation Example 1 in G gas diffusion layer (DL) at 2 mg / cm 2 , the unit cell in the order of the anode, electrolyte membrane, and anode. Was assembled, and voltage-current analysis was performed at 50 ° C.

<실험예 1> BET(Brunauer-Emmett-Teller) 분석<Experimental Example 1> BET (Brunauer-Emmett-Teller) analysis

상기 제조예 1-1에서 제조한 IrOx(iridium oxide) 촉매의 BET를 분석하였다. 그 결과, 도 2에서와 같이 IrOx(iridium oxide) 촉매의 비표면적은 253 m2/g이었으며, 평균 기공 크기는 2.7nm로 나타났다. 이로써 나노 크기의 기공을 가지며, 높은 비표면적이 특성을 갖는 IrOx 촉매가 제조됨을 확인하였다.The BET of the IrO x (iridium oxide) catalyst prepared in Preparation Example 1-1 was analyzed. As a result, as shown in FIG. 2, the specific surface area of the IrO x (iridium oxide) catalyst was 253 m 2 / g, and the average pore size was 2.7 nm. As a result, it was confirmed that an IrO x catalyst having nano-sized pores and high specific surface area properties was prepared.

<< 실험예Experimental example 2>  2> IrOIrO xx // ATOATO 수전해 촉매의 단위전지 분석 Unit cell analysis of water electrolytic catalyst

상기 실시예 1 및 비교예에서 제조한 질량비 7:3, 5:5, 3:7의 비율을 갖는 IrOx/ATO 촉매 및 IrOx 촉매에 따른 단위전지의 전압-전류 분석 결과, 도 3에서와 같이 IrOx 촉매가 50% 이하일 때 수전해 단위전지의 전류밀도는 낮아졌으나, 50% 이상에서는 전류밀도가 크게 변화되지 않았다. 이는 기존 수전해 단위전지의 전류밀도가 1A/cm2 정도인 것과 유사한 결과이다. 또한, IrOx/ATO 촉매보다 IrOx 촉매의 IrOx 사용량이 2배 이상 되어야 IrOx/ATO 촉매와 유사한 단위전지 성능을 얻을 수 있어 IrOx/ATO 촉매가 IrOx 촉매보다 수전해용 단위전지에 더 유리함을 확인하였다.As a result of the voltage-current analysis of the unit cell according to the IrO x / ATO catalyst and IrO x catalyst having a mass ratio of 7: 3, 5: 5, 3: 7 prepared in Example 1 and Comparative Example, in FIG. 3 Likewise, when the IrO x catalyst was 50% or less, the current density of the electrolytic unit cell decreased, but at 50% or more, the current density did not change significantly. This is a result similar to the current density of the existing electrolytic unit cell of about 1 A / cm 2 . In addition, the IrO x The amount of the IrO x catalyst than the IrO x / ATO catalyst Be at least twice to obtain a single cell performance similar to the IrO x / ATO catalyst there is IrO x / ATO catalyst was found more advantageous to the power reception unit cell haeyong than IrO x catalyst.

이를 통해 본 발명에 따라 초음파 분무 열분해(ultrasonic spray pyrolysis) 방법을 이용하여 제조된 IrOx/ATO 촉매는 IrOx 촉매의 사용량을 0.8 mg/cm2 으로 줄이고도 기존 수전해 단위전지와 비슷한 성능을 얻을 수 있어, IrOx 촉매보다 촉매 효율이 높음을 확인하였다.Through this, the IrO x / ATO catalyst prepared using the ultrasonic spray pyrolysis method according to the present invention achieves performance similar to that of an existing water electrolytic unit cell even though the amount of IrO x catalyst is reduced to 0.8 mg / cm 2 . It was confirmed that the catalyst efficiency is higher than the IrO x catalyst.

따라서, 본 발명에서는 초음파 분무 열분해법을 이용하여 고비표면적의 IrOx 촉매 및 전도성 산화물인 ATO 지지체 제조하였으며, 이를 이용하여 고분자 전해질 수전해 단위전지를 평가한 결과, 귀금속 촉매(IrOx)의 담지량을 0.8 mg/cm2까지 감소시키고도 높은 전류밀도의 단위전지 성능을 얻을 수 있었다. 즉, 본 발명에서는 고가의 귀금속 촉매의 사용량을 감소시켜도 단위전지의 성능을 유지시킬 수 있어 고분자 전해질 수전해의 효율성 및 경제성을 향상시킬 수 있었다.Accordingly, in the present invention, a high specific surface area IrO x catalyst and a conductive oxide ATO support were prepared by using ultrasonic spray pyrolysis, and as a result of evaluating a polymer electrolyte electrolytic unit cell, the carrying amount of a precious metal catalyst (IrO x ) was measured. Even when reduced to 0.8 mg / cm 2 , high current density unit cell performance was obtained. That is, in the present invention, even if the amount of the expensive noble metal catalyst is reduced, the performance of the unit cell can be maintained, thereby improving the efficiency and economic efficiency of the electrolyte electrolyte.

이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.The specific parts of the present invention have been described in detail above, and it is clear that for those skilled in the art, these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be interpreted to be included in the scope of the present invention.

Claims (7)

초음파 분무 열분해법으로 다공성 산화이리듐(IrOx) 촉매를 제조하는 단계;
초음파 분무 열분해법으로 안티몬주석산화물(antimony doped tin oxide) 지지체를 제조하는 단계; 및
상기 산화이리듐(IrOx) 촉매를 안티몬주석산화물(antimony doped tin oxide) 지지체에 담지하는 단계;
를 포함하며, 상기 산화이리듐(IrOx)의 x는 2이하인 것을 특징으로 하는 수전해용 촉매의 제조방법.
Preparing a porous iridium oxide (IrO x ) catalyst by ultrasonic spray pyrolysis;
Preparing an antimony doped tin oxide support by ultrasonic spray pyrolysis; And
Supporting the iridium oxide (IrO x ) catalyst on an antimony doped tin oxide support;
Included, x of the iridium oxide (IrO x ) is 2 or less, characterized in that the method for producing a catalyst for electrolysis.
제 1항에 있어서,
상기 초음파 분무 열분해법은,
전구체를 용매에 용해시켜 전구체 용액을 제조하는 단계;
상기 전구체 용액을 초음파 발생기가 장착된 용액조에 주입하여 1 내지 5㎛ 크기의 입자로 분무하는 단계;
상기 형성된 입자를 열분해 후 건조하는 단계;
를 포함하는 수전해용 촉매의 제조방법.
According to claim 1,
The ultrasonic spray pyrolysis method,
Dissolving the precursor in a solvent to prepare a precursor solution;
Injecting the precursor solution into a solution tank equipped with an ultrasonic generator and spraying particles having a size of 1 to 5 μm;
Drying the formed particles after thermal decomposition;
Method for producing a catalyst for electrolysis comprising a.
제 2항에 있어서,
상기 입자는 초음파 1 내지 30kHz 범위에서 형성되는 것을 특징으로 하는 수전해용 촉매의 제조방법.
According to claim 2,
The particle is a method of manufacturing a catalyst for electrolysis, characterized in that formed in the range of 1 to 30 kHz ultrasound.
제 2항에 있어서,
상기 열분해는,
300 내지 600℃의 온도에서 수행되는 것을 특징으로 하는 수전해용 촉매의 제조방법.
According to claim 2,
The pyrolysis,
Method for producing a catalyst for water electrolysis, characterized in that is carried out at a temperature of 300 to 600 ℃.
제 1항에 있어서,
상기 다공성 산화이리듐(IrOx)의 평균 기공 크기는 1 내지 5nm 인 것을 특징으로 하는 수전해용 촉매의 제조방법.
According to claim 1,
The porous iridium oxide (IrO x ) The average pore size of 1 to 5nm, characterized in that the method for producing a catalyst for electrolysis.
제 1항에 있어서,
상기 다공성 산화이리듐(IrOx)의 BET 표면적은 200 내지 300 m2/g인 것을 특징으로 하는 수전해용 촉매의 제조방법.
According to claim 1,
The porous iridium oxide (IrO x ) BET surface area is 200 to 300 m 2 / g Method of manufacturing a catalyst for electrolysis, characterized in that.
제 1항에 있어서,
상기 다공성 산화이리듐(IrOx) 촉매와 안티몬주석산화물(antimony doped tin oxide) 지지체의 질량비는 7:3 내지 3:7인 것을 특징으로 하는 수전해용 촉매의 제조방법.
According to claim 1,
Method for producing a catalyst for electrolysis, characterized in that the mass ratio of the porous iridium oxide (IrO x ) catalyst and the antimony doped tin oxide support is 7: 3 to 3: 7.
KR1020190014947A 2018-09-12 2019-02-08 Synthesis method of water electrolysis catalyst using ultrasonic spray pyrolysis KR102180882B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180109045 2018-09-12
KR20180109045 2018-09-12

Publications (2)

Publication Number Publication Date
KR20200031014A true KR20200031014A (en) 2020-03-23
KR102180882B1 KR102180882B1 (en) 2020-11-20

Family

ID=69998525

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190014947A KR102180882B1 (en) 2018-09-12 2019-02-08 Synthesis method of water electrolysis catalyst using ultrasonic spray pyrolysis

Country Status (1)

Country Link
KR (1) KR102180882B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114855208A (en) * 2022-04-12 2022-08-05 宁波中科科创新能源科技有限公司 Nano iridium oxide electrocatalyst with high crystal water content and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060108909A (en) * 2005-04-13 2006-10-18 한양대학교 산학협력단 Method for preparing nano porous powders by ultrasonic pyrolysis and its nano powders
KR20110084225A (en) 2008-10-08 2011-07-21 메사추세츠 인스티튜트 오브 테크놀로지 Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques
JP2017533084A (en) * 2014-09-08 2017-11-09 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited catalyst
JP2018505312A (en) * 2015-01-14 2018-02-22 ユニベルシテ・ド・リエージュUniversite De Liege Improved method of ultrasonic spray pyrolysis deposition of one or more electrochromic and / or electrolyte films on a substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060108909A (en) * 2005-04-13 2006-10-18 한양대학교 산학협력단 Method for preparing nano porous powders by ultrasonic pyrolysis and its nano powders
KR20110084225A (en) 2008-10-08 2011-07-21 메사추세츠 인스티튜트 오브 테크놀로지 Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques
JP2017533084A (en) * 2014-09-08 2017-11-09 ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited catalyst
JP2018505312A (en) * 2015-01-14 2018-02-22 ユニベルシテ・ド・リエージュUniversite De Liege Improved method of ultrasonic spray pyrolysis deposition of one or more electrochromic and / or electrolyte films on a substrate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POWER SOURCES 269 (2014) 451-460 *
JOURNAL OF POWER SOURCES 364 (2017) 215-225 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114855208A (en) * 2022-04-12 2022-08-05 宁波中科科创新能源科技有限公司 Nano iridium oxide electrocatalyst with high crystal water content and preparation method thereof
CN114855208B (en) * 2022-04-12 2023-07-25 宁波中科科创新能源科技有限公司 Nano iridium oxide electrocatalyst with high crystal water content and preparation method thereof

Also Published As

Publication number Publication date
KR102180882B1 (en) 2020-11-20

Similar Documents

Publication Publication Date Title
Ding et al. NiFe layered-double-hydroxide nanosheet arrays on graphite felt: a 3D electrocatalyst for highly efficient water oxidation in alkaline media
KR101082859B1 (en) Precious metal oxide catalyst for water electrolysis
EP2792639B1 (en) Carbon-based material, electrode catalyst, oxygen reduction electrode catalyst, gas diffusion electrode, aqueous solution electrolysis device, and method of preparing carbon-based material
CA2857110A1 (en) Precious metal oxide catalyst for water electrolysis
KR101726575B1 (en) Ultra-low Loading of Pt-decorated Ni Electrocatalyst, Manufacturing Method of the Same and Anion Exchange Membrane Water Electrolyzer Using the Same
CN108654657B (en) Nickel-phosphorus-copper electrocatalyst and preparation method thereof
Tang et al. Facile synthesis of polypyrrole functionalized nickel foam with catalytic activity comparable to Pt for the poly-generation of hydrogen and electricity
Zahran et al. Nickel sulfate as an influential precursor of amorphous high-valent Ni (III) oxides for efficient water oxidation in preparation via a mixed metal-imidazole casting method
CN112725774B (en) Core-shell structure full-hydrolysis catalyst stable under large current and preparation method thereof
KR102180882B1 (en) Synthesis method of water electrolysis catalyst using ultrasonic spray pyrolysis
KR102317603B1 (en) Sn catalyst for CO2 reduction and preparation method thereof
KR20230062374A (en) Synthesis method of high-efficiency IrRuOx/ATO catalyst for water electrolysis
KR20170058352A (en) Polymer electrolyte membrane water electrolysis anode and method for preparing the same using IrO₂electrodeposited porous carbon material, polymer electrolyte membrane water electrolysis apparatus and method using the same
RU2421850C1 (en) Method of producing nano-sized platinum-nickel catalyst
KR20200047279A (en) Oxygen electrode comprising a dual plating catalyst, water electrolysis device, regenerative fuel cell including the same and method for preparing the oxygen electrode
JP5484120B2 (en) Gas diffusion electrode, gas diffusion electrode manufacturing method, fuel cell and salt electrolysis cell
WO2015187100A1 (en) Electrocatalyst for hydrogen production
Liu et al. Self‐supported bimetallic array superstructures for high‐performance coupling electrosynthesis of formate and adipate
CN113802130A (en) Water electrolysis catalyst and preparation method thereof
Akl et al. Enhanced water electrolysis: Effect of temperature on the oxygen evolution reaction at cobalt oxide nanoparticles modified glassy carbon electrodes
Audichon et al. Synthesis of RuxIr1-xO2 anode electrocatalysts for proton exchange membrane water electrolysis
KR20220077874A (en) Synthesis method of IrRuOx/ATO catalyst for proton exchange membrane water electrolysis
CN114045528B (en) Preparation method of anode catalyst for electrolyzing water in acidic medium
Kanase et al. Effect of KHCO 3 Concentration Using CuO Nanowire for Electrochemical CO 2 Reduction Reaction
KR20160127535A (en) Polymer electrolyte membrane water electrolysis anode and method for preparing the same using IrOelectrodeposited porous carbon material polymer electrolyte membrane water electrolysis apparatus and method using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right