KR20200025279A - Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System - Google Patents

Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System Download PDF

Info

Publication number
KR20200025279A
KR20200025279A KR1020180102404A KR20180102404A KR20200025279A KR 20200025279 A KR20200025279 A KR 20200025279A KR 1020180102404 A KR1020180102404 A KR 1020180102404A KR 20180102404 A KR20180102404 A KR 20180102404A KR 20200025279 A KR20200025279 A KR 20200025279A
Authority
KR
South Korea
Prior art keywords
bidding
power
pressure
power generation
steam
Prior art date
Application number
KR1020180102404A
Other languages
Korean (ko)
Other versions
KR102099013B1 (en
Inventor
성현경
김문수
김문기
Original Assignee
한국서부발전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국서부발전 주식회사 filed Critical 한국서부발전 주식회사
Priority to KR1020180102404A priority Critical patent/KR102099013B1/en
Publication of KR20200025279A publication Critical patent/KR20200025279A/en
Application granted granted Critical
Publication of KR102099013B1 publication Critical patent/KR102099013B1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

According to various embodiments of the present invention, the present invention relates to a method for operating automatic power generation control-following cogeneration based on non-restricted bidding of a power transaction system, which is to prevent loss of fuel costs during cogeneration by non-restricted bidding execution on power transaction and automatic power control following, and to secure economic feasibility of heat supply in response to a decrease in a heat supply cost. To this end, the method for operating a cogeneration device in which a reheating middle-pressure blocking side and a reheating middle-pressure flow rate control side are connected in series between a steam turbine which is a reheating middle-pressure system and a low-pressure heat exchanger, and a low-pressure blocking side and a low-pressure flow rate control side are connected in series between a steam turbine which is a low-pressure steam system and the low-pressure heat exchanger, comprises: a power transaction bidding step (non-restricted bidding) in which a restriction reason is not input in case of bidding of a power generation device in a power transaction system; an automatic power generation control performing step of following and controlling the power generation device for a power system output request signal and a frequency; and an electricity output real-time change step of changing electricity output of the power generation device in real time.

Description

전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법{Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System}Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System}

본 발명의 다양한 실시예는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법에 관한 것이다.Various embodiments of the present invention relate to a method for operating a cogeneration system based on non-constrained bidding based on a power transaction system.

서인천복합화력 열병합설비는 2013년 준공 후 현재까지 주로 겨울철 증기터빈에 유입되는 고압, 중압, 저압의 증기열 일부를 인출하여 지역난방 열교환기를 통해 지역의 수용가에 난방수를 공급하는 열병합발전을 시행하고 있다.The Seoincheon Combined Cycle Cogeneration Facility completed the construction in 2013, and has carried out cogeneration to supply heating water to local consumers through district heating heat exchangers by drawing some of the high-pressure, medium- and low-pressure steam heat flowing into the steam turbine in winter. have.

그러나 기존의 열병합발전을 통한 열공급 방식은 정해진 양의 열인출을 위해서 사전에 제약입찰 후 운전 시 자동발전제어장치를 해제해야만 했다. 따라서 자동발전제어 해제에 따른 전력계통 추종성 저하, 전기출력 고정에 따른 전력판매 손실금 발생 및 열공급 단가 상승 등 경제성이 저하되는 문제점이 발생했으며 이에 전력계통 추종성 제고 및 열공급의 경제성 확보 목적의 개량 열방합발전 운전방법에 대한 필요성이 제기되었다.However, the conventional heat supply method through cogeneration had to release the automatic power generation control device during the operation after the constraint bidding for the predetermined amount of heat extraction. As a result, the economic feasibility of the power system is reduced due to the release of automatic power generation control, the loss of power sales due to the fixed power output, and the cost of heat supply is increased. The need for a driving method has been raised.

이러한 발명의 배경이 되는 기술에 개시된 상술한 정보는 본 발명의 배경에 대한 이해도를 향상시키기 위한 것뿐이며, 따라서 종래 기술을 구성하지 않는 정보를 포함할 수도 있다.The above-described information disclosed in the background technology of the present invention is only for improving the understanding of the background of the present invention, and thus may include information that does not constitute the prior art.

본 발명의 다양한 실시 예에 따른 해결하고자 하는 과제는 열병합발전 시 전력거래시스템 비제약 입찰 시행 및 전력거래소에서 운영하는 자동발전제어시스템에 대한 추종이 가능함에 따라 궁극적으로 연료비 손실을 방지하고 아울러 열공급 단가 하락에 따른 열공급 경제성을 확보할 수 있는 '전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법'을 제공하는데 있다.The problem to be solved according to various embodiments of the present invention is to prevent non-constrained bidding of the power trading system and to follow the automatic power generation control system operated by the power exchange in the event of cogeneration, ultimately preventing fuel cost loss and heat supply cost. It is to provide a 'cooperative method of operating cogeneration with automatic power generation control based on non-constrained bidding of electric power trading system' that can secure economical supply of heat due to the decline.

본 발명의 다양한 실시 예는 재열중압 계통인 증기터빈과 저압열교환기 사이에 재열중압차단변 및 재열중압유량조절변이 직렬로 연결되고, 저압증기 계통인 증기터빈과 저압열교환기 사이에 저압차단변 및 저압유량조절변이 직렬로 연결된 열병합 발전장치의 운전방법에 있어서, 전력거래시스템에서 발전장치의 입찰 시 제약 사유를 입력하지 않는 전력거래 입찰(비제약 입찰) 단계; 전력계통 출력요구신호 및 주파수에 대응하여 발전장치가 추종하도록 하는 자동발전제어 수행 단계; 및 발전장치의 전기출력을 실시 간으로 변동시키는 전기출력 실시 간 변동 단계를 포함함을 특징으로 한다.According to various embodiments of the present disclosure, a reheat medium pressure cutoff valve and a reheat medium pressure flow control valve are connected in series between a steam turbine, which is a reheat medium pressure system, and a low pressure heat exchanger, and a low pressure cutoff valve, which is connected between a steam turbine and a low pressure heat exchanger, which is a low pressure steam system. A method of operating a cogeneration system in which a low pressure flow control valve is connected in series, the method comprising: a power transaction bidding (non-constrained bidding) step of not inputting a reason for restriction in bidding of a generator in a power trading system; Performing automatic power generation control to follow the power generation device in response to the power system output request signal and frequency; And it characterized in that it comprises a step of changing the electrical output real-time to change the electrical output of the generator in real time.

자동발전제어 수행 단계는 발전장치의 전기출력 제어가 콘솔(DCS: Distribute Control System)에서 원격지 급전자동화설비(RTU:Remote Terminal Unit)로 변경됨을 포함할 수 있다.The automatic power generation control step may include changing the electrical output control of the power generation device from a console (DCS) to a remote terminal unit (RTU).

전기출력 실시 간 변동 단계에서 재열중압차단변의 개도는 100%로 유지되고, 재열중압유량조절변의 개도는 20~30%로 고정되며, 전기출력 상승 시 재열중압증기압력 상승에 따른 증기 인출량이 증가하고, 전기출력 하락 시 재열중압증기압력 하락에 따라 증기 인출량이 감소될 수 있다.The opening degree of the reheating pressure cutoff valve is maintained at 100% and the opening degree of the reheating pressure flow control valve is fixed at 20 to 30% during the step of changing the electric output. However, the steam withdrawal may be reduced when the reheating steam pressure decreases when the electrical output drops.

전기출력 실시 간 변동 단계에서 저압차단변의 개도는 100%로 유지되고, 저압유량조절변의 개도는 5~10%로 고정되며, 전기출력 상승 시 저압증기압력 상승에 따른 증기 인출량이 증가하고, 전기출력 하락 시 저압증기압력 하락에 따라 증기 인출량이 감소될 수 있다.The opening degree of the low pressure cutoff valve is maintained at 100% and the opening degree of the low pressure flow control valve is fixed at 5 to 10% in the step of changing the electric output during the execution of the electric output. When lowered, the withdrawal of steam can be reduced by lowering the low pressure steam pressure.

증기압력 변동에 따라 저압열교환기를 통해 공급되는 재열중압증기 및 저압기의 공급량이 변동될 수 있다.As the steam pressure fluctuates, the reheat medium pressure steam and the low pressure steam supplied through the low pressure heat exchanger may be changed.

본 발명의 다양한 실시예는 전력거래상 비제약 입찰 시행 및 자동발전제어 추종이 가능하여 열병합발전 시 연료비 손실을 방지하고 아울러 열공급 단가 하락에 따른 열공급 경제성을 확보할 수 있는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 제공한다.Various embodiments of the present invention can be carried out in the non-constrained bidding in the power transaction and follow the automatic power generation control based on the non-constraint bidding power system that can prevent the loss of fuel during cogeneration and secure the economics of heat supply due to the decrease in the price Provides automatic generation control following cogeneration operation method.

즉, 기존의 열병합발전을 통한 열공급 방식은 정해진 양의 열인출을 위해서 사전에 제약 입찰 후 운전시 자동발전제어 장치를 해제해야만 했고, 따라서 자동발전제어 해제에 따른 전력계통 추종성 저하, 전기출력 고정에 따른 전력판매 손실금 발생 및 열공급 단가 상승 등 경제성이 저하되는 문제점이 발생했으며 이에 전력계통 추종성 제고 및 열공급의 경제성 확보를 위한 개량 열방합발전 운전방법을 제공한다.In other words, the conventional heat supply method through cogeneration has to release the automatic power generation control device during operation after restrictive bidding for the predetermined amount of heat withdrawal. There is a problem that economic efficiency is deteriorated, such as loss of electricity sales and increase in heat supply unit price. Therefore, it provides an improved method of operating an integrated thermal power plant for improving power system followability and securing economic efficiency of heat supply.

도 1은 일반적인 전력거래시스템 제약입찰 기반 자동발전제어 비추종 열병합발전 운전방법을 도시한 블럭도이다.
도 2는 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 도시한 블럭도이다.
도 3은 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 도시한 블럭도이다.
도 4는 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 도시한 순서도 및 제어 화면이다.
도 5는 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 도시한 블럭도이다.
도 6은 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 도시한 블럭도이다.
FIG. 1 is a block diagram illustrating a method for operating a non-following cogeneration system based on a general power trading system constraint bidding.
2 is a block diagram illustrating a method of operating a cogeneration system based on a non-constrained bid based automatic power generation control according to an embodiment of the present invention.
3 is a block diagram illustrating a method for operating a cogeneration system based on a non-constrained bid based automatic power generation control according to an embodiment of the present invention.
4 is a flowchart and a control screen illustrating a method for operating a cogeneration system based on non-constrained bidding based on a power transaction system according to an embodiment of the present invention.
5 is a block diagram illustrating a method for operating a cogeneration system based on non-constrained bidding based on a power trading system according to an embodiment of the present invention.
FIG. 6 is a block diagram illustrating a method for operating a cogeneration system based on a non-constrained bid based automatic power generation control according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.The embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art, and the following examples can be modified in many different forms, and the scope of the present invention is as follows. It is not limited to an Example. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the inventive concept to those skilled in the art.

또한, 이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. 또한, 본 명세서에서 "연결된다"라는 의미는 A 부재와 B 부재가 직접 연결되는 경우뿐만 아니라, A 부재와 B 부재의 사이에 C 부재가 개재되어 A 부재와 B 부재가 간접 연결되는 경우도 의미한다.In addition, in the following drawings, the thickness or size of each layer is exaggerated for convenience and clarity of description, the same reference numerals in the drawings refer to the same elements. As used herein, the term "and / or" includes any and all combinations of one or more of the listed items. In addition, the term "connected" in this specification means not only the case where the A member and the B member are directly connected, but also the case where the A member and the B member are indirectly connected by interposing the C member between the A member and the B member. do.

본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise, include)" 및/또는 "포함하는(comprising, including)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및 /또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" may include the plural forms as well, unless the context clearly indicates otherwise. Also, as used herein, "comprise, include" and / or "comprising, including" means that the features, numbers, steps, operations, members, elements, and / or groups thereof mentioned. It is intended to specify the existence and not to exclude the presence or addition of one or more other shapes, numbers, operations, members, elements and / or groups.

또한, 본 명세서에서 자주 사용되는 "제약입찰", "자동발전제어" 및 "열전비"에 대해서 설명하면 다음과 같다.In addition, the "pharmaceutical bidding", "automatic power generation control" and "heat transfer ratio" which are frequently used in the present specification will be described as follows.

○ 제약입찰(Self-constraint Bidding) Self-constraint Bidding

전력량 판매 대금의 정산을 위해서 발전사업자는 사전에 전력거래소 입찰시스템을 통해 시간대별 발전량을 입찰(입력)하여야 한다. 또한 입찰 후 실제 발전기 운전 중에는 전력거래소 자동발전제어시스템 혹은 계통 주파수에 의해 발전기의 전기출력이 응동되도록(반응하도록) 자동발전제어를 추종(ON)해야 한다. 그러나 겨울철 열공급을 위한 입찰 시에는 증기열을 최대치로 공급하기 위해 발전기 전기출력의 최대값을 하한치(제한치)로 설정하여 제약 입찰을 시행한다. 제약 입찰을 하게 되면 발전사업자는 전력계통에 대한 기여도 저하로, 전력량 판매수익 감소 등 금전상의 손실을 보게 된다. 따라서 제약 입찰은 열공급, 시운전 등 불가피한 경우에만 시행하고 평소에는 전력량 판매수익 증대를 위해 비제약 입찰(정상 입찰) 시행 후 자동발전제어 수행(On, 추종) 운전을 한다.In order to settle the electricity sales price, the generators must bid (input) the generation amount by time through the power exchange bidding system. In addition, during the actual generator operation after bidding, the automatic power generation control must be turned on so that the electrical output of the generator is reacted by the power exchange automatic power generation control system or the system frequency. However, when bidding for the heat supply in winter, pharmaceutical bidding is conducted by setting the maximum value of the electric power of the generator to the lower limit (limit) in order to supply steam heat to the maximum value. In the case of pharmaceutical bidding, power generation companies will lose money due to lower contribution to the electricity system and lower sales of electricity. Therefore, pharmaceutical bidding is conducted only when it is inevitable, such as heat supply and commissioning. Usually, automatic power generation control (On, following) operation is performed after non-constraint bidding (normal bidding) to increase sales revenue.

○ 자동발전제어(Automatic Generation Control, AGC)○ Automatic Generation Control (AGC)

자동발전제어란 전력거래소에 있는 급전자동화설비에 의해 원격지의 발전기출력과 주파수 추종이 동시에 이루어지는 제어 개념으로 자동발전제어(Automatic Generation Control, AGC)라고 한다. 그러나 발전사업자가 자사의 사정으로, 자동발전제어시스템을 해제(OFF, 비추종)후 발전기를 운전하게 되면, 전력계통의 주파수 안정에 기여를 못하게 되므로 결과적으로 전력량 판매수익이 감소된다. 그 반대로 자동발전제어를 수행(ON, 추종)하게 되면 전력량 판매수익이 증가된다.Automatic generation control is a control concept in which power generation automation facilities in power exchanges simultaneously perform remote generator output and frequency tracking. It is called Automatic Generation Control (AGC). However, if the power generation company operates the generator after releasing the automatic power generation control system (OFF, non-following) due to its own circumstances, it will not contribute to the stabilization of the power system, resulting in a decrease in the sales volume of electricity. On the contrary, if the automatic power generation control is executed (ON, following), the sales revenue of electric power increases.

○ 열전비(Plant Heat Ratio)○ Plant Heat Ratio

열전비란 열병합 발전기 기준으로 단위 시간 당 생산한 증기 열용량을 전기 생산 용량으로 나눈 값으로, "열생산 용량 및 전기생산 용량의 계산 방법 등" 산업통상자원부 고시 제2015-123호에 따라 정격 설계부하 기준(시간당 최대 열생산부하시) 전기생산 용량을 열량으로 환산하여 열생산 용량과의 비율로 열전비를 계산한다.The heat transfer ratio is the steam heat capacity produced per unit time based on the cogeneration generator divided by the electricity production capacity. Based on the rated design load in accordance with the 2015-123 Notice of the Ministry of Trade, Industry and Energy. (Maximum heat production load per hour) Calculate the heat transfer ratio by converting the electricity production capacity into calories.

도 1을 참조하면, 일반적인 전력거래시스템 제약입찰 기반 자동발전제어 비추종 열병합발전 운전방법의 블럭도가 도시되어 있다.Referring to FIG. 1, a block diagram of a general power transaction system constraint bid based automatic generation control non-cogeneration cogeneration operation method is illustrated.

우선, 도 1에 도시된 바와 같이, 열병합발전시스템은 가스터빈, 보일러, 증기터빈, 고압열교환기, 저압열교환기를 포함한다. 여기서, 보일러, 증기터빈 및 고압열교환기의 사이에는 고압압력조절변(H1)이 연결되고, 또한 보일러 및 고압열교환기의 사이에는 고압유량조절변(H2)이 연결된다. 또한, 보일러, 저압열교환기 및 증기터빈 사이에는 재열중압압력조절변(M1)이 연결되고, 보일러와 저압열교환기의 사이에는 재열중압유량조절변(M2)이 연결된다. 더불어, 보일러, 증기터빈 및 저압열교환기의 사이에는 저압압력차단변(L1)이 연결되고, 보일러와 저압열교환기의 사이에는 저압유량조절변(L2)이 연결된다.First, as shown in FIG. 1, the cogeneration system includes a gas turbine, a boiler, a steam turbine, a high pressure heat exchanger, and a low pressure heat exchanger. Here, the high pressure control valve (H1) is connected between the boiler, the steam turbine and the high pressure heat exchanger, and the high pressure flow control valve (H2) is connected between the boiler and the high pressure heat exchanger. In addition, the reheat medium pressure control valve (M1) is connected between the boiler, the low pressure heat exchanger and the steam turbine, and the reheat medium pressure flow control valve (M2) is connected between the boiler and the low pressure heat exchanger. In addition, between the boiler, steam turbine and the low pressure heat exchanger is connected to the low pressure shutoff valve (L1), the low pressure flow control valve (L2) is connected between the boiler and the low pressure heat exchanger.

이러한 열병합발전시스템 하에서, 일반적인 전력거래시스템 제약입찰 기반 자동발전제어 비추종 열병합발전 운전방법은 사전에 열공급을 위한 제약 입찰을 완료하고 당일 발전기 운전시 자동발전제어시스템을 해제(OFF, 비추종)한 후 입찰량에 따라 가스터빈 전기출력의 최대값을 하한치(제한치)로 운전하는 방식으로, 이때 증기터빈으로 유입되는 다량의 고압, 재열중압, 저압증기를 인출, 지역난방용 열교환기에 공급한 후 생산된 난방용 온수를 수용가에 공급한다.Under this cogeneration system, the non-follow cogeneration operation method based on the general power trading system constraint bidding is to complete the constraint bid for the heat supply in advance and turn off the auto generation control system (OFF, non-following) during the generator operation on the day. After the maximum value of the gas turbine electric output is operated to the lower limit (limit) according to the bidding amount, at this time, a large amount of high pressure, reheat medium pressure, low pressure steam flowing into the steam turbine is drawn out and supplied to the district heating heat exchanger. Supply hot water for heating to the customer.

여기서 열전비는 0.54~0.58로, 가스터빈 출력에 따라 증기터빈 출력은 대략 증기열 42~46%, 전기 54~58% 정도이다. 전기출력 최소 및 열인출량 최대 운전으로 대규모의 증기열 인출 시 고압열교환기는 60Gcal/h이고, 저압열교환기는 30Gcal/h의 열교환값을 갖는다.Here, the thermal ratio is 0.54 to 0.58, and the steam turbine output is approximately 42 to 46% of steam heat and 54 to 58% of electricity, depending on the gas turbine output. The high pressure heat exchanger is 60 Gcal / h, and the low pressure heat exchanger has a heat exchange value of 30 Gcal / h for the large-scale steam heat withdrawal operation with the minimum electrical output and maximum heat withdrawal.

아래의 표 1은 일반적인 전력거래시스템 제약입찰 기반 자동발전제어 비추종 열병합발전 운전방법을 순차적으로 도시한 표이다.Table 1 below is a table sequentially showing the non-following cogeneration operation method based on the general power trading system constraint bidding.

순 번Turn 공 정fair 1One 전력거래 입찰(열공급을 위한 제약입찰) Electric power bidding (pharmaceutical bidding for heat supply) 22 가스터빈 및 증기터빈 전기출력 자동발전제어 해제(AGC OFF)  Automatic generation control release for gas turbine and steam turbine (AGC OFF) 33 가스터빈 전기출력 최대치(최대 182MW) 고정 유지
(단, 증기터빈 전기출력은 열공급량 증가시 최대치(80MW)에서 점점 감소되다가 최소치(45MW)까지 도달 후 유지)
Maintains fixed gas turbine electrical output (max. 182 MW)
(However, the steam turbine electric output gradually decreases from the maximum value (80MW) when the heat supply increases, and is maintained after reaching the minimum value (45MW).)
44 보일러(HRSG) 증기압력은 최대치에서 열공급량 증가에 따라 감소
(고압 : 10%, 중압 : 30%, 저압 : 50% 감소)
Boiler (HRSG) steam pressure decreases with increasing heat supply at maximum
(High pressure: 10%, Medium pressure: 30%, Low pressure: 50% decrease)
고압계통High pressure system 고압압력조절변(H1) 100→30% 닫힘 및 고압유량조절변(H2) 50% 열림 High pressure control valve (H1) 100 → 30% closed and High pressure flow control valve (H2) 50% open 중압계통Medium pressure system 재열중압압력조절변(M1) 100→30% 닫힘 및 재열중압유량조절변(M2) 30% 열림 Reheating pressure control valve (M1) 100 → 30% closed and Reheating pressure flow control valve (M2) 30% open 저압계통Low pressure system 저압압력차단변(L1) 100% 열림 및 저압유량조절변(L2) 40% 열림 Low pressure shutoff valve (L1) 100% open and low pressure flow control valve (L2) 40% open 55 최대 열생산량 유지(고압열교환기 : 60Gcal/H, 저압열교환기 : 30Gcal/H) Maintain maximum heat output (high pressure heat exchanger: 60Gcal / H, low pressure heat exchanger: 30Gcal / H)

이와 같이 하여, 일반적으로 종래에는 겨울철 수용가 측 단기 열공급 수요 증대에 따른 제약 입찰을 시행하였고, 이에 따라 자동발전제어 해제(Off, 비추종)에 따른 전력계통 추종성이 저하하였으며, 전기출력 고정(제약 발전)에 따른 전력판매 손실금이 발생하였고 열공급 단가가 상승하였다.In this way, in general, constraint bidding was made in accordance with the increase in demand for short-term heat supply in winter, and accordingly, power system followability due to automatic power generation control off (off, non-following) decreased, and electric power was fixed (pharmaceutical power generation). ), The loss of electricity sales, and the price of heat supply rose.

도 2를 참조하면, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법의 블럭도가 도시되어 있다.2, a block diagram of a method for operating a cogeneration system based on non-constraint bidding based automatic power generation control according to an embodiment of the present invention is shown.

본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법은 사전에 비제약 입찰(정상 입찰)을 완료하고, 당일 발전기 운전시 가스터빈 전기출력이 전력거래소의 급전자동화설비에 의해 자동 조절이 될 수 있도록 자동발전제어 수행(ON, 추종)후, 증기터빈으로 유입되는 일부 재열중압증기 및 저압증기를 인출, 지역난방용 열교환기에 공급하여 생산된 난방용 온수를 수용가에 공급하는 방식으로, 이때 열전비는 0.08~0.12로, 가스터빈 부하에 따라 증기터빈 출력은 증기열 8~12%, 전기 92~88% 정도이다.According to an embodiment of the present invention, a non-constraint bidding-based automatic generation control following cogeneration operation method according to an embodiment of the present invention completes a non-constraint bidding (normal bidding) in advance, and the power output of the gas turbine is automatically supplied to the power exchange during the generator operation on the day. After performing automatic power generation control (ON, following) to be automatically controlled by the facility, draw out some reheated medium pressure steam and low pressure steam flowing into the steam turbine, supply it to the district heating heat exchanger, and supply hot water for heating to the customer. In this way, the thermal ratio is 0.08 ~ 0.12, the steam turbine output is about 8-12% steam heat, 92-88% electricity, depending on the gas turbine load.

아래의 표 2는 본 발명의 실시예에 따른 전력거래시스템 제약입찰 기반 자동발전제어 비추종 열병합발전 운전방법을 순차적으로 도시한 표이다.Table 2 below is a table sequentially showing a non-cogeneration cogeneration operation method based on power bidding system constraint bidding according to an embodiment of the present invention.

순 번Turn 공 정fair 1One 전력거래 입찰(정상 입찰) Power deal bidding (normal bidding) 22 가스터빈/증기터빈 전기출력 자동발전제어 수행(AGC ON)  Automatic generation control of gas turbine / steam turbine (AGC ON) 33 가스터빈/증기터빈 전기출력 실시간 변동
(가스터빈 전기출력 변동치 : 평균 175MW ~ 최소 100MW)
Gas Turbine / Steam Turbine Electrical Output
(Gasbin electric power fluctuation: average 175MW ~ minimum 100MW)
44 보일러(HRSG) 증기압력 실시간 변동
(전기출력 변동에 따라 중압 및 저압계통 압력 증감)
Boiler (HRSG) steam pressure real-time fluctuation
(Medium pressure and low pressure increase or decrease according to the change of electric output)
중압계통Medium pressure system 재열중압압력조절변(M1) 100% 전개 상태 유지 및 재열중압유량조절변(M2) 30% 부분 개도 유지 Reheat pressure control valve (M1) maintains 100% development and reheat pressure flow control valve (M2) maintains 30% partial opening 저압계통Low pressure system 저압압력차단변(L1)) 100% 전개 상태 유지 및 저압유량조절변(L2) 10% 부분 개도 유지 Low pressure pressure cutoff valve (L1)) 100% development state and low pressure flow control valve (L2) 10% partial opening 55 전기출력 변동에 따른 증기압력 증감에 따라 열공급량 실시간 변동
(저압열교환기 : 15~21Gcal/h, 고압 열교환 공정 미시행)
Real-time fluctuation of heat supply according to the increase or decrease of steam pressure
(Low pressure heat exchanger: 15 ~ 21Gcal / h, no high pressure heat exchange process)

아래의 표 3은 일반적인 제약입찰 기반 자동발전제어 비추종 열병합발전 운전방식과 본 발명의 실시예에 따른 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방식을 비교한 표이다.Table 3 below is a table comparing the general constraints-based automatic generation control non-cogeneration cogeneration operation method and the non-constraint bidding-based automatic generation control tracking cogeneration operation method according to the embodiment of the present invention.

구 분division 제약입찰 기반 자동발전제어 비추종 열병합발전(일반)Pharmaceutical bidding-based automatic generation control non-cogeneration cogeneration (general) 비제약입찰 기반 자동발전제어 추종 열병합발전(본 발명)Non-pharmaceutical bidding-based automatic generation control following cogeneration (invention) 입찰방법How to bid 전력거래 제약입찰(열공급 계약)Restricted bidding for electricity trade (heat supply contract) 전력거래 비제약 입찰(정상 입찰)Non-Constraint Bidding (Normal Bidding) 전기출력Electrical output - 가스터빈 최대치 운전(182MW)
- 증기터빈 최소치 운전(45MW)
Maximum gas turbine operation (182 MW)
-Minimum operation of steam turbine (45MW)
전기출력 실시간 변동
- 가스터빈 전기출력 : 100~182MW
- 증기터빈 전기출력 : 65~75MW
Electric output real time fluctuation
Gas turbine electrical output: 100 ~ 182MW
-Steam turbine electric output: 65 ~ 75MW
압력조절변Pressure regulating valve - 고압조절변 100→30% 폐쇄
- 중압조절변 100→30% 폐쇄
- 저압차단변 100% 개방
-100 → 30% closing of high pressure control valve
-100 → 30% closing of pressure control valve
-100% opening of low pressure cutoff
- 고압조절변 미조작
- 중압조절변 100% 개방
- 저압차단변 100% 개방
-No operation of high pressure control valve
-100% pressure relief valve
-100% opening of low pressure cutoff
유량조절변 Flow control valve - 고압유량조절변 50%까지 폐쇄
- 중압유량조절변 30%까지 폐쇄
- 저압유량조절변 40%까지 개방
-Closed up to 50% of high pressure flow control valve
-Closed up to 30% of medium pressure flow control valve
-Opening up to 40% of low pressure flow control valve
- 고압유량조절변 미조작
- 중압유량조절변 30%까지 개방
- 저압유량조절변 10%까지 개방
-No operation of high pressure flow control valve
-Medium pressure flow regulating valve open up to 30%
-Low pressure flow control valve open up to 10%
열인출량Heat withdrawal 고압 : 60, 저압 : 30Gcal/h 인출High pressure: 60, low pressure: 30Gcal / h withdrawal 저압 : 15~21Gcal/h 인출Low pressure: 15 ~ 21Gcal / h withdrawal 차이점difference - 단시간(오전/오후/하루)에 최대 열인출로 설비 운용상 융통성 없음
- 다량의 열인출로 본설비 공정 안정성 저하
- 겨울철 외기 급강하로 인한 난방수요 급증시 최단시간 공급량 증대 가능함
- 고, 중, 저압 다량 인출로 물처리 비용이 증가함
-No flexibility in operating the equipment due to maximum heat withdrawal in a short time (am / pm / day)
-Deterioration of process stability of this facility due to large amount of heat withdrawal
-In case of rapid increase in demand for heating due to drastic outdoor air fall during winter season, supply volume can be increased
-Increased water treatment costs due to high, medium and low pressure withdrawal
- 상시, 수시 증기 열인출로 설비 운용상의 융통성 있음
- 소량의 열인출로 본설비 공정 안정성 확보 가능
- 지속적 열인출로 저장조 저장이 가능하여 평상적인 수요에 대비가 가능하나, 겨울철 외기 급강하로 인한 난방수요 급증시 공급량 부족 가능성 있음
- 중,저압 소량인출로 물처리 비용이 감소함
-Flexibility in operating the facility due to the steam heat withdrawal at any time
-A small amount of heat withdrawal ensures the stability of the process
-Storage tank can be stored by continuous heat drawing, so it is possible to prepare for normal demand, but there is a possibility of supply shortage in case of sudden increase in heating demand due to drastic outdoor air fall during winter season.
-Reduced water treatment costs due to low and medium pressure withdrawal

표 3을 참조하면, 일반 방식은 겨울철 지역의 난방수 공급을 위해 사전에 열공급 사유로 인한 제약 입찰을 시행한 후, 실제 발전기 운전시 전기출력을 최대치로 유지하기 위해 자동발전제어를 해제(OFF, 비추종)후 열병합발전을 하는 방식으로, 가스터빈 전기출력을 최대로 유지하는 동안 발생되는 다량의 고압, 중압, 저압계통 증기열을 공급하는데 각 3개의 유량조절변은 30~50% 범위에서 일정하게 유지된다.Referring to Table 3, after the general bidding for the supply of heating water in the winter season, the general bidding method is released, and then the automatic power generation control is turned off to maintain the maximum electric power output during the actual generator operation. Co-generation after unfollowing, it supplies a large amount of high-pressure, medium-pressure, low-pressure steam heat generated while maintaining the gas turbine's maximum output power.The three flow control valves are constant within the range of 30 ~ 50%. Is maintained.

그러나, 본 발명의 실시예에 따른 방식은 증기열 공급을 위해 사전에 제약 입찰이 아닌 정상 입찰(비제약 입찰)을 시행하고, 실제 발전기 운전 시에는 자동발전제어를 수행(ON, 추종)한 후 가스터빈 전기출력의 실시 간 변동에 따라, 출력증가 시에는 열인출량이 증가하고 출력 감소 시에는 열인출량이 감소되는 가변적인 방식으로, 기존의 일반 방식과 달리 고압은 출력 변동성으로 인해 제외하고 재열중압, 저압증기열만을 인출한다. 각 유량조절변 개도는 가스터빈 최소 전기출력(100MW)에 맞게 조정이 된 적정 개도(약 10%~30%)로 유지되며, 전기출력이 증가하면 증기압력이 증가하여 인출량도 증가하게 된다.However, the method according to the embodiment of the present invention performs a normal bidding (non-constrained bidding) in advance of the bidding for the steam heat supply, and performs automatic power generation control (ON, following) during actual generator operation. According to the real-time variation of the gas turbine electrical output, the heat draw amount increases when the output increases and the heat draw amount decreases when the output decreases. Unlike the conventional method, the high pressure is excluded due to the output variability. Only draw low pressure steam. The opening of each flow control valve is maintained at the appropriate opening (approximately 10% to 30%) adjusted to the gas turbine minimum electric output (100MW), and as the electric output increases, the steam pressure increases to increase the withdrawal amount.

아래 표 4는 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 실증시험 및 시범운영 결과를 도시한 것이다.Table 4 below shows the results of the cogeneration test and the test operation of the cogeneration system based on the non-constrained bidding of the power transaction system according to the embodiment of the present invention.

Figure pat00001
Figure pat00001

표 5는 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 방법에 따른 최소 - 중간 - 최대 출력 구간별 저압열교환 인출 용량을 요약한 표이다.Table 5 is a table summarizing the low-pressure heat exchange withdrawal capacity for each of the minimum, middle and maximum output intervals according to the non-constraint bidding-based automatic generation control following cogeneration method according to the embodiment of the present invention.

가스터빈 전기출력(MW)Gas turbine electrical output (MW) 100MW(최소)100 MW (min) 120MW120 MW 140MW140 MW 170MW170 MW 182MW(최대)182 MW (max) 재열중압 압력(Kg/cm2)Reheat Medium Pressure (Kg / cm 2 ) 17.317.3 18.118.1 19.319.3 21.821.8 2323 저압 압력(Kg/cm2)Low Pressure (Kg / cm 2 ) 3.03.0 3.13.1 3.43.4 3.53.5 3.53.5 저압열교환기 유량(Gcal/hr)Low pressure heat exchanger flow rate (Gcal / hr) 1515 16.516.5 17.717.7 18.718.7 20.720.7

표 5에 도시된 바와 같이, 가스터빈 최소 출력 100MW에서 저압열교환기 열인출량은 대략 15Gcal 발생됨을 볼 수 있고, 또한 가스터빈 최대출력 182MW에서 저압열교환기 열인출량은 대략 21Gcal 발생됨을 볼 수 있다.As shown in Table 5, it can be seen that the low pressure heat exchanger heat withdrawal is approximately 15 Gcal at the gas turbine minimum output of 100 MW, and the low pressure heat exchanger heat withdrawal is approximately 21 Gcal at the gas turbine maximum output of 182 MW.

표 6은 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 방법에 따른 가스터빈 최소 출력에서 증기터빈 주요 압력 계통에 영향 없는 적정 압력 실증 결과를 요약한 표이다.Table 6 is a table summarizing the results of proper pressure demonstration without affecting the steam turbine main pressure system at the minimum power output of the gas turbine according to the non-constraint bidding-based automatic generation control based cogeneration method according to the embodiment of the present invention.

가스터빈 전기출력(MW)Gas turbine electrical output (MW) 100MW(최소)100 MW (min) 120MW120 MW 140MW140 MW 170MW170 MW 182MW(최대)182 MW (max) 재열중압 압력(Kg/cm2)Reheat Medium Pressure (Kg / cm 2 ) 17.317.3 18.118.1 19.319.3 21.821.8 2323 보조증기압력(Kg/cm2)Auxiliary Steam Pressure (Kg / cm 2 ) 14.614.6 14.514.5 14.414.4 21.321.3 22.522.5 저압열교환기 유량(Gcal/hr)Low pressure heat exchanger flow rate (Gcal / hr) 1515 16.516.5 1818 2121 21.321.3

표 6에 도시된 바와 같이, 가스터빈 최소 출력 100MW에서 재열중압 17.3 K, 보조증기압력 14.6K 운전 하한치를 유지함을 볼 수 있고, 또한 가스터빈 최대 출력 182MW에서 재열중압 23K, 보조증기압력 22.5K를 유지함을 볼 수 있다.As shown in Table 6, it can be seen that the reheating pressure 17.3 K and the auxiliary steam pressure 14.6K are maintained at the gas turbine minimum output of 100 MW, and the reheating pressure 23K and the auxiliary steam pressure 22.5K are maintained at the maximum gas turbine output of 182 MW. You can see it staying.

표 7은 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 방법에 따른 최소 - 중간- 최대 출력 구간별 주요 계통 압력 변동 및 저압열교환기 열인출량 실증 결과를 도시한 표이다.Table 7 is a table showing the results of the main system pressure fluctuations and low pressure heat exchanger heat withdrawal results according to the minimum, medium and maximum output section according to the power trading system non-constrained bidding-based automatic generation control tracking cogeneration method according to an embodiment of the present invention to be.

가스터빈 전기출력(MW)Gas turbine electrical output (MW) 100MW(최소)100 MW (min) 120MW120 MW 140MW140 MW 170MW170 MW 182MW(최대)182 MW (max) 재열중압 압력(Kg/cm2)Reheat Medium Pressure (Kg / cm 2 ) 1717 1818 1919 2222 2323 저압압력(Kg/cm2)Low pressure (Kg / cm 2 ) 3.03.0 3.13.1 3.43.4 3.53.5 3.53.5 저압열교환기 유량(Gcal/hr)Low pressure heat exchanger flow rate (Gcal / hr) 1515 16.516.5 1818 2121 21.321.3

표 8은 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 방법에 따른 출력 구간별 발전설비 영향도 검토, 분석 및 보호 로직 신설 관계를 도시한 표이다.Table 8 is a table showing the relationship between the power generation system impact review, analysis and protection logic newly established according to the non-constraint bidding-based automatic generation control tracking cogeneration method according to an embodiment of the present invention.

가스터빈 전기출력(MW)Gas turbine electrical output (MW) 100MW(최소)100 MW (min) 120MW120 MW 140MW140 MW 170MW170 MW 182MW(최대)182 MW (max) 재열중압 압력(Kg/cm2)Reheat Medium Pressure (Kg / cm 2 ) 17.317.3 18.118.1 19.319.3 21.821.8 2323 보조증기압력(Kg/cm2)Auxiliary Steam Pressure (Kg / cm 2 ) 14.614.6 14.514.5 14.414.4 21.321.3 22.522.5 저압열교환기 유량(Gcal/hr)Low pressure heat exchanger flow rate (Gcal / hr) 1515 16.516.5 1818 2121 21.321.3

즉, 열공급 중 재열중압 압력 하락시 순차적으로 저온중압 압력 저하, 보조증기압력 저하 등 발전설비 불안정 발생 요인이 상존하나 실증 데이터 확보로 설비 불안정 요인을 검토하고 분석을 완료하였다.In other words, in case of reheating pressure drop during heat supply, factors such as low temperature pressure drop and auxiliary steam pressure drop exist, power generation equipment instability still exists.

이에 따라, 설비 안정성 확보 차원의 주요 압력 계통 보호 로직을 신설하였다. 일례로, 재열중압유량조절변 개도 30% 및 저압유량조절변 개도 10% 이상 열림 제한 로직을 신설하였다. 또한, 보조증기압력이 14K로 저하 시 재열중압유량조절변 급속 닫힘 로직을 신설하였다.Accordingly, major pressure system protection logic was established to secure facility stability. As an example, the logic for opening the reheat medium pressure flow control valve opening 30% and the low pressure flow control valve opening 10% or more was newly established. In addition, when the auxiliary steam pressure is lowered to 14K, the reclosed pressure flow control valve is rapidly closed.

도 3을 참조하면, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법의 블럭도가 도시되어 있다.Referring to FIG. 3, a block diagram of a method for operating a cogeneration system based on a non-constraint bidding based automatic power generation control according to an embodiment of the present invention is shown.

도 3에 도시된 바와 같이, 열병합발전장치(100)는 재열중압 계통인 증기터빈(111)과 저압열교환기(112) 사이에 재열중압차단변(114) 및 재열중압유량조절변(115)이 직렬로 연결되고, 저압증기 계통인 증기터빈(111)과 저압열교환기(112) 사이에 저압차단변(116) 및 저압유량조절변(117)이 직렬로 연결될 수 있다. 여기서, 재열중압 계통인 증기터빈과 재열중압차단변(114) 사이에는 재열중압압력조절변(113)이 더 연결될 수 있다.As shown in FIG. 3, the cogeneration device 100 includes a reheating pressure interrupting valve 114 and a reheating pressure flow control valve 115 between a steam turbine 111 and a low pressure heat exchanger 112, which are reheating and pressure reducing systems. It is connected in series, the low pressure blocking side 116 and the low pressure flow control valve 117 may be connected in series between the steam turbine 111 and the low pressure heat exchanger 112 of the low pressure steam system. Here, the reheating pressure control valve 113 may be further connected between the steam turbine, which is a reheating pressure system, and the reheating pressure blocking valve 114.

본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법은 다음과 같은 단계를 포함할 수 있다.According to an embodiment of the present invention, a method for operating a non-constraint bidding-based automatic generation control following cogeneration system according to an embodiment of the present invention may include the following steps.

1 단계: 전력거래 비제약 입찰(정상입찰) 사전 시행Step 1: Implement non-constrained bidding (normal bidding) in advance

2 단계: 자동발전제어(AGC) 수행(ON, 추종) 열병합 발전Phase 2: Perform Automatic Generation Control (AGC) (ON, Following) Cogeneration

즉, 전력계통 출력요구신호 추종 및 주파수 추종을 위해 운전 콘솔(제어용 모니터) 상에서 발전기 전기출력 제어모드를 DCS에서 RTU로 선택한다.That is, the generator electric output control mode is selected from the DCS to the RTU on the operation console (control monitor) for power system output request signal tracking and frequency tracking.

여기서, DCS(Distribute Control System)란 발전장치 출력 등 발전 설비주요 기기에 대한 정보와 명령을 처리하는 제어시스템으로 주로 운전용 콘솔(제어용 모니터)에서 주요 기기에 대한 명령을 수행한다. 또한, RTU(Remote Terminal Unit)란 급전 자동화 설비로서 원격지 발전장치의 전기출력을 제어하는데 주파수 변동 등 전력 계통의 실시 간 상황변동에 따라 해당 발전장치의 전기출력 제어값이 변경된다.Here, the DCS (Distribute Control System) is a control system that processes information and commands on the main equipment of the power generation equipment such as the output of the power generation apparatus. In addition, RTU (Remote Terminal Unit) is a power supply automation facility that controls the electrical output of the remote power generation unit, the electrical output control value of the power generation unit is changed according to the real-time situation of the power system, such as frequency change.

3 단계: 열병합 발전시 재열중압압력조절변(113)의 100% 전개 상태 유지 및 재열중압유량조절변(115)의 부분 개도(30%) 유지Step 3: Maintain 100% deployment of reheat pressure control valve 113 and partial opening (30%) of reheat pressure control valve 115 during cogeneration.

4 단계: 열병합발전시 저압차단변(116)의 100% 전개 상태 유지 및 저압유량조절변(117)의 부분 개도(10%) 유지Step 4: Maintain 100% deployment of the low pressure cutoff side 116 and partial opening (10%) of the low pressure flow control valve 117 during cogeneration

5 단계: 지역난반용 저압열교환기(112)의 증기열 공급(재열중압증기 및 저압증기를 출력 별로 15~21Gcal/h 공급) Step 5: Steam heat supply of the local heating low pressure heat exchanger 112 (15-21 Gcal / h supply for each output reheated steam and low pressure steam)

이와 같이 하여, 본 발명의 실시예에 따르면 전력거래 상 비제약 입찰 시행 및 자동발전제어 추종에 따라 열병합발전 시 연료비 손실을 방지하고 아울러 열공급 단가 하락에 따른 열공급 경제성을 확보할 수 있게 된다.In this way, according to the embodiment of the present invention it is possible to prevent the loss of fuel costs during cogeneration according to the non-constrained bidding on the power transaction and follow the automatic power generation control, and also to secure the heat supply economy due to the decrease in the heat supply price.

도 4를 참조하면, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법에 대한 순서도 및 제어 화면이 도시되어 있다.Referring to FIG. 4, a flowchart and a control screen of a method for operating a cogeneration system based on a non-constrained bidding based power generation system according to an embodiment of the present invention are shown.

도 4에 도시된 바와 같이, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법은 전력거래시스템에서 발전장치의 입찰 시 제약 사유를 입력하지 않는 전력거래 입찰(비제약 입찰) 단계(S1), 전력 계통 출력요구신호 및 주파수에 대하여 발전장치를 추종 제어하는 자동발전제어 수행 단계(S2) 및 발전장치의 전기출력을 실시 간으로 변동시키는 전기출력 실시 간 변동 단계(S3)를 포함할 수 있다.As shown in FIG. 4, the power generation system non-constraint bidding-based automatic generation control following cogeneration operation method according to an embodiment of the present invention is a power transaction bidding that does not input a reason for constraints in the bidding of a power generation system in a power trading system. Non-constrained bidding) step (S1), automatic power generation control step (S2) for tracking the power generation device with respect to the power system output request signal and frequency, and the step of changing the electric power execution to change the electric power output of the power generation device in real time. (S3) may be included.

여기서, 열병합발전 시 전력거래시스템 비제약입찰 기반 자동발전제어 수행 단계는 발전장치 전기출력 제어를 콘솔(DCS)로부터 원격지 급전자동화설비(RTU)로 변경함을 포함할 수 있다.Here, the step of performing the automatic power generation control based on the non-constrained bidding of the power transaction system during cogeneration may include changing the power generation device electrical output control from the console (DCS) to the remote power supply automation equipment (RTU).

도 5를 참조하면, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법의 블럭도가 도시되어 있다.Referring to FIG. 5, a block diagram of a method for operating a cogeneration system based on non-constraint bidding based automatic power generation control according to an embodiment of the present invention is shown.

도 5에 도시된 바와 같이, 열병합발전 시 자동발전제어 추종 재열중압증기열 인출 공정을 보면, 전기출력 실시 간 변동 단계에서 재열중압차단변(114)의 개도는 100%로 유지되고, 재열중압유량조절변(115)의 개도는 20~30%(바람직하게는, 30%)로 고정되나, 전기출력 상승 시 재열중압증기압력 상승에 따른 증기 인출량이 증가하고, 전기출력 하락 시 재열중압증기압력 하락에 따라 증기 인출량이 감소됨을 볼 수 있다.As shown in FIG. 5, when the cogeneration is taken into account, the automatic power generation control following reheated steam steam withdrawal process shows that the opening degree of the reheated pressure cutoff valve 114 is maintained at 100% in the step of changing the power output during the regeneration. The opening of the control valve 115 is fixed at 20 to 30% (preferably 30%), but when the electric power rises, the steam withdrawal increases due to the reheated steam pressure increases, and when the electric power drops, the reheated steam pressure decreases. As can be seen the amount of steam withdrawal is reduced.

도 6을 참조하면, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법의 블럭도가 도시되어 있다.Referring to FIG. 6, a block diagram of a method for operating a cogeneration system based on non-constraint bidding based automatic power generation control according to an embodiment of the present invention is shown.

도 6에 도시된 바와 같이, 열병합발전 시 자동발전제어 추종 저압증기열 인출 공정을 보면, 전기출력 실시 간 변동 단계에서 저압차단변(116)의 개도는 100%로 유지되고, 저압유량조절변(117)의 개도는 5~10%로 고정되나, 전기출력 상승 시 저압증기압력 상승에 따른 증기 인출량이 증가하고, 전기출력 하락 시 저압증기압력 하락에 따라 증기 인출량이 감소됨을 볼 수 있다.As shown in FIG. 6, when the cogeneration is taken, the automatic power generation control-following low pressure steam heat extraction process shows that the opening degree of the low pressure cut-off side 116 is maintained at 100% in the step of changing the power output during the low power flow control valve ( The opening degree of 117) is fixed at 5 ~ 10%, but it can be seen that the amount of steam withdrawal due to the increase in the low pressure steam pressure increases when the electric power rises, and the amount of steam withdrawal decreases due to the decrease in the low pressure steam pressure when the electric power drops.

이와 같이 하여, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법은 전력거래 입찰(정상 입찰) -> 자동발전제어 수행(On, 추종) -> 전기출력 실시 간 변동 -> 증기압력 실시 간 변동 -> 열공급량 실시 간 변동방식으로 수행된다. 여기서, 열공급량 실시 간 변동은 증기압력 변동에 따라 저압열교환기(112)를 통해 공급되는 재열중압증기와 저압증기의 공급량이 변동됨을 의미한다.In this way, the power generation system non-constrained bidding-based automatic generation control following cogeneration operation method according to an embodiment of the present invention, power transaction bidding (normal bidding)-> automatic generation control execution (On, following)-> electric power implementation Between fluctuations-> steam pressure fluctuations-> heat supply fluctuations. Here, the variation between the execution of the heat supply amount means that the supply amount of the reheat medium pressure steam and the low pressure steam supplied through the low pressure heat exchanger 112 is changed according to the steam pressure variation.

따라서, 본 발명의 실시예는 전력거래 상 비제약 입찰 시행 및 자동발전제어 추종에 따라 열병합발전 시 연료비 손실을 방지할 수 있고, 아울러 열공급 단가 하락에 따른 열공급 경제성을 확보할 수 있게 된다.Therefore, the embodiment of the present invention can prevent the loss of fuel cost during cogeneration according to the non-constrained bidding on the power transaction and follow the automatic power generation control, and also secure the heat supply economics due to the decrease in the heat supply unit price.

이상에서 설명한 것은 본 발명에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is just one embodiment for implementing the power transaction system non-constraint bidding-based automatic generation control following cogeneration operation method according to the present invention, the present invention is not limited to the above embodiment, the following patents As claimed in the claims, any person having ordinary skill in the art without departing from the gist of the present invention will have the technical spirit of the present invention to the extent that various modifications can be made.

100; 열병합발전장치
111; 증기터빈
112; 저압열교환기
113; 재열중압압력조절변
114; 재열중압차단변
115; 재열중압유량조절변
116; 저압차단변
117; 저압유량조절변
100; Cogeneration Unit
111; Steam turbine
112; Low pressure heat exchanger
113; Reheat Medium Pressure Control Valve
114; Reheat medium pressure cutoff side
115; Reheat Medium Pressure Flow Control Valve
116; Low pressure cutoff side
117; Low pressure flow control valve

Claims (5)

재열중압 계통인 증기터빈과 저압열교환기 사이에 재열중압차단변 및 재열중압유량조절변이 직렬로 연결되고, 저압증기 계통인 증기터빈과 저압열교환기 사이에 저압차단변 및 저압유량조절변이 직렬로 연결된 열병합발전장치의 운전방법에 있어서,
전력거래시스템에서 발전장치의 입찰 시 제약 사유를 입력하지 않는 전력거래 입찰(비제약 입찰) 단계;
전력계통 출력요구신호 및 주파수에 대하여 발전장치를 추종 제어하는 자동 발전제어 수행 단계; 및
발전장치의 전기출력을 실시 간으로 변동시키는 전기출력 실시 간 변동 단계를 포함함을 특징으로 하는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법.
Reheat medium pressure shutoff valve and reheat medium pressure flow control valve are connected in series between steam turbine and low pressure heat exchanger, and low pressure shutoff valve and low pressure flow control valve are connected in series between steam turbine and low pressure heat exchanger. In the operating method of the cogeneration device,
A power transaction bidding (non-constrained bidding) step of not inputting a reason for restriction when bidding a power generation system in a power trading system;
Performing automatic power generation control for controlling the power generation device with respect to the power system output request signal and frequency; And
A method of operating a cogeneration system based on non-constrained bidding for a power trading system, comprising: a step of changing a power output in real time.
제 1 항에 있어서,
자동발전제어 수행 단계는 발전장치의 전기출력 제어가 콘솔(DCS: Distribute Control System)에서 원격지 급전자동화설비(RTU:Remote Terminal Unit)로 변경됨을 포함함을 특징으로 하는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법.
The method of claim 1,
The automatic power generation control step includes the automatic control of the power transaction system based on non-constrained bidding, which includes changing the power output of the power generation unit from a distributed control system (DCS) to a remote terminal unit (RTU). Power generation control tracking cogeneration operation method.
제 1 항에 있어서,
전기출력 실시 간 변동 단계에서 재열중압차단변의 개도는 100%로 유지되고, 재열중압유량조절변의 개도는 20~30%로 고정되며, 전기출력 상승 시 재열중압증기압력 상승에 따른 증기 인출량이 증가하고, 전기출력 하락 시 재열중압증기압력 하락에 따라 증기 인출량이 감소됨을 특징으로 하는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법.
The method of claim 1,
The opening degree of the reheating pressure cutoff valve is maintained at 100% and the opening degree of the reheating pressure flow control valve is fixed at 20-30% in the step of changing the electric power during the execution of the electric output. The method of operating a cogeneration system based on non-constrained bidding of a power transaction system, characterized in that the amount of steam withdrawal decreases as the reheating steam pressure decreases when the electric power drops.
제 1 항에 있어서,
전기출력 실시 간 변동 단계에서 저압차단변의 개도는 100%로 유지되고, 저압유량조절변의 개도는 5~10%로 고정되며, 전기출력 상승 시 저압증기압력 상승에 따른 증기 인출량이 증가하고, 전기출력 하락 시 저압증기압력 하락에 따라 증기 인출량이 감소됨을 특징으로 하는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법.
The method of claim 1,
The opening degree of the low pressure cutoff valve is maintained at 100% and the opening degree of the low pressure flow control valve is fixed at 5 to 10% in the step of changing the electric output during the execution of the electric output. A method of operating a cogeneration system based on non-constrained bidding based on a power trading system, characterized in that a withdrawal of steam is reduced by a drop in low pressure steam pressure.
제 3 항 또는 제 4 항에 있어서,
증기압력 변동에 따라 저압열교환기를 통해 공급되는 재열중압증기 및 저압증기의 공급량이 변동됨을 특징으로 하는 전력거래시스템 비제약입찰 기반 자동 발전제어 추종 열병합발전 운전방법.
The method according to claim 3 or 4,
A method for operating a cogeneration system based on non-constrained bidding of a power trading system, characterized in that the supply amount of reheated medium pressure steam and low pressure steam supplied through a low pressure heat exchanger is changed according to the steam pressure fluctuation.
KR1020180102404A 2018-08-30 2018-08-30 Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System KR102099013B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180102404A KR102099013B1 (en) 2018-08-30 2018-08-30 Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180102404A KR102099013B1 (en) 2018-08-30 2018-08-30 Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System

Publications (2)

Publication Number Publication Date
KR20200025279A true KR20200025279A (en) 2020-03-10
KR102099013B1 KR102099013B1 (en) 2020-04-08

Family

ID=69800973

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180102404A KR102099013B1 (en) 2018-08-30 2018-08-30 Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System

Country Status (1)

Country Link
KR (1) KR102099013B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113537795A (en) * 2021-07-22 2021-10-22 山东电力研究院 Analysis method and system for flexibility adjustment space of thermal power plant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048487A (en) * 2008-10-31 2010-05-11 한국전력공사 Control method for fast and stable load control by compensating turbine and boiler response delays in power plants
KR20120139376A (en) * 2011-06-17 2012-12-27 한국전력기술 주식회사 An apparatus controlling extraction steam of a top heater to improve speed regulation rate of power plant
KR20180051714A (en) * 2016-11-08 2018-05-17 한국에너지기술연구원 Complex energy system and its control method in bi-directional energy networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100048487A (en) * 2008-10-31 2010-05-11 한국전력공사 Control method for fast and stable load control by compensating turbine and boiler response delays in power plants
KR20120139376A (en) * 2011-06-17 2012-12-27 한국전력기술 주식회사 An apparatus controlling extraction steam of a top heater to improve speed regulation rate of power plant
KR20180051714A (en) * 2016-11-08 2018-05-17 한국에너지기술연구원 Complex energy system and its control method in bi-directional energy networks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113537795A (en) * 2021-07-22 2021-10-22 山东电力研究院 Analysis method and system for flexibility adjustment space of thermal power plant

Also Published As

Publication number Publication date
KR102099013B1 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
CN101864994B (en) Correction method for optimization of sliding pressure of large steam turbine
CN108035777B (en) Low-pressure cylinder combined zero-output heat supply system and method in thermal power generating unit
CN111706411A (en) Thermodynamic system for transforming back pressure unit into extraction condensing unit and working method
CN206055732U (en) A kind of new heat-supplying unit
CN106958465B (en) A method of for fast and stable rotating speed after Turbo-generator Set removal of load
CN113175363A (en) Master pipe connection system for adjusting high-pressure cylinder to do work and operation method
CN209978005U (en) Primary frequency modulation control system for secondary reheating unit
US20050013402A1 (en) Method of operating a nuclear power plant
KR20110047905A (en) Energy recovery apparatus of natural gas governing equipment and energy recovery method : Fuel Cell?Turboexpander integrated energy recovery system
KR102099013B1 (en) Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System
CN110985218B (en) Method and system for adjusting pressure of supercharger of gas turbine
CN206092088U (en) Matching unit of coal -fired power unit heat supply parameter
CN207762873U (en) A kind of system that boiler oxygen-enriched combusting combines auxiliary peak-frequency regulation equipment
CN111237735A (en) Emergency industrial steam supply system for realizing shutdown and non-shutdown of large coal-fired generator set
CN214660397U (en) Device for improving heat supply steam extraction parameters during low-load operation of double-low-pressure-cylinder steam turbine
CN109931581B (en) System combining oxygen-enriched combustion with auxiliary peak regulation and frequency modulation equipment of boiler
CN112031883B (en) Two-stage adjusting system suitable for middle adjusting valve participating in adjusting and lifting industrial steam supply parameters
CN106884689A (en) A kind of method of small-sized steam-extracting type heat supply steam turbine steam discharge wet down
CN113898423A (en) High-efficient turbo electric power generation system of degree of depth peak regulation that unipolar was arranged
US9574462B2 (en) Method for operating a power plant installation
CN114233403A (en) High-efficient turbo electric power generation system of degree of depth peak regulation that split-axis was arranged
CN113494321A (en) High-pressure cylinder zero-output-force-based bus pipe connection system and operation method
CN112282877A (en) Industrial steam extraction system of double reheating unit and operation method thereof
CN105299468A (en) Pipe network optimization method using hierarchical supply of low-pressure steam
CN212054839U (en) Cogeneration system capable of meeting industrial heat user requirements

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant