KR20200024518A - 모바일 환경에서 심전도 r 피크를 검출하기 위한 방법 및 이를 구현하기 위한 시스템 - Google Patents

모바일 환경에서 심전도 r 피크를 검출하기 위한 방법 및 이를 구현하기 위한 시스템 Download PDF

Info

Publication number
KR20200024518A
KR20200024518A KR1020180101299A KR20180101299A KR20200024518A KR 20200024518 A KR20200024518 A KR 20200024518A KR 1020180101299 A KR1020180101299 A KR 1020180101299A KR 20180101299 A KR20180101299 A KR 20180101299A KR 20200024518 A KR20200024518 A KR 20200024518A
Authority
KR
South Korea
Prior art keywords
signal
peak
amplitude
ecg
threshold
Prior art date
Application number
KR1020180101299A
Other languages
English (en)
Other versions
KR102165205B1 (ko
Inventor
윤인찬
김형민
최귀원
이송주
이미란
동서연
박다정
조현명
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020180101299A priority Critical patent/KR102165205B1/ko
Publication of KR20200024518A publication Critical patent/KR20200024518A/ko
Application granted granted Critical
Publication of KR102165205B1 publication Critical patent/KR102165205B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • A61B5/0456
    • A61B5/046
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/361Detecting fibrillation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Signal Processing (AREA)
  • Surgery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Power Engineering (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

본 발명의 일 실시예에 따른 심전도 R 피크를 검출 방법은, 센서로부터 착용자의 심전도 신호를 수신하는 단계; 상기 심전도 신호의 기저선 변동(baseline drift)을 교정하여 제1 신호를 획득하는 단계; 상기 제1 신호에서 착용자의 움직임으로 인해 발생하는 돌연 피크(abrupt peak)의 진폭을 수정하여 제2 신호를 획득하는 단계; 상기 제2 신호의 QRS 구간을 강조하여 제3 신호를 획득하는 단계; 및 상기 제3 신호에서 임계치 이상의 진폭을 갖는 피크를 R 피크로서 검출하는 단계를 포함한다. 이에 따르면, 모바일 환경에서 심전도 신호 측정 시 사용자의 움직임으로 인해 발생하는 노이즈를 최소화함으로써 R 피크의 검출 정확도를 향상시킬 수 있다.

Description

모바일 환경에서 심전도 R 피크를 검출하기 위한 방법 및 이를 구현하기 위한 시스템{METHOD FOR DETECTING R-PEAK OF ELECTROCARDIOGRAM IN MOBILE ENVIRONMENT AND SYSTEM FOR IMPLEMENTING THE SAME}
본 발명은 모바일 환경에서 심전도 R 피크를 검출하기 위한 방법 및 이를 구현하기 위한 시스템에 관한 것으로서, 더욱 상세하게는 웨어러블 장치를 착용한 사용자의 심전도 신호를 처리하여 보다 정확하게 R 피크를 검출하기 위한 방법과 시스템에 관한 것이다.
[국가지원 연구개발에 대한 설명]
본 연구는 한국과학기술연구원의 주관 하에 과학기술정보통신부의 바이오, 의료기술 개발사업(개인 맞춤형 근육 재활용 생체신호 통합 분석기술 및 근육 자극 알고리즘 개발, 과제고유번호: 1711058668 및 듀얼 밴드를 이용한 라이프 가디언스 기반의 스트레스 측정/관리 시스템 개발, 과제고유번호: 1711061023)의 지원에 의하여 이루어진 것이다.
개인의 건강에 대한 관심이 증대하면서 삶의 질을 향상시킬 수 있는 개인 맞춤형 헬스 케어(health care) 분야에 대한 관심이 높아지고 있다. 최근에는 웨어러블 디바이스(wearable device) 기술의 발달로 인해 사용자가 원할 때 어디에서라도 맞춤형 헬스 케어를 받는 것이 가능하게 되었다.
이에 따라 모바일 환경에서 심전도(electrocardiogram; ECG) 신호를 취득하여 심장 관련 질환을 미리 예측하는 것도 가능하게 되었는데, 사용자가 심전도 센서를 구비한 웨어러블 디바이스를 신체 부위에 착용한 상태로 신체활동을 수행하면, 센서는 사용자의 심전도 신호를 측정하고 디바이스에 내장된 컴퓨터는 신호를 분석하여 부정맥 등 심장 관련 질환이 있음을 진단할 수 있다.
심전도(ECG)란 심박동과 관련된 전위를 기록한 것으로서 심장박동의 한 주기는 심전도에서 P파, QRS파, T파, U파 등으로 나타난다(도 1 참조). QRS파(QRS-complex) 중에서도 가장 높은 진폭을 갖는 지점인 R 피크는 심전도 신호 분석의 기준이 되는 지점이므로, R 피크를 오차 없이 검출하는 것은 심전도 신호 처리에 있어서 가장 중요한 과제 중 하나라고 볼 수 있다.
심장 관련 질환의 진단을 위한 일반적인 심전도 신호의 측정은 병원과 같은 실내 환경에서 환자가 누워있는 상태에서 수행되었기 때문에 R 피크 검출에 큰 어려움이 없었다. 그러나 사용자가 외부 환경에서 운동하는 도중 웨어러블 디바이스를 통해 심전도 신호를 측정하는 경우, 취득된 심전도 신호는 무빙 노이즈(moving noise)나 근전도 노이즈(muscle artifact) 등의 다양한 노이즈 요소를 담고 있으므로 R 피크의 검출 정확도가 떨어지게 되는 문제점이 있었다.
KR 10-2018-0076807 A
이에 본 발명은 전술한 문제점을 해결하기 위해 착안한 것으로서, 모바일 환경에서 심전도 신호 측정 시 사용자의 움직임으로 인해 발생하는 노이즈를 최소화함으로써 R 피크의 검출 정확도를 향상시키는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 모바일 환경에서 심전도 R 피크를 검출하는 방법은, 센서로부터 착용자의 심전도 신호를 수신하는 단계; 상기 심전도 신호의 기저선 변동(baseline drift)을 교정하여 제1 신호를 획득하는 단계; 상기 제1 신호에서 착용자의 움직임으로 인해 발생하는 돌연 피크(abrupt peak) 의 진폭을 수정하여 제2 신호를 획득하는 단계; 상기 제2 신호의 QRS 구간을 강조하여 제3 신호를 획득하는 단계; 및 상기 제3 신호에서 임계치 이상의 진폭을 갖는 피크를 R 피크로서 검출하는 단계를 포함한다.
일 실시예에서, 상기 돌연 피크(abrupt peak)의 진폭을 수정하는 단계는, 상기 심전도 신호의 진폭 m(t) 을 획득하는 단계; 상기 진폭 m(t) 이 임계치 th(t) 이상인 경우 상기 진폭을 임계치로 변경하고, 상기 진폭이 임계치보다 작은 경우 상기 진폭을 변경하지 않음으로써 수정 진폭 M filt (t)을 획득하는 단계를 포함할 수 있다.
일 실시예에서, 상기 임계치 th(t) 은, 상기 심전도 신호의 진폭에 대역 통과 필터(band-pass filter)를 적용한 필터링 진폭인 m filt (t)과, 상기 필터링 진폭의 평균인
Figure pat00001
에 파라미터인 δ를 곱한 값을 합하여 결정될 수 있다.
일 실시예에서, 상기 파라미터 δ는 상기 제2 신호의 표준편차 및 상기 심전도 신호와 제2 신호의 스펙트럼 밀도의 상관계수에 기초하여 결정될 수 있다.
일 실시예에서, 상기 심전도 신호의 QRS 구간을 강조하는 단계는, 상기 심전도 신호의 섀넌 에너지(Shannon energy)를 계산하는 단계; 및 상기 섀년 에너지 그래프에 스무딩 필터를 적용하여 포락선 그래프인 제3 신호를 획득하는 단계를 포함할 수 있다.
일 실시예에서, 상기 제3 신호에서 임계치 이상의 진폭을 갖는 피크를 R 피크로서 검출하는 단계는, 상기 제3 신호에 저역 통과 필터(law-pass filter)를 적용하여 적응적 임계치를 생성하는 단계; 상기 제3 신호의 진폭 중 상기 적응적 임계치보다 높은 값에 대해서는 1을 할당하고, 상기 적응적 임계치보다 낮은 값에 대해서는 0을 할당하여 이진레벨신호를 생성하는 단계; 및 상기 이진레벨신호가 1인 구간에서의 심전도 신호의 최대값을 R 피크로 검출하는 단계를 포함할 수 있다.
일 실시예에서, 상기 심전도 신호의 기저선 변동(baseline drift)을 교정하는 단계는, 상기 심전도 신호에 1차원 중앙값 필터(1-dimensional medial filter)를 적용하는 단계를 포함할 수 있다.
일 실시예에서, 상기 R 피크 검출 방법은 구간 내 검출된 R 피크 간의 시차가 임계치 이상인 경우, 해당 구간에 대하여 상기 제2 신호를 획득하는 단계를 반복할 수 있다.
상기 모바일 환경에서 심전도 R 피크를 검출하는 방법을 구현하기 위한, 컴퓨터로 판독 가능한 기록매체에 저장된 컴퓨터 프로그램이 제공될 수 있다.
본 발명의 일 실시예에 따른 모바일 환경에서 심전도 R 피크를 검출하기 위한 시스템은, 심전도 신호를 처리하여 R 피크를 검출하는 신호처리부; 상기 검출된 R 피크로부터 R 피크 정보를 산출하는 R 피크 정보 산출부; 및 상기 R 피크 정보를 출력하는 출력부를 포함한다.
일 실시예에서, 상기 신호 처리부는 상기 심전도 신호의 기저선 변동(baseline drift)을 교정하여 제1 신호를 획득하고, 상기 제1 신호에서 착용자의 움직임으로 인해 발생하는 돌연 피크(abrupt peak)의 진폭을 수정하여 제2 신호를 획득하고, 상기 제2 신호의 QRS 구간을 강조하여 제3 신호를 획득하고, 상기 제3 신호에서 임계치 이상의 진폭을 갖는 피크를 R 피크로서 검출할 수 있다.
일 실시예에서, 상기 R 피크 정보는 R 피크의 시간적 위치에 기초한 심박수 또는 R 피크의 크기 정보를 포함할 수 있다.
본 발명의 실시예에 따르면, 심전도 신호 측정 시 사용자의 움직임으로 인해 발생하는 돌연 피크(abrupt peak)를 제거하고, R 피크 간의 시차를 측정하여 부정 오류(false negative)를 줄이는 알고리즘을 통해, 모바일 환경에서 R 피크의 검출 정확도를 향상시킬 수 있다.
도 1은 심전도 신호의 한 주기를 나타낸 도면이다.
도 2은 일 실시예에 따른 모바일 환경에서 심전도 R 피크를 검출하는 방법을 나타낸 순서도이다.
도 3는 일 실시예에 따른 R 피크 검출 방법을 구현하기 위한 시스템을 나타낸 도면이다.
도 4은 심전도 신호의 R 피크를 검출하기 위한 구체적인 알고리즘을 나타낸 도면이다.
도 5는 기저선 변동(baseline drift)을 교정하기 전과 후의 심전도 신호를 나타낸 그래프이다.
도 6은 기저선 변동을 교정하기 위한 중앙값 필터(median filter)의 적용 방법을 나타낸 도면이다.
도 7은 사용자의 활동에 따라 심전도 신호에 나타나는 돌연 피크(abrupt peak)를 나타낸 그래프이다.
도 8는 (a)사용자의 심전도 신호 그래프, (b)돌연 피크의 진폭을 수정하지 않은 신호 그래프, (c)돌연 피크 진폭을 수정한 신호 그래프를 나타낸 도면이다.
도 9는 돌연 피크의 진폭을 수정하기 위한 최적의 파라미터를 계산하기 위한 그래프이다.
도 10은 QRS 구역을 강조하기 위해 섀넌 에너지 엔빌로프(Shannon energy elvelop) 그래프를 구하는 방법을 나타낸 도면이다.
도 11은 (a)심전도 신호, (b)돌연 피크의 진폭을 수정한 제2 신호, (3)QRS 구간을 강조한 제3신호, (d)이진레벨신호를 나타낸 도면이다.
도 12는 (a)실시예에 따른 알고리즘을 적용하지 않고 R 피크를 검출한 결과, (b)실시예에 따른 알고리즘을 적용한 후 R 피크를 검출한 결과를 나타낸 도면이다.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 실시예를 상세하게 설명하지만, 청구하고자 하는 범위는 실시 예들에 의해 제한되거나 한정되는 것은 아니다.
본 명세서에서 사용되는 용어는 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 명세서의 설명 부분에서 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는, 단순한 용어의 명칭이 아닌 그 용어가 가지는 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 함을 밝혀두고자 한다.
또한, 본 명세서에 기술된 실시예는 전적으로 하드웨어이거나, 부분적으로 하드웨어이고 부분적으로 소프트웨어이거나, 또는 전적으로 소프트웨어인 측면을 가질 수 있다. 본 명세서에서 "부(unit)", "모듈(module)", "장치(device)", "서버(server)" 또는 "시스템(system)" 등은 하드웨어, 하드웨어와 소프트웨어의 조합, 또는 소프트웨어 등 컴퓨터 관련 엔티티(entity)를 지칭한다. 예를 들어, 부, 모듈, 장치, 서버 또는 시스템은 플랫폼(platform)의 일부 또는 전부를 구성하는 하드웨어 및/또는 상기 하드웨어를 구동하기 위한 애플리케이션(application) 등의 소프트웨어를 지칭하는 것일 수 있다.
이하, 도면들을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명하도록 한다.
이하에서 설명하는 실시예들은 모바일 환경에서 심전도 R 피크를 검출하기 위한 방법 및 시스템에 관한 것이다. 따라서 바람직하게는 웨어러블 디바이스를 착용한 사용자가 외부 환경에서 동적 활동을 수행하는 상황에서 이용될 수 있으나, 이에 한정되는 것은 아니며 정적인 환경에서도 운동 외 다른 요인으로 발생하는 노이즈를 제거하기 위해 이용될 수 있다.
사용자가 동적 활동을 수행하는 동시에 심전도 신호를 측정하는 경우, 취득된 심전도 신호는 무빙 노이즈(moving noise)나 근전도 노이즈(muscle artifact) 등의 다양한 노이즈 요소를 담고 있으므로 R 피크의 검출 정확도가 떨어지게 된다. 이에 본 발명은, 움직임으로 인한 돌연 피크(abrupt peak)의 진폭을 수정함으로써 무빙 노이즈를 제거하고, R 피크 검출의 정확도를 향상시키기 위한 신호 처리 알고리즘을 제공한다.
도 2는 일 실시예에 따른 모바일 환경에서 심전도 R 피크를 검출하는 방법을 나타낸 순서도이며, 도 3은 이 방법을 구현하기 위한 시스템을 나타낸 시스템도이다. 이하에서는 도 2의 순서도와 도 3의 시스템도에 기초하여 R 피크 검출 방법의 일 실시예를 설명할 것이나, 본 방법이 컴퓨터상에서 구현되는 구체적인 알고리즘은 도 4를 더 참조할 수 있다.
먼저, 센서부(10)로부터 착용자의 심전도 신호를 수신하는 단계가 수행된다(S100). 센서부(10)는 사용자의 심전도 신호를 감지하여 전기적 신호로 변환하고 신호처리부(20)에 입력하기 위한 구성요소이다.
예를 들어, 웨어러블 장치는 사용자의 신체 일부에 착용되며 심전도 신호를 수신할 수 있는 센서를 통해 심전도 신호를 수신하고, 이 신호를 처리 및 출력할 수 있는 컴퓨터 디바이스(스마트워치, 스마트폰, 랩톱, 데스크톱 등)에 전송하도록 구성된다. 웨어러블 장치에 센서 입력부, 신호처리부, 출력부 등의 구성요소가 일체로 포함될 수도 있다.
신호처리부(20)는 입력 받은 심전도 신호에 일련의 프로세스를 적용하여 움직임으로 인한 원치 않는 영향(기저선 변동, 돌연 피크, QRS파 약화 등)을 제거하기 위한 구성요소로서, R 피크 검출의 정확도를 향상시키기 위한 핵심적인 구성요소이다.
신호처리부(20)는 상기 심전도 신호의 기저선 변동(baseline drift)을 교정하여 제1 신호를 획득하는 단계를 수행한다(S200). 기저선 변동은 심전도 신호 획득 시 호흡과 움직임에 의해 쉽게 관찰된다. 도 5의 (a)를 참조하면 기저선 변동에 의해 R 피크 외에도 크고 작은 피크가 발생하게 되는데, 이는 R 피크 또는 다른 P, Q, S, T 파와 혼동되어 R 피크 검출의 정확도를 감소시키는 요소이므로 제거할 필요가 있다.
일 실시예에서, 기저선 변동(baseline drift)을 교정하기 위해서 1차원 중앙값 필터(1-dimensional median filter)가 이용될 수 있다. 중앙값 필터란, w의 길이를 갖는 윈도우를 지정하고, 원 신호(raw signal)에 이 윈도우를 씌우고, w 윈도우 길이만큼의 원 신호 값을 크기 순으로 정렬한 후, 정렬된 값 중에서 가장 중앙에 있는 값을 선택하여 적용하는 필터이다. 도 6에는 3 단위의 윈도우를 이용하여 중앙값 필터를 적용하는 과정이 도시되어 있다.
본 발명에서는 200ms와 600ms 윈도우 크기로 정의된 두 가지 타입의 중앙값 필터를 이용한다. 200ms의 윈도우 크기를 갖는 제1 중앙값 필터는 심전도 신호의 QRS파와 P파를 타겟으로 하고, 600ms의 윈도우 폭을 갖는 제2 중앙값 필터는 T파를 타겟으로 한다. 필터링된 신호는 원래의 심전도 신호로부터 순차적으로 감산되어 최종적으로 도 5의 (b)와 같이 기저선 변동이 교정된 신호를 얻을 수 있다.
이어서, 상기 제1 신호에서 착용자의 움직임으로 인해 발생하는 돌연 피크의 진폭을 수정하여 제2 신호를 획득하는 단계가 수행된다(S300).
돌연 피크(abrupt peak)란 기록된 심전도 신호의 실제 R 피크가 동적 활동의 움직임이나 호흡에 의해서 R 피크의 진폭이 다른 R피크보다 급작스럽게 상승된 피크를 의미한다. 도 7에는 사용자의 활동(앉기, 경사 오르기, 걷기)에 따라 심전도 신호에 나타나는 돌연 피크가 표시되어 있다. 특히 경사 오르기(b)와 같이 격한 운동을 할수록 돌연 피크가 더 많이 나타나게 되는데, 이러한 돌연 피크들은 R 피크 검출에서 다른 피크들의 검출을 방해하게 된다.
도 8의 (b)와 같이, 돌연 피크의 진폭을 수정하지 않은 경우에는 심전도 신호에서 특정 R 피크가 크게 측정되므로 나머지 R 피크의 진폭이 상대적으로 작게 인식된다(도 8의 (a)는 원 신호를 나타낸다). 이는 실제 R 피크가 발생했음에도 불구하고 이를 검출하지 않는 부정 오류(false negative)로 이어진다.
따라서 본 발명에서는 R 피크 검출의 정확도를 향상시키기 위해 돌연 피크의 진폭을 수정하는 방법을 제공하고자 한다. 일 실시예에서, 신호 엔빌로프 필터링(Signal Envelope Filtering; SEF) 방법이 이용될 수 있다. 이에 따르면, 원 신호의 실수 신호인 s(t) = m(tcosφ(t) 에서 진폭 m(t)를 수정함으로써 돌연 피크의 진폭을 수정할 수 있다. 진폭은 수학식 (1)에 기초하여 M filt (t)로 수정된다.
Figure pat00002
여기서 진폭 m(t)이 임계치 th(t) 이상인 경우 상기 진폭을 임계치로 변경하고, 상기 진폭이 임계치보다 작은 경우 상기 진폭을 변경하지 않는다. 제1 임계치 th(t)는 수학식 (2)를 이용하여 계산할 수 있다.
Figure pat00003
m filt (t)는 원 신호의 진폭 m(t)을 10-40Hz 대역 통과 필터(band-pass filter)로 필터링한 신호이며,
Figure pat00004
는 필터링 된 m filt (t)신호들의 평균을 구한 값이고, 파라미터 δ는 획득한 심전도 신호의 상태에 따라 자동적으로 최적의 값을 찾아 설정될 수 있다.
즉, 제1 임계치 th(t)는 원 신호 진폭을 필터링한 값에 적절한 파라미터 값을 대응시켜 돌연 피크들의 진폭을 적절히 수정한다. 최종적으로 결정된 M filt (t)에 수학식 (3)을 이용하여 복조한 후 제2 신호인 z(t)
Figure pat00005
Figure pat00006
를 산출할 수 있다.
Figure pat00007
임계치의 파라미터 δ는 필터링된 제2 신호 z(t)에 영향을 미친다. 파라미터 δ가 0으로 적용되면 진폭 m(t)가 지나치게 필터링 되어 심전도 신호의 실제 R 피크 진폭들을 모두 약화시키게 된다. 반면 파라미터 δ가 지속적으로 커지면 필터링이 되지 않아 z(t)가 원 신호와 거의 유사하여 돌연 피크들을 지속적으로 담아가게 된다. 파라미터 δ가 0과 2사이에서 적절한 값으로 결정되면 돌연 피크들의 진폭을 다른 실제 R 피크의 진폭 크기와 유사하게 조정해낼 수 있다.
파라미터 δ는 개인마다 획득된 심전도 신호의 상태에 따라 변하게 되며, 자동적으로 최적 값을 찾아 설정될 수 있다. 본 발명에서는, 0 내지 2의 범위에서 파라미터 δ의 최적 값을 결정하기로 한다.
파라미터 δ는, SEF 신호(제2 신호)의 σ*(표준 편차를 이용하여 생성한 지표)와, 원 신호와 SEF 신호(제2 신호)의 스펙트럼 밀도의 상관계수(Coherence correlation)인 Csz에 따라 결정된다. Csz는 원 심전도 신호와 SEF 신호의 유사성을 판단하게 된다. Csz가 1에 가까워지면 원 신호와 SEF 신호는 거의 유사한 것이고, Csz가 0에 가까워지면, 원 신호와 SEF신호는 유사성이 없다는 것을 의미한다.
σ*는 0부터 2까지 파라미터 δ를 0.1씩 증가시켜 만든 SEF 신호들의 편차를 정규화시켜 1에서 뺀 값을 나타내는 지표이다. 즉, σ*는 SEF 신호의 편차를 이용한 것으로, σ*가 크면 신호들의 진폭 편차가 작다는 것을 의미하므로, 돌연 피크가 적게 존재한다는 의미이고, σ*가 작으면 신호들의 진폭 편차가 크다는 것을 의미하여 돌연 피크가 많이 존재한다는 것을 의미한다.
도 9와 같이, 파라미터 δ를 0.1씩 증가시키면서 Csz와 σ*를 관찰하였을 때, 두 지표가 교차하는 교차점(crossing point)에서의 파라미터 δ가 최적의 값으로 설정되며, 최종적으로 임계치를 생성하는 파라미터 δ에 대입하여 사용함으로써, 원래의 심전도 신호와 형태가 유사하지만 돌연 피크의 진폭이 조정된 SEF 신호(제2 신호)를 획득할 수 있다.
도 8의 (c)는 이상에서 설명한 필터를 적용하여 획득한 제2 신호를 나타낸다. 필터를 적용하지 않은 도 8의 (b)와 비교하면 돌연 피크로 인한 진폭 상승이 교정되어 모든 R 피크가 대체로 균일하게 검출된다. 이에 따라 사용자의 움직임에 따른 검출 오류를 크게 감소시킬 수 있다.
이어서, 심전도 신호의 QRS 구간을 강조하여 제3 신호를 획득하는 단계가 수행된다(S400).
도 1에 도시된 것처럼 심전도 신호는 P파, QRS파, T파, U파 등으로 나뉘는데, QRS 구간(QRS region)에는 R 피크가 포함되어 있으므로 심전도 신호의 분석에 있어서 중요한 구간이다. 동적인 활동 중에는 기저선 변동이나 돌연 피크의 발생 등으로 인해 R 피크 검출의 정확도가 감소하게 되는데, QRS 구간을 강조하여 다른 구간과 차별화함으로써 R 피크 검출의 정확도를 향상시킬 수 있다.
이를 위해 제2 신호의 섀넌 에너지(Shannon energy) 값을 구하고, Savitzky-Golay 필터를 적용하여 제3 신호를 획득할 수 있다. 돌연 피크의 진폭을 수정한 제2 신호를 z(t)라고 하면, 아래 수학식 (4), (5)를 이용하여 z(t)의 섀넌 에너지인 SE n 을 산출해낼 수 있다(도 10의 (a) 참조).
Figure pat00008
Figure pat00009
수학식 (4)로 계산한 SD n z(t)의 제곱-차분 값을 나타낸다. z(t)의 차분은 필터의 역할을 하며, 제곱은 신호를 모두 양의 부호로 변환시켜준다. 수학식 (5)을 이용하여, 섀넌 에너지인 SE n 을 구할 수 있는데,
Figure pat00010
SD n 값을 정규화 시킨 것으로서 값들의 분포를 정규화시키는 역할을 한다.
최종적으로 계산된 SE n 에 Savitzky-Golay 필터를 적용하면, 도 10의 (a)의 점선과 같이 포락선 그래프를 얻을 수 있는데, 이를 원 심전도 신호와 비교하면 도 10의 (b)와 같이 QRS 구간이 강조됨을 알 수 있다. 즉, 심전도 신호에 대해 섀넌 에너지를 계산하여 포락선 그래프를 구해보면, QRS 구간을 제외한 나머지 구간에서는 진폭이 낮아지므로 R 피크를 검출해내기에 유용한 형태로 변환된다.
이어서, 제3 신호에서 R 피크를 검출하는 단계가 수행된다(S500). 일 실시예에서, R 피크를 보다 효율적으로 정확하게 검출하기 위해 QRS 구간이 강조된 제3 신호를 기반으로 이진레벨신호를 생성한다. 신호처리부(20)는 획득한 제3 신호(단계(S400)을 통해 획득한 Shannon Energy Envelop 신호)에 저역 통과 필터(low-pass filter)를 적용하여 적응적 임계치인 제2 임계치를 생성한다.
도 11의 (c)에 점선으로 표시된 선이 제2 임계치를 나타낸다. 임계치를 단순히 상수 값으로 정의하지 않고 저역 통과 필터를 적용한 적응적 임계치를 이용함으로써, 진폭이 R파만큼 높은 T파 또는 P파를 R파로 잘못 검출하거나 기저선(baseline)에 근접하게 생긴 노이즈 신호를 QRS파로 검출하는 오류를 감소시킬 수 있다. 즉, 제2 임계치는 입력된 제2 신호의 진폭 및 형상에 따라 적응적으로 생성되므로 상수 값으로 지정된 임계치에 비해 오차율을 낮출 수 있다.
여기서 제2 임계치를 기준으로 임계치보다 높은 신호에 대해서는 1을 할당하고, 임계치보다 낮은 신호에 대해서는 0을 할당하여 QRS 구간을 이진레벨신호로 변환한다. 이에 따르면, 도 11의 (d)에 도시된 것처럼 QRS파에 대응되는 이진레벨신호가 생성된다. 이진레벨신호가 1인 구간에서 심전도 신호의 최대값을 R 피크로 정의한다.
이어서, 구간 내 검출된 R 피크들의 간격을 계산하여 재탐색 여부를 판단하는 단계가 수행된다(S600). 신호처리부(20)는 구간 내 검출된 R 피크 간의 시차가 임계치 이상인 경우, 해당 구간에 대하여 상기 제2 신호를 획득하는 단계(S300)부터 반복할 수 있다.
통상적으로, 심장 질환이 없는 성인의 정상 심장 박동을 고려하면, R 피크 간의 시차가 300ms 이하에서 1500ms 이상이 될 가능성은 희박하기 때문에, 검출된 R피크 간의 시차를 계산한 결과 300ms 내지 1500ms 범위에 포함되지 않는 경우 R 피크의 검출이 오검출 되거나 또는 누락된 것으로 판단할 수 있다. 즉, R 피크 간의 시차를 심장박동수(Heart rate)로 변환하여 다시 말하자면, 심장박동수가 40bpm 내지 200bpm 범위에 포함되지 않은 경우, 해당 구간에 대하여 R 피크를 검출하는 과정을 반복함으로써 R 피크 검출의 정확도를 향상시킬 수 있다.
R 피크 간의 시차는 60,000(밀리세컨드)을 R 피크 간의 시차로 나누어 심장박동수 (bpm)로 변환할 수 있으므로, R피크 간의 시차가 300ms일 때, 60000/300=200으로, 심장박동수는 200bpm이 되며, R피크 간의 시차가 1500ms 일 때, 60000/1500=40으로, 심장박동수는 40bpm이 된다.
보다 상세하게는, 도 4의 알고리즘에 도시된 것처럼, 현재 R 피크의 시간적 위치에서 이전에 검출한 R 피크의 시간적 위치를 뺀 값을 계산하여 R-R 피크의 주기를 산출하고, 추출된 R-R 간격이 임계치(예를 들어, 300ms부터 1500ms) 이내라면 재검출이 필요한 구간의 심전도 신호를 세그멘테이션(segmentation)하여 해당 구간에 대해 돌연 피크 제거 단계부터 신호 처리를 반복한다.
도 12는 (a)실시예에 따른 알고리즘을 적용하지 않고 R 피크를 검출한 경우와 (b)실시예에 따른 알고리즘을 적용한 후 R 피크를 검출한 경우를 비교한 결과를 나타낸다. (a)에서 알 수 있듯이 동적 활동 중에는 기저선 변동이나 돌연 피크의 발생으로 인해 R 피크의 검출 정확도가 떨어지게 되는데, (b)와 같이 본 발명의 알고리즘을 적용하면 검출 정확도가 대폭 향상됨을 알 수 있다.
다시 도 3을 참조하면, R 피크 정보 산출부(30)는 신호 처리부(20)에 의해 검출된 R 피크로부터 여러 가지 R 피크 정보를 산출하는 기능을 수행한다. 예를 들어, R 피크 간의 간격으로부터 심박수(heart rate)를 측정할 수 있고, R 피크의 크기 정보를 수치로 환산하여 산출할 수 있다. 나아가, R 피크 정보를 분석하여 사용자의 심장 건강 상태를 분석하거나 데이터베이스에 저장된 적합한 대응안을 로드할 수 있다.
출력부(40)는 R 피크 정보 산출부(30)에서 산출한 수치 정보나 사용자의 심장 건강 상태에 관한 정보를 디스플레이 등의 출력장치로 출력하는 역할을 수행한다. 사용자는 출력된 정보로부터 R 피크 정보(간격, 크기, 심박수 등)나 심장 건강 정보를 획득할 수 있다.
실시예에 따른 R 피크 검출 방법은, 애플리케이션으로 구현되거나 다양한 컴퓨터 구성요소를 통하여 수행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다.
컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령어를 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다.
이상에서 설명한 신호 처리 방법과 이를 구현하기 위한 시스템에 의하면, 모바일 환경에서 심전도 신호 측정 시 사용자의 움직임으로 인해 발생하는 기저선 변동 및 돌연 피크를 교정하고, QRS 구간을 강조하여 R 피크 검출을 용이하게 만들고, 부정 오류(false negative)를 감소시켜 R 피크의 검출 정확도를 향상시킬 수 있다. 그러나 외부 환경에서 동적 활동을 수행하는 상황에만 한정되는 것은 아니며 정적인 환경에서도 운동 외 다른 요인으로 발생하는 노이즈를 제거하기 위해 이용될 수 있다.
이상에서는 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
10: 센서부
20: 신호처리부
30: R 피크 정보 산출부
40: 출력부

Claims (11)

  1. 센서로부터 착용자의 심전도 신호를 수신하는 단계;
    상기 심전도 신호의 기저선 변동(baseline drift)을 교정하여 제1 신호를 획득하는 단계;
    상기 제1 신호에서 착용자의 움직임으로 인해 발생하는 돌연 피크(abrupt peak)의 진폭을 수정하여 제2 신호를 획득하는 단계;
    상기 제2 신호의 QRS 구간을 강조하여 제3 신호를 획득하는 단계; 및
    상기 제3 신호에서 임계치 이상의 진폭을 갖는 피크를 R 피크로서 검출하는 단계를 포함하는, 모바일 환경에서 심전도 R 피크를 검출하는 방법.
  2. 제1항에 있어서,
    상기 돌연 피크(abrupt peak)의 진폭을 수정하는 단계는,
    상기 심전도 신호의 진폭
    Figure pat00011
    을 획득하는 단계;
    상기 진폭 m(t)이 임계치 th(t) 이상인 경우 상기 진폭을 임계치로 변경하고, 상기 진폭이 임계치보다 작은 경우 상기 진폭을 변경하지 않음으로써 수정 진폭 M filt (t)을 획득하는 단계를 포함하는 것을 특징으로 하는, 모바일 환경에서 심전도 R 피크를 검출하는 방법.
  3. 제2항에 있어서,
    상기 임계치 th(t)은, 상기 심전도 신호의 진폭에 대역 통과 필터(band-pass filter)를 적용한 필터링 진폭인 m filt (t)과, 상기 필터링 진폭의 평균인
    Figure pat00012
    에 파라미터인 δ를 곱한 값을 합하여 결정되는 것을 특징으로 하는, 모바일 환경에서 심전도 R 피크를 검출하는 방법.
  4. 제3항에 있어서,
    상기 파라미터 δ는, 상기 제2 신호의 표준편차 및 상기 심전도 신호와 제2 신호의 스펙트럼 밀도의 상관계수에 기초하여 결정되는 것을 특징으로 하는, 모바일 환경에서 심전도 R 피크를 검출하는 방법.
  5. 제1항에 있어서,
    상기 심전도 신호의 QRS 구간을 강조하는 단계는,
    상기 심전도 신호의 섀넌 에너지(Shannon energy)를 계산하는 단계; 및
    상기 섀년 에너지 그래프에 스무딩 필터를 적용하여 포락선 그래프인 제3 신호를 획득하는 단계를 포함하는 것을 특징으로 하는, 모바일 환경에서 심전도 R 피크를 검출하는 방법.
  6. 제5항에 있어서,
    상기 제3 신호에서 임계치 이상의 진폭을 갖는 피크를 R 피크로서 검출하는 단계는,
    상기 제3 신호에 저역 통과 필터(law-pass filter)를 적용하여 적응적 임계치를 생성하는 단계;
    상기 제3 신호의 진폭 중 상기 적응적 임계치보다 높은 값에 대해서는 1을 할당하고, 상기 적응적 임계치보다 낮은 값에 대해서는 0을 할당하여 이진레벨신호를 생성하는 단계; 및
    상기 이진레벨신호가 1인 구간에서의 심전도 신호의 최대값을 R 피크로 검출하는 단계를 포함하는 것을 특징으로 하는, 모바일 환경에서 심전도 R 피크를 검출하는 방법.
  7. 제1항에 있어서,
    상기 심전도 신호의 기저선 변동(baseline drift)을 교정하는 단계는,
    상기 심전도 신호에 1차원 중앙값 필터(1-dimensional medial filter)를 적용하는 단계를 포함하는 것을 특징으로 하는, 모바일 환경에서 심전도 R 피크를 검출하는 방법.
  8. 제1항에 있어서, 상기 방법은,
    구간 내 검출된 R 피크 간의 시차가 임계치 이상인 경우, 해당 구간에 대하여 상기 제2 신호를 획득하는 단계를 반복하는 것을 특징으로 하는, 모바일 환경에서 심전도 R 피크를 검출하는 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 모바일 환경에서 심전도 R 피크를 검출하는 방법을 구현하기 위한, 컴퓨터로 판독 가능한 기록매체에 저장된 컴퓨터 프로그램.
  10. 사용자의 심전도 신호를 수신하는 센서부;
    제1항 내지 제8항 중 어느 한 항에 따른 심전도 R 피크를 검출하는 방법에 따라 심전도 신호를 처리하여 R 피크를 검출하는 신호처리부;
    상기 검출된 R 피크로부터 R 피크 정보를 산출하는 R 피크 정보 산출부; 및
    상기 R 피크 정보를 출력하는 출력부를 포함하는 모바일 심전도 측정 장치로서,
    상기 신호 처리부는,
    상기 심전도 신호의 기저선 변동(baseline drift)을 교정하여 제1 신호를 획득하고,
    상기 제1 신호에서 착용자의 움직임으로 인해 발생하는 돌연 피크(abrupt peak)의 진폭을 수정하여 제2 신호를 획득하고,
    상기 제2 신호의 QRS 구간을 강조하여 제3 신호를 획득하고,
    상기 제3 신호에서 임계치 이상의 진폭을 갖는 피크를 R 피크로서 검출하는 것을 특징으로 하는, 모바일 환경에서 심전도 R 피크를 검출하기 위한 시스템.
  11. 제10항에 있어서,
    상기 R 피크 정보는, R 피크의 시간적 위치에 기초한 심박수 또는 R 피크의 크기 정보를 포함하는 것을 특징으로 하는, 모바일 환경에서 심전도 R 피크를 검출하기 위한 시스템.
KR1020180101299A 2018-08-28 2018-08-28 모바일 환경에서 심전도 r 피크를 검출하기 위한 방법 및 이를 구현하기 위한 시스템 KR102165205B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180101299A KR102165205B1 (ko) 2018-08-28 2018-08-28 모바일 환경에서 심전도 r 피크를 검출하기 위한 방법 및 이를 구현하기 위한 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180101299A KR102165205B1 (ko) 2018-08-28 2018-08-28 모바일 환경에서 심전도 r 피크를 검출하기 위한 방법 및 이를 구현하기 위한 시스템

Publications (2)

Publication Number Publication Date
KR20200024518A true KR20200024518A (ko) 2020-03-09
KR102165205B1 KR102165205B1 (ko) 2020-10-13

Family

ID=69802082

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180101299A KR102165205B1 (ko) 2018-08-28 2018-08-28 모바일 환경에서 심전도 r 피크를 검출하기 위한 방법 및 이를 구현하기 위한 시스템

Country Status (1)

Country Link
KR (1) KR102165205B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113576414A (zh) * 2021-08-02 2021-11-02 武汉中旗生物医疗电子有限公司 一种突变信号识别方法、定位方法及装置
KR20220042908A (ko) * 2020-09-28 2022-04-05 한국전자통신연구원 적응적 메디안 필터를 이용한 심전도 신호의 r 피크 검출 장치 및 방법
GB2601177A (en) * 2020-11-23 2022-05-25 Prevayl Innovations Ltd Method and system for detecting peaks in a signal indicative of a heartrate
CN115886834A (zh) * 2022-11-11 2023-04-04 研祥智慧物联科技有限公司 Ecg的心电数据波峰检测方法、装置及计算机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539534A (ja) * 2006-06-16 2009-11-19 ブール,フランク カルジオグラフ測定値の分析及び使用
KR20140041327A (ko) * 2012-09-27 2014-04-04 삼성전자주식회사 심전도 신호의 qrs 파 결정 방법 및 시스템
KR20160107390A (ko) * 2015-03-03 2016-09-19 주식회사 쇼미미디어앤트레이딩 심전도 신호 측정장치
KR20180076807A (ko) 2016-12-28 2018-07-06 최재원 스마트폰을 이용한 부정맥 진단 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539534A (ja) * 2006-06-16 2009-11-19 ブール,フランク カルジオグラフ測定値の分析及び使用
KR20140041327A (ko) * 2012-09-27 2014-04-04 삼성전자주식회사 심전도 신호의 qrs 파 결정 방법 및 시스템
KR20160107390A (ko) * 2015-03-03 2016-09-19 주식회사 쇼미미디어앤트레이딩 심전도 신호 측정장치
KR20180076807A (ko) 2016-12-28 2018-07-06 최재원 스마트폰을 이용한 부정맥 진단 시스템

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220042908A (ko) * 2020-09-28 2022-04-05 한국전자통신연구원 적응적 메디안 필터를 이용한 심전도 신호의 r 피크 검출 장치 및 방법
US11730417B2 (en) 2020-09-28 2023-08-22 Electronics And Telecommunications Research Institute Apparatus and method for detecting R peak of ECG signal using adaptive median filter
GB2601177A (en) * 2020-11-23 2022-05-25 Prevayl Innovations Ltd Method and system for detecting peaks in a signal indicative of a heartrate
CN113576414A (zh) * 2021-08-02 2021-11-02 武汉中旗生物医疗电子有限公司 一种突变信号识别方法、定位方法及装置
CN115886834A (zh) * 2022-11-11 2023-04-04 研祥智慧物联科技有限公司 Ecg的心电数据波峰检测方法、装置及计算机设备

Also Published As

Publication number Publication date
KR102165205B1 (ko) 2020-10-13

Similar Documents

Publication Publication Date Title
Smital et al. Real-time quality assessment of long-term ECG signals recorded by wearables in free-living conditions
KR102165205B1 (ko) 모바일 환경에서 심전도 r 피크를 검출하기 위한 방법 및 이를 구현하기 위한 시스템
US9042973B2 (en) Apparatus and method for measuring physiological signal quality
Dohare et al. An efficient new method for the detection of QRS in electrocardiogram
Sharma et al. A robust QRS detection using novel pre-processing techniques and kurtosis based enhanced efficiency
JP6121177B2 (ja) ソースビデオ画像から動脈拍動経過時間を導出すること
Sameni et al. A nonlinear Bayesian filtering framework for ECG denoising
JP6557219B2 (ja) 生理信号を処理する処理装置、処理方法及びシステム
JP6310401B2 (ja) 生理的リズムを表す信号を処理する方法、システム及びコンピュータプログラム
Bashar et al. VERB: VFCDM-based electrocardiogram reconstruction and beat detection algorithm
Arunachalam et al. Real-time estimation of the ECG-derived respiration (EDR) signal using a new algorithm for baseline wander noise removal
US20220110590A1 (en) System and Method for Assessing Physiological Signal Quality
KR101366101B1 (ko) 개인별 ecg 신호의 정상 신호 분류 시스템 및 방법
JP2017533034A (ja) アクティグラフィ方法及び装置
Lepine et al. Robust respiration rate estimation using adaptive Kalman filtering with textile ECG sensor and accelerometer
JP7170147B2 (ja) 非一時的なコンピュータ可読記憶媒体、コンピュータ実装方法及びシステム
Lewandowski et al. A simple real-time QRS detection algorithm utilizing curve-length concept with combined adaptive threshold for electrocardiogram signal classification
Kong et al. Heart rate tracking using a wearable photoplethysmographic sensor during treadmill exercise
CN117271977B (zh) 一种hrv数据预处理方法、装置及电子设备
Smaoui et al. Single scale CWT algorithm for ECG beat detection for a portable monitoring system
KR101941172B1 (ko) 생체 신호의 피크를 검출하는 임계값 제어 방법 및 장치.
KR102551184B1 (ko) 생체신호 처리 방법 및 생체신호 처리 장치
EP3014501B1 (en) Measuring respiration
Xie et al. Heart rate estimation from ballistocardiogram using hilbert transform and viterbi decoding
Mansourian et al. Fetal QRS extraction from single-channel abdominal ECG using adaptive improved permutation entropy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant