KR20200022931A - Diesel engine exhaust nitrogen oxide storage catalyst system and nitrogen oxide reduction method using the same - Google Patents

Diesel engine exhaust nitrogen oxide storage catalyst system and nitrogen oxide reduction method using the same Download PDF

Info

Publication number
KR20200022931A
KR20200022931A KR1020180099160A KR20180099160A KR20200022931A KR 20200022931 A KR20200022931 A KR 20200022931A KR 1020180099160 A KR1020180099160 A KR 1020180099160A KR 20180099160 A KR20180099160 A KR 20180099160A KR 20200022931 A KR20200022931 A KR 20200022931A
Authority
KR
South Korea
Prior art keywords
ozone
nitrogen oxide
occlusion
catalyst
storage catalyst
Prior art date
Application number
KR1020180099160A
Other languages
Korean (ko)
Other versions
KR102125201B1 (en
Inventor
이대원
이관영
이진수
Original Assignee
강원대학교산학협력단
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단, 고려대학교 산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020180099160A priority Critical patent/KR102125201B1/en
Publication of KR20200022931A publication Critical patent/KR20200022931A/en
Application granted granted Critical
Publication of KR102125201B1 publication Critical patent/KR102125201B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/38Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ozone (O3) generator, e.g. for adding ozone after generation of ozone from air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention provides a diesel engine emission nitrogen oxide absorbing catalyst system and a nitrogen oxide reduction method using the same which can efficiently reduce nitrogen oxide emitted by a diesel engine. According to the present invention, the absorbing catalyst system comprises: an atmospheric-pressure low-temperature plasma reactor to supply ozone produced by an oxidizing reaction of oxygen or air; and an absorbing catalyst reactor which is filled with an absorbing catalyst containing one or more elements among alkali earth metals, and uses ozone supplied to the atmospheric-pressure low-temperature plasma reactor to absorb nitrogen oxide contained in emission gas of a diesel engine. The ozone is supplied one or more times than the nitrogen oxide.

Description

디젤엔진 배출 질소산화물 흡장 촉매 시스템 및 이를 이용한 질소산화물 저감 방법{Diesel engine exhaust nitrogen oxide storage catalyst system and nitrogen oxide reduction method using the same}Diesel engine exhaust nitrogen oxide storage catalyst system and nitrogen oxide reduction method using the same}

본 발명은 디젤엔진 배출 질소산화물 흡장 촉매 시스템 및 이를 이용한 질소산화물 제거 방법에 관한 것이다. The present invention relates to a diesel engine exhaust nitrogen oxide storage catalyst system and a nitrogen oxide removal method using the same.

디젤자동차 엔진에서 배출되는 질소산화물 (NOx) 저감기술은 Urea에서 분해된 암모니아를 질소산화물의 환원제로 사용하는 Urea-SCR (Urea-Selective Catalytic Reduction, 요소첨가 선택적 촉매환원반응)이 일반적으로 가장 많이 적용되고 있다. Nitrogen oxide (NO x ) abatement technology from diesel engines is the most common with Urea-SCR (Urea-Selective Catalytic Reduction), which uses ammonia decomposed from Urea as a reducing agent for nitrogen oxides. Is being applied.

이 방식은 200℃의 낮은 온도범위에서도 효과적인 NOx 제거성능을 보여 가장 널리 적용되고 있지만, 외부에서 Urea를 지속적으로 공급해야 한다는 점이 가장 본질적인 문제점이라 할 수 있다. This method is the most widely applied because it shows effective NO x removal performance even in the low temperature range of 200 ℃, but the most essential problem is that the continuous supply of urea from the outside.

Urea-SCR 기술이 개발되기 시작한 도입단계부터 경쟁관계에 있었던 Hydrocarbon-SCR 기술은 Urea 대신 탄화수소를 환원제로 활용한 Selective Catalytic Reduction을 원리로 삼고 있는데, 디젤엔진 배출가스가 미연 탄화수소 (Unburned Hydrocarbon) 형태로 탄화수소 성분들을 다량 함유하고 있기 때문에 Urea-SCR처럼 별도의 환원제를 공급할 필요가 없다는 측면에서 Hydrocarbon-SCR은 각광을 받아 왔다. Hydrocarbon-SCR technology, which has been competing since the introduction of Urea-SCR technology, is based on Selective Catalytic Reduction, which uses hydrocarbon as a reducing agent instead of Urea. Hydrocarbon-SCR has been in the spotlight in that it contains a large amount of hydrocarbon components and thus does not need to supply a separate reducing agent such as Urea-SCR.

하지만 환원제가 다르기 때문에 촉매설계가 달라질 수밖에 없고 온도가 500℃ 이상이 되어야 안정적인 NOx 제거성능이 발현되기 때문에 Urea-SCR에 비해 작동온도 범위가 고온에 국한되는 치명적인 문제점을 지니고 있었다.However, due to the different reducing agent, the catalyst design must be different and stable NO x removal performance is expressed only when the temperature is above 500 ° C. Therefore, the operating temperature range is limited to the high temperature compared to Urea-SCR.

이러한 Hydrocarbon-SCR의 한계점을 보완하여 완성된 NOx 저감 기술이 NOx Storage Catalyst(흡장 촉매) 기술이다. (Lean NOx Trap 혹은 NOx Adsorber 라고도 불린다.) 이 기술을 간단히 요약하자면 다음과 같다.The NO x reduction technology completed by supplementing the limitations of the hydrocarbon-SCR is the NO x Storage Catalyst technology. (Also called Lean NO x Trap or NO x Adsorber.) To summarize this technique:

특정온도 (Ex: 300℃) 이하의 저온구간에서는 알카리토금속 산화물 계열의 물질을 이용하여 NOx를 흡착 혹은 저장함으로써 NOx 배출을 막는다. 이 저온구간은 디젤자동차 운전시 엔진에 연료를 상대적으로 적게 공급할 때 조성되므로 희박 운전 (Lean operation) 구간이라고 불린다. 자동차 운전상태에 따라 배출가스 온도가 특정온도 (Ex: 300℃) 이상에 이르게 되면, 엔진에 상대적으로 많은 연료를 인위적으로 공급하여 배출가스 온도를 500℃ 근방까지 올리고 미연 탄화수소 (Unburned Hydrocarbon)의 양을 늘림으로써 Hydrocarbon-SCR 촉매가 정상적으로 작동할 수 있는 조건을 조성한다. 이 운전구간은 ‘Rich operation’ 구간이라 불린다. 이렇게 Rich operation에 의해 배출가스 온도가 높아지게 되면 Lean Operation 구간에서 흡착되었던 NOx가 한꺼번에 탈착되어 나오지만, Hydrocarbon-SCR 촉매가 높은 성능을 보일 수 있는 온도와 조성 조건이 형성되어 있기 때문에 NOx 저감이 효과적으로 진행되어 NOx 배출량을 줄이게 된다. 이렇게 NOx Storage Catalyst 작동을 위한 엔진의 작동기술을 ‘Lean-Rich Operation’이라고 부른다.Specific temperature (Ex: 300 ℃) in the low temperature region of below using the materials of the alkaline earth metal oxide based block the NO x emissions by adsorbing or storing NO x. This low temperature section is called a lean operation section because it is created when a diesel vehicle is supplied with a relatively small amount of fuel. When the exhaust gas temperature reaches a certain temperature (Ex: 300 ℃) according to the driving condition of the vehicle, artificially supplying a large amount of fuel to the engine to raise the exhaust gas temperature to around 500 ℃, the amount of unburned hydrocarbons Increasing the value of, creates conditions for the hydrocarbon-SCR catalyst to operate normally. This driving section is called 'rich operation' section. When the exhaust gas temperature is increased by the rich operation, NO x adsorbed in the Lean Operation section is desorbed at once, but NO x reduction is effective because the temperature and composition conditions for the hydrocarbon-SCR catalyst are formed. Proceeds to reduce NO x emissions. The engine operating technology for NO x Storage Catalyst operation is called 'Lean-Rich Operation'.

설명한 NOx Storage Catalyst 기술은 Urea-SCR 과 함께 자동차 질소산화물 배출가스 저감기술 시장을 양분하고 있다고 해도 과언이 아니다.It is no exaggeration to say that the NO x Storage Catalyst technology, along with Urea-SCR, divides the automotive NOx emission reduction technology market.

여기서 NOx Storage Catalyst의 성능을 결정하는 기술적 요소로는 Hydrocarbon-SCR 촉매의 NOx 환원성능과 함께, Lean Operation 구간 즉 저온구간에서 NOx를 최대한 많이 흡착시킬 수 있는 흡착제 혹은 흡착시스템의 성능을 들 수 있다.The technical factors that determine the performance of the NO x Storage Catalyst include the NO x reduction performance of the hydrocarbon-SCR catalyst and the performance of the adsorbent or adsorption system capable of adsorbing NO x as much as possible in the Lean Operation section. Can be.

현재 상용화되어 있는 NOx Storage Catalyst 시스템들은 다양한 조성과 구조의 촉매들을 채택하고 있지만 대체로 귀금속과 알칼리토금속 산화물로 구성되어 있다. Currently commercially available NO x Storage Catalyst systems employ catalysts of various compositions and structures, but are generally composed of noble and alkaline earth oxides.

여기서, 백금 촉매(Pt)로 대표되는 귀금속은 아래와 같이, NO를 NO2로 산화시키는 역할을 한다. Here, the noble metal represented by platinum catalyst (Pt) serves to oxidize NO to NO 2 as follows.

[반응식 1]Scheme 1

Figure pat00001
Figure pat00001

또한, BaO로 대표되는 알칼리토금속 산화물은 아래와 같이, NO2와 반응하여 질산염(Nitrate) 형태로 변화됨으로써 NOx를 저장한다. In addition, alkaline earth metal oxides represented by BaO are stored in the form of nitrate (Nitrate) by reacting with NO 2 as shown below to store NO x .

[반응식 2]Scheme 2

Figure pat00002
Figure pat00002

그러나, 최근 디젤자동차에 의한 대기오염 문제가 심각한 수준에 이르고 있어 이러한 귀금속 및 알칼리토금속 산화물을 이용하는 흡장촉매 시스템에서 NOx의 흡장량을 더욱 높이기 위한 방안이 요구되고 있는 실정이다. However, since the air pollution problem caused by diesel vehicles has recently reached a serious level, there is a demand for a method to further increase the amount of NO x occluded in the storage catalyst system using the noble metal and alkaline earth metal oxide.

한국등록특허 10-1863940Korea Patent Registration 10-1863940

상기한 종래기술의 문제점을 해결하기 위해, 디젤엔진이 배출하는 질소산화물을 효율적으로 저감할 수 있는 흡장촉매 시스템 및 이를 이용한 질소산화물 저감 방법을 제안하고자 한다. In order to solve the above problems of the prior art, it is intended to propose a storage catalyst system and a method for reducing nitrogen oxide using the same, which can efficiently reduce nitrogen oxide discharged from a diesel engine.

상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따르면, 산소 또는 공기의 산화 반응을 통해 생성된 오존을 공급하는 상압 저온 플라즈마 반응기; 및 알칼리 토금속들 중 하나 이상의 원소를 포함하는 흡장촉매가 충진되며, 상기 상압 저온 플라즈마 반응기로 공급되는 오존을 이용하여 디젤엔진 배출가스에 포함된 질소산화물을 흡장하는 흡착촉매 반응기를 포함하되, 상기 오존은 상기 질소산화물 대비 1배 이상 공급되는 흡장촉매 시스템이 제공된다. In order to achieve the above object, according to an embodiment of the present invention, the atmospheric pressure low-temperature plasma reactor for supplying ozone generated through the oxidation reaction of oxygen or air; And an adsorption catalyst reactor filled with an occlusion catalyst including one or more elements of alkaline earth metals, and occluding nitrogen oxides contained in a diesel engine exhaust gas using ozone supplied to the atmospheric low temperature plasma reactor. Is provided an occlusion catalyst system that is supplied more than 1 times compared to the nitrogen oxide.

상기 질소산화물과 상기 오존의 양론비는 1:1.5 내지 1:3.5 범위일 수 있다. The stoichiometric ratio of the nitrogen oxide and the ozone may range from 1: 1.5 to 1: 3.5.

상기 흡장촉매는 BaO가 담지된 γ-Al2O3 분말일 수 있다. The occluding catalyst may be γ-Al 2 O 3 powder carrying BaO.

상기 오존의 과량 공급에 따라, 상기 흡장촉매 반응기에서는 아래의 반응이 발생할 수 있다.
According to the excess supply of the ozone, the following reaction may occur in the storage catalyst reactor.

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

상기 NO2, NO3와 N2O5가 상기 흡장촉매 표면에 분포하는 활성점과 반응할 수 있다. 가The NO 2 , NO 3 and N 2 O 5 may react with an active point distributed on the occlusion catalyst surface. end

상기 흡장촉매 반응기 내의 잉여 오존을 제거하는 오존 제거부를 더 포함하되, 상기 오존 제거부는 Mn 계열 촉매가 충진될 수 있다. Further comprising an ozone removal unit for removing excess ozone in the storage catalyst reactor, the ozone removal unit may be filled with Mn-based catalyst.

본 발명의 다른 측면에 따르면, 흡장촉매 시스템을 이용한 디젤엔진 배출 질소산화물 제거 방법으로서, 알칼리 토금속들 중 하나 이상의 원소를 포함하는 흡장촉매를 흡장촉매 반응기에 제공하는 단계; 상기 흡장촉매 반응기 내에 산소 또는 공기의 산화 반응을 통해 생성된 오존을 상기 질소산화물 대비 1배 이상 과량으로 공급하는 단계; 상기 흡장촉매 반응기 내에서 상기 과량으로 공급된 오존을 이용하여 디젤엔진 배출가스에 포함된 질소산화물을 흡장물질 표면에 흡장하는 단계; 및 상기 반응 이후 제거된 오존을 제거하는 단계를 포함하는 디젤엔진 배출 질소산화물 제거 방법이 제공된다. According to another aspect of the present invention, there is provided a diesel engine exhaust nitrogen oxide removal method using a storage catalyst system, comprising: providing a storage catalyst including at least one element of alkaline earth metals to the storage catalyst reactor; Supplying ozone generated through an oxidation reaction of oxygen or air into the storage catalyst reactor in an amount of at least one-time greater than that of the nitrogen oxides; Occluding the nitrogen oxide contained in the diesel engine exhaust gas on the occlusion material surface by using the ozone supplied in excess in the occlusion catalyst reactor; And it provides a diesel engine exhaust nitrogen oxide removal method comprising the step of removing the ozone removed after the reaction.

본 발명에 따르면, 오존을 과량 공급함으로써 디젤엔진 배출 질소산화물 저감 효율을 높일 수 있는 장점이 있다. According to the present invention, by supplying an excessive amount of ozone there is an advantage that can increase the diesel engine emission nitrogen oxide reduction efficiency.

도 1은 본 발명의 일 실시예에 따른 NOx 흡장실험 절차를 도시한 도면이다.
도 2는 1000 ppm NO + 10% 산소 + 질소 분위기, 200 mL/min에서 NO 흡장실험 결과를 나타낸 도면이다.
도 3은 1000 ppm NO + 1000 ppm 오존 + 10% 산소 + 질소 분위기, 200 mL/min, NO : 오존 = 1:1에서의 NO 흡장실험 결과를 나타낸 도면이다.
도 4는 1000 ppm NO + 1500 ppm 오존 + 10% 산소 + 질소 분위기, 200 mL/min, NO : 오존 = 1:1.5에서의 NO 흡장실험 결과를 나타낸 도면이다.
도 5는 1000 ppm NO + 3500 ppm 오존 + 10% 산소 + 질소 분위기, 200 mL/min, NO : 오존 = 1:3.5에서의 NO 흡장실험 결과를 나타낸 도면이다.
도 6은 1000 ppm NO + 3500 ppm 오존 + 10% 산소 + 질소 분위기, 200 mL/min, NO : 오존 = 1:3.5, 10wt.% BaO/Al2O3 흡장후 배출되는 오존을 분해하기 위한 촉매반응 실험을 나타낸 도면이다.
도 7은 본 발명의 일 실시예에 따른 흡장촉매 시스템의 구성을 도시한 도면이다.
1 is a view showing a NO x occlusion experiment procedure according to an embodiment of the present invention.
Figure 2 is a diagram showing the results of the NO occlusion experiment at 1000 ppm NO + 10% oxygen + nitrogen atmosphere, 200 mL / min.
3 is a view showing the results of the NO occlusion experiment at 1000 ppm NO + 1000 ppm ozone + 10% oxygen + nitrogen atmosphere, 200 mL / min, NO: ozone = 1: 1.
4 is a view showing the results of the NO occlusion experiment at 1000 ppm NO + 1500 ppm ozone + 10% oxygen + nitrogen atmosphere, 200 mL / min, NO: ozone = 1: 1.5.
5 is a view showing the results of the NO occlusion experiment at 1000 ppm NO + 3500 ppm ozone + 10% oxygen + nitrogen atmosphere, 200 mL / min, NO: ozone = 1: 3.5.
6 is 1000 ppm NO + 3500 ppm ozone + 10% oxygen + nitrogen atmosphere, 200 mL / min, NO: ozone = 1: 3.5, 10wt.% BaO / Al 2 O 3 catalyst for decomposing ozone discharged after occlusion A diagram showing a reaction experiment.
7 is a view showing the configuration of the storage catalyst system according to an embodiment of the present invention.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.As the present invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description.

그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.

본 발명은 디젤엔젠 배출 질소산화물 저감을 위해, 촉매로 귀금속 및 알칼리토금속 산화물을 사용하는 흡장촉매 시스템(NOx Storage System)에서 오존을 첨가하여 질소산화물 저감 효율을 높이고자 한다. The present invention is to increase the NOx reduction efficiency by adding ozone in the NO x Storage System using a noble metal and alkaline earth metal oxide as a catalyst for the reduction of diesel engine emissions NOx.

본 실시예에 따른 흡장촉매 시스템에서 오존을 적용하게 되며, 아래와 같이 NO와 오존이 반응하여 NO를 NO2로 전환시킬 수 있다. Ozone is applied in the occlusion catalyst system according to the present embodiment, and NO and ozone may react to convert NO into NO 2 as follows.

[반응식 3]Scheme 3

Figure pat00006
Figure pat00006

이는 기존 흡장촉매 시스템에서 귀금속 촉매 성분에 의한 반응식 1에서의 기능을 오존이 일부 대체할 수 있음을 의미한다. This means that ozone may partially replace the function in Scheme 1 by the precious metal catalyst component in the existing occlusion catalyst system.

오존 적용의 장점은 값비싼 귀금속의 기능을 일부 대체할 수 있는 것 외에도, 상온 근처의 매우 낮은 온도(예를 들어, 엔진 시동구간)에서도 NOx를 흡장할 수 있다는 것이다. The advantage of ozone applications is that in addition to replacing some of the functions of expensive precious metals, they can also occlude NO x even at very low temperatures near room temperature (eg engine starting section).

귀금속에 의한 NO의 NO2로의 산화반응은 통상적으로 250℃부터 50% 내외의 전환율을 보이기 시작하지만, 오존에 의한 NO의 NO2로의 산화반응은 상온에서 100% 전환율을 나타낸다.Oxidation of NO to NO 2 by noble metals usually begins to show a conversion rate of around 50% from 250 ° C., but oxidation of NO to NO 2 by ozone shows 100% conversion at room temperature.

따라서, 본 실시예에 따른 흡장촉매 시스템에서 오존 분사장치가 적용됨에 따라 NO의NO2로의 산화반응은 온도 조건과 무관하게 진행될 수 있다. Therefore, as the ozone injection device is applied in the occlusion catalyst system according to the present embodiment, the oxidation of NO to NO 2 may proceed regardless of the temperature condition.

본 발명의 바람직한 일 실시예에 따르면, 반응식 3에서 NO와 오존을 1:1 양론비로 공급하는 경우에도 일정 수준의 NOx 흡장량을 달성할 수 있으나, 오존의 과량으로 공급하는 경우에 NOx 흡장량이 크게 증가할 수 있다는 점을 확인하였다. According to an exemplary embodiment of the present invention, even when supplying NO and ozone in a ratio of 1: 1 stoichiometric ratio in Scheme 3, it is possible to achieve a certain level of NO x occlusion, but when supplying in excess of ozone, NO x occlusion It was confirmed that the amount could increase significantly.

오존이 과량의 농도로 반응에 참여하게 되면, 앞서 반응식 3의 화학반응 외에 아래와 같은 반응이 진행될 수 있다. When ozone participates in the reaction at an excessive concentration, the following reaction may proceed in addition to the chemical reaction of Scheme 3 above.

[반응식 4]Scheme 4

Figure pat00007
Figure pat00007

이렇게 생성된 NO3는 다시 NO2와 반응하여 N2O5를 생성할 수 있다. The NO 3 thus generated may react with NO 2 again to generate N 2 O 5 .

[반응식 5]Scheme 5

Figure pat00008
Figure pat00008

바람직하게, 오존의 생성 효율을 고려하여 오존은 NOx 농도 대비 1.5 내지 3.5 배 범위로 공급될 수 있다. Preferably, in consideration of the production efficiency of ozone, ozone may be supplied in the range of 1.5 to 3.5 times the NO x concentration.

이러한 오존 과량 적용에 따라 생성된 NO3와 N2O5는 NO2보다 불안정하고 반응성이 높기 때문에 알칼리토금속 산화물(예를 들어, BaO2)의 흡장 물질 표면에 분포하고 있는 다양한 활성점들과 반응하여 저장될 수 있다.
Since NO 3 and N 2 O 5 produced by this ozone excess application are more unstable and more reactive than NO 2 , they react with various active sites distributed on the surface of the occlusion material of alkaline earth metal oxides (eg, BaO 2 ). Can be stored.

실시예Example 1:  One: 흡장촉매의Occlusion catalyst 제조 Produce

흡장촉매는 10 중량%의 BaO가 담지된 γ-Al2O3 분말 (10wt.% BaO/Al2O3)을 사용하였으며 아래와 같은 방법을 통해 제조하였다.The occlusion catalyst was used γ-Al 2 O 3 powder (10wt.% BaO / Al 2 O 3 ) loaded with 10% by weight of BaO and was prepared by the following method.

(1) 0.325 g/mL의 Ba(CH3CO2)2 수용액 25 mL를 제조한다. 제시된 수용액의 농도는 Ba(CH3CO2)2가 모두 BaO로 전환되는 것을 가정하고, 해당 수용액이 Al2O3의 Pore 부피를 정확하게 채울 때 BaO가 Al2O3 무게 대비 10 wt.% 담지 되는 것을 고려하여 계산되었다.(1) 25 mL of 0.325 g / mL Ba (CH 3 CO 2 ) 2 aqueous solution is prepared. The concentration of the aqueous solution is set forth Ba (CH 3 CO 2) 2, when all is assumed to be converted to BaO, the aqueous solution is exactly fill a Pore volume of Al 2 O 3 BaO is Al 2 O 3 It was calculated taking into account 10 wt.% Loading by weight.

(2) 3g의 Al2O3(PoreVolume:mL/g =1.56 mL)에 Ba(CH3CO2)2수용액을 2~3 방울 씩 적하하고, 젖은 Powder를 적당히 Stirring 하여 수용액을 완전히 흡수시킨다.(2) Add 2 ~ 3 drops of Ba (CH 3 CO 2 ) 2 solution to 3g Al 2 O 3 (PoreVolume: mL / g = 1.56 mL), and stir the wet powder to absorb the solution completely.

(3) 담지 종료 후 공기 조건, 120℃에서 6시간 동안 건조한다.(3) After the completion of the loading, air conditions are dried at 120 ° C. for 6 hours.

(4) 건조 후 공기 조건, 600℃에서 3시간 동안 소성한다.
(4) After drying, firing was carried out for 3 hours at 600 ° C under air conditions.

실시예Example 2:  2: 흡장실험Occlusion experiment

도 1에 도시된 바와 같이, 본 실시예에 따른 흡장실험은 아래와 같은 절차를 통해 진행하였다. As shown in Figure 1, the occlusion experiment according to this embodiment was carried out through the following procedure.

(1) 50 mg의 흡장촉매를 석영 재질의 흐름식 고정층 반응기에 충전한다.(1) 50 mg of the occlusion catalyst is charged into a flow-type fixed bed reactor made of quartz.

(2) 질소 200 mL/min을 흘리면서 고정층의 온도를 150℃까지 상승시킨다.(2) The temperature of the fixed bed is raised to 150 ° C while flowing 200 mL / min of nitrogen.

(3) 온도가 150℃에서 안정되면 1000 ppm NO 와 0, 1000, 2500 혹은 3500 ppm 오존과 10% 산소를 혼합한 질소 분위기의 기체혼합물을 200 mL/min의 유속으로 흘리면서 NOx를 흡착시킨다.(3) When the temperature is stable at 150 ° C, adsorb NO x while flowing a gas mixture in a nitrogen atmosphere containing 1000 ppm NO and 0, 1000, 2500 or 3500 ppm ozone and 10% oxygen at a flow rate of 200 mL / min.

(4) NOx 흡착이 포화되어 평형에 도달한 것이 확인되면 동일 온도에서 질소 200 mL/min을 흘리면서 흡착제 표면에 잉여로 물리화학 흡착되어 있는 NOx를 제거한다.(4) When NO x adsorption is found to be saturated and reached equilibrium, remove excess NO x adsorbed on the adsorbent surface by flowing 200 mL / min of nitrogen at the same temperature.

(5) 질소 200 mL/min을 흘리는 상태에서 150에서 800℃까지 5℃/분으로 온도를 높이면서 화학흡착된 NOx를 탈착시킨다.(5) While adsorbing 200 mL / min of nitrogen, desorb the chemisorbed NO x while increasing the temperature from 150 to 800 ° C at 5 ° C / min.

모든 과정에서 NOx의 농도는 Chemilunescence NOx Analyzer (Thermo Fisher 42i-HL)를 이용하여 연속 측정하였으며, NOx 흡착량은 탈착된 NOx의 총량을 흡착제 중량으로 나누어 계산하였다.
The NO x concentration was measured continuously using the Chemilunescence NO x Analyzer (Thermo Fisher 42i-HL), and the NO x adsorption amount was calculated by dividing the total amount of desorbed NO x by the adsorbent weight.

실시예Example 3: 1000  3: 1000 ppmppm NONO + 산소 10%  + Oxygen 10% 흡장실험Occlusion experiment (오존이 공급되지 않을 때) (When ozone is not supplied)

도 2는 1000 ppm NO와 10% 산소만이 공급되었을 때의 흡장실험 결과를 나타낸 것이다. 즉, 이 실험에서는 오존을 공급하지 않았다. Figure 2 shows the results of the occlusion test when only 1000 ppm NO and 10% oxygen is supplied. That is, ozone was not supplied in this experiment.

도 2에 나타난 바와 같이, NO 흡장이 10분 만에 완료되어 (NO 1000 ppm에 10분 내에 도달하여 흡착이 평형에 도달하여) 흡장과정을 50분이 지난 후 종료하였다.As shown in FIG. 2, the NO occlusion was completed in 10 minutes (the adsorption reached equilibrium in 10 minutes at NO 1000 ppm), and the occlusion process was completed after 50 minutes.

탈착곡선 (도 2의 아래에 위치한 두 번째 그래프)을 보면 그 크기가 다른 실험에 비해 매우 작음을 확인할 수 있으며 이를 통해 계산된 NOx 흡장량은 6.5 mmol /mg (catalyst)였다.
Desorption curve (second graph below the Figure 2) can be seen that the size is very small compared to other experiments, the calculated NO x occlusion was 6.5 mmol / mg (catalyst).

실시예Example 4: 1000  4: 1000 ppmppm NONO + 1000  + 1000 ppmppm 오존 + 산소 10%  Ozone + oxygen 10% 흡장실험Occlusion experiment (1:1 양론비 오존 공급)(1: 1 stoichiometric ozone supply)

도 3은 1000 ppm NO와 1000 ppm 오존 및 10% 산소가 공급되었을 때의 흡장실험 결과를 나타낸 것이다. Figure 3 shows the results of the occlusion experiment when 1000 ppm NO and 1000 ppm ozone and 10% oxygen is supplied.

NO 흡장에 소요된 시간은 앞선 실시예 3과는 달리 80 분 동안이나 지속되어 보다 많은 양의 질소산화물이 흡장되고 있음을 예측할 수 있다.Unlike the previous example 3, the time required for NO occlusion lasts for 80 minutes, and it can be predicted that a larger amount of nitrogen oxide is occluded.

결과적으로 관찰된 탈착곡선의 크기는 실시예 3보다 월등히 큼을 확인할 수 있으며 계산된 NOx 흡장량은 32.7 mmol /mg (catalyst)로 실시예 3보다 무려 5배가 높았다.
As a result, the observed desorption curve size was much larger than that of Example 3, and the calculated NO x occlusion amount was 32.7 mmol / mg (catalyst), which was five times higher than that of Example 3.

실시예Example 5: 1000  5: 1000 ppmppm NONO + 1500  + 1500 ppmppm 오존 + 산소 10%  Ozone + oxygen 10% 흡장실험Occlusion experiment (1:1.5 (1: 1.5 양론비Concession 오존 공급) Ozone supply)

도 4는 1000 ppm NO와 1500 ppm 오존 및 10% 산소가 공급되었을 때의 흡장실험 결과를 나타낸 것이다. 이 실험은 NO 대비 오존 농도비율이 1:1.5로, 오존이 과량 공급된 사례이다.4 shows the results of the occlusion experiment when 1000 ppm NO, 1500 ppm ozone, and 10% oxygen were supplied. In this experiment, the ozone concentration ratio to NO is 1: 1.5, and the ozone is excessively supplied.

NO 흡장에 소요된 시간은 실시예 4와 유사하게 90분가량 소요되었으며, 탈착곡선에 의하면 실시예 4에서 관찰되지 않은 500℃ 이상의 고온조건에서도 NO가 탈착됨을 보이고 있다. 이는 NOx가 그만큼 더 많이 흡장되었음을 의미하며, NOx Storage 성분에 매칭되는 Hydrocarbon SCR 촉매성능이 보다 고온일수록 NOx 환원에 유리하다는 것을 감안하면, 이는 NOx 저감효율 측면에서 장점이 될 수 있다고 판단된다.The time required for NO occlusion was about 90 minutes, similar to Example 4, and the desorption curve shows that NO was desorbed even at a high temperature of 500 ° C. or higher, which was not observed in Example 4. This is determined to be an advantage in the way, which NO x reduction efficiency side view of that it is advantageous for means and, NO x reduction the more the higher temperature Hydrocarbon SCR catalyst performance to be matched to the NO x Storage component that the NO x storing and much more do.

계산된 NOx 흡장량은 49.2 mmol /mg (catalyst)로 1:1로 오존이 공급된 (실시예 4)보다 약 33% 상승된 수치를 보였다.
The calculated NO x occlusion amount was 49.2 mmol / mg (catalyst), which was about 33% higher than the one supplied with ozone (Example 4).

실시예Example 6: 1000  6: 1000 ppmppm NONO + 3500  + 3500 ppmppm 오존 + 산소 10%  Ozone + oxygen 10% 흡장실험Occlusion experiment (1:3.5 (1: 3.5 양론비Concession 오존 공급) Ozone supply)

도 5는 1000 ppm NO와 3500 ppm 오존 및 10% 산소가 공급되었을 때의 흡장실험 결과를 제시하였다. 이 실험은 NO 대비 오존 농도비율이 1:3.5로 (실시예 5)보다 오존이 40% 더 공급된 사례이다. 5 shows the results of the occlusion experiment when 1000 ppm NO, 3500 ppm ozone, and 10% oxygen were supplied. This experiment is a case where the ozone concentration ratio to NO is 1: 3.5 and 40% more ozone is supplied than (Example 5).

NO 흡장에 소요된 시간은 모든 실시예들 중 가장 긴 130 분이 소요되었으며, 탈착곡선의 크기도 가장 크고 500℃ 이상의 고온조건에서도 탈착되는 NO의 양도 가장 큼을 알 수 있다. The time required for NO occlusion was 130 minutes, which is the longest of all embodiments, and the size of the desorption curve was the largest and the amount of NO desorbed even at a high temperature of 500 ° C. or higher was also the largest.

NOx 흡장량은 53.4 mmol /mg (catalyst) 로 최고 수치를 보였으며 이는 1:1로 오존이 공급된 (실시예 4)보다 63.3% 상승된 수치였다.The NO x occlusion amount was the highest at 53.4 mmol / mg (catalyst), which was 63.3% higher than that of 1: 1 supplied ozone (Example 4).

따라서 (실시예 2~6)을 통해 오존의 공급량을 양론비 이상으로 공급할수록 NOx의 흡장량은 높아지는 것을 확인할 수 있으며, 특히 양론비가 높아질수록 500℃ 이상의 고온조건에서도 NO가 탈착됨을 확인할 수 있다.
Therefore, as shown in (Examples 2 to 6), the supply amount of ozone is higher than the stoichiometric ratio, so that the occlusion amount of NO x is increased. .

실시예Example 7: 1000  7: 1000 ppmppm NONO + 3500  + 3500 ppmppm 오존 + 산소 10%  Ozone + oxygen 10% 흡장실험Occlusion experiment 후 배출되는 오존의 제거 실험 Experiment of removing ozone emitted after

도 6은 1000 ppm NO + 3500 ppm 오존 + 산소 10% 조건에서 10wt.% BaO/Al2O3 촉매상에 흡장을 시도한 후 배출되는 오존을 촉매를 이용하여 분해한 결과를 나타낸 것이다. Figure 6 shows the result of decomposition of the ozone emitted by the catalyst after attempting to occlude on the 10wt.% BaO / Al 2 O 3 catalyst under 1000 ppm NO + 3500 ppm ozone + oxygen 10% conditions.

흡장 후 배출되는 오존은 최대 2500 ppm이며, 가스유량 200 mL/min 조건에서 오존분해 촉매로 잘 알려져 있는 Mn 계열 촉매를 이용하면 10 mg의 적은 양의 촉매들을 이용하여 오존이 100% 분해됨을 알 수 있다.The ozone discharged after occlusion is up to 2500 ppm, and Mn series catalyst, which is well known as ozone decomposition catalyst under gas flow rate of 200 mL / min, shows that 100% of ozone is decomposed using a small amount of 10 mg of catalyst. have.

따라서 이러한 오존 후처리 (즉, 잉여 오존의 배출억제)까지 고려할 때 효과적인 오존 분사량은 NO 대비 최대 3.5배 분사하는 것이 최적 조건인 것으로 판단된다.Therefore, considering such ozone post-treatment (ie, suppression of excess ozone emission), it is judged that the optimum ozone injection rate is 3.5 times higher than NO injection.

도 7은 본 발명의 바람직한 일 실시예에 따른 흡장촉매 시스템의 구성을 도시한 도면이다. 7 is a view showing the configuration of the storage catalyst system according to an embodiment of the present invention.

도 7에 도시된 바와 같이, 본 실시예에 따른 흡장촉매 시스템은 배기계통에 설치되는 플라즈마 반응기(700), 흡장촉매 반응기(702) 및 잉여오존 제거기(704)를 포함할 수 있다. As shown in FIG. 7, the storage catalyst system according to the present embodiment may include a plasma reactor 700, a storage catalyst reactor 702, and a redundant ozone remover 704 installed in the exhaust system.

본 실시예에 따른 플라즈마 반응기(700)는 Dielectric Barrier Discharge (DBD, 유전체 방전), Corona Discharge (코로나 방전)과 같은 대기압 하에서 작동하는 상압 저온 플라즈마 반응기일 수 있다. The plasma reactor 700 according to the present embodiment may be an atmospheric low temperature plasma reactor operating under atmospheric pressure, such as Dielectric Barrier Discharge (DBD) or Corona Discharge (Corona Discharge).

오존 생성에 필요한 산소의 공급은 차량 컴프레서로부터 공기 흐름을 분기하여 고순도 산소로 정제하지 않고 그대로 사용하면 된다.The oxygen supply necessary for ozone generation may be used without branching the air flow from the vehicle compressor and purifying it with high purity oxygen.

흡장촉매 반응기(702)는 알칼리 토금속들 중 하나 이상의 원소를 포함하는 흡장촉매가 충진되며, 플라즈마 반응기로 공급되는 오존을 이용하여 배기가스에 포함된 질소산화물을 흡장한다. The occlusion catalyst reactor 702 is filled with an occlusion catalyst including one or more elements of alkaline earth metals, and occludes nitrogen oxide contained in exhaust gas using ozone supplied to the plasma reactor.

여기서, 오존은 질소산화물 대비 1배 이상 공급될 수 있고, 바람직하게, 질소산화물과 오존의 양론비는 1:1.5 내지 1:3.5 범위일 수 있다. Here, the ozone may be supplied more than one times compared to the nitrogen oxide, preferably, the stoichiometric ratio of the nitrogen oxide and ozone may range from 1: 1.5 to 1: 3.5.

상기한 바와 같이, 본 실시예에 따른 오존은 질소산화물 대비 과량으로 공급되는 것이 바람직하게, 고온에서도 질소산화물의 흡장효율이 높아지도록 오존이 질소산화물 대비 1.5배 이상 공급될 수 있다. As described above, the ozone according to the present embodiment is preferably supplied in an excessive amount compared to the nitrogen oxide, ozone may be supplied 1.5 times or more than the nitrogen oxide so as to increase the storage efficiency of the nitrogen oxide even at high temperatures.

잉여오존 제거기(704)는 Mn 계열 촉매가 충진되며 흡장촉매 반응기(702)에서 반응하지 않고 잉여 오존을 제거한다. The excess ozone remover 704 is filled with a Mn-based catalyst and removes excess ozone without reacting in the storage catalyst reactor 702.

상기한 본 발명의 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다. The above-described embodiments of the present invention are disclosed for the purpose of illustration, and those skilled in the art having ordinary knowledge of the present invention may make various modifications, changes, and additions within the spirit and scope of the present invention. Should be considered to be within the scope of the following claims.

Claims (8)

산소 또는 공기의 산화 반응을 통해 생성된 오존을 공급하는 상압 저온 플라즈마 반응기; 및
알칼리 토금속들 중 하나 이상의 원소를 포함하는 흡장촉매가 충진되며, 상기 상압 저온 플라즈마 반응기로 공급되는 오존을 이용하여 디젤엔진 배출가스에 포함된 질소산화물을 흡장하는 흡착촉매 반응기를 포함하되,
상기 오존은 상기 질소산화물 대비 1배 이상 공급되는 흡장촉매 시스템.
An atmospheric low temperature plasma reactor for supplying ozone generated through oxidation of oxygen or air; And
A storage catalyst including one or more elements of alkaline earth metals is filled, and the absorption catalyst reactor is configured to absorb nitrogen oxides contained in diesel exhaust gas by using ozone supplied to the atmospheric low temperature plasma reactor.
The ozone is occluded catalyst system is supplied more than 1 times than the nitrogen oxide.
제1항에 있어서,
상기 질소산화물과 상기 오존의 양론비는 1:1.5 내지 1:3.5 범위인 흡장촉매 시스템.
The method of claim 1,
The stoichiometric ratio of said nitrogen oxide and said ozone is in the range of 1: 1.5 to 1: 3.5.
제1항에 있어서,
상기 흡장촉매는 BaO가 담지된 γ-Al2O3 분말인 흡장촉매 시스템.
The method of claim 1,
The occlusion catalyst is a occlusion catalyst system of BaO-supported γ-Al 2 O 3 powder.
제1항에 있어서,
상기 오존의 과량 공급에 따라, 상기 흡장촉매 반응기에서는 아래의 반응이 발생하는 흡장촉매 시스템.
Figure pat00009

Figure pat00010

Figure pat00011
The method of claim 1,
According to the excess supply of the ozone, the occlusion catalyst system in which the following reaction occurs in the occlusion catalyst reactor.
Figure pat00009

Figure pat00010

Figure pat00011
제4항에 있어서,
상기 NO2, NO3와 N2O5가 상기 흡장촉매 표면에 분포하는 활성점과 반응하는 흡장촉매 시스템.
The method of claim 4, wherein
And a storage catalyst system in which the NO 2 , NO 3 and N 2 O 5 react with an active point distributed on the surface of the storage catalyst.
제1항에 있어서,
상기 흡장촉매 반응기 내의 잉여 오존을 제거하는 오존 제거부를 더 포함하되,
상기 오존 제거부는 Mn 계열 촉매가 충진되는 흡장촉매 시스템.
The method of claim 1,
Further comprising an ozone removal unit for removing excess ozone in the storage catalyst reactor,
The ozone removal unit is a storage catalyst system is filled with Mn-based catalyst.
흡장촉매 시스템을 이용한 디젤엔진 배출 질소산화물 제거 방법으로서,
알칼리 토금속들 중 하나 이상의 원소를 포함하는 흡장촉매를 흡장촉매 반응기에 제공하는 단계;
상기 흡장촉매 반응기 내에 산소 또는 공기의 산화 반응을 통해 생성된 오존을 상기 질소산화물 대비 1배 이상 과량으로 공급하는 단계;
상기 흡장촉매 반응기 내에서 상기 과량으로 공급된 오존을 이용하여 디젤엔진 배출가스에 포함된 질소산화물을 흡장물질 표면에 흡장하는 단계; 및
상기 반응 이후 제거된 오존을 제거하는 단계를 포함하는 디젤엔진 배출 질소산화물 제거 방법.
A method of removing nitrogen oxide exhausted nitrogen oxides using a storage catalyst system,
Providing a storage catalyst comprising at least one element of alkaline earth metals to the storage catalyst reactor;
Supplying ozone generated through an oxidation reaction of oxygen or air into the storage catalyst reactor in an amount of at least one-time greater than the nitrogen oxides;
Occluding the nitrogen oxide contained in the diesel engine exhaust gas on the occlusion material surface by using the ozone supplied in excess in the occlusion catalyst reactor; And
Diesel engine exhaust nitrogen oxide removal method comprising the step of removing the ozone removed after the reaction.
제7항에 있어서,
상기 질소산화물 및 상기 오존의 양론비는 1:1.5 내지 1:3.5 범위를 갖는 디젤엔진 배출 질소산화물 제거 방법.

The method of claim 7, wherein
The stoichiometric ratio of the nitrogen oxide and the ozone has a range of 1: 1.5 to 1: 3.5 diesel engine exhaust nitrogen oxide removal method.

KR1020180099160A 2018-08-24 2018-08-24 Diesel engine exhaust nitrogen oxide storage catalyst system and nitrogen oxide reduction method using the same KR102125201B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180099160A KR102125201B1 (en) 2018-08-24 2018-08-24 Diesel engine exhaust nitrogen oxide storage catalyst system and nitrogen oxide reduction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180099160A KR102125201B1 (en) 2018-08-24 2018-08-24 Diesel engine exhaust nitrogen oxide storage catalyst system and nitrogen oxide reduction method using the same

Publications (2)

Publication Number Publication Date
KR20200022931A true KR20200022931A (en) 2020-03-04
KR102125201B1 KR102125201B1 (en) 2020-06-22

Family

ID=69783699

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180099160A KR102125201B1 (en) 2018-08-24 2018-08-24 Diesel engine exhaust nitrogen oxide storage catalyst system and nitrogen oxide reduction method using the same

Country Status (1)

Country Link
KR (1) KR102125201B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218232A (en) * 2006-02-20 2007-08-30 Research Institute Of Innovative Technology For The Earth Carbon-based particulate matter removing device
JP2008163886A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008163887A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine
KR101863940B1 (en) 2017-03-17 2018-06-01 삼성엔지니어링 주식회사 Method and apparatus for denoxing exhaust gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218232A (en) * 2006-02-20 2007-08-30 Research Institute Of Innovative Technology For The Earth Carbon-based particulate matter removing device
JP2008163886A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008163887A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device for internal combustion engine
KR101863940B1 (en) 2017-03-17 2018-06-01 삼성엔지니어링 주식회사 Method and apparatus for denoxing exhaust gas

Also Published As

Publication number Publication date
KR102125201B1 (en) 2020-06-22

Similar Documents

Publication Publication Date Title
JP5685757B2 (en) Nitrogen oxide storage reduction catalyst and method for producing the same
US9810118B2 (en) Catalyst system for the reduction of NOx and NH3 emissions
EP2098699B1 (en) Exhaust gas purifying apparatus for internal combustion engine
KR101029642B1 (en) Method for decomposing nitrogen oxides with Mixed Metal Oxide Catalyst
JP4539758B2 (en) Exhaust gas purification device for internal combustion engine
JP4626854B2 (en) Exhaust gas purification device for internal combustion engine
KR102563441B1 (en) Apparatus for purifying exhaust gas
KR101776730B1 (en) Apparatus of purifying exhaust gas
KR102125201B1 (en) Diesel engine exhaust nitrogen oxide storage catalyst system and nitrogen oxide reduction method using the same
JP4877574B2 (en) Exhaust gas purification device for internal combustion engine
KR20080064900A (en) Exhaust gas purifier for internal combustion engine
JP2007113497A (en) Exhaust emission control device of internal combustion engine
KR101029646B1 (en) Method for decomposing lean nitrogen oxides with parallel configuration of mixed metal oxide catalyst
JP2003286827A (en) Exhaust emission control device for internal combustion engine
CN114762828B (en) Sulfur poisoning resistant catalyst, LNT device, tail gas treatment system and vehicle
JP2002070538A (en) Nox emission control method
JP4496453B2 (en) Exhaust gas purification catalyst regeneration method and exhaust gas control method
JP5476771B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP2005185966A (en) Automobile exhaust emission purification catalyst
JP2006138213A (en) Exhaust emission control device for internal combustion engine
KR20130003979A (en) System for purifying exhaust gas and method for controlling the same
JP2009030479A (en) NOx PURIFICATION SYSTEM WITHOUT REDUCING AGENT
JP2007085353A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant