KR20200022730A - Method for forming metal electrode on polymer substrate - Google Patents

Method for forming metal electrode on polymer substrate Download PDF

Info

Publication number
KR20200022730A
KR20200022730A KR1020180098725A KR20180098725A KR20200022730A KR 20200022730 A KR20200022730 A KR 20200022730A KR 1020180098725 A KR1020180098725 A KR 1020180098725A KR 20180098725 A KR20180098725 A KR 20180098725A KR 20200022730 A KR20200022730 A KR 20200022730A
Authority
KR
South Korea
Prior art keywords
polymer substrate
solution
metal electrode
copper
present
Prior art date
Application number
KR1020180098725A
Other languages
Korean (ko)
Other versions
KR102100856B1 (en
Inventor
황희윤
안태창
Original Assignee
안동대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안동대학교 산학협력단 filed Critical 안동대학교 산학협력단
Priority to KR1020180098725A priority Critical patent/KR102100856B1/en
Publication of KR20200022730A publication Critical patent/KR20200022730A/en
Application granted granted Critical
Publication of KR102100856B1 publication Critical patent/KR102100856B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper

Abstract

Disclosed is a method for forming a metal electrode of a polymer substrate. The method comprises: a step in which a prescribed area on the surface of a polymer substrate is set as a hydrophilic area by an oxygen plasma process; a step of sequentially applying a BSA solution, a palladium solution, and a copper ELD solution to the prescribed area; and a step in which a copper reduction reaction is caused in palladium nanoparticles to form a copper electrode on the prescribed area. Accordingly, adhesion between a polymer substrate and a metal electrode can be improved.

Description

폴리머 기판의 금속 전극 형성 방법{METHOD FOR FORMING METAL ELECTRODE ON POLYMER SUBSTRATE}Metal electrode formation method of a polymer substrate {METHOD FOR FORMING METAL ELECTRODE ON POLYMER SUBSTRATE}

본 발명은 폴리머 기판의 금속 전극 형성 방법에 관한 것으로 더 상세하게는 무전해 도금 기법 및 선택적 플라즈마 처리 기법을 적용한 폴리머 기판의 금속 전극 형성 방법에 관한 것이다.The present invention relates to a method of forming a metal electrode of a polymer substrate, and more particularly, to a method of forming a metal electrode of a polymer substrate using an electroless plating technique and a selective plasma treatment technique.

반도체 기판으로 폴리머 기판이 사용될 수 있는데, 폴리머 기판은 금속 전극과의 결합력이 약한 특징을 가진다. 폴리머 기판의 소재 중에서 PVDF(PolyVinylidene DiFluoride)는 압전성을 가지는 소재로 다양한 센서 및 엑추에이터 분야에 응용되고 있다. A polymer substrate may be used as the semiconductor substrate, which has a weak bonding force with the metal electrode. Among the materials of the polymer substrate, PVDF (PolyVinylidene DiFluoride) is a piezoelectric material and is applied to various sensor and actuator fields.

PVDF 필름이 압전 센서 및 엑추에이터로 사용되기 위해 패턴된 금속전극이 PVDF 표면에 배치되는 것이 필요하나, PVDF는 재료적 특성으로 인해 대부분의 금속과 접합력이 좋지 않으며 이로 인해 높은 스트레인 영역에서 금속전극의 박리 현상이 발생하고 있다.In order for the PVDF film to be used as a piezoelectric sensor and actuator, a patterned metal electrode needs to be placed on the surface of the PVDF.However, PVDF has a poor bonding strength with most metals due to its material properties, which causes peeling of the metal electrode in a high strain region. The phenomenon is occurring.

이에, PVDF 기판 및 PVDF 를 제외한 폴리머 기판 표면 상에 금속 전극을 용이하게 형성하는 방법이 필요하다 할 것이다. Accordingly, there will be a need for a method for easily forming a metal electrode on the surface of a polymer substrate other than a PVDF substrate and a PVDF.

한편, 상기와 같은 정보는 본 발명의 이해를 돕기 위한 백그라운드(background) 정보로서만 제시될 뿐이다. 상기 내용 중 어느 것이라도 본 발명에 관한 종래 기술로서 적용 가능할지 여부에 관해, 어떤 결정도 이루어지지 않았고, 또한 어떤 주장도 이루어지지 않는다.On the other hand, the above information is only presented as background information to help the understanding of the present invention. No determination is made as to whether any of the above is applicable as the prior art concerning the present invention, and no claims are made.

공개특허공보 제10-2011-0064326호 (공개일: 2011.6.15)Publication No. 10-2011-0064326 (published: 2011.6.15)

본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 일 실시 예는 고가의 진공 증착 장비를 적용하지 않더라도 폴리머 기판과 금속 전극 간의 결합력을 향상시키는 폴리머 기판의 금속 전극 형성 방법을 제안한다.The present invention has been made to solve the above-described problem, an embodiment of the present invention proposes a method for forming a metal electrode of the polymer substrate to improve the bonding force between the polymer substrate and the metal electrode even without expensive vacuum deposition equipment .

본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved in the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.

상기한 과제를 실현하기 위한 본 발명의 일 실시 예와 관련된 폴리머 기판의 금속 전극 형성 방법은 폴리머 기판 표면 상의 소정 영역이 산소 플라즈마 프로세스를 통해 친수성 영역으로 세팅되는 단계; 상기 소정 영역에 BSA(Bovine Serum Albumin) 솔루션, 팔라듐(Pd) 솔루션 및 구리(Cu) ELD(Electroless Deposition) 솔루션을 순차적으로 적용하는 단계; 및 팔라듐(Pd) 나노 입자에서 구리 환원 반응이 유발되어 상기 소정 영역 상에 구리 전극이 상기 소정 영역에 형성되는 단계를 포함할 수 있다.Method for forming a metal electrode of a polymer substrate in accordance with an embodiment of the present invention for realizing the above object is a predetermined area on the surface of the polymer substrate is set to a hydrophilic region through an oxygen plasma process; Sequentially applying a BSA (Bovine Serum Albumin) solution, a palladium (Pd) solution and a copper (Cu) electroless deposition (ELD) solution to the predetermined region; And a copper reduction reaction is induced in the palladium (Pd) nanoparticles so that a copper electrode is formed on the predetermined region.

여기서, 상기 솔루션을 순차적으로 적용하는 단계는, 상기 BSA 솔루션이 상기 소정 영역에 인쇄 방식으로 적용되는 단계를 포함하며, 상기 폴리머 기판은 PVDF(PolyVinylidene DiFluoride) 기판을 포함할 수 있다.The sequentially applying the solution may include applying the BSA solution to the predetermined area in a printing manner, and the polymer substrate may include a polyvinyllidene difluoride (PVDF) substrate.

본 발명의 다양한 실시예에 따르면 아래와 같은 효과가 도출될 수 있다.According to various embodiments of the present invention, the following effects may be derived.

첫째로, 진공 증착 방법을 사용하지 않더라도 폴리머 기판 상에 접합력이 우수하고 전기적 특성이 우수한 금속 전극이 배치될 수 있다.First, a metal electrode having excellent bonding strength and excellent electrical properties can be disposed on a polymer substrate even without using a vacuum deposition method.

둘째로, 선택적 플라즈마 처리 기법이 적용되어 에칭 공정 없이 패턴된 금속 전극이 제작될 수 있다.Second, a selective plasma treatment technique may be applied to fabricate the patterned metal electrode without the etching process.

본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtained in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.

도 1(a) 내지 도 5는 본 발명의 일 실시 예에 따른 폴리머 기판과 금속 전극 간의 접합 능력을 향상시키기 위한 제조 방법을 나타낸다
도 6은 본 발명의 일 실시 예에 따른 폴리머 기판과 금속 전극 간의 접합 능력을 시험하는 방법을 설명하기 위한 도면이다.
도 7 내지 도 9는 본 발명의 일 실시 예가 적용된 례와 본 발명의 일 실시 예가 적용되지 않은 종래의 다양한 비교 례와의 기술적 차이점을 설명하기 위한 도면이다.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.
1 (a) to 5 show a manufacturing method for improving the bonding ability between the polymer substrate and the metal electrode according to an embodiment of the present invention
6 is a view for explaining a method of testing the bonding ability between the polymer substrate and the metal electrode according to an embodiment of the present invention.
7 to 9 are views for explaining the technical difference between a case of applying an embodiment of the present invention and various conventional comparative examples that do not apply an embodiment of the present invention.
As described above, the present invention has been illustrated and described with reference to preferred embodiments, but is not limited to the above-described embodiments, and is provided to those skilled in the art without departing from the spirit of the present invention. Various changes and modifications will be possible.

이하 첨부된 도면들을 참조하여 본 발명의 다양한 실시 예를 보다 상세하게 설명한다. 다만, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 상세한 설명은 생략한다.Hereinafter, various embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. However, in describing the present invention, when it is determined that a detailed description of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.

도 1(a) 내지 도 5는 본 발명의 일 실시 예에 따른 폴리머 기판과 금속 전극 간의 접합(Adhesion) 능력을 향상시키기 위한 제조 방법을 나타낸다. 본 발명의 일 실시 예는 폴리머 기판이 폴리머 기판 상에 배치되는 금속과 접합력이 떨어지므로, 폴리머 기판과 금속 간의 접학력을 향상시키는 방법을 제안한다. 1 (a) to 5 show a manufacturing method for improving the adhesion (Adhesion) ability between the polymer substrate and the metal electrode according to an embodiment of the present invention. An embodiment of the present invention proposes a method of improving the adhesion between the polymer substrate and the metal since the polymer substrate is inferior in bonding strength with the metal disposed on the polymer substrate.

도 1(a) 내지 도 1(e)는 폴리머 기판 상의 소정 영역을 친수성 영역으로 제조하는 각 단계를 나타낸다.1 (a) to 1 (e) show each step of making a predetermined region on a polymer substrate into a hydrophilic region.

도 1(a)에 따르면, 폴리머 기판(110)이 클리닝된 상태로 배치된다. 여기서, 폴리머 기판(110)은 일반적인 폴리머 소재의 기판일 수 있으나 본 명세서에서는 PVDF(PolyVinylidene DiFluoride) 기판을 대표적인 예로 하여 설명하기로 한다. 여기서, PVDF는 압전소자로서 스트레인을 받는 특징이 있으므로 사용시 PVDF 와 금속 간에 결합력을 향상시키는 방법이 필요하다.According to FIG. 1A, the polymer substrate 110 is disposed in a cleaned state. Here, the polymer substrate 110 may be a substrate made of a general polymer material, but in the present specification, a polyvinyllidene difluoride (PVDF) substrate will be described as a representative example. Here, since PVDF is characterized by being strained as a piezoelectric element, a method of improving the bonding force between the PVDF and the metal during use is required.

도 1(b)에 따르면, 폴리머 기판 표면이 친수성으로 변경되는 소정 영역이 아닌 영역에 대해 마스크 작업이 수행될 수 있다. 여기서, 마스크(20A, 20B)는 PR(PhotoRegist) 방식으로 생성될 수 있으나, 실시 예가 이에 국한되는 것은 아니다.According to FIG. 1B, a mask operation may be performed on a region other than a predetermined region where the surface of the polymer substrate is changed to hydrophilicity. Here, the masks 20A and 20B may be generated by a PR (PhotoRegist) method, but embodiments are not limited thereto.

도 1(c) 및 도 1(d)를 참고하면, 폴리머 기판(110) 상의 상기 소정 영역에 대해 산소 플라즈마 공법에 의해 수용액 상에서 음전하 표면을 가지게 되며, 상기 소정 영역에 거칠기가 형성되어 접합 표면적이 향상될 수 있다. Referring to FIGS. 1 (c) and 1 (d), the predetermined region on the polymer substrate 110 has a negatively charged surface in an aqueous solution by an oxygen plasma method, and a roughness is formed in the predetermined region to form a bonding surface area. Can be improved.

도 1(e)를 참고하면, 생성된 마스크(20A, 20B)가 제거되면, 상기 소정 영역은 친수성 영역이 되며, 마스크(20A, 20B)가 제거된 폴리머 기판(110) 상의 영역은 소수성 영역이 될 수 있다.Referring to FIG. 1E, when the generated masks 20A and 20B are removed, the predetermined regions become hydrophilic regions, and the regions on the polymer substrate 110 from which the masks 20A and 20B are removed are hydrophobic regions. Can be.

도 2를 참고하면, BSA 단백질을 DI(DeIonized) Water 에 일정 비율로 녹인 BSA 솔루션(210)이 폴리머 기판(110)의 친수성 영역에 적용될 수 있다. 여기서, 플라즈마가 처리된 친수성 영역(금속 패턴)과 처리되지 않은 영역의 접촉각의 차이로 인해 플라즈마가 처리된 영역에만 수용액 기반의 BSA가 처리될 수 있다. pH 5 이하에서 BSA 단백질은 양전하를 띠게 되어 음전하를 가지는 친수성 표면과 정적기적인 흡착이 이뤄질 수 있다. 또한, BSA는 접착 기능을 수행함과 동시에 표면 조도를 형성할 수 있으며, BSA는 전기적 신호를 통과시키는 능력이 우수하다.Referring to FIG. 2, a BSA solution 210 in which a BSA protein is dissolved in DI (DeIonized) Water at a ratio may be applied to a hydrophilic region of the polymer substrate 110. Here, due to the difference in contact angles between the hydrophilic region (metal pattern) treated with the plasma and the untreated region, the aqueous solution-based BSA may be treated only in the plasma treated region. Below pH 5, the BSA protein becomes positively charged and can be subjected to static adsorption with a negatively charged hydrophilic surface. In addition, the BSA can form a surface roughness while performing an adhesive function, and the BSA has an excellent ability to pass electrical signals.

이경우, 친수성의 소정 영역에 BSA 단백질이 배치되면, 친수성 폴리머 기판(110)에 BSA 단백질이 흡착되어 거칠기를 가지는 표면이 형성될 수 있으며, 표면 거칠기로 인해 접합 표면적 증가하여 접착력이 향상될 수 있다. 아울러, BSA 처리 농도 및 시간에 따라 접합력 및 전기적 특성이 조절될 수 있다. 가령, 접합력을 향상시키기 위해 BSA 단백질의 량을 더 많이 포함시킬 수 있다.In this case, when the BSA protein is disposed in the hydrophilic predetermined region, the surface having the roughness may be formed by adsorbing the BSA protein on the hydrophilic polymer substrate 110, and the adhesion may be improved by increasing the bonding surface area due to the surface roughness. In addition, the adhesion and electrical properties can be adjusted according to the BSA treatment concentration and time. For example, larger amounts of BSA protein may be included to improve adhesion.

도 1(b) 내지 도 2에서 상술한 바와 같이, PR을 이용하여 폴리머 기판(110)의 친수성 영역과 소수성 영역이 구분되지 않고 먼저 폴리머 기판(110)의 전체 표면에 대해 산소 플라즈마 공정을 통해, 전체 표면을 친수성으로 개질한 후, 특정 영역에만 BSA 단백질을 인쇄 방식으로 인쇄할 수 있다. 이런 경우, PR 공정이 생략될 수 있으며 보다 간편하게 BSA 단백질이 폴리머 기판(110)에 배치될 수 있다.As described above with reference to FIGS. 1B and 2, the hydrophilic region and the hydrophobic region of the polymer substrate 110 are not distinguished using PR, and first through an oxygen plasma process on the entire surface of the polymer substrate 110, After modifying the entire surface to be hydrophilic, BSA proteins can be printed by printing only on specific areas. In this case, the PR process can be omitted and more simply the BSA protein can be placed on the polymer substrate 110.

한편, 도 3을 참고하면, 폴리머 기판(110)의 BSA 단백질이 배치된 소정 영역에 Pd 솔루션(310)이 적용될 수 있다.Meanwhile, referring to FIG. 3, the Pd solution 310 may be applied to a predetermined region where the BSA protein is disposed on the polymer substrate 110.

Pd 솔루션(310)이 적용되면 양전하를 가지는 폴리머 기판(110) 표면에 흡착된 BSA 단백질과 [PdCl4]2- 음이온이 정적기적 결합을 하게 되고 Pd 나노입자가 폴리머 기판(110) 상에 형성될 수 있다. When the Pd solution 310 is applied, BSA proteins adsorbed on the surface of the polymer substrate 110 having a positive charge and [PdCl 4] 2- anions may be statically bonded, and Pd nanoparticles may be formed on the polymer substrate 110. have.

그 다음으로 도 4를 참고하면, 구리(Cu) ELD(Electroless Deposition) 솔루션이 적용될 수 있다. 구리 ELD 솔루션은 구리 무전해 도금 용액을 상기 소정 영역에 배치하는 것을 말한다. Next, referring to FIG. 4, a copper (Cu) electroless deposition (ELD) solution may be applied. Copper ELD solution refers to placing a copper electroless plating solution in the predetermined region.

여기서, 구리 무전해 도금 용액이 적용되면, 팔라듐(Pd) 나노입자에서 구리 환원반응이 유발되어 소정 영역에 금속 전극(여기서는 구리 전극)이 형성될 수 있다. 다만, 구현시에는 구리 이외에 다양한 금속 전극이 적용될 수 있다.Here, when the copper electroless plating solution is applied, a copper reduction reaction may be induced in the palladium (Pd) nanoparticles, thereby forming a metal electrode (here, a copper electrode) in a predetermined region. However, in implementation, various metal electrodes may be applied in addition to copper.

도 5를 참고하면, 무전해 도금 기법에 의해 구리 전극이 폴리머 기판에 형성될 수 있다. 이에 따라, 폴리머 기판과 구리 전극 간에 접합력이 우수하며, 전기적인 특성이 우수하게 될 수 있다.Referring to FIG. 5, a copper electrode may be formed on a polymer substrate by an electroless plating technique. Accordingly, the bonding strength between the polymer substrate and the copper electrode can be excellent, and the electrical characteristics can be excellent.

이하에서는 표 1 및 도 6 내지 도 9를 참고하여, 본 발명의 일 실시 예에 따라 제조된 금속 전극이 배치된 폴리머 기판의 성능을 설명하기로 한다. 아래 표 1을 참고하면, Reference 는 상용 제품이며, 실시 예 1은 본 발명이 적용된 경우, 비교예 1은 플라즈마 표면처리와 무전해 도금이 수행된 경우, 비교예 2는 도파민 코팅과 무전해 도금이 수행된 경우, 비교예 3은 진공 증착이 적용된 경우, 비교예 4는 전도성 고분자 코팅이 적용된 경우를 나타낸다. 시아노 아크릴계 접착제 및 에폭시계 접착제는 폴리머 기판과 금속 전극 간의 접합력을 측정하기 위해 이용되며, E는 Excellent, M은 Moderate, B는 Bad를 나타낸다. 또한, 압전 물성 계수는 D33 Meter 를 이용하여 측정하며, 전극 표면 저항 측정은 전기 표면 저항에 의해 측정될 수 있다.Hereinafter, referring to Table 1 and FIGS. 6 to 9, performance of a polymer substrate on which a metal electrode manufactured according to an embodiment of the present invention is disposed will be described. Referring to Table 1 below, Reference is a commercial product, Example 1 is applied to the present invention, Comparative Example 1 is a plasma surface treatment and electroless plating is performed, Comparative Example 2 is a dopamine coating and electroless plating When performed, Comparative Example 3 shows a case where vacuum deposition was applied, and Comparative Example 4 shows a case where a conductive polymer coating was applied. Cyano acrylic adhesives and epoxy adhesives are used to measure the bonding force between the polymer substrate and the metal electrode, E is Excellent, M is Moderate, B is Bad. In addition, the piezoelectric property coefficient is measured using a D33 meter, and electrode surface resistance measurement may be measured by electrical surface resistance.

Figure pat00001
Figure pat00001

일단, 도 7(a) 내지 도 7(e)를 참고하면, 실시예 1 내지 비교예들(1~4)의 전극이 형성된 PVDF 필름 사진이 나타난다. 7 (a) to 7 (e), PVDF film photographs in which the electrodes of Examples 1 to Comparative Examples 1 to 4 are formed are shown.

아울러, 도 6은 본 발명의 일 실시 예에 따른 폴리머 기판과 금속 전극 간의 접합 능력을 시험하는 방법을 설명하기 위한 도면이다. 금속 전극(510) 상부에 시아노 아크릴계 또는 에폭시계의 접착제(610)가 배치되어 유리 섬유 에폭시 복합재료(620)와 폴리머 기판(110, 510)이 서로 접착될 수 있다. 유리 섬유 에폭시 복합재료(620)와 폴리머 기판(110, 510)의 분리를 통해서 폴리머 기판(110)과 금속 전극(510)의 접합력의 세기가 측정될 수 있다.6 is a view for explaining a method of testing the bonding ability between the polymer substrate and the metal electrode according to an embodiment of the present invention. A cyano acrylic or epoxy adhesive 610 may be disposed on the metal electrode 510 to bond the glass fiber epoxy composite 620 and the polymer substrates 110 and 510 to each other. The strength of the bonding force between the polymer substrate 110 and the metal electrode 510 may be measured by separating the glass fiber epoxy composite material 620 and the polymer substrates 110 and 510.

도 8(a) 내지 9(e)을 참고하면, 실시예 1의 경우 시아노 아크릴계 접착제 또는 에폭시계 접착제에서 모두 좋은 접착 성능이 관측됨이 나타난다. 살핀바와 같이, 표 1을 참고하면, 실시예 1의 접착력이 가장 우수하며, 압전 물성 계수도 큰 편이고, 전기 저항도 2.5 옴으로 전기적 특성이 우수하다.8 (a) to 9 (e), it can be seen that in Example 1, good adhesion performance was observed in both cyano acrylic adhesives and epoxy adhesives. Like salpin bar, referring to Table 1, the adhesion of Example 1 is the best, the piezoelectric property coefficient is also large, the electrical resistance is 2.5 ohms excellent electrical properties.

한편, 본 명세서는 그 제시된 구체적인 용어에 본 발명을 제한하려는 의도가 아니다. 따라서, 상술한 예를 참조하여 본 발명을 상세하게 설명하였지만, 당업자라면 본 발명의 범위를 벗어나지 않으면서도 본 예들에 대한 개조, 변경 및 변형을 가할 수 있다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.On the other hand, this specification is not intended to limit the invention to the specific terms presented. Thus, while the present invention has been described in detail with reference to the examples described above, those skilled in the art can make modifications, changes and variations to the examples without departing from the scope of the invention. The scope of the present invention is shown by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.

Claims (2)

폴리머 기판 표면 상의 소정 영역이 산소 플라즈마 프로세스를 통해 친수성 영역으로 세팅되는 단계;
상기 소정 영역에 BSA(Bovine Serum Albumin) 솔루션, 팔라듐(Pd) 솔루션 및 구리(Cu) ELD(Electroless Deposition) 솔루션을 순차적으로 적용하는 단계; 및
팔라듐(Pd) 나노 입자에서 구리 환원 반응이 유발되어 상기 소정 영역 상에 구리 전극이 상기 소정 영역에 형성되는 단계를 포함하는, 폴리머 기판의 금속 전극 형성 방법.
The predetermined area on the polymer substrate surface is set to the hydrophilic area through an oxygen plasma process;
Sequentially applying a BSA (Bovine Serum Albumin) solution, a palladium (Pd) solution and a copper (Cu) electroless deposition (ELD) solution to the predetermined region; And
And inducing a copper reduction reaction in the palladium (Pd) nanoparticles, thereby forming a copper electrode on the predetermined region.
제1항에 있어서,
상기 솔루션을 순차적으로 적용하는 단계는,
상기 BSA 솔루션이 상기 소정 영역에 인쇄 방식으로 적용되는 단계를 포함하며,
상기 폴리머 기판은 PVDF(PolyVinylidene DiFluoride) 기판을 포함하는, 폴리머 기판의 금속 전극 형성 방법.
The method of claim 1,
Applying the solution sequentially,
The BSA solution is applied to the predetermined area in a printing manner,
Wherein said polymer substrate comprises a PolyVinylidene DiFluoride (PVDF) substrate.
KR1020180098725A 2018-08-23 2018-08-23 Method for forming metal electrode on polymer substrate KR102100856B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180098725A KR102100856B1 (en) 2018-08-23 2018-08-23 Method for forming metal electrode on polymer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180098725A KR102100856B1 (en) 2018-08-23 2018-08-23 Method for forming metal electrode on polymer substrate

Publications (2)

Publication Number Publication Date
KR20200022730A true KR20200022730A (en) 2020-03-04
KR102100856B1 KR102100856B1 (en) 2020-04-14

Family

ID=69783663

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180098725A KR102100856B1 (en) 2018-08-23 2018-08-23 Method for forming metal electrode on polymer substrate

Country Status (1)

Country Link
KR (1) KR102100856B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836802A (en) * 2022-04-21 2022-08-02 长春理工大学 Adhesive composite processing method of micro-nano hydrophobic structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080073617A (en) * 2007-02-06 2008-08-11 성균관대학교산학협력단 Method for forming metal wiring on flexible substrate by electroless plating
US20090181315A1 (en) * 2006-05-30 2009-07-16 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaflen E.V. Production of micro- and nanopore mass arrangements by self-organization of nanoparticles and sublimation technology
KR20110064326A (en) 2009-12-08 2011-06-15 부산대학교 산학협력단 Polymeric waveguide biosensors and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090181315A1 (en) * 2006-05-30 2009-07-16 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaflen E.V. Production of micro- and nanopore mass arrangements by self-organization of nanoparticles and sublimation technology
KR20080073617A (en) * 2007-02-06 2008-08-11 성균관대학교산학협력단 Method for forming metal wiring on flexible substrate by electroless plating
KR20110064326A (en) 2009-12-08 2011-06-15 부산대학교 산학협력단 Polymeric waveguide biosensors and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836802A (en) * 2022-04-21 2022-08-02 长春理工大学 Adhesive composite processing method of micro-nano hydrophobic structure

Also Published As

Publication number Publication date
KR102100856B1 (en) 2020-04-14

Similar Documents

Publication Publication Date Title
KR101268234B1 (en) Conductive particle and method for producing conductive particle
JP2009076431A (en) Anisotropic conductive film and its manufacturing method
KR100691336B1 (en) Manufacturing Method of a Flexible Semiconductor Board By Build-Up Process
KR102100856B1 (en) Method for forming metal electrode on polymer substrate
DE102008040521A1 (en) Method for producing a component, method for producing a component arrangement, component and component arrangement
US7163885B2 (en) Method of migrating and fixing particles in a solution to bumps on a chip
JP2008186761A (en) Method for manufacturing particle transfer film and particle retention film, and anisotropic conductive film
US7053521B2 (en) Method for enhancing epoxy adhesion to gold surfaces
JP5589361B2 (en) Conductive particles and method for producing the same
CN105895523A (en) Method for manufacturing semiconductor device
JPWO2018216433A1 (en) Method for manufacturing member to be processed and laminate
DE102019218336A1 (en) HIGH-FREQUENCY ULTRASONIC CONVERTER AND METHOD FOR THE PRODUCTION THEREOF
JP2016536567A (en) Semiconductor inspection pad in which thin metal plates are laminated using an adhesive and manufacturing method
US20180015699A1 (en) Metal-bonded substrate
US20030183416A1 (en) Method of electrically coupling an electronic component to a substrate
DE102010038847A1 (en) Pressure sensor e.g. semiconductor pressure sensor has central cavity that is formed by etching in silicon membrane support, and is extended to measuring diaphragm
KR20080005887A (en) Resistive type touch screen in and its manufacturing method
WO2019184768A1 (en) Separable type conductive contact structure and preparation method therefor
JP2008112698A (en) Conductive base, manufacturing method thereof, and electronic device
JP2008186760A (en) Anisotropic conductive film and its manufacturing method
Panas et al. Non-lithographically-based microfabrication of precision MEMS nanopositioning systems
JP5164543B2 (en) Probe card manufacturing method
JP2006002201A (en) Plating film-coated structural member, method for producing structural member coated with plating film and optical module
US20140273399A1 (en) Methods of fabricating silicon-on-insulator (soi) semiconductor devices using blanket fusion bonding
TW202213811A (en) Adhesive device and transfer device using same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant