KR20200021766A - 유동 해석 장치 및 이를 위한 방법 - Google Patents

유동 해석 장치 및 이를 위한 방법 Download PDF

Info

Publication number
KR20200021766A
KR20200021766A KR1020180097538A KR20180097538A KR20200021766A KR 20200021766 A KR20200021766 A KR 20200021766A KR 1020180097538 A KR1020180097538 A KR 1020180097538A KR 20180097538 A KR20180097538 A KR 20180097538A KR 20200021766 A KR20200021766 A KR 20200021766A
Authority
KR
South Korea
Prior art keywords
analysis
model
numerical
flow
numerical analysis
Prior art date
Application number
KR1020180097538A
Other languages
English (en)
Other versions
KR102101792B1 (ko
Inventor
박지훈
박재현
이상진
김현식
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Priority to KR1020180097538A priority Critical patent/KR102101792B1/ko
Priority to US16/420,179 priority patent/US11544428B2/en
Priority to DE102019115303.4A priority patent/DE102019115303A1/de
Publication of KR20200021766A publication Critical patent/KR20200021766A/ko
Application granted granted Critical
Publication of KR102101792B1 publication Critical patent/KR102101792B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/13Differential equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Fluid Mechanics (AREA)
  • Computing Systems (AREA)
  • Operations Research (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

유동 해석 장치는 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 복수회의 수치 해석을 반복하는 데에 사용된 복수의 입력 신호와 상기 복수의 입력 신호 각각에 대응하는 복수의 출력 신호를 포함하는 해석데이터를 이용하여 복수의 셀에 대한 유동 해석을 수행하는 유동해석모델을 생성하는 모델도출부와, 상기 생성된 유동해석모델을 이용하여 설계 대상 부품의 주변 공간을 구분하는 복수의 셀에 대한 유동 해석을 수행하는 유동해석부를 포함한다.

Description

유동 해석 장치 및 이를 위한 방법{An apparatus for analyzing fluid dynamics and a method therefor}
본 발명은 유동 해석 기술에 관한 것으로, 보다 상세하게는, 유동 해석 장치 및 이를 위한 방법에 관한 것이다.
유동해석은 해석의 대상 부품 주변의 액체, 기체 등의 유체와 경계조건으로 정의되는 표면간의 상호작용 및 그로 인한 흐름의 변화와 관련특성들을 파악하는 것을 의미한다. 전산유체역학(CFD: Computational Fluid Dynamics)은 컴퓨팅 연산을 통해 열, 유체의 흐름을 재현하는 것으로, 과거 열 및 유체 운동에 대한 해석을 실험에 기초한 방법밖에 없던 것을 컴퓨터의 발달로 인해 단시간에 효과적인 수치해석으로 재현함으로써 시간적, 비용적으로 많은 절감을 가져오게 되었다. 유체거동의 지배방정식은, 점성을 가진 유체의 운동을 기술하는 비선형 편미분방적식으로, 대류항과 확산항이 모두 포함된 방정식이며 날씨, 해류의 유체 흐름 등 자연계에 존재하는 대부분의 흐름을 해석할 수 있다.
대한민국 공개특허 제10-2016-0007838호(2016.01.21)
본 발명의 목적은 유동 해석의 시간을 단축하기 위한 유동 해석 장치 및 이를 위한 방법을 제공함에 있다.
본 발명의 실시예에 따른 유동 해석 장치는 부품의 주변 공간을 구분하는 복수의 셀에 대해 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 수치 해석을 모사하여 상기 복수의 셀에 대한 유동 해석을 수행하는 유동해석모델을 생성하는 모델도출부와, 상기 생성된 유동해석모델을 이용하여 설계 대상 부품의 주변 공간을 구분하는 복수의 셀에 대한 유동 해석을 수행하는 유동해석부를 포함한다.
상기 모델도출부는 상기 수치 해석에 사용된 해석 데이터를 저장하는 해석데이터저장부와, 상기 해석 데이터를 통해 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 예측하는 신호생성모델을 생성하는 신호생성모델도출부와, 상기 해석 데이터를 통해 복수회 반복된 수치 해석의 출력 신호를 예측하는 해석모델을 생성하는 해석모델도출부를 포함한다.
상기 신호생성모델은 수학식
Figure pat00001
을 통해 상기 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 예측하며, 상기 k 및 상기 T는 수치 해석 횟수이고, 상기 H는 영향도이고, 상기 Q는 가중치이고, 상기 D는 상쇄상수이고, 상기
Figure pat00002
는 k번째 수치 해석의 입력 신호고, 상기
Figure pat00003
는 k번째 수치 해석의 출력 신호이고, 상기
Figure pat00004
는 k+T번째 수치 해석의 입력 신호이다.
상기 신호생성모델도출부는 파라미터가 결정되지 않은 신호생성모델의 관계식을 구성한 후, 최적화 알고리즘을 통해 상기 파라미터를 도출하여 신호생성모델을 생성한다.
상기 해석모델은 수학식
Figure pat00005
을 통해 상기 복수회 반복된 수치 해석의 출력 신호를 예측하며, 상기 k 및 상기 T는 수치 해석 횟수를 나타내는 파라미터이고, 상기 A는 영향도이고, 상기 P는 가중치이고, 상기 C는 상쇄상수이고, 상기
Figure pat00006
는 k번째 수치 해석의 출력 신호이고, 상기
Figure pat00007
는 k+T번째 수치 해석의 입력 신호이고, 상기
Figure pat00008
는 k+T번째 수치 해석의 출력 신호이다.
상기 해석모델도출부는 파라미터가 결정되지 않은 해석모델의 관계식을 구성한 후, 최적화 알고리즘을 통해 상기 파라미터를 도출하여 해석모델을 생성한다.
상기 유동해석부는 설계 대상 부품에 대한 수치 해석을 수행하여 해석 데이터를 도출하는 수치해석부와, 상기 수치해석부가 도출한 해석 데이터로부터 상기 신호생성모델도출부가 도출한 신호생성모델을 통해 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 도출하는 신호생성부와, 상기 신호생성부가 예측한 입력 신호로부터 상기 해석모델도출부가 도출한 해석모델을 통해 복수회 반복된 수치 해석의 출력 신호를 도출하는 해석부를 포함한다.
상기 수치해석부는 설계 대상 부품의 주변 공간을 구분하는 복수의 셀에 대해 전산유체역학에 의한 수치 해석을 수행하여 해석 데이터를 도출한다.
상기 신호생성부는 상기 해석 데이터를 상기 신호생성모델에 입력하여 소정 횟수 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 도출한다.
상기 해석부는 상기 해석 데이터의 출력 신호와 상기 기여한 입력 신호를 상기 해석모델에 입력하여 수치 해석이 소정 횟수 반복된 수치 해석의 출력 신호를 도출한다.
본 발명의 실시예에 따른 유동 해석 장치는 부품의 주변 공간을 구분하는 복수의 셀에 대해 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 수치 해석에 사용된 해석 데이터를 이용하여 상기 복수의 셀에 대한 유동 해석을 수행하는 유동해석모델을 생성하는 모델도출부와, 상기 생성된 유동해석모델을 이용하여 설계 대상 부품의 주변 공간을 구분하는 복수의 셀에 대한 유동 해석을 수행하는 유동해석부를 포함한다.
상기 유동해석모델은 상기 전산유체역학에 의한 복수회 반복되는 수치 해석을 모사한다.
상기 유동해석모델은 상기 해석 데이터를 통해 상기 복수의 입력 신호 중 복수회 반복된 수치 해석의 결과에 기여한 입력 신호를 예측하는 하나 이상의 신호생성모델과, 상기 해석 데이터를 통해 복수회 반복된 수치 해석의 결과를 예측하는 해석모델을 포함한다.
상기 신호생성모델은 수학식
Figure pat00009
을 통해 상기 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 예측하며, 상기 k 및 상기 T는 수치 해석 횟수를 나타내고, 상기 H는 영향도이고, 상기 Q는 가중치이고, 상기 D는 상쇄상수이고, 상기
Figure pat00010
는 k번째 수치 해석의 입력 신호이고, 상기
Figure pat00011
는 k번째 수치 해석의 출력 신호이고, 상기
Figure pat00012
는 k+T번째 수치 해석의 입력 신호이다.
상기 해석모델은 수학식
Figure pat00013
을 통해 상기 복수회 반복된 수치 해석의 출력 신호를 예측하며, 상기 k 및 상기 T는 수치 해석 횟수를 나타내며, 상기 A는 영향도이고, 상기 P는 가중치이고, 상기 C는 상쇄상수이고, 상기
Figure pat00014
는 k번째 수치 해석의 출력 신호이고, 상기
Figure pat00015
는 k+T번째 수치 해석의 입력 신호이고, 상기
Figure pat00016
는 k+T번째 수치 해석의 출력 신호이다.
본 발명의 실시예에 따른 유동 해석 방법은 모델도출부가 부품의 주변 공간을 구분하는 복수의 셀에 대해 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 수치 해석에 사용된 복수의 입력 신호와 상기 복수의 입력 신호 각각에 대응하는 복수의 출력 신호를 포함하는 해석 데이터를 저장하는 단계와, 상기 모델도출부가 상기 해석 데이터를 이용하여 상기 복수의 셀에 대한 유동 해석을 수행하는 유동해석모델을 생성하는 단계와, 유동해석부가 상기 유동해석모델을 이용하여 설계 대상 부품의 주변 공간을 구분하는 복수의 셀에 대한 유동 해석을 수행하는 단계를 포함한다.
상기 유동해석모델을 생성하는 단계는 신호생성모델도출부가 상기 해석 데이터를 통해 상기 복수의 입력 신호 중 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 예측하는 신호생성모델을 생성하는 단계와, 해석모델도출부가 상기 해석 데이터를 통해 상기 복수의 입력 신호 중 복수회 반복된 수치 해석의 출력 신호를 예측하는 해석모델을 생성하는 단계를 포함한다.
상기 신호생성모델은 수학식
Figure pat00017
을 통해 상기 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 예측하며, 상기 k 및 상기 T는 수치 해석 횟수이고, 상기 H는 영향도이고, 상기 Q는 가중치이고, 상기 D는 상쇄상수이고, 상기
Figure pat00018
는 k번째 수치 해석의 입력 신호이고, 상기
Figure pat00019
는 k번째 수치 해석의 출력 신호이고, 상기
Figure pat00020
는 k+T번째 수치 해석의 입력 신호이다.
상기 해석모델은 수학식
Figure pat00021
을 통해 상기 복수회 반복된 수치 해석의 출력 신호를 예측하며, 상기 k 및 상기 T는 수치 해석 횟수를 나타내고, 상기 A는 영향도이고, 상기 P는 가중치이고, 상기 C는 상쇄상수이고, 상기
Figure pat00022
는 k번째 수치 해석의 출력 신호이고, 상기
Figure pat00023
는 k+T번째 수치 해석의 입력 신호이고, 상기
Figure pat00024
는 k+T번째 수치 해석의 출력 신호이다.
상기 신호생성모델을 생성하는 단계는 상기 신호생성모델도출부가 파라미터가 결정되지 않은 신호생성모델의 관계식을 구성하는 단계와, 상기 신호생성모델도출부가 최적화 알고리즘을 통해 상기 파라미터를 도출하여 상기 신호생성모델을 완성하는 단계를 포함한다.
상기 해석모델을 생성하는 단계는 상기 해석모델도출부가 파라미터가 결정되지 않은 해석모델의 관계식을 구성하는 단계와, 상기 해석모델도출부가 최적화 알고리즘을 통해 상기 파라미터를 도출하여 해석모델을 완성하는 단계를 포함한다.
상기 유동 해석을 수행하는 단계는 수치해석부가 설계 대상 부품에 대한 수치 해석을 수행하여 해석 데이터를 도출하는 단계와, 신호생성부가 상기 수치해석부가 도출한 해석 데이터로부터 상기 신호생성모델도출부가 도출한 상기 신호생성모델을 통해 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 도출하는 단계와, 상기 신호생성부가 도출한 입력 신호 및 상기 수치해석부가 도출한 해석 데이터로부터 상기 해석모델도출부가 도출한 상기 해석모델을 통해 복수회 반복된 수치 해석의 출력 신호를 도출하는 단계를 포함한다.
본 발명에 따르면, 유동 해석을 수행하는 시간을 단축함으로써 부품을 개발하는데 소요되는 시간을 단축할 수 있다.
도 1은 본 발명의 실시예에 따른 설계 대상 부품과 그 주변을 복수의 셀로 구분한 예시도이다.
도 2는 본 발명의 실시예에 따른 유동해석모델을 설명하기 위한 도면이다.
도 3은 본 발명의 실시예에 따른 유동 해석을 위해 복수회 반복되는 수치 해석을 설명하기 위한 그래프이다.
도 4는 본 발명의 실시예에 따른 유동해석장치의 구성을 설명하기 위한 블록도이다.
도 5는 본 발명의 실시예에 따른 유동 해석 방법을 설명하기 위한 흐름도이다.
도 6은 본 발명의 실시예에 따른 유동해석모델을 생성하는 방법을 설명하기 위한 흐름도이다.
도 7은 본 발명의 실시예에 따른 유동해석을 수행하는 방법을 설명하기 위한 흐름도이다.
도 8은 본 발명의 실시예에 따른 컴퓨팅 장치를 나타내는 도면이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 이하, 도면을 참조하여 본 발명의 실시예에 따른 에너지 저장 시스템의 셀 밸런싱 방법을 설명한다.
먼저, 본 발명의 실시예에 따른 유동해석모델에 대해서 설명하기로 한다. 도 1은 본 발명의 실시예에 따른 설계 대상 부품과 그 주변을 복수의 셀로 구분한 예시도이다. 도 2는 본 발명의 실시예에 따른 유동해석모델을 설명하기 위한 도면이다. 도 3은 본 발명의 실시예에 따른 유동 해석을 위해 복수회 반복되는 수치 해석을 설명하기 위한 그래프이다.
도 1을 참조하면, 부품(CP), 예컨대, 터빈의 블레이드와 같은 부품을 설계 하기 위해 유동 해석을 수행할 수 있다. 유동 해석은 부품(CP) 주변 영역을 복수의 셀(CE)로 구분하고, 구분된 복수의 셀(CE)의 경계 조건에 따른 복수의 셀(CE) 각각의 유체의 특성을 도출하기 위한 것이다. 이러한 유동 해석을 위한 입력 신호는 전술한 경계 조건을 의미한다. 예컨대, 입력 신호는 각 셀(CE)의 유체의 층류 점도, 난류 전도, 반복 실시되는 수치 해석(iteration)간 시간차 등이 될 수 있다. 출력 신호는 유체 특성을 의미한다. 예컨대, 출력 신호는 각 셀(CE)의 밀도, x, y 방향의 모멘텀(Momentum), 내부 에너지 등이 될 수 있다.
도 2를 참조하면, 유동 해석을 위해 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 수치 해석이 수행될 수 있다. 이하, 본 발명의 실시예에서 수치 해석이라는 표현은 전산유체역학에 의한 수치 해석을 의미한다. 수치 해석을 위하여, 부품(CP) 주변을 복수의 셀(CE)로 구분한다. 그리고 복수의 셀(CE)에 대한 비선형의 편미분방정식을 수립한다. 이어서, 예컨대, 가우스 소거법(Gaussian elimination method)을 통해 그 편미분방정식에 대한 근사해를 구할 수 있다.
도 3의 그래프를 참조하면, 이러한 수치 해석은 유체의 특성상 복수회(k+T) 반복(iteration) 수행된다. 개념적으로, 유체의 특성 상, 초기의 소정 횟수(k)의 수치 해석의 결과치는 안정적이지 않으며, 복수회 반복(iteration)한 후에야 안정적인 상태(steady state)가 된다. 즉, 전산유체역학에 의한 수치 해석은 부품 주변의 유체가 포화(saturation) 상태가 될 때까지 반복 수행된다. 즉, 유동 해석은 복수번 반복 수행된 수치 해석의 출력 신호를 얻기 위한 것이다. 이러한 편미분방정식에 대한 근사해를 구하는 수치 해석은 병렬 처리를 수행할 수 없기 때문에 많은 시간이 소요된다.
따라서 본 발명에 따르면, 전산유체역학에 의한 수치 해석에 사용된 복수의 입력 신호와 이에 대응하는 복수의 출력 신호를 포함하는 해석 데이터를 이용하여 전산유체역학에 의한 복수회 반복된 수치 해석의 결과, 즉, 출력 신호를 예측하는 유동해석모델을 생성하고, 생성된 유동해석모델을 이용하여 유동 해석을 수행한다. 이에 따라, 편미분방정식의 근사해를 구하는 시간을 줄일 수 있어 유동 해석 시간이 단축된다. 따라서 부품을 설계하는 시간을 단축시킬 수 있다.
유동해석모델은 다음의 표 1에 게시된 모델 중 적어도 하나를 이용할 수 있다.
Parametric
Model
Transfer
Function
Equation
Error
Auto-Regressive eXogeneous (ARX)
Nonlinear Auto-Regressive eXogeneous (NARX)
Finite Impulse Response (FIR)
Auto-Regressive Moving Average eXogenious (ARMAX) : Pseudolinear Regression Model
Auto-Regressive (AR)
Auto-Regressive Moving Average (ARMA)
Auto-Regressive Auto-Regressive eXogeneous (ARARX) : Generalized Least-Squares Model
Auto-Regressive Auto-Regressive Moving Average eXogeneous (ARARMAX) : Extended Matrix Model
Output
Error
Output Error (OE)
Box and Jenkins (BJ)
State
Space
Linear Time Invariant (LTI), Linear Time Variant (LTV)
Linear Model, Nonlinear Model
Continuous Time, Discrete Time, Delay Time
Single Input Single Output (SISO),
Multi Input Multi Output (MIMO)
Stochastic Model, Deterministic Model
Robust, Open Loop, Closed Loop
Non
Parametric
Model
Non Parametric (Data Set Type)
Impulse Response
Step Response
Frequency Transfer Function
Tree
Neural Network (NN) : FF, FB, Radial Basis Function, Convolutional, Spiking, Deep NN (Deep Belief Network), Recurrent NN
또한, 유동해석모델은 다음의 표 2에 게시된 최적화 알고리즘 중 적어도 하나를 이용하여 도출될 수 있다.
Parametric
Model
Prediction Error Method (PEM)
Maximum Likelihood Method (MLM)
Least-Squares Method (LSM)
-Batch Least-Squares Method
-Off-line Least-Squares Method
Extended Least-Squares Method (ELSM)
Generalized Least-Squares Method (GLSM)
Recursive Least-Squares Method (RLS)
Instrumental Variable Method (IVM)
Principle Component Analysis (PCA)
Dynamic Principle Component Analysis (DPCA)
Partial Least Squares (PLS)

SubSpace-based State Space Model
Identification (4SID) Method
(+ Singular Value Decomposition (SVD))
(+ QR Decomposition)
-N4SID Method
-Multivariable Output Error State sPace
(MOESP) Method
Canonical VariateAnalysis (CVA)
Singular Value Decomposition
Minimal Realization Method (MRM)
Non
Parametric
Model
Transient Response Method
Correlation Analysis
Frequency Response Method
Spectral Analysis Method
Empirical Transfer Function Estimate (ETFE) Method
Single/Multi-Layer Perceptron Learning, Back-Propagation, Gradient Descent
LayerwisePretraining: Auto-Encoder, BolzmannMachine
그러면, 본 발명의 실시예에 따른 유동해석장치에 대해서 설명하기로 한다. 도 4는 본 발명의 실시예에 따른 유동해석장치의 구성을 설명하기 위한 블록도이다. 도 4를 참조하면, 본 발명의 실시예에 따른 유동해석장치(10)는 모델도출부(100) 및 유동해석부(200)를 포함한다.
모델도출부(100)는 대상체의 주변 공간을 구분하는 복수의 셀에 대한 유동 해석을 수행하는 유동해석모델을 생성한다. 이때, 모델도출부(100)는 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 수치 해석에 사용된 해석 데이터를 이용하여 유동해석모델을 생성한다. 여기서, 해석 데이터는 복수의 반복 수행된 수치 해석에서 사용된 입력 신호와 그 복수의 입력 신호에 대응하는 복수의 출력 신호를 포함한다. 이러한 유동해석모델은 전산유체역학에 의한 수치 해석을 모사하여 전산유체역학에 의한 반복된 수치 해석의 결과를 도출한다.
특히, 유동해석모델은 복수의 모델로 이루어질 수 있다. 유동해석모델은 하나 이상의 신호생성모델 및 하나 이상의 해석모델을 포함할 수 있다. 이러한 모델도출부(100)는 해석데이터저장부(110), 신호생성모델도출부(120) 및 해석모델도출부(130)를 포함한다. 신호생성모델 및 해석모델 또한 표 1의 복수의 모델 중 어느 하나를 이용할 수 있다.
해석데이터저장부(110)는 본 발명의 실시예에 따른 해석 데이터를 저장한다. 부품(CP) 주변 영역을 복수의 셀(CE)로 구분하고, 그 복수의 셀(CE)에 대한 전산유체역학에 의한 수치 해석에 사용된 해석 데이터가 될 수 있다. 이러한 해석 데이터는 복수의 입력 신호와 그 복수의 입력 신호에 대응하는 복수의 출력 신호를 포함한다. 예컨대, 입력 신호는 각 셀(CE)의 유체의 층류 점도, 난류 전도, 반복 실시되는 수치 해석(iteration)간 시간차 등이 될 수 있다. 출력 신호는 유체 특성을 의미한다. 예컨대, 출력 신호는 각 셀(CE)의 밀도, x, y 방향의 모멘텀(Momentum), 내부 에너지 등이 될 수 있다.
신호생성모델도출부(120)는 해석데이터저장부(110)가 저장한 해석 데이터를 이용하여 복수의 입력 신호 중 복수회 반복(iteration)된 수치 해석의 출력 신호에 기여한 입력 신호를 도출하는 신호생성모델을 생성한다. 예컨대, 복수의 입력 신호가 있을 때, 복수회의 수치 해석을 반복한 후, 그 수치 해석의 출력 신호를 결정하는 입력 신호는 복수의 입력 신호 중 일부가 될 수 있다. 이와 같이, 출력 신호에 기여한 입력 신호는 복수의 종류 및 반복 시점의 입력 신호 중 출력 신호의 값의 변화에 영향을 미치는 종류 및 반복 시점의 입력 신호를 의미한다. 즉, 신호생성모델은 수치 해석을 복수회 반복한 후의 출력 신호에 기여한 입력 신호를 예측하기 위한 것이다.
일 실시예에 따르면, 신호생성모델은 다음의 수학식 1과 같다.
Figure pat00025
수학식 1에서 k 및 T는 수치 해석 횟수를 나타낸다.
Figure pat00026
는 k번째 수치 해석의 입력 신호고,
Figure pat00027
는 k번째 수치 해석의 출력 신호고,
Figure pat00028
는 k+T번째 수치 해석의 입력 신호를 의미한다. 여기서, T는 예측하고자 하는 출력 신호의 종류(예컨대, 밀도, x, y 방향의 모멘텀, 내부 에너지 등)에 따라 상이한 값을 가지거나, 같은 값을 가질 수 있다. H는 셀 각각에 대한 영향도를 나타낸다. 예컨대, 어느 하나의 셀의 값을 예측하는 데에는 해당 셀에 해당하는 값들만이 영향을 미치며 다른 셀의 값은 영향을 미치지 않는다. 즉, 해당 입력 신호 혹은 출력 신호가 영향을 미치는 셀을 선택하기 위한 값이다. Q는 가중치를 나타낸다. 즉, 가중치 Q는 출력
Figure pat00029
에 대해 V(k) 및 Y(k)가 영향을 미치는 정도를 의미한다. 또한, D는 모델링 오차를 상쇄시키기 위한 상쇄상수이다. 즉, 수학식 1과 도 3의 그래프를 참조하면, 신호생성모델은 k 번째 수치 해석에 사용된 해석 데이터, 즉, 입력 신호
Figure pat00030
및 출력 신호
Figure pat00031
로부터 k + T 번째 수치 해석에 따른 출력 신호에 기여한 입력 신호
Figure pat00032
를 도출한다.
신호생성모델도출부(120)는 신호생성모델를 도출하기 위하여, 먼저, 예컨대, 수학식 1의 파라미터, 영향도 H, 가중치 Q 및 상쇄상수 D가 결정되지 않은 관계식을 구성한다. 그런 다음, 신호생성모델도출부(120)는 복수의 해석 데이터, 예컨대, V(k), Y(k), V(k+T)를 관계식에 입력하여 최적화 알고리즘을 통해 파라미터, 영향도 H, 가중치 Q 및 상쇄상수 D를 도출한다. 최적화 알고리즘은 예컨대, 최소자승법(Least-Squares Method), 역확산(Backpropagation) 알고리즘 등이 될 수 있다. 이와 같이, 관계식의 파라미터 H, Q, D가 결정되면, 수학식 1과 같은 신호생성모델이 완성된다.
일례로, 신호생성모델도출부(120)는 수학식 1과 같은 연결 가중치가 파라미터 H, Q 및 D인 전달함수(transfer function)를 가지는 인공신경망(Neural Network)을 구성할 수 있다. 그리고 해석 데이터를 학습 데이터로 이용하여 최적화 알고리즘(예컨대, 역확산 알고리즘)을 통해 연결 가중치인 파라미터 H, Q 및 D를 도출하고, 파라미터 H, Q 및 D가 결정된 인공신경망을 신호생성모델로 도출할 수 있다.
해석모델도출부(130)는 전산유체역학(CFD)에 의거한 수치 해석에 사용된 복수의 입력 신호와 복수의 입력 신호에 대응하는 복수의 출력 신호인 해석 데이터를 이용하여 복수회 반복(iteration)된 수치 해석의 출력 신호를 산출하는 해석모델을 도출한다. 이러한 해석 모델은 전산유체역학(CFD)에 의거하여 복수회 반복(iteration)된 수치 해석을 모사한다.
예컨대, 해석모델은 다음의 수학식 2와 같다.
Figure pat00033
수학식 2에서, k 및 T는 수치 해석의 횟수이고,
Figure pat00034
는 k 번째 수치 해석의 출력 신호고,
Figure pat00035
는 k+T 번째 수치 해석의 입력 신호고,
Figure pat00036
는 k+T 번째 수치 해석의 출력 신호다. 여기서, T는 예측하고자 하는 출력 신호의 종류(예컨대, 밀도, x, y 방향의 모멘텀, 내부 에너지 등)에 따라 상이한 값을 가지거나, 같은 값을 가질 수 있다. A는 셀 각각에 대한 영향도를 나타낸다. 예컨대, 어느 하나의 셀의 값을 예측하는 데에는 해당 셀에 해당하는 값들만이 영향을 미치며 다른 셀의 값은 영향을 미치지 않는다. 즉, 해당 입력 신호 혹은 출력 신호가 영향을 미치는 셀을 선택하기 위한 값이다. P는 가중치를 나타낸다. 즉, 가중치 P는 출력
Figure pat00037
에 대해 Y(k) 및
Figure pat00038
가 영향을 미치는 정도를 의미한다. 또한, C는 모델링 오차를 상쇄시키기 위한 상쇄상수이다.
수학식 1, 수학식 2와 도 3의 그래프를 참조하면, 수학식 1의 신호생성모델은 k 번째 수치 해석의 입력 신호
Figure pat00039
및 출력 신호
Figure pat00040
로부터 k + T 번째 수치 해석에 따른 출력 신호에 기여한 입력 신호
Figure pat00041
를 도출한다. 그러면, 수학식 2의 해석모델은 k 번째 수치 해석에 사용된 해석 데이터 출력 신호
Figure pat00042
와, 수학식 1의 신호생성모델이 도출한 k + T 번째 수치 해석의 입력 신호
Figure pat00043
로부터 k + T 번째 수치 해석에 따른 출력 신호
Figure pat00044
를 도출할 수 있다.
해석모델도출부(130)는 해석모델를 도출하기 위하여, 먼저, 예컨대, 수학식 2의 파라미터인 영향도 A, 가중치 P 및 상쇄상수 C가 결정되지 않은 관계식을 구성한다. 그런 다음, 해석모델도출부(130)는 복수의 해석 데이터, 예컨대, Y(k), V(k+T), Y(k+T)를 파라미터가 결정되지 않은 관계식에 입력하여 최적화 알고리즘을 통해 파라미터, 즉, 영향도 A, 가중치 P 및 상쇄상수 C를 도출한다. 최적화 알고리즘은 예컨대, 최소자승법(Least-Squares Method), 역확산(Backpropagation) 알고리즘 등이 될 수 있다. 이와 같이, 파라미터 A, P, C가 결정되면, 수학식 2와 같은 해석모델이 완성된다.
일례로, 해석모델도출부(130)는 수학식 2와 같은 연결 가중치가 파라미터 A, P 및 C인 전달함수를 가지는 인공신경망을 구성할 수 있다. 그리고 해석 데이터를 학습 데이터로 이용하여 최적화 알고리즘(예컨대, 역확산 알고리즘)을 통해 연결 가중치인 파라미터 A, P 및 C 를 도출하고, 연결 가중치인 파라미터 A, P 및 C가 결정된 인공신경망을 해석모델로 도출할 수 있다.
유동해석부(200)는 모델도출부(100)가 도출한 신호생성모델 및 해석모델을 포함하는 유동해석모델을 이용하여 설계 대상 부품(CP)의 주변 공간을 구분하는 복수의 셀(CE)에 대한 유동 해석을 수행한다. 이러한 유동해석부(200)는 수치해석부(210), 신호생성부(220) 및 해석부(230)를 포함한다.
수치해석부(210)는 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 수치 해석을 수행한다. 이에 따라, 수치 해석을 위한 입력 신호와 이에 대응하는 출력 신호가 도출된다. 예컨대, 수치 해석에 따른 입력 신호는
Figure pat00045
이며, 출력 신호는
Figure pat00046
가 될 수 있다.
신호생성부(220)는 신호생성모델도출부(120)이 생성한 신호생성모델에 수치해석부(210)가 도출한 입력 신호 및 출력 신호를 반영하여 복수회(k+T) 반복한 수치 해석의 출력 신호에 기여한 입력 신호를 예측한다. 예컨대, 신호생성부(220)는 수학식 1과 같은 신호생성모델에 입력 신호
Figure pat00047
및 출력 신호
Figure pat00048
를 입력하여 복수회(k+T) 반복한 수치 해석의 출력 신호에 기여한 입력 신호
Figure pat00049
를 도출할 수 있다.
해석부(230)는 해석모델도출부(130)가 도출한 해석모델에 신호생성부(220)가 예측한 입력 신호 및 수치해석부(210)가 도출한 출력 신호를 반영하여 복수회(k+T) 반복한 수치 해석의 출력 신호를 예측한다. 예컨대, 해석부(230)는 수학식 2와 같은 해석모델에 예측된 입력 신호
Figure pat00050
및 출력 신호
Figure pat00051
를 입력하여 복수회(k+T) 반복한 수치 해석의 출력 신호
Figure pat00052
를 도출할 수 있다.
도 3을 참조하면, 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 수치 해석을 통해 유동 해석을 수행하는 경우, 수치 해석을 k+T회 반복(iteration)한 후에야 원하는 유동 해석의 결과, 즉, 출력 신호
Figure pat00053
를 얻을 수 있다. 하지만, 본 발명의 수치해석부(210)의 k 번째 수치 해석으로부터 유동해석모델을 통해 원하는 유동 해석의 결과
Figure pat00054
를 얻을 수 있기 때문에 T번의 수치 해석의 반복(iteration)할 필요가 없어 T번의 수치 해석의 반복되는 시간만큼 유동 해석에 소요되는 시간을 단축시킬 수 있다. 이에 따라, 부품을 개발하는데 소요되는 시간을 단축할 수 있다.
다음으로, 본 발명의 실시예에 따른 유동 해석 방법에 대해서 설명하기로 한다. 도 5는 본 발명의 실시예에 따른 유동 해석 방법을 설명하기 위한 흐름도이다.
도 5를 참조하면, 모델도출부(100)는 S110 단계에서 해석 데이터를 이용하여 유동 해석 대상 부품(CP)의 주변 공간을 구분하는 복수의 셀(CE)에 대해 유동 해석을 수행하는 유동해석모델을 생성한다. 여기서, 해석 데이터는 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 복수회 반복(iteration)되는 수치 해석에 사용된 복수의 입력 신호와 그 복수의 입력 신호에 대응하는 복수의 출력 신호를 포함한다. 특히, 유동해석모델은 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 복수회 반복(iteration)되는 수치 해석을 모사한다. 또한, 유동해석모델은 하나 이상의 신호생성모델 및 하나 이상의 해석모델을 포함할 수 있다.
다음으로, 유동해석부(200)는 S120 단계에서 앞서 모델도출부(100)가 도출한 하나 이상의 신호생성모델 및 하나 이상의 해석모델을 포함하는 유동해석모델을 통해 유동 해석 대상 부품(CP)의 주변 공간의 복수의 셀(CE)에 대한 유동 해석을 수행한다.
그러면, 전술한 S110 단계 및 S120 단계에 대해 보다 상세하게 설명하기로 한다.
먼저, 전술한 S110 단계의 유동해석모델을 생성하는 방법을 보다 상세하게 설명하기로 한다. 도 6은 본 발명의 실시예에 따른 유동해석모델을 생성하는 방법을 설명하기 위한 흐름도이다.
도 6을 참조하면, 신호생성모델도출부(120)는 S210 단계에서 파라미터, 즉, 영향도 H, 가중치 Q 및 상쇄상수 D가 결정되지 않은 관계식을 구성한다. 일례로, 파라미터가 결정되지 않은 관계식은 H, Q 및 D가 미지수인 수학식 1과 같다.
다음으로, 신호생성모델도출부(120)는 S220 단계에서 관계식에 해석 데이터를 대입하고, 최적화 알고리즘을 이용하여 관계식의 파라미터 H, Q 및 D를 도출한다. 여기서, 최적화 알고리즘은 최소자승법(Least-Squares Method), 역확산(Backpropagation) 알고리즘 등을 예시할 수 있다. 예컨대, 해석 데이터는 기존에 수치 해석에 사용된 V(k), Y(k), V(k+T)가 될 수 있다.
이어서, 신호생성모델도출부(120)는 S230 단계에서 관계식에 앞서 산출된 파라미터 H, Q 및 D를 관계식에 적용하여 신호생성모델을 생성한다. 예컨대, 앞서(S220) 산출된 파라미터 H, Q 및 D의 값을 관계식에 적용하여 수학식 1과 같은 신호생성모델을 완성한다. 이러한 신호생성모델은 복수회 반복된 수치 해석의 출력 신호에 기여하는 입력 신호를 예측한다.
다음으로, 해석모델도출부(130)는 S240 단계에서 파라미터인 영향도 A, 가중치 P 및 상쇄상수 C가 결정되지 않은 해석모델의 관계식을 구성한다. 일례로, 파라미터가 결정되지 않은 관계식은 파라미터 A, P 및 C가 미지수인 수학식 2와 같다.
다음으로, 해석모델도출부(130)는 S250 단계에서 해석 데이터를 관계식에 대입하고, 최적화 알고리즘을 통해 관계식의 파라미터 A, P 및 C를 도출한다. 예컨대, 해석 데이터는 기존에 수치 해석에 사용된 Y(k), V(k+T), Y(k+T)가 될 수 있다.
이어서, 해석모델도출부(130)는 S260 단계에서 앞서 파라미터 A, P 및 C를 관계식에 적용하여 해석모델을 생성한다. 예컨대, 앞서(S250) 산출된 파라미터 A, P 및 C의 값을 관계식에 적용하여 수학식 2와 같은 해석모델을 완성한다. 이러한 해석모델은 복수회 반복된 수치 해석의 출력 신호를 예측한다.
전술한 바와 같이, S230 단계에서 신호생성모델을 생성하고, S260 단계에서 해석모델을 생성함으로써, 신호생성모델 및 해석모델을 포함하는 유동해석모델이 완성된다.
다음으로, 전술한 유동해석모델을 이용하여 유동해석을 수행하는 방법에 대해서 설명하기로 한다. 도 7은 본 발명의 실시예에 따른 유동해석을 수행하는 방법을 설명하기 위한 흐름도이다.
도 2, 도 3 및 도 7을 참조하면, 수치해석부(210)는 S310 단계에서 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 수치 해석을 수행하여 수치 해석에 의한 입력 신호 및 출력 신호를 도출한다. 예컨대, 수학식 1 및 2에 따르면, 입력 신호는
Figure pat00055
이며, 출력 신호는
Figure pat00056
가 될 수 있다.
이어서, 신호생성부(220)는 S320 단계에서 신호생성모델에 수치해석부(210)가 도출한 입력 신호 및 출력 신호를 반영하여 복수회(k+T) 반복한 수치 해석의 출력 신호에 기여한 입력 신호를 예측한다. 예컨대, 신호생성부(220)는 수학식 1과 같은 신호생성모델에 입력 신호
Figure pat00057
및 출력 신호
Figure pat00058
를 입력하여 복수회(k+T) 반복된 수치 해석의 출력 신호에 기여한 입력 신호
Figure pat00059
를 도출할 수 있다.
다음으로, 해석부(230)는 S330 단계에서 해석모델도출부(130)가 도출한 해석모델에 신호생성부(220)가 예측한 입력 신호 및 수치해석부(210)가 도출한 출력 신호를 반영하여 복수회(k+T) 반복된 수치 해석의 출력 신호를 예측한다. 예컨대, 해석부(230)는 수학식 2와 같은 해석모델에 예측된 입력 신호
Figure pat00060
및 출력 신호
Figure pat00061
를 입력하여 복수회(k+T) 반복한 수치 해석의 출력 신호
Figure pat00062
를 도출할 수 있다.
도 8은 본 발명의 실시예에 따른, 컴퓨팅 장치를 나타내는 도면이다. 도 8의 컴퓨팅 장치(TN100)는 본 명세서에서 기술된 장치(예, 유동해석장치 등) 일 수 있다.
도 8의 실시예에서, 컴퓨팅 장치(TN100)는 적어도 하나의 프로세서(TN110), 송수신 장치(TN120), 및 메모리(TN130)를 포함할 수 있다. 또한, 컴퓨팅 장치(TN100)는 저장 장치(TN140), 입력 인터페이스 장치(TN150), 출력 인터페이스 장치(TN160) 등을 더 포함할 수 있다. 컴퓨팅 장치(TN100)에 포함된 구성 요소들은 버스(bus)(TN170)에 의해 연결되어 서로 통신을 수행할 수 있다.
프로세서(TN110)는 메모리(TN130) 및 저장 장치(TN140) 중에서 적어도 하나에 저장된 프로그램 명령(program command)을 실행할 수 있다. 프로세서(TN110)는 중앙 처리 장치(CPU: central processing unit), 그래픽 처리 장치(GPU: graphics processing unit), 또는 본 발명의 실시예에 따른 방법들이 수행되는 전용의 프로세서를 의미할 수 있다. 프로세서(TN110)는 본 발명의 실시예와 관련하여 기술된 절차, 기능, 및 방법 등을 구현하도록 구성될 수 있다. 프로세서(TN110)는 컴퓨팅 장치(TN100)의 각 구성 요소를 제어할 수 있다.
메모리(TN130) 및 저장 장치(TN140) 각각은 프로세서(TN110)의 동작과 관련된 다양한 정보를 저장할 수 있다. 메모리(TN130) 및 저장 장치(TN140) 각각은 휘발성 저장 매체 및 비휘발성 저장 매체 중에서 적어도 하나로 구성될 수 있다. 예를 들어, 메모리(TN130)는 읽기 전용 메모리(ROM: read only memory) 및 랜덤 액세스 메모리(RAM: random access memory) 중에서 적어도 하나로 구성될 수 있다.
송수신 장치(TN120)는 유선 신호 또는 무선 신호를 송신 또는 수신할 수 있다. 송수신 장치(TN120)는 네트워크에 연결되어 통신을 수행할 수 있다.
한편, 본 발명의 실시예에 따른 유동 해석 방법은 다양한 컴퓨터수단을 통하여 판독 가능한 프로그램 형태로 구현되어 컴퓨터로 판독 가능한 기록매체에 기록될 수 있다. 여기서, 기록매체는 프로그램 명령, 데이터 파일, 데이터구조 등을 단독으로 또는 조합하여 포함할 수 있다. 기록매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 예컨대 기록매체는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광 기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치를 포함한다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 와이어뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 와이어를 포함할 수 있다. 이러한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
10: 유동해석장치
100: 모델도출부
110: 해석데이터저장부
120: 신호생성모델도출부
130: 해석모델도출부
200: 유동해석부
210: 수치해석부
220: 신호생성부
230: 해석부

Claims (22)

  1. 부품의 주변 공간을 구분하는 복수의 셀에 대해 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 수치 해석을 모사하여 상기 복수의 셀에 대한 유동 해석을 수행하는 유동해석모델을 생성하는 모델도출부; 및
    상기 생성된 유동해석모델을 이용하여 설계 대상 부품의 주변 공간을 구분하는 복수의 셀에 대한 유동 해석을 수행하는 유동해석부
    를 포함하는 유동 해석 장치.
  2. 제1항에 있어서,
    상기 모델도출부는
    상기 수치 해석에 사용된 해석 데이터를 저장하는 해석데이터저장부;
    상기 해석 데이터를 통해 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 예측하는 신호생성모델을 생성하는 신호생성모델도출부; 및
    상기 해석 데이터를 통해 복수회 반복된 수치 해석의 출력 신호를 예측하는 해석모델을 생성하는 해석모델도출부를 포함하는
    유동 해석 장치.
  3. 제2항에 있어서,
    상기 신호생성모델은
    수학식
    Figure pat00063

    을 통해 상기 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 예측하며,
    상기 k 및 상기 T는 수치 해석 횟수이고,
    상기 H는 영향도이고,
    상기 Q는 가중치이고,
    상기 D는 상쇄상수이고,
    상기
    Figure pat00064
    는 k번째 수치 해석의 입력 신호이고,
    상기
    Figure pat00065
    는 k번째 수치 해석의 출력 신호이고,
    상기
    Figure pat00066
    는 k+T번째 수치 해석의 입력 신호인
    유동 해석 장치.
  4. 제2항에 있어서,
    상기 신호생성모델도출부는
    파라미터가 결정되지 않은 신호생성모델의 관계식을 구성한 후, 최적화 알고리즘을 통해 상기 파라미터를 도출하여 신호생성모델을 생성하는
    유동 해석 장치.
  5. 제2항에 있어서,
    상기 해석모델은
    수학식
    Figure pat00067

    을 통해 상기 복수회 반복된 수치 해석의 출력 신호를 예측하며,
    상기 k 및 상기 T는 수치 해석 횟수이고,
    상기 A는 영향도이고,
    상기 P는 가중치이고,
    상기 C는 상쇄상수이고,
    상기
    Figure pat00068
    는 k번째 수치 해석의 출력 신호이고,
    상기
    Figure pat00069
    는 k+T번째 수치 해석의 입력 신호이고,
    상기
    Figure pat00070
    는 k+T번째 수치 해석의 출력 신호인
    유동 해석 장치.
  6. 제2항에 있어서,
    상기 해석모델도출부는
    파라미터가 결정되지 않은 해석모델의 관계식을 구성한 후, 최적화 알고리즘을 통해 상기 파라미터를 도출하여 해석모델을 생성하는
    유동 해석 장치.
  7. 제2항에 있어서,
    상기 유동해석부는
    설계 대상 부품에 대한 수치 해석을 수행하여 해석 데이터를 도출하는 수치해석부;
    상기 수치해석부가 도출한 해석 데이터로부터 상기 신호생성모델도출부가 도출한 신호생성모델을 통해 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 도출하는 신호생성부; 및
    상기 신호생성부가 예측한 입력 신호로부터 상기 해석모델도출부가 도출한 해석모델을 통해 복수회 반복된 수치 해석의 출력 신호를 도출하는 해석부를 포함하는
    유동 해석 장치.
  8. 제7항에 있어서,
    상기 수치해석부는
    설계 대상 부품의 주변 공간을 구분하는 복수의 셀에 대해 전산유체역학에 의한 수치 해석을 수행하여 해석 데이터를 도출하는
    유동 해석 장치.
  9. 제8항에 있어서,
    상기 신호생성부는
    상기 해석 데이터를 상기 신호생성모델에 입력하여 소정 횟수 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 도출하는
    유동 해석 장치.
  10. 제9항에 있어서,
    상기 해석부는
    상기 해석 데이터의 출력 신호와 상기 기여한 입력 신호를 상기 해석모델에 입력하여 수치 해석이 소정 횟수 반복된 수치 해석의 출력 신호를 도출하는
    유동 해석 장치.
  11. 부품의 주변 공간을 구분하는 복수의 셀에 대해 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 수치 해석에 사용된 해석 데이터를 이용하여 상기 복수의 셀에 대한 유동 해석을 수행하는 유동해석모델을 생성하는 모델도출부; 및
    상기 생성된 유동해석모델을 이용하여 설계 대상 부품의 주변 공간을 구분하는 복수의 셀에 대한 유동 해석을 수행하는 유동해석부
    를 포함하는 유동 해석 장치.
  12. 제11항에 있어서,
    상기 유동해석모델은
    상기 전산유체역학에 의한 복수회 반복되는 수치 해석을 모사하는
    유동 해석 장치.
  13. 제12항에 있어서,
    상기 유동해석모델은
    상기 해석 데이터를 통해 상기 복수의 입력 신호 중 복수회 반복된 수치 해석의 결과에 기여한 입력 신호를 예측하는 하나 이상의 신호생성모델; 및
    상기 해석 데이터를 통해 복수회 반복된 수치 해석의 결과를 예측하는 해석모델을 포함하는
    유동 해석 장치.
  14. 제13항에 있어서,
    상기 신호생성모델은
    수학식
    Figure pat00071

    을 통해 상기 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 예측하며,
    상기 k 및 상기 T는 수치 해석 횟수를 나타내는 파라미터이고,
    상기 H는 영향도이고,
    상기 Q는 가중치이고,
    상기 D는 상쇄상수이고,
    상기
    Figure pat00072
    는 k번째 수치 해석의 입력 신호이고,
    상기
    Figure pat00073
    는 k번째 수치 해석의 출력 신호이고,
    상기
    Figure pat00074
    는 k+T번째 수치 해석의 입력 신호인
    유동 해석 장치.
  15. 제13항에 있어서,
    상기 해석모델은
    수학식
    Figure pat00075

    을 통해 상기 복수회 반복된 수치 해석의 출력 신호를 예측하며,
    상기 k 및 상기 T는 수치 해석 횟수를 나타내며,
    상기 A는 영향도이고,
    상기 P는 가중치이고,
    상기 C는 상쇄상수이고,
    상기
    Figure pat00076
    는 k번째 수치 해석의 출력 신호이고,
    상기
    Figure pat00077
    는 k+T번째 수치 해석의 입력 신호고,
    상기
    Figure pat00078
    는 k+T번째 수치 해석의 출력 신호인
    유동 해석 장치.
  16. 모델도출부가 부품의 주변 공간을 구분하는 복수의 셀에 대해 전산유체역학(CFD: Computational Fluid Dynamics)에 의한 수치 해석에 사용된 복수의 입력 신호와 상기 복수의 입력 신호 각각에 대응하는 복수의 출력 신호를 포함하는 해석 데이터를 저장하는 단계;
    상기 모델도출부가 상기 해석 데이터를 이용하여 상기 복수의 셀에 대한 유동 해석을 수행하는 유동해석모델을 생성하는 단계; 및
    유동해석부가 상기 유동해석모델을 이용하여 설계 대상 부품의 주변 공간을 구분하는 복수의 셀에 대한 유동 해석을 수행하는 단계
    를 포함하는 유동 해석 방법.
  17. 제16항에 있어서,
    상기 유동해석모델을 생성하는 단계는
    신호생성모델도출부가 상기 해석 데이터를 통해 상기 복수의 입력 신호 중 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 예측하는 신호생성모델을 생성하는 단계; 및
    해석모델도출부가 상기 해석 데이터를 통해 상기 복수의 입력 신호 중 복수회 반복된 수치 해석의 출력 신호를 예측하는 해석모델을 생성하는 단계를 포함하는
    유동 해석 방법.
  18. 제17항에 있어서,
    상기 신호생성모델은
    수학식
    Figure pat00079

    을 통해 상기 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 예측하며,
    상기 k 및 상기 T는 수치 해석 횟수이고,
    상기 H는 영향도고,
    상기 Q는 가중치이고,
    상기 D는 상쇄상수이고,
    상기
    Figure pat00080
    는 k번째 수치 해석의 입력 신호이고,
    상기
    Figure pat00081
    는 k번째 수치 해석의 출력 신호이고,
    상기
    Figure pat00082
    는 k+T번째 수치 해석의 입력 신호인
    유동 해석 방법.
  19. 제17항에 있어서,
    상기 해석모델은
    수학식
    Figure pat00083

    을 통해 상기 복수회 반복된 수치 해석의 출력 신호를 예측하며,
    상기 k 및 상기 T는 수치 해석 횟수를 나타내는 파라미터이고,
    상기 A는 영향도이고,
    상기 P는 가중치이고,
    상기 C는 상쇄상수이고,
    상기
    Figure pat00084
    는 k번째 수치 해석의 출력 신호이고,
    상기
    Figure pat00085
    는 k+T번째 수치 해석의 입력 신호이고,
    상기
    Figure pat00086
    는 k+T번째 수치 해석의 출력 신호인
    유동 해석 방법.
  20. 제17항에 있어서,
    상기 신호생성모델을 생성하는 단계는
    상기 신호생성모델도출부가 파라미터가 결정되지 않은 신호생성모델의 관계식을 구성하는 단계; 및
    상기 신호생성모델도출부가 최적화 알고리즘을 통해 상기 파라미터를 도출하여 상기 신호생성모델을 완성하는 단계;를 포함하는
    유동 해석 방법.
  21. 제17항에 있어서,
    상기 해석모델을 생성하는 단계는
    상기 해석모델도출부가 파라미터가 결정되지 않은 해석모델의 관계식을 구성하는 단계;
    상기 해석모델도출부가 최적화 알고리즘을 통해 상기 파라미터를 도출하여 해석모델을 완성하는 단계;를 포함하는
    유동 해석 방법.
  22. 제17항에 있어서,
    상기 유동 해석을 수행하는 단계는
    수치해석부가 설계 대상 부품에 대한 수치 해석을 수행하여 해석 데이터를 도출하는 단계;
    신호생성부가 상기 수치해석부가 도출한 해석 데이터로부터 상기 신호생성모델도출부가 도출한 상기 신호생성모델을 통해 복수회 반복된 수치 해석의 출력 신호에 기여한 입력 신호를 도출하는 단계; 및
    상기 신호생성부가 도출한 입력 신호 및 상기 수치해석부가 도출한 해석 데이터로부터 상기 해석모델도출부가 도출한 상기 해석모델을 통해 복수회 반복된 수치 해석의 출력 신호를 도출하는 단계를 포함하는
    유동 해석 방법.
KR1020180097538A 2018-08-21 2018-08-21 유동 해석 장치 및 이를 위한 방법 KR102101792B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020180097538A KR102101792B1 (ko) 2018-08-21 2018-08-21 유동 해석 장치 및 이를 위한 방법
US16/420,179 US11544428B2 (en) 2018-08-21 2019-05-23 Flow analysis apparatus and method therefor
DE102019115303.4A DE102019115303A1 (de) 2018-08-21 2019-06-06 Strömungsanalysevorrichtung und Verfahren dafür

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180097538A KR102101792B1 (ko) 2018-08-21 2018-08-21 유동 해석 장치 및 이를 위한 방법

Publications (2)

Publication Number Publication Date
KR20200021766A true KR20200021766A (ko) 2020-03-02
KR102101792B1 KR102101792B1 (ko) 2020-04-17

Family

ID=69413131

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180097538A KR102101792B1 (ko) 2018-08-21 2018-08-21 유동 해석 장치 및 이를 위한 방법

Country Status (3)

Country Link
US (1) US11544428B2 (ko)
KR (1) KR102101792B1 (ko)
DE (1) DE102019115303A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230145871A (ko) * 2022-04-11 2023-10-18 영남대학교 산학협력단 유동 해석 방법 및 이를 수행하기 위한 컴퓨팅 장치
KR102711075B1 (ko) * 2023-09-26 2024-09-30 알머티리얼즈 주식회사 인공지능 기반 발전기/모터 설계 장치 및 그 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130131609A (ko) * 2012-05-24 2013-12-04 한국항공우주산업 주식회사 중형 터보프롭 항공기급 프로펠러의 공력특성에 대한 전산해석방법
KR20140087653A (ko) * 2012-12-31 2014-07-09 (주) 디엔디이 풍력터빈 블레이드 설계 및 해석방법
KR20160007838A (ko) 2014-07-03 2016-01-21 (주) 디엔디이 풍력터빈 설계 및 해석방법
KR101612506B1 (ko) * 2014-10-21 2016-04-14 한국항공우주산업 주식회사 전산 유체 역학을 이용한 항공기 공력해석 시스템 및 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001722A2 (en) * 2003-06-25 2005-01-06 Bae Systems Plc Design optimisation of computationally intensive design problems
BRPI1002159A8 (pt) 2010-04-15 2021-10-26 Asel Tech Tecnologia E Automacao Ltda Sistema integrado com a tecnologia acústica, balanço de massa e rede neural para detecção, localização e quantificação de vazamentos em dutos
US8725470B1 (en) 2010-05-17 2014-05-13 The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) Co-optimization of blunt body shapes for moving vehicles
US10489533B2 (en) * 2015-07-31 2019-11-26 Autodesk, Inc. Techniques for warm starting finite element analyses with deep neural networks
US11314305B2 (en) * 2019-05-13 2022-04-26 Ansys, Inc. Dynamic thermal management simulation using improved reduced order modeling
US11373026B2 (en) * 2019-06-10 2022-06-28 General Electric Company Deep learning surrogate for turbulent flow

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130131609A (ko) * 2012-05-24 2013-12-04 한국항공우주산업 주식회사 중형 터보프롭 항공기급 프로펠러의 공력특성에 대한 전산해석방법
KR20140087653A (ko) * 2012-12-31 2014-07-09 (주) 디엔디이 풍력터빈 블레이드 설계 및 해석방법
KR20160007838A (ko) 2014-07-03 2016-01-21 (주) 디엔디이 풍력터빈 설계 및 해석방법
KR101612506B1 (ko) * 2014-10-21 2016-04-14 한국항공우주산업 주식회사 전산 유체 역학을 이용한 항공기 공력해석 시스템 및 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230145871A (ko) * 2022-04-11 2023-10-18 영남대학교 산학협력단 유동 해석 방법 및 이를 수행하기 위한 컴퓨팅 장치
KR102711075B1 (ko) * 2023-09-26 2024-09-30 알머티리얼즈 주식회사 인공지능 기반 발전기/모터 설계 장치 및 그 방법

Also Published As

Publication number Publication date
US11544428B2 (en) 2023-01-03
US20200065448A1 (en) 2020-02-27
KR102101792B1 (ko) 2020-04-17
DE102019115303A1 (de) 2020-02-27

Similar Documents

Publication Publication Date Title
US11416654B2 (en) Analysis apparatus using learned model and method therefor
US20230252327A1 (en) Neural architecture search for convolutional neural networks
Couckuyt et al. Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization
US20050273296A1 (en) Neural network model for electric submersible pump system
JP2005504367A (ja) 監視ニューラルネットワーク学習のための組合せ手法
US11727175B2 (en) Automated analog and mixed-signal circuit design and validation
US20210295167A1 (en) Generative networks for physics based simulations
US20210374544A1 (en) Leveraging lagging gradients in machine-learning model training
EP3846034B1 (en) Systems and methods for automated testing using artificial intelligence techniques
CN108879732B (zh) 电力系统暂态稳定评估方法及装置
Srivastava et al. Generalizable physics-constrained modeling using learning and inference assisted by feature-space engineering
White et al. Neural networks predict fluid dynamics solutions from tiny datasets
KR102101792B1 (ko) 유동 해석 장치 및 이를 위한 방법
KR102138227B1 (ko) 유동 해석을 최적화하기 위한 장치 및 이를 위한 방법
CN117217062B (zh) 基于刚度矩阵的流体仿真方法及装置
Steins et al. Probabilistic constrained Bayesian inversion for transpiration cooling
KR20220032861A (ko) 하드웨어에서의 성능을 고려한 뉴럴 아키텍처 서치 방법 빛 장치
WO2022232678A1 (en) Programmatic circuit partitioning and topology identification
KR102130096B1 (ko) 해석을 진단하기 위한 장치 및 이를 위한 방법
JP2019219756A (ja) 制御装置、制御方法、プログラム、ならびに、情報記録媒体
CN118917259A (zh) 基于强化学习的与非图优化方法、装置、计算机设备、可读存储介质和程序产品
WO2022232680A1 (en) Process aware compact representation of integrated circuits
WO2022232679A1 (en) Multi-algorithmic approach to represent highly non-linear high dimensional space
WO2022232677A1 (en) Automated analog and mixed-signal circuit design and validation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right