KR20200015339A - 무선통신 시스템에서 데이터를 송수신하는 방법 및 장치 - Google Patents

무선통신 시스템에서 데이터를 송수신하는 방법 및 장치 Download PDF

Info

Publication number
KR20200015339A
KR20200015339A KR1020180128489A KR20180128489A KR20200015339A KR 20200015339 A KR20200015339 A KR 20200015339A KR 1020180128489 A KR1020180128489 A KR 1020180128489A KR 20180128489 A KR20180128489 A KR 20180128489A KR 20200015339 A KR20200015339 A KR 20200015339A
Authority
KR
South Korea
Prior art keywords
cell
frequency
inter
rrc
serving cell
Prior art date
Application number
KR1020180128489A
Other languages
English (en)
Other versions
KR102509073B1 (ko
Inventor
정상엽
김성훈
더 벨데 힘크 반
알렉산더 사엔코
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to CN201980061327.0A priority Critical patent/CN112740753B/zh
Priority to EP19843372.4A priority patent/EP3818750B1/en
Priority to PCT/KR2019/009402 priority patent/WO2020027520A1/en
Priority to US16/530,458 priority patent/US11146998B2/en
Publication of KR20200015339A publication Critical patent/KR20200015339A/ko
Priority to US17/496,366 priority patent/US20220030477A1/en
Application granted granted Critical
Publication of KR102509073B1 publication Critical patent/KR102509073B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시의 일 실시 예에 따르면, 무선 통신 시스템에서 단말의 셀 재선택 동작 방법에 있어서, 기지국으로부터 시스템 정보를 수신하는 단계; 상기 시스템 정보를 기초로, 주변 셀들에 대한 신호 품질 또는 수신 레벨을 측정하는 단계; 및 상기 측정된 신호 품질 또는 수신 레벨을 기초로 셀 재선택 동작을 수행하는 단계를 포함하는 방법이 개시된다.

Description

무선통신 시스템에서 데이터를 송수신하는 방법 및 장치{Method and apparatus for data communicating in a wireless communication system}
본 개시는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
상술한 것과 무선통신 시스템의 발전에 따라 다양한 서비스를 제공할 수 있게 됨으로써, 이러한 서비스들을 원활하게 제공하기 위한 방안이 요구되고 있다.
본 개시는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치에 관한 것이다.
본 개시의 일 실시 예에 따르면, 무선 통신 시스템에서 단말의 셀 재선택 동작 방법에 있어서, 기지국으로부터 시스템 정보를 수신하는 단계; 상기 시스템 정보를 기초로, 주변 셀들에 대한 신호 품질 또는 수신 레벨을 측정하는 단계; 및 상기 측정된 신호 품질 또는 수신 레벨을 기초로 셀 재선택 동작을 수행하는 단계를 포함하는 방법이 개시된다.
도 1a는 본 개시의 일 실시 예에 따른 LTE 시스템의 구조를 도시한 도면이다.
도 1b는 본 개시의 일 실시 예에 따른 LTE 시스템에서 무선 프로토콜 구조를 도시한 도면이다.
도 1c는 본 개시의 일 실시 예에 따른 차세대 이동통신 시스템의 구조를 도시한 도면이다.
도 1d는 본 개시의 일 실시 예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다.
도 1e는 본 개시의 일 실시 예에 따라, 단말의 RRC 유휴 모드 또는 RRC 비활성화 모드의 셀 재선택 과정에서 핑퐁(ping-pong) 현상이 나타나는 것을 설명하기 위한 도면이다.
도 1f는, 본 개시의 일 실시 예에 따라, 단말이 RRC 유휴 모드 또는 RRC 비활성화 모드일 때, 핑퐁(ping-pong) 현상을 방지하는 과정을 도시한 도면이다.
도 1g는, 본 개시의 일 실시 예에 따라, 단말이 RRC 유휴 모드 또는 RRC 비활성화 모드일 때, 핑퐁(ping-pong) 현상을 방지하는 과정을 도시한 도면이다.
도 1h는, 본 개시의 일 실시 예에 따라, 단말이 RRC 유휴 모드 또는 RRC 비활성화 모드일 때, 핑퐁(ping-pong) 현상을 방지하는 과정을 도시한 도면이다.
도 1i는 본 개시의 일 실시 예에 따라, 단말이 RRC 유휴 모드 또는 RRC 비활성화 모드일 때, 핑퐁(ping-pong) 현상을 방지하는 과정을 도시한 도면이다.
도 1j는 본 개시의 일 실시 예에 따라, 단말이 RRC 유휴 모드 또는 RRC 비활성화 모드일 때, 핑퐁(ping-pong) 현상을 방지하는 과정을 도시한 도면이다.
도 1k는 본 개시의 일 실시 예에 따라, 단말이 RRC 유휴 모드 또는 RRC 비활성화 모드일 때, 핑퐁(ping-pong) 현상을 방지하는 과정을 도시한 도면이다.
도 1l에 본 개시의 일 실시 예에 따른 단말의 구조를 도시한 것이다.
도 1m는 본 개시의 일 실시 예에 기지국의 구조를 도시한 것이다.
도 2a는 본 개시의 일 실시 예에 따른 LTE 시스템의 구조를 도시한 도면이다.
도 2b는 본 개시의 일 실시 예에 따른 LTE 시스템에서 무선 프로토콜 구조를 도시한 도면이다.
도 2c는 본 개시의 일 실시 예에 따른 차세대 이동통신 시스템의 구조를 도시한 도면이다.
도 2d는 본 개시의 일 실시 예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다.
도 2e는 본 개시의 일 실시 예에 따라, 기지국이 단말의 연결을 해제하여 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 유휴 모드(RRC idle mode)로 전환하는 절차와, 단말이 기지국과 연결을 설정하여 RRC 유휴 모드(RRC idle mode)에서 RRC 연결 모드(RRC connected mode)로 전환하는 절차를, 설명한 도면이다.
도 2f는 본 개시의 일 실시 예에 따라, 기지국이 단말의 연결을 해제하여 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환하는 절차와, 단말이 기지국과 연결을 설정하여 RRC 비활성화 모드(RRC inactive mode)에서 RRC 연결 모드(RRC connected mode)로 전환하는 절차를 설명한 도면이다.
도 2g는 본 개시의 일 실시 예에 따라, 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 구동한 T380 타이머가 만료 되었을 때 적합한 셀에 캠프-온 하였는지 여부에 따른 단말 동작의 순서도를 도시한 것이다.
도 2h는 본 개시의 일 실시 예에 따라 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 구동한 T380 타이머가 만료 되었을 때 적합한 셀에 캠프-온 한 경우 또는 캠프-온 상태에서 일시적으로 서비스를 받지 못하는 상태에 있는 경우 또는 용인되는 셀에 캠프-온 한 경우 또는 어떤 셀에도 캠프-온 하지 않은 여부에 따른 단말 동작의 순서도를 도시한 것이다.
도 2i는 본 개시의 일 실시 예에 따라, 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 구동한 T380 타이머가 만료 되었을 때 적합한 셀에 캠프-온 한 여부에 따라 새로운 타이머를 구동하는 단말 동작의 순서도를 도시한 것이다.
도 2j는 본 개시의 일 실시 예에 따라 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 구동한 T380 타이머가 만료 되었을 때 적합한 셀에 캠프-온 한 경우 또는 캠프-온 상태에서 일시적으로 서비스를 받지 못하는 상태에 있는 경우 또는 용인되는 셀에 캠프-온 한 경우 또는 어떤 셀에도 캠프-온 하지 않은 여부에 따라 새로운 타이머를 구동하는 단말 동작의 순서도를 도시한 것이다.
도 2k는 본 개시의 일 실시 예에 따라 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 랜 지시 영역 업데이트(RNAU, Ran-Notification Area Update)가 조기에 트리거 되는 것을 방지하기 위해, 적합한 셀에 캠프-온 한 여부에 따라, 단말이 설정된 랜 지시 영역에 있는 지에 대한 평가 여부를 수행하는 단말 동작의 순서도를 도시한 것이다.
도 2l는 본 개시의 일 실시 예에 따라 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 랜 지시 영역 업데이트(RNAU, Ran-Notification Area Update)가 조기에 트리거 되는 것을 방지하기 위해, 적합한 셀에 캠프-온 한 여부에 따라, 단말이 설정된 랜 지시 영역에 있는 지에 대한 평가 여부를 수행하거나 연결 재개 절차 또는 NAS recovery 절차를 수행하는 단말 동작의 순서도를 도시한 것이다.
도 2m는 본 개시의 일 실시 예에 따라, 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환한 후 랜 지시 영역 업데이트(RNAU, Ran-Notification Area Update)가 조기에 트리거 되는 것을 방지하기 위해, 적합한 셀에 캠프-온 한 여부에 따라, 단말이 설정된 랜 지시 영역에 있는 지에 대한 평가 여부를 수행하거나 캠프-온 한 용인되는 셀의 종류에 따라 연결 재개 절차 또는 NAS recovery 절차를 수행하는 단말 동작의 순서도를 도시한 것이다.
도 2n는 본 개시의 일 실시 예에 따라, RRC 비활성화 모드(RRC inactive mode)에 있는 단말이 용인되는 셀에 캠프-온 할 때 단말 동작의 순서도를 도시한 것이다.
도 2o는 본 개시의 일 실시 예에 따라, RRC 비활성화 모드(RRC inactive mode)에 있는 단말이 용인되는 셀에 캠프-온 할 경우 RRC 비활성화 모드를 유지하는 절차를 설명한 도면이다.
도 2p은 본 개시의 일 실시 예에 따른 단말의 구조를 도시한 것이다.
도 2q는 본 개시의 일 실시 예에 따른 기지국의 구조를 도시한 것이다.
이하 첨부된 도면을 참조하여 본 개시의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명하기에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 될 수 있다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예를 들면, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이때, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다.
본 개시에서 하향링크(Downlink; DL)는 기지국이 단말에게 전송하는 신호의 무선 전송경로이고, 상향링크는(Uplink; UL)는 단말이 기국에게 전송하는 신호의 무선 전송경로를 의미한다. 또한, 이하에서 LTE 또는 LTE-A 시스템을 일 예로서 설명할 수도 있지만, 유사한 기술적 배경 또는 채널형태를 갖는 다른 통신시스템에도 본 개시의 실시예가 적용될 수 있다. 예를 들어 LTE-A 이후에 개발되는 5세대 이동통신 기술(5G, new radio, NR)이 본 개시의 실시예가 적용될 수 있는 시스템에 포함될 수 있으며, 이하의 5G는 기존의 LTE, LTE-A 및 유사한 다른 서비스를 포함하는 개념일 수도 있다. 또한, 본 개시는 숙련된 기술적 지식을 가진 자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 본 발명은 3GPP LTE(3rd Generation Partnership Project Long Term Evolution) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 발명이 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다. 본 발명에서 eNB는 설명의 편의를 위하여 gNB와 혼용되어 사용될 수 있다. 즉 eNB로 설명한 기지국은 gNB를 나타낼 수 있다.
하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 이하 첨부된 도면을 참조하여 본 개시의 일 실시 예를 설명하기로 한다.
도 1a는 본 개시의 일 실시 예에 따른 LTE 시스템의 구조를 도시한 도면이다.
도 1a를 참조하면, 도시한 바와 같이 LTE 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 ENB, Node B 또는 기지국)(1a-05, 1a-10, 1a-15, 1a-20)과 이동성 관리 엔티티 (Mobility Management Entity, MME)(1a-25) 및 S-GW(1a-30, Serving-Gateway)로 구성될 수 있다. 사용자 단말(User Equipment, 이하 UE 또는 단말)(1a-35)은 ENB(1a-05 ~ 1a-20) 및 S-GW(1a-30)를 통해 외부 네트워크에 접속할 수 있다.
도 1a에서 ENB(1a-05 ~ 1a-20)는 UMTS 시스템의 기존 노드 B에 대응될 수 있다. ENB는 UE(1a-35)와 무선 채널로 연결되며 기존 노드 B 보다 복잡한 역할을 수행할 수 있다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 될 수 있다. 따라서, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 ENB(1a-05 ~ 1a-20)가 담당할 수 있다. 하나의 ENB는 통상 다수의 셀들을 제어할 수 있다. 예컨대, 100 Mbps의 전송 속도를 구현하기 위해서 LTE 시스템은 예컨대, 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, OFDM)을 무선 접속 기술로 사용할 수 있다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, AMC) 방식을 적용할 수 있다. S-GW(1a-30)는 데이터 베어러(bearer)를 제공하는 장치이며, MME(1a-25)의 제어에 따라서 데이터 베어러를 생성하거나 제거할 수 있다. MME는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결될 수 있다.
도 1b는 본 개시의 일 실시 예에 따른 LTE 시스템에서 무선 프로토콜 구조를 도시한 도면이다.
도 1b를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 ENB에서 각각 패킷 데이터 컨버전스 프로토콜 (Packet Data Convergence Protocol, PDCP)(1b-05, 1b-40), 무선 링크 제어(Radio Link Control, RLC)(1b-10, 1b-35), 매체 액세스 제어 (Medium Access Control, MAC)(1b-15, 1b-30)으로 이루어질 수 있다. PDCP는 IP 헤더 압축/복원 등의 동작을 담당할 수 있다. PDCP의 주요 기능은 하기와 같이 요약될 수 있다.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs at PDCP re-establishment procedure for RLC AM)
- 순서 재정렬 기능(For split bearers in DC (only support for RLC AM): PDCP PDU routing for transmission and PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs at PDCP re-establishment procedure for RLC AM)
- 재전송 기능(Retransmission of PDCP SDUs at handover and, for split bearers in DC, of PDCP PDUs at PDCP data-recovery procedure, for RLC AM)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
무선 링크 제어(Radio Link Control, RLC)(1b-10, 1b-35)는 PDCP 패킷 데이터 유닛(Packet Data Unit, PDU)을 적절한 크기로 재구성해서 ARQ 동작 등을 수행할 수 있다. RLC의 주요 기능은 하기와 같이 요약될 수 있다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ (only for AM data transfer))
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs (only for UM and AM data transfer))
- 재분할 기능(Re-segmentation of RLC data PDUs (only for AM data transfer))
- 순서 재정렬 기능(Reordering of RLC data PDUs (only for UM and AM data transfer)
- 중복 탐지 기능(Duplicate detection (only for UM and AM data transfer))
- 오류 탐지 기능(Protocol error detection (only for AM data transfer))
- RLC SDU 삭제 기능(RLC SDU discard (only for UM and AM data transfer))
- RLC 재수립 기능(RLC re-establishment)
MAC(1b-15, 1b-30)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행할 수 있다. MAC의 주요 기능은 하기와 같이 요약될 수 있다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs belonging to one or different logical channels into/from transport blocks (TB) delivered to/from the physical layer on transport channels)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
물리 계층(1b-20, 1b-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 할 수 있다.
도 1c는 본 개시의 일 실시 예에 따른 차세대 이동통신 시스템의 구조를 도시한 도면이다.
도 1c를 참조하면, 차세대 이동통신 시스템(이하 NR 또는 2g)의 무선 액세스 네트워크는 차세대 기지국(New Radio Node B, 이하 NR gNB 또는 NR 기지국)(1c-10)과 차세대 무선 코어 네트워크(New Radio Core Network, NR CN)(1c-05)로 구성될 수 있다. 차세대 무선 사용자 단말(New Radio User Equipment, NR UE 또는 단말)(1c-15)은 NR gNB(1c-10) 및 NR CN (1c-05)를 통해 외부 네트워크에 접속할 수 있다.
도 1c에서 NR gNB(1c-10)는 기존 LTE 시스템의 eNB (Evolved Node B)에 대응될 수 있다. NR gNB는 NR UE(1c-15)와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다. 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 될 수 있다. 따라서, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 NR NB(1c-10)가 담당할 수 있다. 하나의 NR gNB는 다수의 셀들을 제어할 수 있다. 차세대 이동통신 시스템에서는, 현재 LTE 대비 초고속 데이터 전송을 구현하기 위해서, 현재의 최대 대역폭 이상의 대역폭이 적용될 수 있다. 또한, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, OFDM)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한, 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식이 적용될 수 있다. NR CN (1c-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행할 수 있다. NR CN는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결될 수 있다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, NR CN이 MME (1c-25)와 네트워크 인터페이스를 통해 연결될 수 있다. MME는 기존 기지국인 eNB (1c-30)과 연결될 수 있다.
도 1d는 본 개시의 일 실시 예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다. .
도 1d를 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR 서비스 데이터 적응 프로토콜(Service Data Adaptation Protocol, SDAP)(1d-01, 1d-45), NR PDCP(1d-05, 1d-40), NR RLC(1d-10, 1d-35), NR MAC(1d-15, 1d-30)으로 이루어진다.
NR SDAP(1d-01, 1d-45)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 사용자 데이터의 전달 기능(transfer of user plane data)
- 상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)
- 상향 링크와 하향 링크에 대해서 QoS flow ID를 마킹 기능(marking QoS flow ID in both DL and UL packets)
- 상향 링크 SDAP PDU들에 대해서 relective QoS flow를 데이터 베어러에 맵핑시키는 기능 (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
SDAP 계층 장치에 대해 단말은 무선 자원 제어(Radio Resource Control, RRC) 메시지로 각 PDCP 계층 장치 별로 또는 베어러 별로 또는 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 또는 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있다. SDAP 헤더가 설정된 경우, 단말은, SDAP 헤더의 비접속 계층(Non-Access Stratum, NAS) QoS(Quality of Service) 반영 설정 1비트 지시자(NAS reflective QoS)와, 접속 계층 (Access Stratum, AS) QoS 반영 설정 1비트 지시자(AS reflective QoS)로, 단말이 상향 링크와 하향 링크의 QoS 플로우(flow)와 데이터 베어러에 대한 맵핑 정보를 갱신 또는 재설정할 수 있도록 지시할 수 있다. SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. QoS 정보는 원할한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케쥴링 정보 등으로 사용될 수 있다.
NR PDCP (1d-05, 1d-40)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능 (Out-of-sequence delivery of upper layer PDUs)
- 순서 재정렬 기능(PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)
- 재전송 기능(Retransmission of PDCP SDUs)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
상술한 내용에서, NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능을 의미할 수 있다. NR PDCP 장치의 순서 재정렬 기능(reordering)은 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있으며, 또는 순서를 고려하지 않고 바로 전달하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC(1d-10, 1d-35)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)
- 재분할 기능(Re-segmentation of RLC data PDUs)
- 순서 재정렬 기능(Reordering of RLC data PDUs)
- 중복 탐지 기능(Duplicate detection)
- 오류 탐지 기능(Protocol error detection)
- RLC SDU 삭제 기능(RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)
상술한 내용에서, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 의미할 수 있다. 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 이를 재조립하여 전달하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 수신한 RLC PDU들을 RLC SN(sequence number) 또는 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다.
NR RLC 장치는, 일련번호(Sequence number)의 순서와 상관없이(Out-of sequence delivery) RLC PDU들을 수신하는 순서대로 처리하여 NR PDCP 장치로 전달할 수 있다.
NR RLC 장치가 세그먼트(segment)를 수신할 경우에는, 버퍼에 저장되어 있거나 추후에 수신될 세그먼트들을 수신하여, 온전한 하나의 RLC PDU로 재구성한 후, 이를 NR PDCP 장치로 전달할 수 있다.
NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고, NR MAC 계층에서 기능을 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다.
상술한 내용에서, NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 의미할 수 있다. NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있다. NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은, 수신한 RLC PDU들의 RLC SN 또는 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다.
NR MAC(1d-15, 1d-30)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
NR PHY 계층(1d-20, 1d-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.
도 1e는 본 개시의 일 실시 예에 따라, 단말의 RRC 유휴 모드 또는 RRC 비활성화 모드의 셀 재선택 과정에서 핑퐁(ping-pong) 현상이 나타나는 것을 설명하기 위한 도면이다.
셀 재선택 과정은, RRC 유휴 모드(RRC idle mode) 또는 RRC 비활성화 모드(RRC Inactive mode)에 있는 단말이, 소정의 이유 또는 이동으로 인해 서빙 셀(Serving Cell)의 서비스 품질이 주변 셀(Neighbor Cell)의 서비스 품질보다 낮아질 때, 현재 서빙 셀을 유지할 지 아니면 주변 셀로 셀을 재선택할 지 결정하는 절차를 의미할 수 있다.
핸드오버의 경우 망(MME 또는 AMF 또는 source eNB 또는 source gNB)에 의해 핸드오버 동작 여부가 결정되는 반면에, 셀 재선택의 경우 단말의 측정값을 기반으로 단말이 스스로 셀 재선택 동작 여부를 결정할 수 있다. 단말이 이동하면서 재선택하게 되는 셀은, 현재 캠프 온하고 있는 서빙 셀과 같은 NR 주파수를 사용(intra-frequency)하는 셀, 다른 NR 주파수를 사용(inter-frequency)하는 셀 또는 다른 무선접속기술을 사용(inter-RAT(Radio Access Technology))하는 셀일 수도 있다.
RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말(1e-01)은 서빙 셀에 캠프 온(camp-on)(1e-05)하면서 일련의 동작을 수행할 수 있다.
1e-10 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드의 단말은, 서빙 셀의 기지국이 방송하는 시스템 정보(System information)를 수신할 수 있다. 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은, 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않을 수 있다. 시스템 정보는 마스터 정보 블록(Master Information Block, MIB)와 시스템 정보 블록들(System Information Blocks, SIBs)으로 나뉘어 질 수 있다. 추가적으로 시스템 정보 블록들은 SIB1와 SIB1를 제외한 SI 메시지(SI message)(예를 들면, SIB2, SIB3, SIB4 또는 SIB5)로 구분하여 칭해질 수 있다. RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀에 캠프 온 하기 전에 해당 셀의 기지국이 방송하는 시스템 정보(예를 들면, MIB 또는 SIB1 또는 SIB2)를 미리 수신하여 읽어 들일 수 있다. 참고로, MIB, SIB1는 모든 단말에게 공통으로 적용되는 시스템 정보일 수 있다. SIB2는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 intra-frequency, inter-frequency, inter-RAT 셀을 재선택하는데 공통으로 적용되는 시스템 정보일 수 있다. SIB3 내지 SIB5는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 셀을 재선택하는데 필요한 정보를 포함할 수 있다.
SIB1는 서빙 셀 신호 측정 여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들을 포함할 수 있고, 이러한 정보는 셀 별(cell-specific)로 적용될 수 있다. SIB2, SIB3, SIB4, SIB5에는 주변 셀 신호 측정여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들에 대한 정보가 포함될 수 있다. 구체적으로 SIB2에는 intra-frequency, inter-frequency, inter-RAT 셀 재선택을 위한 공통의 정보가 포함되며, SIB3에는 intra-frequency 셀 재선택만을 위한 정보가 포함되며, SIB4에는 inter-frequency 셀 재선택만을 위한 정보가 포함되며, SIB5에는 inter-RAT 셀 재선택만을 위한 정보가 포함될 수 있다.
1e-15 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 불연속 수신(Discontinous Reception, DRX) 주기마다 깨어나서 서빙 셀의 절대적인 신호 세기(Reference Signal Received Power(RSRP, Qrxlevmeas)와 상대적인 신호 품질(Reference Signal Received Quality(RSRQ), Qqualmeas)을 측정할 수 있다(1e-15). 단말은 이러한 측정값을 통해, SIB1로부터 수신한 파라미터들을 이용해서 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)을 계산할 수 있다. 단말은 계산된 값들을 임계값들과 비교해서, 셀 재선택을 위해 주변 셀 측정(neighbor cell measurement) 수행 여부를 결정할 수 있다. 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)은 아래의 수학식 1을 통해 결정될 수 있다.
<수학식 1>
Figure pat00001
수학식 1에서 사용되는 파라미터들의 정의는 3GPP 표준 문서 "38.304: User Equipment (UE) procedures in Idle mode and RRC Inactive state"를 참고하여 결정될 수 있다. 이하에서, 수학식 1이 적용되는 본 개시의 실시 예들에 대해서도 동일하다.
RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 배터리 소모를 최소화하기 위해서, 항상 주변 셀들을 측정(neighbor cell measurement)을 하지 않고 측정 규칙(measurement rule)을 기반으로 주변 셀 측정(neighbor cell measurement)을 수행 할지에 대한 여부를 판단할 수 있다(1e-20). 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않고, 현재 캠프-온 하고 있는 서빙 셀이 방송하는 시스템 정보를 이용하여 주변 셀 측정을 수행할 수 있다. 만약 1e-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlev <= SIntraSearchP and Squal <= SIntraSeachQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 같은 주파수를 사용하는 주변 셀들을 측정할 수 있다(1e-20). 즉, 서빙 셀과 같은 주파수를 사용한 주변 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB2 또는 SIB3를 기반으로 도출될 수 있다(수학식 1 적용).
참고로 SIntraSearchP와 SIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다. 또한 현재 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency/inter-RAT 셀들에 대해서는 서빙 셀의 품질에 상관없이 주변 셀 측정을 수행할 수 있다(1e-20). 즉, 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출되며(수학식 1 적용), 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출될 수 있다(수학식 1 적용). 또한, 서빙 셀의 주파수와 우선순위가 같거나 낮은 inter-frequency 셀들 또는 서빙 셀의 주파수보다 우선순위가 낮은 inter-RAT frequency 셀에 대해서는 1e-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlex <= SnonIntraSearchP and Squal <= SintraSearchQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 다른 주파수를 사용하는 주변 셀들 또는 서빙 셀과 다른 무선접속기술을 사용하는 셀들을 측정할 수 있다(1e-20). 즉, 서빙 셀의 주파수보다 낮거나 또는 같은 우선순위를 가지는 inter-frequency 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출되며(수학식 1 적용), 서빙 셀의 주파수보다 낮은 우선순위를 가지는 inter-RAT 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출될 수 있다(수학식 1 적용). 참고로 SnonIntraSearchP와 SnonIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다.
주변 셀들에 대한 측정값(1e-20)을 기반으로 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 우선순위(CellReselectionPriority) 기반의 셀 재선택 평가 절차(Cell re-selection evaluation process)을 수행할 수 있다(1e-25). 즉, 셀 재선택 조건(Cell re-selection criteria)을 만족하는 여러 개의 셀이 다른 우선 순위를 가지고 있을 경우 높은 우선 순위를 가진 frequency/RAT 셀을 재선택하는 것이 낮은 우선순위를 가진 frequency/RAT 셀을 재선택하는 것보다 우선된다(Cell reselection to a higher priority RAT/frequency shall take precede over a lower priority RAT/frequency if multiple cells of different priorities fulfil the cell reselection criteria). 우선 순위에 대한 정보는 서빙 셀에서 방송되는 시스템 정보(SIB2, SIB4, SIB5)에 포함되어 있거나 RRC 연결 모드(RRC connected mode)에서 RRC 유휴 모드 또는 RRC 비활성화 모드로 전환 시 수신한 RRCRelease 메시지에 포함되어 있다. 현재 서빙 셀의 주파수보다 우선순위가 높은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 1 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighQ 보다 크면(Squal > ThreshX,HighQ during a time interval TreselectionRAT), 단말은 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 2 동작:
단말은 제 1 동작을 수행하지 못할 경우, 제 2 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고 inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighP 보다 크면(Srxlev > ThreshX, HighP during a time interval TreselectionRAT), 단말은 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말은 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB4에 포함되어 있는 정보를 기반으로, 제 1 동작 또는 제 2 동작을 수행할 수 있다. 또한, 단말은 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값(ThreshX,HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB5에 포함되어 있는 정보를 기반으로, 제 1 동작 또는 제 2 동작을 수행할 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기반으로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)이 도출될 수 있다.
또한 현재 서빙 셀의 주파수와 동일한 우선순위를 가지고 있는 intra-frequency/inter-frequency 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 3 동작:
intra-frequency/inter-frequency 셀의 신호 품질(Squal)과 수신 레벨(Srxlev)이 0 보다 큰 경우, 측정값(RSRP)를 기반으로 셀 별 Rank를 도출할 수 있다(The UE shall perform ranking of all cells that fulfils the cell selection criterion S). 서빙 셀과 주변 셀의 Rank는 아래의 수학식 2를 통해 각각 계산될 수 있다.
<수학식 2>
Figure pat00002
여기서 Qmeas,s는 서빙 셀의 RSRP 측정값, Qmeas,n는 주변 셀의 RSRP 측정값, Qhyst는 서빙 셀의 hysteresis 값, Qoffset은 서빙 셀과 주변 셀간의 오프셋이다. SIB2에 Qhyst 값이 포함되어 있으며, 해당 값은 intra-frequency/inter-frequency 셀의 재선택에 대해 공통으로 사용될 수 있다. Intra-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB3에 포함되어 있다. Inter-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB4에 포함되어 있다. 수학식 2로부터 구해진 주변 셀의 Rank가 서빙 셀의 Rank보다 큰 경우(Rn > Rs)에 대해, 주변 셀 중 최적의 셀에 캠프 온할 수 있다.
또한, 현재 서빙 셀의 주파수보다 우선순위가 낮은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 4 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, 현재 서빙 셀의 신호 품질(Sqaul)이 임계값 ThreshServing, LowQ 보다 작고(Squal < ThreshServing, LowQ) inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Squal > ThreshX,LowQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 5 동작:
단말은 제 4 동작을 수행하지 못할 경우, 제 5 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고, 현재 서빙 셀의 수신 레벨(Srxlev)이 임계값 ThreshServing, LowP 보다 작고(Srxlev < ThreshServing, LowP) inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Srxlev > ThreshX,LowP during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말의 inter-frequency 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB4에 포함되어 있는 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, LowQ, ThreshX, LowP), TreselectionRAT를 기초로 수행될 수 있다. 단말의 inter-RAT 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB5에 포함되어 있는 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThreshX,LowQ, ThreshX, LowP), TreselectionRAT를 기초로 수행될 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기초로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)이 도출될 수 있다.
1e-30 단계에서 단말은 1e-25 단계에서 우선순위를 기초로 재선택한 타겟 셀로부터 방송되는 시스템 정보(예를 들면 MIB 또는 SIB1 또는 SIB2 또는 SIB3 또는 SIB4 또는 SIB5)를 수신하고, 해당 셀에 캠프-온하기 위해 해당 셀의 신호를 측정할 수 있다(1e-30). 즉, 단말은 타겟 셀에서 방송되는 SIB1를 기반으로 타겟 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)을 도출하여 셀 선택 기준(Cell selection criterion, S-criterion)을 충족(Srxlev > 0 AND Squal > 0)하는 지 판단할 수 있다.
이 때 타겟 셀에서 방송하는 SIB1에 포함되어 있는 Qqualmin 또는 Qrxlevmin 값이, 1e-05 단계에서 캠프-온 한 서빙 셀이 방송하는 SIB2(타겟 셀이 intra-frequency 셀인 경우 적용) 또는 SIB4(타겟 셀이 inter-frequency 셀인 경우 적용) 또는 SIB5(타겟 셀이 inter-RAT 셀인 경우 적용)에 각각 포함되어 있는 Qqualmin 또는 Qrxlevmin 값보다 큰 경우, 단말은, 셀 선택 기준을 충족하지 못하는 것으로 판단할 수 있다. 1e-35 단계에서 재선택한 셀이 S-criterion을 만족하지 못할 경우, 단말은 또 다시 새로운 셀을 재선택하기 위해, 시스템 정보를 기반으로 주변 셀 측정을 수행할 수 있다(1e-35). 주변 셀 측정 수행은 1e-20 단계와 동일할 수 있다.
이후 단말은 다시 1e-25 단계를 수행하여 1e-05 단계에서 캠프-온 한 셀에 재선택하여 캠프-온 하거나 이전에 캠프-온 하지 않은 셀을 재선택할 수 있다.
또 다시 1e-30 단계를 수행하여 셀을 재선택하였으나, S-criterion을 충족시키지 못하는 것을 단말은 판단할 수 있다. 따라서 셀 재선택 과정에서 핑퐁(ping-pong) 현상이 발생하게 될 수 있다.
도 1f는, 본 개시의 일 실시 예에 따라, 단말이 RRC 유휴 모드 또는 RRC 비활성화 모드일 때, 단말의 셀 재선택 과정에서, 서빙 셀에서 방송되는 SIB3 또는 SIB4 또는 SIB5에, Qrxlevminoffsetcell 와 Qqualminoffsetcell 의 정보를 포함하여, 이를 지시된 셀에서만 적용되게 하여, 핑퐁(ping-pong) 현상을 방지하는 과정을 도시한 도면이다.
RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말(1f-01)은 서빙 셀에 캠프 온(camp-on)(1f-05)하면서 일련의 동작을 수행할 수 있다.
1f-10 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드의 단말은 서빙 셀의 기지국이 방송하는 시스템 정보(System information)를 수신할 수 있다. 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않을 수 있다. 시스템 정보는 마스터 정보 블록(Master Information Block, MIB)와 시스템 정보 블록들(System Information Blocks, SIBs)으로 나뉘어 질 수 있다. 추가적으로 시스템 정보 블록들은 SIB1와 SIB1를 제외한 SI 메시지(SI message)(예를 들면, SIB2, SIB3, SIB4 또는 SIB5)로 구분하여 칭해질 수 있다. RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀에 캠프 온 하기 전에 해당 셀의 기지국이 방송하는 시스템 정보(예를 들면, MIB 또는 SIB1 또는 SIB2)를 미리 수신하여 읽어 들일 수 있다. 참고로, MIB, SIB1는 모든 단말에게 공통으로 적용되는 시스템 정보일 수 있다. SIB2는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 intra-frequency, inter-frequency, inter-RAT 셀을 재선택하는데 공통으로 적용되는 시스템 정보일 수 있다. SIB3 ~ SIB5는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 셀을 재선택하는데 필요한 정보를 포함할 수 있다. SIB1는 서빙 셀 신호 측정 여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들을 포함할 수 있고, 이러한 정보는 셀 별(cell-specific)로 적용될 수 있다. SIB2, SIB3, SIB4, SIB5에는 주변 셀 신호 측정여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들에 대한 정보가 포함될 수 있다. 구체적으로 SIB2에는 intra-frequency, inter-frequency, inter-RAT 셀 재선택을 위한 공통의 정보가 포함되며, SIB3에는 intra-frequency 셀 재선택만을 위한 정보가 포함되며, SIB4에는 inter-frequency 셀 재선택만을 위한 정보가 포함되며, SIB5에는 inter-RAT 셀 재선택만을 위한 정보가 포함될 수 있다.
1f-15 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 불연속 수신(Discontinous Reception, DRX) 주기마다 깨어나서 서빙 셀의 절대적인 신호 세기(Reference Signal Received Power(RSRP, Qrxlevmeas)와 상대적인 신호 품질(Reference Signal Received Quality(RSRQ), Qqualmeas)을 측정할 수 있다(1f-15). 단말은 이러한 측정값들을 통해, SIB1로부터 수신한 파라미터들을 이용해서 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)을 계산할 수 있다. 단말은 계산된 값들을 임계값들과 비교해서 셀 재선택을 위해 주변 셀 측정(neighbor cell measurement) 수행 여부를 결정할 수 있다. 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)은 상술한 수학식 1을 통해 결정될 수 있다.
RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 배터리 소모를 최소화하기 위해서, 항상 주변 셀들을 측정(neighbor cell measurement)을 하지 않고 측정 규칙(measurement rule)을 기반으로 주변 셀 측정(neighbor cell measurement)을 수행 할지에 대한 여부를 판단할 수 있다(1f-20). 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않고, 현재 캠프-온 하고 있는 서빙 셀이 방송하는 시스템 정보를 이용하여 주변 셀 측정을 수행할 수 있다. 만약 1f-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlev <= SIntraSearchP and Squal <= SIntraSeachQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 같은 주파수를 사용하는 주변 셀들을 측정할 수 있다(1f-20). 즉, 서빙 셀과 같은 주파수를 사용한 주변 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB2 또는 SIB3를 기반으로 도출할 수 있다. 여기서 서빙 셀과 같은 주파수를 사용한 주변들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 아래의 수학식 3을 통해 도출될 수 있다.
<수학식 3>
Figure pat00003
여기서 Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은 서빙 셀에서 방송되는 SIB3에 포함되어 있으며, 지시된 셀에 대해서만 적용될 수 있다. 또한, Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은 시그널링 오버헤드를 줄이고자 SIB2 또는 SIB3에 있는 파라미터 값을 재사용하여 시그널링될 수 있다. 예를 들면, 셀 랭킹 조건(Cell-ranking criterion Rn)을 수행할 때 고려하는 Qoffset 값을 재사용하여 시그널링될 수 있다.
Figure pat00004
수학식 3에서 사용되는 파라미터들의 정의는 3GPP 표준 문서 "38.304: User Equipment (UE) procedures in Idle mode and RRC Inactive state"를 참고하여 결정될 수 있다. 이하에서, 수학식 3이 적용되는 본 개시의 실시 예들에 대해서도 동일하다. 참고로 SIntraSearchP와 SIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다.
또한 현재 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency/inter-RAT 셀들에 대해서는 서빙 셀의 품질에 상관없이 주변 셀 측정을 수행할 수 있다(1f-20). 즉, 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출될 수 있다. 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출될 수 있다. 참고로 SnonIntraSearchP와 SnonIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다. 서빙 셀보다 높은 우선순위를 가지는 inter-frequency 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 수학식 3을 통해 도출될 수 있다. 수학식 3에서 Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은 서빙 셀에서 방송되는 SIB4에 포함되어 있으며, 지시된 셀에 대해서만 적용될 수 있다. 또한, Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은, 시그널링 오버헤드를 줄이기 위해, SIB2 또는 SIB4에 있는 파라미터 값을 재사용하여 시그널링될 수 있다. 예를 들면, Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은, SIB4에 셀 랭킹 조건(Cell-ranking criterion Rn)을 수행할 때 고려되는 Qoffset 값을 재사용하여 시그널링될 수 있다.
Figure pat00005
또한 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출될 수 있다. 여기서 서빙 셀보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 수학식 3을 통해 도출될 수 있다. 수학식 3에서 Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은 서빙 셀에서 방송되는 SIB5에 포함되어 있으며, 지시된 셀에 대해서만 적용될 수 있다. 또한, Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은 시그널링 오버헤드를 줄이고자 SIB2 또는 SIB5에 있는 파라미터 값을 재사용하여 시그널링될 수 있다. 예를 들면, Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은, SIB5에 셀 랭킹 조건(Cell-ranking criterion Rn)을 수행할 때 고려되는 Qoffset 값을 재사용하여 시그널링될 수 있다.
Figure pat00006
또한, 서빙 셀의 주파수와 우선순위가 같거나 낮은 inter-frequency 셀들 또는 서빙 셀의 주파수보다 우선순위가 낮은 inter-RAT frequency 셀에 대해서는 1f-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlex <= SnonIntraSearchP and Squal <= SintraSearchQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 다른 주파수를 사용하는 주변 셀들 또는 서빙 셀과 다른 무선접속기술을 사용하는 셀들을 측정할 수 있다(1f-20). 즉, 서빙 셀의 주파수보다 낮은 우선순위를 가지는 inter-frequency 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출하며, 서빙 셀의 주파수보다 낮은 우선순위를 가지는 inter-RAT 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출될 수 있다. 참고로 SnonIntraSearchP와 SnonIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다. 여기서 서빙 주파수보다 낮은 우선순위를 가지는 inter-frequency 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 수학식 3을 통해 도출될 수 있다. 또한 서빙 셀의 주파수보다 낮은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출될 수 있다. 여기서 서빙 셀보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 수학식 3을 통해 도출될 수 있다.
주변 셀들에 대한 측정값(1f-20)을 기반으로 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 우선순위(CellReselectionPriority) 기반의 셀 재선택 평가 절차(Cell re-selection evaluation process)을 수행할 수 있다(1f-25). 즉, 셀 재선택 조건(Cell re-selection criteria)을 만족하는 여러 개의 셀이 다른 우선 순위를 가지고 있을 경우 높은 우선 순위를 가진 frequency/RAT 셀을 재선택하는 것이 낮은 우선순위를 가진 frequency/RAT 셀을 재선택하는 것보다 우선된다(Cell reselection to a higher priority RAT/frequency shall take precede over a lower priority RAT/frequency if multiple cells of different priorities fulfil the cell reselection criteria). 우선 순위에 대한 정보는 서빙 셀에서 방송되는 시스템 정보(SIB2, SIB4, SIB5)에 포함되어 있거나 RRC 연결 모드(RRC connected mode)에서 RRC 유휴 모드 또는 RRC 비활성화 모드로 전환 시 수신한 RRCRelease 메시지에 포함되어 있다. 현재 서빙 셀의 주파수보다 우선순위가 높은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 1 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighQ 보다 크면(Squal > ThreshX,HighQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 2 동작:
단말은 제 1 동작을 수행하지 못할 경우, 제 2 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고 inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighP 보다 크면(Srxlev > ThreshX, HighP during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말은 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB4에 포함되어 있는 정보를 기반으로, 제 1 동작 또는 제 2 동작을 수행할 수 있다. 또한, 단말은 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값(ThreshX,HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB5에 포함되어 있는 정보를 기반으로, 제 1 동작 또는 제 2 동작을 수행할 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기반으로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)이 도출될 수 있다.
또한 현재 서빙 셀의 주파수와 동일한 우선순위를 가지고 있는 intra-frequency/inter-frequency 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 3 동작:
intra-frequency/inter-frequency 셀의 신호 품질(Squal)과 수신 레벨(Srxlev)이 0 보다 큰 경우, 측정값(RSRP)를 기반으로 셀 별 Rank를 도출할 수 있다(The UE shall perform ranking of all cells that fulfils the cell selection criterion S). 서빙 셀과 주변 셀의 Rank는 상술한 수학식 2를 통해 각각 계산될 수 있다. 여기서 Qmeas,s는 서빙 셀의 RSRP 측정값, Qmeas,n는 주변 셀의 RSRP 측정값, Qhyst는 서빙 셀의 hysteresis 값, Qoffset은 서빙 셀과 주변 셀간의 오프셋이다. SIB2에 Qhyst 값이 포함되어 있으며, 해당 값은 intra-frequency/inter-frequency 셀의 재선택에 대해 공통으로 사용될 수 있다. Intra-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB3에 포함되어 있다. Inter-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB4에 포함되어 있다. 수학식 2로부터 구해진 주변 셀의 Rank가 서빙 셀의 Rank보다 큰 경우(Rn > Rs)에 대해, 주변 셀 중 최적의 셀에 캠프 온할 수 있다.
또한, 현재 서빙 셀의 주파수보다 우선순위가 낮은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 4 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, 현재 서빙 셀의 신호 품질(Sqaul)이 임계값 ThreshServing, LowQ 보다 작고(Squal < ThreshServing, LowQ) inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Squal > ThreshX,LowQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 5 동작:
단말은 제 4 동작을 수행하지 못할 경우, 제 5 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고, 현재 서빙 셀의 수신 레벨(Srxlev)이 임계값 ThreshServing, LowP 보다 작고(Srxlev < ThreshServing, LowP) inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Srxlev > ThreshX,LowP during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말의 inter-frequency 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB4에 포함되어 있는 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, LowQ, ThreshX, LowP), TreselectionRAT를 기반으로 수행될 수 있다. 단말의 inter-RAT 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB5에 포함되어 있는 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThreshX,LowQ, ThreshX, LowP), TreselectionRAT를 기반으로 수행될 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기초로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)을 도출될 수 있다.
1f-30 단계에서 단말은 Qqualminoffsetcell 또는 Qrxlevminoffsetcell 값으로 인해 현재 서빙 셀에 유지 할 수도 있다. 또한 1f-30 단계에서 단말은 우선순위를 기초로 재선택한 타겟 셀(1f-25)로부터 방송되는 시스템 정보(예를 들면 MIB 또는 SIB1 또는 SIB2 또는 SIB3 또는 SIB4 또는 SIB5)를 수신하고, 해당 셀에 캠프-온하기 위해 해당 셀의 신호를 측정할 수 있다(1f-30). 즉, 단말은 타겟 셀에서 방송되는 SIB1를 기반으로 타겟 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)을 도출하여 셀 선택 기준(Cell selection criterion, S-criterion)을 충족(Srxlev > 0 AND Squal > 0)하는 지 판단할 수 있다.
이 때 타겟 셀에서 방송하는 SIB1에 포함되어 있는 Qqualmin 또는 Qrxlevmin 값이, 1e-05 단계에서 캠프-온 한 서빙 셀이 방송하는 SIB2(타겟 셀이 intra-frequency 셀인 경우 적용) 또는 SIB4(타겟 셀이 inter-frequency 셀인 경우 적용) 또는 SIB5(타겟 셀이 inter-RAT 셀인 경우 적용)에 각각 포함되어 있는 Qqualmin 또는 Qrxlevmin 값보다 크더라도, Qqualminoffsetcell 또는 Qrxlevminoffsetcell 값으로 인해, 단말은, 셀 선택 기준을 충족하는 것을 판단하고 새로운 타겟 셀에 캠프-온 하여 셀 재선택 시 핑퐁 현상이 방지되는 것을 확인할 수 있다.
도 1g는, 본 개시의 일 실시 예에 따라, 단말이 RRC 유휴 모드 또는 RRC 비활성화 모드일 때, 단말의 셀 재선택 과정에서, 서빙 셀에서 방송되는 SIB3 또는 SIB4 또는 SIB5에 Qrxlevminoffsetcell 와 Qqualminoffsetcell 의 정보를 포함하여 소정의 셀 집합에 대해 시그널링하고, 이를 셀 집합의 모든 주변 셀들에 대해서 공통으로 적용되게 하여, 핑퐁(ping-pong) 현상을 방지하는 과정을 도시한 도면이다.
RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말(1g-01)은 서빙 셀에 캠프 온(1g-05)하고 있으면서 일련의 동작을 수행할 수 있다. 1g-10 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드의 단말은 서빙 셀의 기지국이 방송하는 시스템 정보(System information)를 수신할 수 있다. 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않을 수 있다. 시스템 정보는 마스터 정보 블록(Master Information Block, MIB)와 시스템 정보 블록들(System Information Blocks, SIBs)으로 나뉘어 질 수 있다. 추가적으로 시스템 정보 블록들은 SIB1와 SIB1를 제외한 SI 메시지(SI message)(예를 들면, SIB2, SIB3, SIB4 또는 SIB5)로 구분하여 칭해질 수 있다. RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀에 캠프 온 하기 전에 해당 셀의 기지국이 방송하는 시스템 정보(예를 들면, MIB 또는 SIB1 또는 SIB2)를 미리 수신하여 읽어 들일 수 있다. 참고로, MIB, SIB1는 모든 단말에게 공통으로 적용되는 시스템 정보일 수 있다. SIB2는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 intra-frequency, inter-frequency, inter-RAT 셀을 재선택하는데 공통으로 적용되는 시스템 정보일 수 있다. SIB3 ~ SIB5는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 셀을 재선택하는데 필요한 정보를 포함할 수 있다. SIB1는 서빙 셀 신호 측정 여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들을 포함할 수 있고, 이러한 정보는 셀 별(cell-specific)로 적용될 수 있다. SIB2, SIB3, SIB4, SIB5에는 주변 셀 신호 측정여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들에 대한 정보가 포함될 수 있다. 구체적으로 SIB2에는 intra-frequency, inter-frequency, inter-RAT 셀 재선택을 위한 공통의 정보가 포함되며, SIB3에는 intra-frequency 셀 재선택만을 위한 정보가 포함되며, SIB4에는 inter-frequency 셀 재선택만을 위한 정보가 포함되며, SIB5에는 inter-RAT 셀 재선택만을 위한 정보가 포함될 수 있다.
1g-15 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 불연속 수신(Discontinous Reception, DRX) 주기마다 깨어나서 서빙 셀의 절대적인 신호 세기(Reference Signal Received Power(RSRP, Qrxlevmeas)와 상대적인 신호 품질(Reference Signal Received Quality(RSRQ), Qqualmeas)을 측정할 수 있다(1g-15). 단말은 이러한 측정값들을 통해, SIB1로부터 수신한 파라미터들을 이용해서 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)을 계산할 수 있다. 단말은 계산된 값들을 임계값들과 비교해서 셀 재선택을 위해 주변 셀 측정(neighbor cell measurement) 수행 여부를 결정할 수 있다. 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)은 상술한 수학식 1을 통해 결정될 수 있다.
RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 배터리 소모를 최소화하기 위해서, 항상 주변 셀들을 측정(neighbor cell measurement)을 하지 않고 측정 규칙(measurement rule)을 기반으로 주변 셀 측정(neighbor cell measurement)을 수행 할지에 대한 여부를 판단할 수 있다(1g-20). 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않고, 현재 캠프-온 하고 있는 서빙 셀이 방송하는 시스템 정보를 이용하여 주변 셀 측정을 수행할 수 있다. 만약 1g-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlev <= SIntraSearchP and Squal <= SIntraSeachQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 같은 주파수를 사용하는 주변 셀들을 측정할 수 있다(1g-20). 즉, 서빙 셀과 같은 주파수를 사용한 주변 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB2 또는 SIB3를 기반으로 도출할 수 있다. 여기서 서빙 셀과 같은 주파수를 사용한 주변들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 상술한 수학식 3을 통해 도출될 수 있다.
Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은 서빙 셀에서 방송되는 SIB3에 포함되어 있으며, 소정의 셀 집합의 모든 주변 셀들에 대해서만 공통으로 적용될 수 있다. 또한, Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은 시그널링 오버헤드를 줄이고자 SIB2 또는 SIB3에 있는 파라미터 값을 재사용하여 시그널링될 수 있다. 예를 들면, 셀 랭킹 조건(Cell-ranking criterion Rn)을 수행할 때 고려하는 Qoffset 값을 재사용하여 시그널링될 수 있다.
Figure pat00007
참고로 SIntraSearchP와 SIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다.
또한 현재 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency/inter-RAT 셀들에 대해서는 서빙 셀의 품질에 상관없이 주변 셀 측정을 수행할 수 있다(1g-20). 즉, 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출될 수 있다. 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출될 수 있다. 참고로 SnonIntraSearchP와 SnonIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다. 서빙 셀보다 높은 우선순위를 가지는 inter-frequency 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 수학식 3을 통해 도출될 수 있다. 수학식 3에서 Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은 서빙 셀에서 방송되는 SIB4에 포함되어 있으며, 소정의 셀 집합의 모든 주변 셀들에 대해서만 공통으로 적용될 수 있다. 또한, Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은 시그널링 오버헤드를 줄이고자 SIB2 또는 SIB4에 있는 파라미터 값을 재사용하여 시그널링될 수 있다. 예를 들면, Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은 SIB4에 셀 랭킹 조건(Cell-ranking criterion Rn)을 수행할 때 고려되는 Qoffset 값을 재사용하여 시그널링될 수 있다.
Figure pat00008
또한 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출될 수 있다. 여기서 서빙 셀보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 수학식 3을 통해 도출될 수 있다. 수학식 3에서 Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은 서빙 셀에서 방송되는 SIB5에 포함되어 있으며, 지시된 셀에 대해서만 적용될 수 있다. 또한, Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은 시그널링 오버헤드를 줄이고자 SIB2 또는 SIB5에 있는 파라미터 값을 재사용하여 시그널링될 수 있다. 예를 들면, Qrxlevminoffsetcell 값과 Qqualminoffsetcell 값은, SIB5에 셀 랭킹 조건(Cell-ranking criterion Rn)을 수행할 때 고려되는 Qoffset 값을 재사용하여 시그널링될 수 있다.
Figure pat00009
또한, 서빙 셀의 주파수와 우선순위가 같거나 낮은 inter-frequency 셀들 또는 서빙 셀의 주파수보다 우선순위가 낮은 inter-RAT frequency 셀에 대해서는 1g-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlex <= SnonIntraSearchP and Squal <= SintraSearchQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 다른 주파수를 사용하는 주변 셀들 또는 서빙 셀과 다른 무선접속기술을 사용하는 셀들을 측정할 수 있다(1g-20). 즉, 서빙 셀의 주파수보다 낮은 우선순위를 가지는 inter-frequency 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출하며, 서빙 셀의 주파수보다 낮은 우선순위를 가지는 inter-RAT 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출될 수 있다. 참고로 SnonIntraSearchP와 SnonIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다. 여기서 서빙 주파수보다 낮은 우선순위를 가지는 inter-frequency 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 수학식 3을 통해 도출될 수 있다. 또한 서빙 셀의 주파수보다 낮은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출될 수 있다. 여기서 서빙 셀보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 수학식 3을 통해 도출될 수 있다.
주변 셀들에 대한 측정값(1g-20)을 기반으로 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 우선순위(CellReselectionPriority) 기반의 셀 재선택 평가 절차(Cell re-selection evaluation process)을 수행할 수 있다(1f-25). 즉, 셀 재선택 조건(Cell re-selection criteria)을 만족하는 여러 개의 셀이 다른 우선 순위를 가지고 있을 경우 높은 우선 순위를 가진 frequency/RAT 셀을 재선택하는 것이 낮은 우선순위를 가진 frequency/RAT 셀을 재선택하는 것보다 우선된다(Cell reselection to a higher priority RAT/frequency shall take precede over a lower priority RAT/frequency if multiple cells of different priorities fulfil the cell reselection criteria). 우선 순위에 대한 정보는 서빙 셀에서 방송되는 시스템 정보(SIB2, SIB4, SIB5)에 포함되어 있거나 RRC 연결 모드(RRC connected mode)에서 RRC 유휴 모드 또는 RRC 비활성화 모드로 전환 시 수신한 RRCRelease 메시지에 포함되어 있다. 현재 서빙 셀의 주파수보다 우선순위가 높은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 1 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighQ 보다 크면(Squal > ThreshX,HighQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 2 동작:
단말은 제 1 동작을 수행하지 못할 경우, 제 2 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고 inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighP 보다 크면(Srxlev > ThreshX, HighP during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말은 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB4에 포함되어 있는 정보를 기반으로, 제 1 동작 또는 제 2 동작을 수행할 수 있다. 또한, 단말은 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값(ThreshX,HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB5에 포함되어 있는 정보를 기반으로 제 1 동작 또는 제 2 동작을 수행할 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기반으로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)이 도출될 수 있다.
또한 현재 서빙 셀의 주파수와 동일한 우선순위를 가지고 있는 intra-frequency/inter-frequency 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 3 동작:
intra-frequency/inter-frequency 셀의 신호 품질(Squal)과 수신 레벨(Srxlev)이 0 보다 큰 경우, 측정값(RSRP)를 기반으로 셀 별 Rank를 도출할 수 있다(The UE shall perform ranking of all cells that fulfils the cell selection criterion S). 서빙 셀과 주변 셀의 Rank는 상술한 수학식 2를 통해 각각 계산될 수 있다. 여기서 Qmeas,s는 서빙 셀의 RSRP 측정값, Qmeas,n는 주변 셀의 RSRP 측정값, Qhyst는 서빙 셀의 hysteresis 값, Qoffset은 서빙 셀과 주변 셀간의 오프셋이다. SIB2에 Qhyst 값이 포함되어 있으며, 해당 값은 intra-frequency/inter-frequency 셀의 재선택에 대해 공통으로 사용될 수 있다. Intra-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB3에 포함되어 있다. Inter-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB4에 포함되어 있다. 수학식 2로부터 구해진 주변 셀의 Rank가 서빙 셀의 Rank보다 큰 경우(Rn > Rs)에 대해, 주변 셀 중 최적의 셀에 캠프 온할 수 있다.
또한, 현재 서빙 셀의 주파수보다 우선순위가 낮은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 4 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, 현재 서빙 셀의 신호 품질(Sqaul)이 임계값 ThreshServing, LowQ 보다 작고(Squal < ThreshServing, LowQ) inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Squal > ThreshX,LowQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 5 동작:
단말은 제 4 동작을 수행하지 못할 경우, 제 5 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고, 현재 서빙 셀의 수신 레벨(Srxlev)이 임계값 ThreshServing, LowP 보다 작고(Srxlev < ThreshServing, LowP) inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Srxlev > ThreshX,LowP during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말의 inter-frequency 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB4에 포함되어 있는 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, LowQ, ThreshX, LowP), TreselectionRAT를 기반으로 수행될 수 있다. 단말의 inter-RAT 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB5에 포함되어 있는 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThreshX,LowQ, ThreshX, LowP), TreselectionRAT를 기반으로 수행될 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기초로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)을 도출될 수 있다.
1g-30 단계에서 단말은 Qqualminoffsetcell 또는 Qrxlevminoffsetcell 값으로 인해 현재 서빙 셀에 유지 할 수도 있다. 또한 1g-30 단계에서 단말은 우선순위를 기초로 재선택한 타겟 셀(1g-25)로부터 방송되는 시스템 정보(예를 들면 MIB 또는 SIB1 또는 SIB2 또는 SIB3 또는 SIB4 또는 SIB5)를 수신하고, 해당 셀에 캠프-온하기 위해 해당 셀의 신호를 측정할 수 있다(1g-30). 즉, 단말은 타겟 셀에서 방송되는 SIB1를 기반으로 타겟 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)을 도출하여 셀 선택 기준(Cell selection criterion, S-criterion)을 충족(Srxlev > 0 AND Squal > 0)하는 지 판단할 수 있다.
이 때 타겟 셀에서 방송하는 SIB1에 포함되어 있는 Qqualmin 또는 Qrxlevmin 값이, 1e-05 단계에서 캠프-온 한 서빙 셀이 방송하는 SIB2(타겟 셀이 intra-frequency 셀인 경우 적용) 또는 SIB4(타겟 셀이 inter-frequency 셀인 경우 적용) 또는 SIB5(타겟 셀이 inter-RAT 셀인 경우 적용)에 각각 포함되어 있는 Qqualmin 또는 Qrxlevmin 값보다 크더라도, Qqualminoffsetcell 또는 Qrxlevminoffsetcell 값으로 인해, 단말은, 셀 선택 기준을 충족하는 것을 판단하고 새로운 타겟 셀에 캠프-온 하여 셀 재선택 시 핑퐁 현상이 방지되는 것을 확인할 수 있다.
도 1h는, 본 개시의 일 실시 예에 따라, 단말이 RRC 유휴 모드 또는 RRC 비활성화 모드일 때, 셀 재선택 과정에서, 서빙 셀 또는 타겟 셀에서 방송되는 SIB1을 저장하여, 핑퐁(ping-pong) 현상을 방지하는 과정을 도시한 도면이다.
RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말(1h-01)은 서빙 셀에 캠프 온(1h-05)하고 있으면서 일련의 동작을 수행할 수 있다.
1h-10 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드의 단말은 서빙 셀의 기지국이 방송하는 시스템 정보(System information)를 수신할 수 있다. 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않을 수 있다. 시스템 정보는 마스터 정보 블록(Master Information Block, MIB)와 시스템 정보 블록들(System Information Blocks, SIBs)으로 나뉘어 질 수 있다. 추가적으로 시스템 정보 블록들은 SIB1와 SIB1를 제외한 SI 메시지(SI message)(예를 들면, SIB2, SIB3, SIB4 또는 SIB5)로 구분하여 칭해질 수 있다.
1h-10 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말은 SIB1을 저장할 수 있다. RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀에 캠프 온 하기 전에 해당 셀의 기지국이 방송하는 시스템 정보(예를 들면, MIB 또는 SIB1 또는 SIB2)를 미리 수신하여 읽어 들일 수 있다. 미리 수신할 경우, 단말은 SIB1을 저장할 수 있다. 참고로, MIB, SIB1는 모든 단말에게 공통으로 적용되는 시스템 정보일 수 있다. SIB2는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 intra-frequency, inter-frequency, inter-RAT 셀을 재선택하는데 공통으로 적용되는 시스템 정보일 수 있다. SIB3 ~ SIB5는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 셀을 재선택하는데 필요한 정보를 포함할 수 있다. SIB1는 서빙 셀 신호 측정 여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들을 포함할 수 있고, 이러한 정보는 셀 별(cell-specific)로 적용될 수 있다. SIB2, SIB3, SIB4, SIB5에는 주변 셀 신호 측정여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들에 대한 정보가 포함될 수 있다. 구체적으로 SIB2에는 intra-frequency, inter-frequency, inter-RAT 셀 재선택을 위한 공통의 정보가 포함되며, SIB3에는 intra-frequency 셀 재선택만을 위한 정보가 포함되며, SIB4에는 inter-frequency 셀 재선택만을 위한 정보가 포함되며, SIB5에는 inter-RAT 셀 재선택만을 위한 정보가 포함될 수 있다.
1h-15 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 불연속 수신(Discontinous Reception, DRX) 주기마다 깨어나서 서빙 셀의 절대적인 신호 세기(Reference Signal Received Power(RSRP, Qrxlevmeas)와 상대적인 신호 품질(Reference Signal Received Quality(RSRQ), Qqualmeas)을 측정할 수 있다(1h-15). 단말은 이러한 측정값들을 통해, SIB1로부터 수신한 파라미터들을 이용해서 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)을 계산할 수 있다. 단말은 계산된 값들을 임계값들과 비교해서 셀 재선택을 위해 주변 셀 측정(neighbor cell measurement) 수행 여부를 결정할 수 있다. 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)은 상술한 수학식 1을 통해 결정될 수 있다.
RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 배터리 소모를 최소화하기 위해서, 항상 주변 셀들을 측정(neighbor cell measurement)을 하지 않고 측정 규칙(measurement rule)을 기반으로 주변 셀 측정(neighbor cell measurement)을 수행 할지에 대한 여부를 판단할 수 있다(1h-20). 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않고, 현재 캠프-온 하고 있는 서빙 셀이 방송하는 시스템 정보를 이용하여 주변 셀 측정을 수행할 수 있다. 만약 1h-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlev <= SIntraSearchP and Squal <= SIntraSeachQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 같은 주파수를 사용하는 주변 셀들을 측정할 수 있다(1h-20). 즉, 서빙 셀과 같은 주파수를 사용한 주변 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB2 또는 SIB3를 기반으로 도출한다 (수학식 1 적용).
참고로 SIntraSearchP와 SIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다. 또한 현재 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency/inter-RAT 셀들에 대해서는 서빙 셀의 품질에 상관없이 주변 셀 측정을 수행할 수 있다(1h-20). 즉, 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출되며(수학식 1 적용), 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출될 수 있다(수학식 1 적용). 또한, 서빙 셀의 주파수와 우선순위가 같거나 낮은 inter-frequency 셀들 또는 서빙 셀의 주파수보다 우선순위가 낮은 inter-RAT frequency 셀에 대해서는 1h-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlex <= SnonIntraSearchP and Squal <= SintraSearchQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 다른 주파수를 사용하는 주변 셀들 또는 서빙 셀과 다른 무선접속기술을 사용하는 셀들을 측정할 수 있다(1h-20). 즉, 서빙 셀의 주파수보다 낮거나 또는 같은 우선순위를 가지는 inter-frequency 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출되며(수학식 1 적용), 서빙 셀의 주파수보다 낮은 우선순위를 가지는 inter-RAT 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출될 수 있다(수학식 1 적용). 참고로 SnonIntraSearchP와 SnonIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다.
주변 셀들에 대한 측정값(1h-20)을 기반으로 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 우선순위(CellReselectionPriority) 기반의 셀 재선택 평가 절차(Cell re-selection evaluation process)을 수행할 수 있다(1h-25). 즉, 셀 재선택 조건(Cell re-selection criteria)을 만족하는 여러 개의 셀이 다른 우선 순위를 가지고 있을 경우 높은 우선 순위를 가진 frequency/RAT 셀을 재선택하는 것이 낮은 우선순위를 가진 frequency/RAT 셀을 재선택하는 것보다 우선된다(Cell reselection to a higher priority RAT/frequency shall take precede over a lower priority RAT/frequency if multiple cells of different priorities fulfil the cell reselection criteria). 우선 순위에 대한 정보는 서빙 셀에서 방송되는 시스템 정보(SIB2, SIB4, SIB5)에 포함되어 있거나 RRC 연결 모드(RRC connected mode)에서 RRC 유휴 모드 또는 RRC 비활성화 모드로 전환 시 수신한 RRCRelease 메시지에 포함되어 있다. 현재 서빙 셀의 주파수보다 우선순위가 높은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 1 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighQ 보다 크면(Squal > ThreshX,HighQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 2 동작:
단말은 제 1 동작을 수행하지 못할 경우, 제 2 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고 inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighP 보다 크면(Srxlev > ThreshX, HighP during a time interval TreselectionRAT), 단말은 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말은 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB4에 포함되어 있는 정보를 기반으로, 제 1 동작 또는 제 2 동작을 수행할 수 있다. 또한, 단말은 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값(ThreshX,HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB5에 포함되어 있는 정보를 기반으로, 제 1 동작 또는 제 2 동작을 수행할 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기반으로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)이 도출될 수 있다.
또한 현재 서빙 셀의 주파수와 동일한 우선순위를 가지고 있는 intra-frequency/inter-frequency 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 3 동작:
intra-frequency/inter-frequency 셀의 신호 품질(Squal)과 수신 레벨(Srxlev)이 0 보다 큰 경우, 측정값(RSRP)를 기반으로 셀 별 Rank를 도출할 수 있다(The UE shall perform ranking of all cells that fulfils the cell selection criterion S). 서빙 셀과 주변 셀의 Rank는 상술한 수학식 2를 통해 각각 계산될 수 있다.
상술한 수학식 2에서, Qmeas,s는 서빙 셀의 RSRP 측정값, Qmeas,n는 주변 셀의 RSRP 측정값, Qhyst는 서빙 셀의 hysteresis 값, Qoffset은 서빙 셀과 주변 셀간의 오프셋이다. SIB2에 Qhyst 값이 포함되어 있으며, 해당 값은 intra-frequency/inter-frequency 셀의 재선택에 대해 공통으로 사용될 수 있다. Intra-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB3에 포함되어 있다. Inter-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB4에 포함되어 있다. 수학식 2로부터 구해진 주변 셀의 Rank가 서빙 셀의 Rank보다 큰 경우(Rn > Rs)에 대해, 주변 셀 중 최적의 셀에 캠프 온할 수 있다.
또한, 현재 서빙 셀의 주파수보다 우선순위가 낮은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 4 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, 현재 서빙 셀의 신호 품질(Sqaul)이 임계값 ThreshServing, LowQ 보다 작고(Squal < ThreshServing, LowQ) inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Squal > ThreshX,LowQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 5 동작:
단말은 제 4 동작을 수행하지 못할 경우, 제 5 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고, 현재 서빙 셀의 수신 레벨(Srxlev)이 임계값 ThreshServing, LowP 보다 작고(Srxlev < ThreshServing, LowP) inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Srxlev > ThreshX,LowP during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말의 inter-frequency 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB4에 포함되어 있는 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, LowQ, ThreshX, LowP), TreselectionRAT를 기반으로 수행될 수 있다. 단말의 inter-RAT 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB5에 포함되어 있는 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThreshX,LowQ, ThreshX, LowP), TreselectionRAT를 기초로 수행될 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기초로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)을 도출될 수 있다.
1h-30 단계에서 단말은 1h-25 단계에서 우선순위를 기초로 재선택한 타겟 셀로부터 방송되는 시스템 정보(예를 들면 MIB 또는 SIB1 또는 SIB2 또는 SIB3 또는 SIB4 또는 SIB5)를 수신하고, SIB1을 저장하고 해당 셀에 캠프-온하기 위해 해당 셀의 신호를 측정할 수 있다(1h-30). 즉, 단말은 타겟 셀에서 방송되는 SIB1를 기반으로 타겟 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)을 도출하여 셀 선택 기준(Cell selection criterion, S-criterion)을 충족(Srxlev > 0 AND Squal > 0)하는 지 판단할 수 있다.
이 때 타겟 셀에서 방송하는 SIB1에 포함되어 있는 Qqualmin 또는 Qrxlevmin 값이, 1h-05 단계에서 캠프-온 한 서빙 셀이 방송하는 SIB2(타겟 셀이 intra-frequency 셀인 경우 적용) 또는 SIB4(타겟 셀이 inter-frequency 셀인 경우 적용) 또는 SIB5(타겟 셀이 inter-RAT 셀인 경우 적용)에 각각 포함되어 있는 Qqualmin 또는 Qrxlevmin 값보다 큰 경우, 단말은, 셀 선택 기준을 충족하지 못하는 것으로 판단할 수 있다. 1h-35 단계에서 재선택한 셀이 S-criterion을 만족하지 못할 경우, 단말은 또 다시 새로운 셀을 재선택하기 위해, 시스템 정보를 기반으로 주변 셀 측정을 수행할 수 있다(1h-35). 주변 셀 측정 수행은 1e-20 단계와 동일하나, S-criterion을 만족하지 못한 재선택한 셀에 대해서는 SIB1의 정보를 적용하여 셀 측정 동작이 수행될 수 있다.
이후 단말은 다시 1h-25 단계를 수행하여 1h-05 단계에서 캠프-온 한 셀에 재선택하여 캠프-온 하거나 이전에 캠프-온 하지 않은 셀을 재선택할 수 있다. 그러나, 단말은 이전에 캠프-온 한 셀과 처음 1h-30단계에서 재선택한 셀의 SIB1을 저장하고 있기 때문에, 다시 1e-30 단계를 수행할 때 미리 S-criterion을 충족시키지 못하는 것을 판단하여, 셀 재선택 과정에서 핑퐁(ping-pong) 현상이 방지될 수 있다.
도 1i는 본 개시의 일 실시 예에 따라, 단말이 RRC 유휴 모드 또는 RRC 비활성화 모드일 때, 셀 재선택 과정에서 셀 재선택 평가 절차를 만족한 셀을 재선택하기 전에 해당 셀에서 방송되는 SIB1을 읽어 들여 핑퐁(ping-pong) 현상을 방지하는 과정을 도시한 도면이다.
RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말(1i-01)은 서빙 셀에 캠프 온(1i-05)하고 있으면서 일련의 동작을 수행할 수 있다.
1i-10 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은, 서빙 셀의 기지국이 방송하는 시스템 정보(System information)를 수신할 수 있다. 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않을 수 있다. 시스템 정보는 마스터 정보 블록(Master Information Block, MIB)와 시스템 정보 블록들(System Information Blocks, SIBs)으로 나뉘어 질 수 있다. 추가적으로 시스템 정보 블록들은 SIB1와 SIB1를 제외한 SI 메시지(SI message)(예를 들면, SIB2, SIB3, SIB4 또는 SIB5)로 구분하여 칭해질 수 있다. 1i-10 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말은 SIB1 을 저장할 수도 있다. RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀에 캠프 온 하기 전에 해당 셀의 기지국이 방송하는 시스템 정보(예를 들면, MIB 또는 SIB1 또는 SIB2)를 미리 수신하여 읽어 들일 수 있다. 미리 수신할 경우, 단말은 SIB1을 저장할 수도 있다. 참고로, MIB, SIB1는 모든 단말에게 공통으로 적용되는 시스템 정보일 수 있다. SIB2는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 intra-frequency, inter-frequency, inter-RAT 셀을 재선택하는데 공통으로 적용되는 시스템 정보일 수 있다. SIB3 ~ SIB5는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 셀을 재선택하는데 필요한 정보를 포함할 수 있다.
SIB1는 서빙 셀 신호 측정 여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들을 포함하고 있고, 이러한 정보는 셀 별(cell-specific)로 적용될 수 있다. SIB2, SIB3, SIB4, SIB5에는 주변 셀 신호 측정여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들에 대한 정보가 포함될 수 있다. 구체적으로 SIB2에는 intra-frequency, inter-frequency, inter-RAT 셀 재선택을 위한 공통의 정보가 포함되며, SIB3에는 intra-frequency 셀 재선택만을 위한 정보가 포함되며, SIB4에는 inter-frequency 셀 재선택만을 위한 정보가 포함되며, SIB5에는 inter-RAT 셀 재선택만을 위한 정보가 포함될 수 있다.
1i-15 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 불연속 수신(Discontinous Reception, DRX) 주기마다 깨어나서 서빙 셀의 절대적인 신호 세기(Reference Signal Received Power(RSRP, Qrxlevmeas)와 상대적인 신호 품질(Reference Signal Received Quality(RSRQ), Qqualmeas)을 측정할 수 있다(1i-15). 단말은 이러한 측정값들을 통해, SIB1로부터 수신한 파라미터들을 이용해서 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)을 계산할 수 있다. 단말은 계산된 값들을 임계값들과 비교해서, 셀 재선택을 위해 주변 셀 측정(neighbor cell measurement) 수행 여부를 결정할 수 있다. 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)은 상술한 수학식 1을 통해 결정될 수 있다.
RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 배터리 소모를 최소화하기 위해서, 항상 주변 셀들을 측정(neighbor cell measurement)을 하지 않고 측정 규칙(measurement rule)을 기반으로 주변 셀 측정(neighbor cell measurement)을 수행 할지에 대한 여부를 판단할 수 있다(1i-20). 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않고, 현재 캠프-온 하고 있는 서빙 셀이 방송하는 시스템 정보를 이용하여 주변 셀 측정을 수행할 수 있다. 만약 1i-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlev <= SIntraSearchP and Squal <= SIntraSeachQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 같은 주파수를 사용하는 주변 셀들을 측정할 수 있다(1i-20). 즉, 서빙 셀과 같은 주파수를 사용한 주변 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB2 또는 SIB3를 기반으로 도출한다 (수학식 1 적용).
참고로 SIntraSearchP와 SIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다. 또한 현재 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency/inter-RAT 셀들에 대해서는 서빙 셀의 품질에 상관없이 주변 셀 측정을 수행할 수 있다(1i-20). 즉, 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출하며(수학식 1 적용), 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출할 수 있다(수학식 1 적용). 또한, 서빙 셀의 주파수와 우선순위가 같거나 낮은 inter-frequency 셀들 또는 서빙 셀의 주파수보다 우선순위가 낮은 inter-RAT frequency 셀에 대해서는 1i-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlex <= SnonIntraSearchP and Squal <= SintraSearchQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 다른 주파수를 사용하는 주변 셀들 또는 서빙 셀과 다른 무선접속기술을 사용하는 셀들을 측정할 수 있다(1i-20). 즉, 서빙 셀의 주파수보다 낮거나 또는 같은 우선순위를 가지는 inter-frequency 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출하며(수학식 1 적용), 서빙 셀의 주파수보다 낮은 우선순위를 가지는 inter-RAT 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출할 수 있다(수학식 1 적용). 참고로 SnonIntraSearchP와 SnonIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다.
주변 셀들에 대한 측정값(1i-20)을 기반으로 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 우선순위(CellReselectionPriority) 기반의 셀 재선택 평가 절차(Cell re-selection evaluation process)을 수행할 수 있다(1i-25). 즉, 셀 재선택 조건(Cell re-selection criteria)을 만족하는 여러 개의 셀이 다른 우선 순위를 가지고 있을 경우 높은 우선 순위를 가진 frequency/RAT 셀을 재선택하는 것이 낮은 우선순위를 가진 frequency/RAT 셀을 재선택하는 것보다 우선된다(Cell reselection to a higher priority RAT/frequency shall take precede over a lower priority RAT/frequency if multiple cells of different priorities fulfil the cell reselection criteria). 우선 순위에 대한 정보는 서빙 셀에서 방송되는 시스템 정보(SIB2, SIB4, SIB5)에 포함되어 있거나 RRC 연결 모드(RRC connected mode)에서 RRC 유휴 모드 또는 RRC 비활성화 모드로 전환 시 수신한 RRCRelease 메시지에 포함되어 있다. 현재 서빙 셀의 주파수보다 우선순위가 높은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 1 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighQ 보다 크면(Squal > ThreshX,HighQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 2 동작:
단말은 제 1 동작을 수행하지 못할 경우, 제 2 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고 inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighP 보다 크면(Srxlev > ThreshX, HighP during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말은 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB4에 포함되어 있는 정보를 기반으로, 제 1 동작 또는 제 2 동작을 수행할 수 있다. 또한, 단말은 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값(ThreshX,HighQ, ThreshX, HighP), TreselectionRAT 값, 즉 서빙 셀에서 방송되는 SIB5에 포함되어 있는 정보를 기반으로, 제 1 동작 또는 제 2 동작을 수행할 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기반으로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)이 도출될 수 있다.
또한 현재 서빙 셀의 주파수와 동일한 우선순위를 가지고 있는 intra-frequency/inter-frequency 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 3 동작:
intra-frequency/inter-frequency 셀의 신호 품질(Squal)과 수신 레벨(Srxlev)이 0 보다 큰 경우, 측정값(RSRP)를 기반으로 셀 별 Rank를 도출할 수 있다(The UE shall perform ranking of all cells that fulfils the cell selection criterion S). 서빙 셀과 주변 셀의 Rank는 상술한 수학식 2를 통해 각각 계산될 수 있다.
상술한 수학식 2에서, Qmeas,s는 서빙 셀의 RSRP 측정값, Qmeas,n는 주변 셀의 RSRP 측정값, Qhyst는 서빙 셀의 hysteresis 값, Qoffset은 서빙 셀과 주변 셀간의 오프셋이다. SIB2에 Qhyst 값이 포함되어 있으며, 해당 값은 intra-frequency/inter-frequency 셀의 재선택에 대해 공통으로 사용될 수 있다. Intra-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB3에 포함되어 있다. Inter-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB4에 포함되어 있다. 수학식 2로부터 구해진 주변 셀의 Rank가 서빙 셀의 Rank보다 큰 경우(Rn > Rs)에 대해, 주변 셀 중 최적의 셀에 캠프 온할 수 있다.
또한, 현재 서빙 셀의 주파수보다 우선순위가 낮은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 4 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, 현재 서빙 셀의 신호 품질(Sqaul)이 임계값 ThreshServing, LowQ 보다 작고(Squal < ThreshServing, LowQ) inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Squal > ThreshX,LowQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 5 동작:
단말은 제 4 동작을 수행하지 못할 경우, 제 5 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고, 현재 서빙 셀의 수신 레벨(Srxlev)이 임계값 ThreshServing, LowP 보다 작고(Srxlev < ThreshServing, LowP) inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Srxlev > ThreshX,LowP during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말의 inter-frequency 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB4에 포함되어 있는 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, LowQ, ThreshX, LowP), TreselectionRAT를 기초로 수행될 수 있다. 단말의 inter-RAT 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB5에 포함되어 있는 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThreshX,LowQ, ThreshX, LowP), TreselectionRAT를 기초로 수행될 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기초로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)이 도출될 수 있다.
1i-30 단계에서 단말은 1h-25 단계에서 우선순위를 기초로 후보 타겟 셀(candidate target cell)을 최종적으로 재선택하기 전에 해당 셀에서 방송되는 시스템 정보(예를 들면 MIB 또는 SIB1)를 수신하고, 해당 셀에 캠프-온하기 위해 해당 셀의 신호를 측정할 수 있다(1i-30).
즉, 타겟 셀에서 방송되는 SIB1를 기반으로 타겟 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)을 도출하여 셀 선택 기준(Cell selection criterion, S-criterion)을 충족(Srxlev > 0 AND Squal > 0)하는 지 판단할 수 있다.
1i-30 단계에서 재선택된 셀이 S-criterion을 만족하지 못할 경우, 단말은, 1i-05 단계에서 캠프-온 하고 있는 서빙 셀이 S-criterion을 만족하는 경우, 해당 셀에 계속 캠프-온 하거나 또 다른 후보 타겟 셀(another candidate target cell)을 재선택하기 위해, 또 다른 후보 타겟 셀에서 방송되는 시스템 정보(예를 들면 MIB 또는 SIB1)를 수신하고, 해당 셀에 캠프-온하기 위해 해당 셀의 신호를 측정하여, SIB1를 기반으로 해당 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)을 도출하여 S-criterion을 충족(Srxlev > 0 AND Squal > 0)하는 지 판단할 수 있다. 따라서 셀 재선택 과정에서 핑퐁(ping-pong) 현상이 방지될 수 있다.
도 1j는 본 개시의 일 실시 예에 따라, 단말이 RRC 유휴 모드 또는 RRC 비활성화 모드일 때, 셀 재선택 과정에서 셀을 재선택하여, S-criterion을 만족하지 못하는 셀에 대해서는, 추후 셀 재선택하는 과정에서 이를 제외시켜, 핑퐁(ping-pong) 현상을 방지하는 과정을 도시한 도면이다.
RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말(1j-01)은 서빙 셀에 캠프 온(1j-05)하고 있으면서 일련의 동작을 수행할 수 있다.
1j-10 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀의 기지국이 방송하는 시스템 정보(System information)를 수신할 수 있다. 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않을 수 있다. 시스템 정보는 마스터 정보 블록(Master Information Block, MIB)와 시스템 정보 블록들(System Information Blocks, SIBs)으로 나뉘어 질 수 있다. 추가적으로 시스템 정보 블록들은 SIB1와 SIB1를 제외한 SI 메시지(SI message)(예를 들면, SIB2, SIB3, SIB4 또는 SIB5)로 구분하여 칭해질 수 있다. 1j-10 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말은 SIB1 을 저장할 수도 있다. RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀에 캠프 온 하기 전에 해당 셀의 기지국이 방송하는 시스템 정보(예를 들면, MIB 또는 SIB1 또는 SIB2)를 미리 수신하여 읽어 들일 수 있다. 미리 수신할 경우, 단말은 SIB1을 저장할 수도 있다. 참고로, MIB, SIB1는 모든 단말에게 공통으로 적용되는 시스템 정보일 수 있다. SIB2는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 intra-frequency, inter-frequency, inter-RAT 셀을 재선택하는데 공통으로 적용되는 시스템 정보일 수 있다. SIB3 ~ SIB5는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 셀을 재선택하는데 필요한 정보를 포함할 수 있다.
SIB1는 서빙 셀 신호 측정 여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들을 포함하고 있고, 이러한 정보는 셀 별(cell-specific)로 적용될 수 있다. SIB2, SIB3, SIB4, SIB5에는 주변 셀 신호 측정여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들에 대한 정보가 포함될 수 있다. 구체적으로 SIB2에는 intra-frequency, inter-frequency, inter-RAT 셀 재선택을 위한 공통의 정보가 포함되며, SIB3에는 intra-frequency 셀 재선택만을 위한 정보가 포함되며, SIB4에는 inter-frequency 셀 재선택만을 위한 정보가 포함되며, SIB5에는 inter-RAT 셀 재선택만을 위한 정보가 포함될 수 있다.
1j-15 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 불연속 수신(Discontinous Reception, DRX) 주기마다 깨어나서 서빙 셀의 절대적인 신호 세기(Reference Signal Received Power(RSRP, Qrxlevmeas)와 상대적인 신호 품질(Reference Signal Received Quality(RSRQ), Qqualmeas)을 측정할 수 있다(1j-15). 단말은 이러한 측정값들을 통해, SIB1로부터 수신한 파라미터들을 이용해서 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)을 계산할 수 있다. 단말은 계산된 값들을 임계값들과 비교해서, 셀 재선택을 위해 주변 셀 측정(neighbor cell measurement) 수행 여부를 결정할 수 있다. 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)은 상술한 수학식 1을 통해 결정될 수 있다.
RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 배터리 소모를 최소화하기 위해서, 항상 주변 셀들을 측정(neighbor cell measurement)을 하지 않고 측정 규칙(measurement rule)을 기반으로 주변 셀 측정(neighbor cell measurement)을 수행 할지에 대한 여부를 판단할 수 있다(1j-20). 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않고, 현재 캠프-온 하고 있는 서빙 셀이 방송하는 시스템 정보를 이용하여 주변 셀 측정을 수행할 수 있다. 만약 1j-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlev <= SIntraSearchP and Squal <= SIntraSeachQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 같은 주파수를 사용하는 주변 셀들을 측정할 수 있다(1j-20). 즉, 서빙 셀과 같은 주파수를 사용한 주변 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB2 또는 SIB3를 기반으로 도출한다 (수학식 1 적용).
참고로 SIntraSearchP와 SIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다. 또한 현재 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency/inter-RAT 셀들에 대해서는 서빙 셀의 품질에 상관없이 주변 셀 측정을 수행할 수 있다(1j-20). 즉, 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출하며(수학식 1 적용), 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출할 수 있다(수학식 1 적용). 또한, 서빙 셀의 주파수와 우선순위가 같거나 낮은 inter-frequency 셀들 또는 서빙 셀의 주파수보다 우선순위가 낮은 inter-RAT frequency 셀에 대해서는 1j-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlex <= SnonIntraSearchP and Squal <= SintraSearchQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 다른 주파수를 사용하는 주변 셀들 또는 서빙 셀과 다른 무선접속기술을 사용하는 셀들을 측정할 수 있다(1j-20). 즉, 서빙 셀의 주파수보다 낮거나 또는 같은 우선순위를 가지는 inter-frequency 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출하며(수학식 1 적용), 서빙 셀의 주파수보다 낮은 우선순위를 가지는 inter-RAT 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출할 수 있다(수학식 1 적용). 참고로 SnonIntraSearchP와 SnonIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다.
주변 셀들에 대한 측정값(1j-20)을 기반으로 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 우선순위(CellReselectionPriority) 기반의 셀 재선택 평가 절차(Cell re-selection evaluation process)을 수행할 수 있다(1j-25). 즉, 셀 재선택 조건(Cell re-selection criteria)을 만족하는 여러 개의 셀이 다른 우선 순위를 가지고 있을 경우 높은 우선 순위를 가진 frequency/RAT 셀을 재선택하는 것이 낮은 우선순위를 가진 frequency/RAT 셀을 재선택하는 것보다 우선된다(Cell reselection to a higher priority RAT/frequency shall take precede over a lower priority RAT/frequency if multiple cells of different priorities fulfil the cell reselection criteria). 우선 순위에 대한 정보는 서빙 셀에서 방송되는 시스템 정보(SIB2, SIB4, SIB5)에 포함되어 있거나 RRC 연결 모드(RRC connected mode)에서 RRC 유휴 모드 또는 RRC 비활성화 모드로 전환 시 수신한 RRCRelease 메시지에 포함되어 있다. 현재 서빙 셀의 주파수보다 우선순위가 높은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 1 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighQ 보다 크면(Squal > ThreshX,HighQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 2 동작:
단말은 제 1 동작을 수행하지 못할 경우, 제 2 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고 inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighP 보다 크면(Srxlev > ThreshX, HighP during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말은 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB4에 포함되어 있는 정보를 기반으로, 제 1 동작 또는 제 2 동작을 수행할 수 있다. 또한, 단말은 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값(ThreshX,HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB5에 포함되어 있는 정보를 기반으로, 제 1 동작 또는 제 2 동작을 수행할 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기반으로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)이 도출될 수 있다.
또한 현재 서빙 셀의 주파수와 동일한 우선순위를 가지고 있는 intra-frequency/inter-frequency 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 3 동작:
intra-frequency/inter-frequency 셀의 신호 품질(Squal)과 수신 레벨(Srxlev)이 0 보다 큰 경우, 측정값(RSRP)를 기반으로 셀 별 Rank를 도출할 수 있다(The UE shall perform ranking of all cells that fulfils the cell selection criterion S). 서빙 셀과 주변 셀의 Rank는 상술한 수학식 2를 통해 각각 계산될 수 있다.
상술한 수학식 2에서, Qmeas,s는 서빙 셀의 RSRP 측정값, Qmeas,n는 주변 셀의 RSRP 측정값, Qhyst는 서빙 셀의 hysteresis 값, Qoffset은 서빙 셀과 주변 셀간의 오프셋이다. SIB2에 Qhyst 값이 포함되어 있으며, 해당 값은 intra-frequency/inter-frequency 셀의 재선택에 대해 공통으로 사용될 수 있다. Intra-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB3에 포함되어 있다. Inter-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB4에 포함되어 있다. 수학식 2로부터 구해진 주변 셀의 Rank가 서빙 셀의 Rank보다 큰 경우(Rn > Rs)에 대해, 주변 셀 중 최적의 셀에 캠프 온할 수 있다.
또한, 현재 서빙 셀의 주파수보다 우선순위가 낮은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 4 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, 현재 서빙 셀의 신호 품질(Sqaul)이 임계값 ThreshServing, LowQ 보다 작고(Squal < ThreshServing, LowQ) inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Squal > ThreshX,LowQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 5 동작:
단말은 제 4 동작을 수행하지 못할 경우, 제 5 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고, 현재 서빙 셀의 수신 레벨(Srxlev)이 임계값 ThreshServing, LowP 보다 작고(Srxlev < ThreshServing, LowP) inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Srxlev > ThreshX,LowP during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말의 inter-frequency 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB4에 포함되어 있는 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, LowQ, ThreshX, LowP), TreselectionRAT를 기초로 수행될 수 있다. 단말의 inter-RAT 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB5에 포함되어 있는 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThreshX,LowQ, ThreshX, LowP), TreselectionRAT를 기초로 수행될 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기초로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)이 도출될 수 있다.
1j-30 단계에서 단말은 1j-25 단계에서 우선순위를 기초로 재선택한 타겟 셀에서 방송되는 시스템 정보(예를 들면 MIB 또는 SIB1 또는 SIB2 또는 SIB3 또는 SIB4 또는 SIB5)를 수신하고, 해당 셀에 캠프-온하기 위해 해당 셀의 신호를 측정할 수 있다(1j-30). 즉, 단말은 타겟 셀에서 방송되는 SIB1를 기초로 타겟 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)을 도출하여 S-criterion을 충족(Srxlev > 0 AND Squal > 0)하는 지 판단할 수 있다.
이 때 타겟 셀에서 방송하는 SIB1에 포함되어 있는 Qqualmin 또는 Qrxlevmin 값이, 1j-05 단계에서 캠프-온 한 서빙 셀이 방송하는 SIB2(타겟 셀이 intra-frequency 셀인 경우 적용) 또는 SIB4(타겟 셀이 inter-frequency 셀인 경우 적용) 또는 SIB5(타겟 셀이 inter-RAT 셀인 경우 적용)에 각각 포함되어 있는 Qqualmin 또는 Qrxlevmin 값보다 큰 경우, 단말은, 셀 선택 기준을 충족하지 못하는 것으로 판단할 수 있다. 셀 선택 기준을 충족하지 못하는 경우, 추후 셀 재선택을 위해 단말은 해당 셀을 고려하지 않을 수 있다. 따라서 셀 재선택 과정에서 핑퐁(ping-pong) 현상이 방지될 수 있다.
도 1k는 본 개시의 일 실시 예에 따라, 단말이 RRC 유휴 모드 또는 RRC 비활성화 모드일 때, 셀 재선택 과정에서 셀 재선택하여, S-criterion을 만족하지 못하는 셀에 대해서는, 추후 셀을 재선택하는 과정에서, 주변 셀임에도 불구하고 시스템 정보(예를 들면, MIB 또는 SIB1)을 읽어 들여, 핑퐁(ping-pong) 현상을 방지하는 과정을 도시한 도면이다.
RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말(1k-01)은 서빙 셀에 캠프 온(1k-05)하고 있으면서 일련의 동작을 수행할 수 있다.
1k-10 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀의 기지국이 방송하는 시스템 정보(System information)를 수신할 수 있다. 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않을 수 있다. 시스템 정보는 마스터 정보 블록(Master Information Block, MIB)와 시스템 정보 블록들(System Information Blocks, SIBs)으로 나뉘어 질 수 있다. 추가적으로 시스템 정보 블록들은 SIB1와 SIB1를 제외한 SI 메시지(SI message)(예를 들면, SIB2, SIB3, SIB4 또는 SIB5)로 구분하여 칭해질 수 있다. 1k-10 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말은 SIB1 을 저장할 수도 있다. RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀에 캠프 온 하기 전에 해당 셀의 기지국이 방송하는 시스템 정보(예를 들면, MIB 또는 SIB1 또는 SIB2)를 미리 수신하여 읽어 들일 수 있다. 미리 수신할 경우, 단말은 SIB1을 저장할 수도 있다. 참고로, MIB, SIB1는 모든 단말에게 공통으로 적용되는 시스템 정보일 수 있다. SIB2는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 intra-frequency, inter-frequency, inter-RAT 셀을 재선택하는데 공통으로 적용되는 시스템 정보일 수 있다. SIB3 ~ SIB5는 RRC 유휴 모드 또는 RRC 비활성화 모드에 있는 단말이 셀을 재선택하는데 필요한 정보를 포함할 수 있다.
SIB1는 서빙 셀 신호 측정 여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들을 포함하고 있고, 이러한 정보는 셀 별(cell-specific)로 적용될 수 있다. SIB2, SIB3, SIB4, SIB5에는 주변 셀 신호 측정여부를 결정할 때 사용되는 최소 수신 레벨 또는 최소 신호 품질 또는 임계값 등의 파라미터들에 대한 정보가 포함될 수 있다. 구체적으로 SIB2에는 intra-frequency, inter-frequency, inter-RAT 셀 재선택을 위한 공통의 정보가 포함되며, SIB3에는 intra-frequency 셀 재선택만을 위한 정보가 포함되며, SIB4에는 inter-frequency 셀 재선택만을 위한 정보가 포함되며, SIB5에는 inter-RAT 셀 재선택만을 위한 정보가 포함될 수 있다.
1k-15 단계에서 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 불연속 수신(Discontinous Reception, DRX) 주기마다 깨어나서 서빙 셀의 절대적인 신호 세기(Reference Signal Received Power(RSRP, Qrxlevmeas)와 상대적인 신호 품질(Reference Signal Received Quality(RSRQ), Qqualmeas)을 측정할 수 있다(1k-15). 단말은 이러한 측정값들을 통해, SIB1로부터 수신한 파라미터들을 이용해서 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)을 계산할 수 있다. 단말은 계산된 값들을 임계값들과 비교해서, 셀 재선택을 위해 주변 셀 측정(neighbor cell measurement) 수행 여부를 결정할 수 있다. 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Sqaul)은 상술한 수학식 1을 통해 결정될 수 있다.
RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 배터리 소모를 최소화하기 위해서, 항상 주변 셀들을 측정(neighbor cell measurement)을 하지 않고 측정 규칙(measurement rule)을 기반으로 주변 셀 측정(neighbor cell measurement)을 수행 할지에 대한 여부를 판단할 수 있다(1k-20). 이 때 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 주변 셀의 기지국이 방송하는 시스템 정보는 수신하지 않고, 현재 캠프-온 하고 있는 서빙 셀이 방송하는 시스템 정보를 이용하여 주변 셀 측정을 수행할 수 있다. 만약 1k-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlev <= SIntraSearchP and Squal <= SIntraSeachQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 같은 주파수를 사용하는 주변 셀들을 측정할 수 있다(1k-20). 즉, 서빙 셀과 같은 주파수를 사용한 주변 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB2 또는 SIB3를 기반으로 도출한다 (수학식 1 적용).
참고로 SIntraSearchP와 SIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다. 또한 현재 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency/inter-RAT 셀들에 대해서는 서빙 셀의 품질에 상관없이 주변 셀 측정을 수행할 수 있다(1k-20). 즉, 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-frequency 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출하며(수학식 1 적용), 서빙 셀의 주파수보다 높은 우선순위를 가지는 inter-RAT 셀들의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출할 수 있다(수학식 1 적용). 또한, 서빙 셀의 주파수와 우선순위가 같거나 낮은 inter-frequency 셀들 또는 서빙 셀의 주파수보다 우선순위가 낮은 inter-RAT frequency 셀에 대해서는 1k-15 단계에서 측정한 현재 서빙 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)이 임계값보다 작아지는 경우(Srxlex <= SnonIntraSearchP and Squal <= SintraSearchQ), RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 서빙 셀과 다른 주파수를 사용하는 주변 셀들 또는 서빙 셀과 다른 무선접속기술을 사용하는 셀들을 측정할 수 있다(1k-20). 즉, 서빙 셀의 주파수보다 낮거나 또는 같은 우선순위를 가지는 inter-frequency 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB4 기반으로 도출하며(수학식 1 적용), 서빙 셀의 주파수보다 낮은 우선순위를 가지는 inter-RAT 셀(들)의 신호 품질(Squal) 또는 수신 레벨(Srxlev)은 서빙 셀에서 방송되는 SIB5 기반으로 도출할 수 있다(수학식 1 적용). 참고로 SnonIntraSearchP와 SnonIntraSearchQ에 대한 임계값의 정보는 SIB2에 포함되어 있다.
주변 셀들에 대한 측정값(1k-20)을 기반으로 RRC 유휴 모드 또는 RRC 비활성화 모드 단말은 우선순위(CellReselectionPriority) 기반의 셀 재선택 평가 절차(Cell re-selection evaluation process)을 수행할 수 있다(1k-25). 즉, 셀 재선택 조건(Cell re-selection criteria)을 만족하는 여러 개의 셀이 다른 우선 순위를 가지고 있을 경우 높은 우선 순위를 가진 frequency/RAT 셀을 재선택하는 것이 낮은 우선순위를 가진 frequency/RAT 셀을 재선택하는 것보다 우선된다(Cell reselection to a higher priority RAT/frequency shall take precede over a lower priority RAT/frequency if multiple cells of different priorities fulfil the cell reselection criteria). 우선 순위에 대한 정보는 서빙 셀에서 방송되는 시스템 정보(SIB2, SIB4, SIB5)에 포함되어 있거나 RRC 연결 모드(RRC connected mode)에서 RRC 유휴 모드 또는 RRC 비활성화 모드로 전환 시 수신한 RRCRelease 메시지에 포함되어 있다. 현재 서빙 셀의 주파수보다 우선순위가 높은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 1 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighQ 보다 크면(Squal > ThreshX,HighQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 2 동작:
단말은 제 1 동작을 수행하지 못할 경우, 제 2 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고 inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX,HighP 보다 크면(Srxlev > ThreshX, HighP during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말은 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB4에 포함되어 있는 정보를 기반으로 제 1 동작 또는 제 2 동작을 수행할 수 있다. 또한, 단말은 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값(ThreshX,HighQ, ThreshX, HighP), TreselectionRAT 값들, 즉 서빙 셀에서 방송되는 SIB5에 포함되어 있는 정보를 기반으로, 제 1 동작 또는 제 2 동작을 수행할 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기반으로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)이 도출될 수 있다.
또한 현재 서빙 셀의 주파수와 동일한 우선순위를 가지고 있는 intra-frequency/inter-frequency 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 3 동작:
intra-frequency/inter-frequency 셀의 신호 품질(Squal)과 수신 레벨(Srxlev)이 0 보다 큰 경우, 측정값(RSRP)를 기반으로 셀 별 Rank를 도출할 수 있다(The UE shall perform ranking of all cells that fulfils the cell selection criterion S). 서빙 셀과 주변 셀의 Rank는 상술한 수학식 2를 통해 각각 계산될 수 있다.
상술한 수학식 2에서, Qmeas,s는 서빙 셀의 RSRP 측정값, Qmeas,n는 주변 셀의 RSRP 측정값, Qhyst는 서빙 셀의 hysteresis 값, Qoffset은 서빙 셀과 주변 셀간의 오프셋이다. SIB2에 Qhyst 값이 포함되어 있으며, 해당 값은 intra-frequency/inter-frequency 셀의 재선택에 대해 공통으로 사용될 수 있다. Intra-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB3에 포함되어 있다. Inter-frequency 셀의 재선택의 경우, Qoffset은 셀 별로 시그날링 되며, 지시된 셀에 대해서만 적용되며, SIB4에 포함되어 있다. 수학식 2로부터 구해진 주변 셀의 Rank가 서빙 셀의 Rank보다 큰 경우(Rn > Rs)에 대해, 주변 셀 중 최적의 셀에 캠프 온할 수 있다.
또한, 현재 서빙 셀의 주파수보다 우선순위가 낮은 inter-frequency/inter-RAT 셀의 재선택 평가 절차에 대한 단말의 동작은 아래와 같다.
제 4 동작:
만약 SIB2에 threshServingLowQ에 대한 임계값이 포함되어 방송되며 단말이 현재 서빙 셀에 캠프-온 한지 1초가 지난 경우, 현재 서빙 셀의 신호 품질(Sqaul)이 임계값 ThreshServing, LowQ 보다 작고(Squal < ThreshServing, LowQ) inter-frequency/inter-RAT 셀의 신호 품질(Squal)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Squal > ThreshX,LowQ during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
제 5 동작:
단말은 제 4 동작을 수행하지 못할 경우, 제 5 동작을 수행할 수 있다.
단말이 현재 서빙 셀에 캠프-온 한지 1초가 지나고, 현재 서빙 셀의 수신 레벨(Srxlev)이 임계값 ThreshServing, LowP 보다 작고(Srxlev < ThreshServing, LowP) inter-frequency/inter-RAT 셀의 수신 레벨(Srxlev)이 특정 시간 TreselectionRAT 동안 임계값 ThreshX, LowQ 보다 크면(Srxlev > ThreshX,LowP during a time interval TreselectionRAT), 단말은 해당 inter-frequency/inter-RAT 셀로의 재선택을 수행할 수 있다.
여기서 단말의 inter-frequency 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB4에 포함되어 있는 inter-frequency 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThrehX, LowQ, ThreshX, LowP), TreselectionRAT를 기초로 수행될 수 있다. 단말의 inter-RAT 셀에 대한 제 4 동작 또는 제 5 동작은 서빙 셀에서 방송되는 SIB2에 포함되어 있는 임계값들(ThreshServing, LowQ, ThreshServing, LowP)과 서빙 셀에서 방송되는 SIB5에 포함되어 있는 inter-RAT 셀의 신호 품질(Squal), 수신 레벨(Srxlev), 임계값들(ThreshX,LowQ, ThreshX, LowP), TreselectionRAT를 기초로 수행될 수 있다. 일 예로, SIB4에는 Qqualmin 값 또는 Qrxlevmin 값 등이 포함되어 있으며 이를 기초로 inter-frequency 셀의 신호 품질(Squal) 또는 수신 레벨(Srxlev)이 도출될 수 있다.
1k-30 단계에서 단말은 1k-25 단계에서 우선순위를 기초로 재선택한 타겟 셀에서 방송되는 시스템 정보(예를 들면 MIB 또는 SIB1 또는 SIB2 또는 SIB3 또는 SIB4 또는 SIB5)를 수신하고, 해당 셀에 캠프-온하기 위해 해당 셀의 신호를 측정할 수 있다(1k-30). 즉, 단말은 타겟 셀에서 방송되는 SIB1를 기초로 타겟 셀의 수신 레벨(Srxlev)과 수신 품질(Squal)을 도출하여 S-criterion을 충족(Srxlev > 0 AND Squal > 0)하는 지 판단할 수 있다.
이 때 타겟 셀에서 방송하는 SIB1에 포함되어 있는 Qqualmin 또는 Qrxlevmin 값이, 1k-05 단계에서 캠프-온 한 서빙 셀이 방송하는 SIB2(타겟 셀이 intra-frequency 셀인 경우 적용) 또는 SIB4(타겟 셀이 inter-frequency 셀인 경우 적용) 또는 SIB5(타겟 셀이 inter-RAT 셀인 경우 적용)에 각각 포함되어 있는 Qqualmin 또는 Qrxlevmin 값보다 큰 경우, 단말은, 셀 선택 기준을 충족하지 못하는 것으로 판단할 수 있다. 셀럭렉션 기준을 충족하지 못하는 경우, 단말은, 추후 셀 재선택을 위해 해당 셀의 경우 해당 셀에서 방송되는 SIB1을 기반으로 셀 재선택 과정을 수행하여 핑퐁(ping-pong) 현상을 방지할 수 있다.
도 1l에 본 개시의 일 실시 예에 따른 단말의 구조를 도시한 것이다.
단말은 무선 주파수(Radio Frequency, RF) 처리부(1l-10), 기저대역(baseband) 처리부(1l-20), 저장부(1l-30), 제어부(1l-40)를 포함할 수 있다.
본 개시의 일 실시 예에 따른 RF 처리부(1l-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, RF처리부(1l-10)는 기저대역처리부(1l-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환할 수 있다. 예를 들어, RF 처리부(1l-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다.
도면에서는, 하나의 안테나만이 도시되었으나, 단말은 다수의 안테나들을 구비할 수 있다.
또한, RF처리부(1l-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, RF처리부(1l-10)는 빔포밍(beamforming)을 수행할 수 있다. 빔포밍을 위해, RF처리부(1l-10)는 다수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다. RF처리부(1l-10)는 제어부의 제어에 따라 다수의 안테나 또는 안테나 요소들을 적절하게 설정하여 수신 빔 스위핑을 수행하거나, 수신 빔이 송신 빔과 공조되도록 수신 빔의 방향과 빔 너비를 조정할 수 있다.
기저대역처리부(1l-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 기저대역처리부(1l-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(1l-20)은 RF처리부(1l-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 기저대역처리부(1l-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(1l-20)은 RF처리부(1l-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다.
기저대역처리부(1l-20) 및 RF처리부(1l-10)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다. 이에 따라, 기저대역처리부(1l-20) 및 RF처리부(1l-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 나아가, 기저대역처리부(1l-20) 및 RF처리부(1l-10) 중 적어도 하나는 서로 다른 다수의 무선 접속 기술들을 지원하기 위해 다수의 통신 모듈들을 포함할 수 있다. 또한, 기저대역처리부(1l-20) 및 RF처리부(1l-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 서로 다른 무선 접속 기술들은 LTE 망, NR 망 등을 포함할 수 있다. 또한, 서로 다른 주파수 대역들은 극고단파(super high frequency, SHF)(예: 2.2gHz, 2ghz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다.
저장부(1l-30)는 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 저장부(1l-30)는 제어부(1l-40)의 요청에 따라 저장된 데이터를 제공할 수 있다.
제어부(1l-40)는 단말의 전반적인 동작들을 제어할 수 있다. 예를 들어, 제어부(1l-40)는 기저대역처리부(1l-20) 및 RF처리부(1l-10)을 통해 신호를 송수신할 수 있다. 또한, 제어부(1l-40)는 저장부(1l-40)에 데이터를 기록하고, 읽는다. 이를 위해, 제어부(1l-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 제어부(1l-40)는 통신을 위한 제어를 수행하는 커뮤니케이션 프로세서 (communication processor, CP) 및 응용 프로그램 등 상위 계층을 제어하는 어플리케이션 프로세서(application processor, AP)를 포함할 수 있다.
도 1m는 본 개시의 일 실시 예에 기지국의 구조를 도시한 것이다.
본 개시의 일 실시 예에 따른 기지국은 하나 이상의 송수신점(Transmission Reception Point, TRP)를 포함할 수 있다.
본 개시의 일 실시 예에 따른 기지국은 RF처리부(1m-10), 기저대역처리부(1m-20), 백홀통신부(1m-30), 저장부(1m-40), 제어부(1m-50)를 포함할 수 있다.
RF처리부(1m-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, RF처리부(1m-10)는 기저대역처리부(1m-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환할 수 있다. 예를 들어, RF처리부(1m-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다.
도면에서, 하나의 안테나만이 도시되었으나, 제1접속 노드는 다수의 안테나들을 구비할 수 있다.
또한, RF처리부(1m-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, RF처리부(1m-10)는 빔포밍을 수행할 수 있다. 빔포밍을 위해, RF처리부(1m-10)는 다수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다.
기저대역처리부(1m-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 기저대역처리부(1m-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(1m-20)은 RF처리부(1m-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 기저대역처리부(1m-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(1m-20)은 RF처리부(1m-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 기저대역처리부(1m-20) 및 RF처리부(1m-10)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다.
이에 따라, 기저대역처리부(1m-20) 및 RF처리부(1m-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.
통신부(1m-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공할 수 있다.
저장부(1m-40)는 주기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 특히, 저장부(1m-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 저장부(1m-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 저장부(1m-40)는 제어부(1m-50)의 요청에 따라 저장된 데이터를 제공할 수 있다.
제어부(1m-50)는 주기지국의 전반적인 동작들을 제어할 수 있다. 예를 들어, 제어부(1m-50)는 기저대역처리부(1m-20) 및 RF처리부(1m-10)을 통해 또는 백홀통신부(1m-30)을 통해 신호를 송수신할 수 있다. 또한, 제어부(1m-50)는 저장부(1m-40)에 데이터를 기록하고, 읽는다. 이를 위해, 제어부(1m-50)는 적어도 하나의 프로세서를 포함할 수 있다.
도 2a는 본 개시의 일 실시 예에 따른 LTE 시스템의 구조를 도시한 도면이다.
도 2a를 참조하면, 도시한 바와 같이 LTE 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 ENB, Node B 또는 기지국)(2a-05, 2a-10, 2a-15, 2a-20)과 이동성 관리 엔티티(Mobility Management Entity, MME)(2a-25) 및 S-GW(2a-30, Serving-Gateway)로 구성될 수 있다. 사용자 단말(User Equipment, 이하 UE 또는 단말)(2a-35)은 ENB(2a-05 ~ 2a-20) 및 S-GW(2a-30)를 통해 외부 네트워크에 접속할 수 있다.
도 2a에서 ENB(2a-05 ~ 2a-20)는 UMTS 시스템의 기존 노드 B에 대응될 수 있다. ENB는 UE(2a-35)와 무선 채널로 연결되며 기존 노드 B 보다 복잡한 역할을 수행할 수 있다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 될 수 있다. 따라서, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 ENB(2a-05 ~ 2a-20)가 담당할 수 있다. 하나의 ENB는 통상 다수의 셀들을 제어할 수 있다. 예컨대, 100 Mbps의 전송 속도를 구현하기 위해서 LTE 시스템은 예컨대, 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, OFDM)을 무선 접속 기술로 사용할 수 있다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, AMC) 방식을 적용할 수 있다. S-GW(2a-30)는 데이터 베어러(bearer)를 제공하는 장치이며, MME(2a-25)의 제어에 따라서 데이터 베어러를 생성하거나 제거할 수 있다. MME는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결될 수 있다.
도 2b는 본 개시의 일 실시 예에 따른 LTE 시스템에서 무선 프로토콜 구조를 도시한 도면이다.
도 2b를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 ENB에서 각각 패킷 데이터 컨버전스 프로토콜(Packet Data Convergence Protocol, PDCP)(2b-05, 2b-40), 무선 링크 제어(Radio Link Control, RLC)(2b-10, 2b-35), 매체 액세스 제어(Medium Access Control, MAC)(2b-15, 2b-30)으로 이루어질 수 있다. PDCP(2b-05, 2b-40)는 IP 헤더 압축/복원 등의 동작을 담당할 수 있다. PDCP의 주요 기능은 하기와 같이 요약될 수 있다.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs at PDCP re-establishment procedure for RLC AM)
- 순서 재정렬 기능(For split bearers in DC (only support for RLC AM): PDCP PDU routing for transmission and PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs at PDCP re-establishment procedure for RLC AM)
- 재전송 기능(Retransmission of PDCP SDUs at handover and, for split bearers in DC, of PDCP PDUs at PDCP data-recovery procedure, for RLC AM)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
무선 링크 제어(Radio Link Control, RLC)(2b-10, 2b-35)는 PDCP 패킷 데이터 유닛(Packet Data Unit, PDU)을 적절한 크기로 재구성해서 ARQ 동작 등을 수행할 수 있다. RLC의 주요 기능은 하기와 같이 요약될 수 있다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ (only for AM data transfer))
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs (only for UM and AM data transfer))
- 재분할 기능(Re-segmentation of RLC data PDUs (only for AM data transfer))
- 순서 재정렬 기능(Reordering of RLC data PDUs (only for UM and AM data transfer)
- 중복 탐지 기능(Duplicate detection (only for UM and AM data transfer))
- 오류 탐지 기능(Protocol error detection (only for AM data transfer))
- RLC SDU 삭제 기능(RLC SDU discard (only for UM and AM data transfer))
- RLC 재수립 기능(RLC re-establishment)
MAC(2b-15, 2b-30)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행할 수 있다. MAC의 주요 기능은 하기와 같이 요약될 수 있다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs belonging to one or different logical channels into/from transport blocks (TB) delivered to/from the physical layer on transport channels)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
물리 계층(2b-20, 2b-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 할 수 있다.
도 2c는 본 개시의 일 실시 예에 따른 차세대 이동통신 시스템의 구조를 도시한 도면이다.
도 2c를 참조하면, 차세대 이동통신 시스템(이하 NR 또는 2g)의 무선 액세스 네트워크는 차세대 기지국(New Radio Node B, 이하 NR gNB 또는 NR 기지국)(2c-10)과 차세대 무선 코어 네트워크(New Radio Core Network, NR CN)(2c-05)로 구성될 수 있다. 차세대 무선 사용자 단말(New Radio User Equipment, NR UE 또는 단말)(2c-15)은 NR gNB(2c-10) 및 NR CN (2c-05)를 통해 외부 네트워크에 접속할 수 있다.
도 2c에서 NR gNB(2c-10)는 기존 LTE 시스템의 eNB (Evolved Node B)에 대응될 수 있다. NR gNB는 NR UE(2c-15)와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다. 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 NR NB(2c-10)가 담당할 수 있다. 하나의 NR gNB는 통상 다수의 셀들을 제어할 수 있다. 차세대 이동통신 시스템에서는, 현재 LTE 대비 초고속 데이터 전송을 구현하기 위해서, 현재의 최대 대역폭 이상의 대역폭이 적용될 수 있다. 또한, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용할 수 있다. NR CN (2c-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행할 수 있다. NR CN는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결될 수 있다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, NR CN이 MME (2c-25)와 네트워크 인터페이스를 통해 연결될 수 있다. MME는 기존 기지국인 eNB (2c-30)과 연결될 수 있다.
도 2d는 본 개시의 일 실시 예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다. .
도 2d를 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR 서비스 데이터 적응 프로토콜(Service Data Adaptation Protocol, SDAP)(2d-01, 2d-45), NR PDCP(2d-05, 2d-40), NR RLC(2d-10, 2d-35), NR MAC(2d-15, 2d-30)으로 이루어진다.
NR SDAP(2d-01, 2d-45)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 사용자 데이터의 전달 기능(transfer of user plane data)
- 상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)
- 상향 링크와 하향 링크에 대해서 QoS flow ID를 마킹 기능(marking QoS flow ID in both DL and UL packets)
- 상향 링크 SDAP PDU들에 대해서 relective QoS flow를 데이터 베어러에 맵핑시키는 기능 (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
SDAP 계층 장치에 대해 단말은 무선 자원 제어(Radio Resource Control, RRC) 메시지로 각 PDCP 계층 장치 별로 또는 베어러 별로 또는 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 또는 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있다. SDAP 헤더가 설정된 경우, 단말은, SDAP 헤더의 비접속 계층(Non-Access Stratum, NAS) QoS(Quality of Service) 반영 설정 1비트 지시자(NAS reflective QoS)와, 접속 계층 (Access Stratum, AS) QoS 반영 설정 1비트 지시자(AS reflective QoS)로 단말이 상향 링크와 하향 링크의 QoS 플로우(flow)와 데이터 베어러에 대한 맵핑 정보를 갱신 또는 재설정할 수 있도록 지시할 수 있다. SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. QoS 정보는 원할한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케쥴링 정보 등으로 사용될 수 있다.
NR PDCP (2d-05, 2d-40)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능 (Out-of-sequence delivery of upper layer PDUs)
- 순서 재정렬 기능(PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)
- 재전송 기능(Retransmission of PDCP SDUs)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
상술한 내용에서, NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능을 의미할 수 있다. NR PDCP 장치의 순서 재정렬 기능(reordering)은 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있으며, 또는 순서를 고려하지 않고 바로 전달하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC(2d-10, 2d-35)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)
- 재분할 기능(Re-segmentation of RLC data PDUs)
- 순서 재정렬 기능(Reordering of RLC data PDUs)
- 중복 탐지 기능(Duplicate detection)
- 오류 탐지 기능(Protocol error detection)
- RLC SDU 삭제 기능(RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)
상술한 내용에서, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 의미할 수 있다. 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 이를 재조립하여 전달하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 수신한 RLC PDU들을 RLC SN(sequence number) 또는 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다.
NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은, 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다.
NR RLC 장치는, 일련번호(Sequence number)의 순서와 상관없이(Out-of sequence delivery) RLC PDU들을 수신하는 순서대로 처리하여 NR PDCP 장치로 전달할 수 있다.
NR RLC 장치가 세그먼트(segment)를 수신할 경우에는, 버퍼에 저장되어 있거나 추후에 수신될 세그먼트 들을 수신하여, 온전한 하나의 RLC PDU로 재구성한 후, 이를 NR PDCP 장치로 전달할 수 있다.
NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고 NR MAC 계층에서 기능을 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다.
상술한 내용에서, NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 의미할 수 있다. NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있다. NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은, 수신한 RLC PDU들의 RLC SN 또는 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다.
NR MAC(2d-15, 2d-30)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
NR PHY 계층(2d-20, 2d-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.
도 2e는 본 개시의 일 실시 예에 따라, 기지국이 단말의 연결을 해제하여 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 유휴 모드(RRC idle mode)로 전환하는 절차와, 단말이 기지국과 연결을 설정하여 RRC 유휴 모드(RRC idle mode)에서 RRC 연결 모드(RRC connected mode)로 전환하는 절차를, 설명한 도면이다.
본 개시의 일 실시 예에 따르면, 기지국은 RRC 연결 모드에서 데이터를 송수신하는 단말이 소정의 이유로 또는 일정 시간 동안 데이터의 송수신이 없으면 RRCConnectionRelease 메시지를 단말에게 보내어 단말을 RRC 유휴모드로 전환하도록 할 수 있다(2e-01). 추후에 현재 연결이 설정되어 있지 않은 단말(이하 idle mode UE)은 전송할 데이터가 발생하면 기지국과 RRC 연결 확립(RRC connection establishment) 과정을 수행할 수 있다.
단말은 랜덤 액세스 과정을 통해서 기지국과 역방향 전송 동기를 수립하고 RRCConnectionRequest 메시지를 기지국으로 전송한다 (2e-05). 메시지에는 단말의 식별자와 연결을 설정하고자 하는 이유(establishmentCause) 등이 포함될 수 있다.
기지국은 단말이 RRC 연결을 설정하도록 RRCConnectionSetup 메시지를 전송한다 (2e-10). 메시지에는 RRC 연결 구성 정보 등이 수납될 수 있다. RRC 연결은 SRB (Signaling Radio Bearer)라고도 하며, 단말과 기지국 사이의 제어 메시지인 RRC 메시지 송수신에 사용될 수 있다.
RRC 연결을 설정한 단말은 RRCConnetionSetupComplete 메시지를 기지국으로 전송한다 (2e-15). 메시지에는 단말이 소정의 서비스를 위한 베어러 설정을 MME에게 요청하는 SERVICE REQUEST라는 제어 메시지가 포함되어 있다.
기지국은 RRCConnetionSetupComplete 메시지에 수납된 SERVICE REQUEST 메시지를 MME로 전송하고 (2e-20), MME는 단말이 요청한 서비스를 제공할지 여부를 판단할 수 있다.
판단 결과 단말이 요청한 서비스를 제공하기로 결정하였다면 MME는 기지국에게 INITIAL CONTEXT SETUP REQUEST라는 메시지를 전송할 수 있다(2e-25). 메시지에는 DRB (Data Radio Bearer) 설정 시 적용할 QoS (Quality of Service) 정보, 그리고 DRB에 적용할 보안 관련 정보 (예를 들어 Security Key, Security Algorithm) 등의 정보가 포함될 수 있다.
기지국은 보안을 설정하기 위해서 SecurityModeCommand 메시지(2e-30)와 SecurityModeComplete 메시지(2e-35)를 단말과 교환할 수 있다.
보안 설정이 완료되면, 기지국은 단말에게 RRCConnectionReconfiguration 메시지를 전송할 수 있다(2e-40).
메시지에는 사용자 데이터가 처리될 DRB의 설정 정보가 포함되며, 단말은 정보를 적용해서 DRB를 설정하고 기지국에게 RRCConnectionReconfigurationComplete 메시지를 전송할 수 있다(2e-45).
단말과 DRB 설정을 완료한 기지국은 MME에게 INITIAL CONTEXT SETUP COMPLETE 메시지를 전송하고 (2e-50), 이를 수신한 MME는 S-GW와 S1 베어러를 설정하기 위해서 S1 BEARER SETUP 메시지와 S1 BEARER SETUP RESPONSE 메시지를 교환할 수 있다(2e-055, 2e-60). S1 베어러는 S-GW와 기지국 사이에 설정되는 데이터 전송용 연결이며 DRB와 1대 1로 대응될 수 있다.
과정이 모두 완료되면 단말은 기지국과 S-GW를 통해 데이터를 송수신할 수 있다(2e-65, 2e-70). 이처럼 일반적인 데이터 전송 과정은 크게 RRC 연결 설정, 보안 설정, DRB설정의 3단계로 구성될 수 있다.
또한 기지국은 소정의 이유로 단말에게 설정을 새로 해주거나 추가하거나 변경하기 위해서 RRCConnectionReconfiguration 메시지를 전송할 수 있다(2e-75).
이와 같이, 단말이 RRC 연결을 설정하여 RRC 유휴 모드에서 RRC 연결 모드로 전환하기 위해서는 많은 시그날링 절차가 요구될 수 있다. 따라서 차세대 이동 통신 시스템에서는 RRC 비활성 모드를 새로 정의할 수 있다. 상술한 바와 같이 새로운 모드에서는 단말과 기지국이 단말의 컨텍스트를 저장하고 있고, 필요하다면 S1 베어러를 유지하고 있을 수 있기 때문에, RRC 비활성화 모드 단말이 네트워크에 다시 접속하려고 하는 경우, 하기에서 제안하는 RRC 재연결 설정 절차를 통해, 단말은 더 적은 시그날링 절차로 더 빠르게 접속하고 데이터를 송수신할 수 있다.
도 2f는 본 개시의 일 실시 예에 따라, 기지국이 단말의 연결을 해제하여 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환하는 절차와, 단말이 기지국과 연결을 설정하여 RRC 비활성화 모드(RRC inactive mode)에서 RRC 연결 모드(RRC connected mode)로 전환하는 절차를 설명한 도면이다.
도 2f에서 단말(2f-01)은 기지국(2f-02)과 네트워크 연결을 수행하고 데이터를 송수신할 수 있다. 만약 소정의 이유로 기지국이 단말을 RRC 비활성화 모드로 천이시켜야 할 필요가 생기면 기지국은 suspend 설정 정보를 포함하는 RRCRelease 메시지(2f-05)를 보내어 단말을 RRC 비활성화 모드로 천이시킬 수 있다.
단말이 suspend 설정 정보를 포함하는 RRCRelease 메시지(2f-05)를 받았을 때 제안하는 단말 동작은 다음과 같다.
1. 만약 RRCRelease 메시지가 suspend 설정 정보(suspendConfig)를 포함하고 있다면
A. 만약 단말이 이미 저장하고 있던 단말 연결 재개 식별자(resumeIdentity), NCC(NexthopChainingCount), 랜 페이징 사이클(ran-PagingCycle), 랜 지시 영역 정보(ran-NotificationAreaInfo)가 있다면
i. 단말은 RRCRelease 메시지의 suspend 설정 정보에 포함된 새로운 값들로 저장된 값들을 대체할 수 있다(또는 갱신한다).
B. 만약 단말이 이미 저장하고 있던 단말 연결 재개 식별자(resumeIdentity), NCC(NexthopChainingCount), 랜 페이징 사이클(ran-PagingCycle), 랜 지시 영역 정보(ran-NotificationAreaInfo)가 없다면
i. 단말은 RRCRelease 메시지의 suspend 설정 정보에 포함된 단말 연결 재개 식별자(resumeIdentity), NCC(NexthopChainingCount), 랜 페이징 사이클(ran-PagingCycle), 랜 지시 영역 정보(ran-NotificationAreaInfo)을 저장할 수 있다.
C. 그리고 단말은 MAC 계층 장치를 리셋(reset)할 수 있다(HARQ 버퍼에 저장되어 있는 데이터들이 다시 연결을 재개했을 때 불필요한 재전송을 수행하지 않도록 하기 위해서)
D. 그리고 모든 SRB들과 DRB들에 대해서 RLC 계층 장치들을 재수립(Re-establish)할 수 있다. (RLC 버퍼에 저장되어 있는 데이터들이 다시 연결을 재개했을 때 불필요한 재전송을 수행하지 않도록 하기 위해서, 그리고 추후 사용을 위한 변수들을 초기화하기 위해서)
E. 상술한 내용에서 suspend 설정 정보를 가진 RRCRelease 메시지를 RRCResumeRequest 메시지에 대한 응답으로 수신하게 아니라면
i. 단말은 단말 컨텍스트를 저장할 수 있다. 단말 컨텍스트는 현재 RRC 설정 정보, 현재 보안 컨텍스트 정보, ROHC 상태 정보를 포함하는 PDCP 상태 정보, SDAP 설정 정보, 소스셀(source PCell)에서 사용하였던 단말 셀식별자(C-RNTI), 소스셀(PCell)의 셀식별자(CellIdentity)와 물리적 셀 식별자(physical cell identity)를 포함할 수 있다.
F. 그리고 SRB0를 제외한 모든 SRB들과 DRB들을 중지(suspend)할 수 있다.
G. 그리고 suspend 설정 정보(suspendConfig)에 포함되어 있는 주기 랜 지시 영역 업데이트 타이머(periodic-RNAU-timer) 값으로 T380 타이머를 구동할 수 있다.
H. 그리고 RRC 연결의 중단(suspension)을 상위 계층에 보고할 수 있다.
I. 그리고 하위 계층 장치들에게 무결성 보호와 암호화 기능을 중지하도록 설정할 수 있다.
J. 그리고 단말은 RRC 비활성화 모드로 천이할 수 있다.
상술한 내용에서 RRC 비활성화 모드로 천이한 단말(2f-10)은, 만약 RRCRelease 메시지(2f-05)가 캐리어 재지시 정보(redirectedCarrierInfo)를 포함하고 있다면, 캐리어 재지시 정보에 따라 셀 선택 절차를 수행하여 적합한 셀(suitable cell)을 찾아, 캠프-온 할 셀(2f-15)을 찾으면, 셀의 시스템 정보(2f-20)를 읽어들일 수 있다. 시스템 정보는 T319 타이머 정보 등을 포함하고 있다. 만약 단말(2f-10)이 적합한 셀을 찾지 못할 경우, 지시된 무선 접속망(RAT)에서 적합한 셀을 찾아 캠프-온 할 셀(2f-15)을 찾을 수 있으며, 캠프-온 할 셀을 찾을 경우, 셀의 시스템 정보(2f-20)를 읽어들일 수 있다. 만약 RRCRelease 메시지(2f-05)가 캐리어 재지시 정보를 포함하고 있지 않다면, 단말(2f-10)은 NR 캐리어에서 적합한 셀을 찾아 캠프-온 할 셀을 찾아야 하며, 캠프-온 할 셀을 찾을 경우 셀의 시스템 정보(2f-20)을 읽어들일 수 있다.
상술한 방법들에 따라 단말이 적합한 셀을 찾지 못해 캠프-온 할 셀을 찾지 못할 경우, 단말에게 저장된 정보(stored information)를 기반으로 셀 선택 절차를 수행하여 적합한 셀을 찾아 캠프-온 할 셀(2f-15)을 찾고, 캠프-온 할 셀을 찾을 경우 셀의 시스템 정보(2f-20)를 읽어들일 수 있다. 본 개시에서는 적합한 셀은 하기의 조건들을 만족할 경우라고 정의될 수 있다.
suitable cell:
A cell is considered as suitable if the following conditions are fulfilled:
- The cell is part of either:
- the selected PLMN, or:
- a PLMN of the Equivalent PLMN list.
- The cell selection criteria are fulfilled;
- A cell is served by the selected/registered PLMN and not barred.
According to the latest information provided by NAS:
- The cell is not barred;
- The cell is part of at least one TA that is not part of the list of "Forbidden Tracking Areas", which belongs to a PLMN that fulfils the first bullet above.
또한 본 개시에서는 RRC 비활성화 모드로 천이한 단말(2f-10)이 적합한 셀(suitable cell)에 캠프-온 할 경우 단말은 일반적으로 캠프-온 상태(Camped normally state)에 있게 될 수 있다. 일반적으로 캠프-온 상태에 있는 단말은 통상 일반적인 서비스를 네트워크로부터 제공 받을 수 있으며, 하기와 같은 동작을 수행할 수 있다.
- select and monitor the indicated Paging Channels of the cell according to information sent in system information;
- monitor relevant System Information;
- perform necessary measurements for the cell reselection evaluation procedure;
- execute the cell reselection evaluation process on the following occasions/triggers:
1) UE internal triggers, so as to meet performance;
2) When information on the BCCH used for the cell reselection evaluation procedure has been modified.
본 개시에서는 RRC 비활성화 모드로 천이한 단말(2f-10)이 상술한 절차에 따라 적합한 셀(suitable cell)을 찾지 못할 경우, 아래와 같이 3가지 상태에 있을 수 있다.
1. RRC 비활성화 모드 단말이 캠프-온 상태에서 일시적으로 서비스를 받지 못하는 상태(When an inactive UE is temporarily in out of coverage from Camped normally state)
2. RRC 비활성화 모드 단말이 용인되는 셀(acceptable cell)에 캠프-온 하여 모든 셀에 캠프-온 상태(Camped on any cell state)
3. RRC 비활성화 모드 단말이 용인되는 셀을 찾지 못해 캠프-온 할 셀을 찾지 못하여 모든 PLMN(Public Land Mobile Network)에서 용인되는 셀을 찾고 있는 모든 셀 선택 상태(any cell selection state)
이때, RRC 비활성화 모드로 천이한 단말(2f-10)은 RRC 유휴 모드로 천이하지 않고 RRC 비활성화 모드를 유지하는 것을 특징으로 할 수 있다.
RRC 비활성화 모드로 천이한 단말(2f-10)이 상술한 절차와 조건에 따라 적합한 셀을 찾지 못할 경우, 만약 RRCRelease 메시지(2f-05)가 캐리어 재지시 정보(redirectedCarrierInfo)를 포함하고 있다면, 캐리어 재 지시 정보에 따라 셀 선택 절차를 수행하여 용인되는 셀(acceptable cell)을 찾아 캠프-온 할 셀(2f-15)을 찾으면, 셀의 시스템 정보(2f-20)를 읽어들일 수 있다. 시스템 정보는 T319 타이머 정보 등을 포함하고 있다. 만약 단말(2f-10)이 용인되는 셀을 찾지 못할 경우, 지시된 무선 접속망(RAT)에서 용인되는 셀을 찾아 캠프-온 할 셀(2f-15)을 찾을 수 있으며 캠프-온 할 셀을 찾을 경우 셀의 시스템 정보(2f-20)를 읽어들일 수 있다. 만약 RRCRelease 메시지(2f-05)가 캐리어 재지시 정보를 포함하고 있지 않다면 단말(2f-10)은 NR 캐리어에서 용인되는 셀을 찾아 캠프-온 할 셀을 찾아야 하며, 캠프-온 할 셀을 찾을 경우 셀의 시스템 정보(2f-20)을 읽어들일 수 있다. 상술한 방법들에 따라 단말이 용인되는 셀을 찾지 못해 캠프-온 할 셀을 찾지 못할 경우, 단말(2f-10)은 모든 셀 선택 상태(any cell selection state)에서 모든 PLMN(Public Land Mobile Network)에서 용인되는 셀을 찾으며, 캠프-온 할 셀을 찾을 경우 셀의 시스템 정보(2f-20)를 읽어들일 수 있다. 본 개시에서의 용인되는 셀은 하기의 조건들을 만족할 경우에 용인되는 셀로 정의될 수 있다.
acceptable cell:
An "acceptable cell" is a cell on which the UE may camp to obtain limited service (originate emergency calls and receive ETWS and CMAS notifications). Such a cell shall fulfil the following requirements, which is the minimum set of requirements to initiate an emergency call and to receive ETWS and CMAS notification in a NR network:
- The cell is not barred;
- The cell selection criteria are fulfilled.
또한 본 개시에서는 RRC 비활성화 모드로 천이한 단말(2f-10)이 용인되는 셀(acceptable cell)에 캠프-온 할 경우 단말은 모든 셀에 캠프-온 상태(Camped on any cell state)에 있게 될 수 있다. 모든 셀에 캠프-온 상태에 있는 단말은 응급 통화, 재난 정보 수신 등 제한적인 서비스만을 네트워크로부터 제공 받을 수 있으며, 하기와 같은 동작을 수행할 수 있다.
- select and monitor the indicated paging channels of the cell;
- monitor relevant System Information;
- perform necessary measurements for the cell reselection evaluation procedure;
- execute the cell reselection evaluation process on the following occasions/triggers:
1) UE internal triggers, so as to meet performance;
2) When information on the BCCH used for the cell reselection evaluation procedure has been modified.
- regularly attempt to find a suitable cell trying all frequencies of all RATs that are supported by the UE. If a suitable cell is found, UE shall move to camped normally state.
RRC 비활성화 모드 단말은 이동을 하다가 T380 타이머가 만료되거나 설정된 랜 지시 영역 정보를 벗어날 경우, 랜 지시 영역을 업데이트(RNAU, Ran-Notification Area Update) 해야 할 필요가 생기면(2f-25) RRC 연결 재개 절차를 수행할 수 있다. 2f-15 단계에서 적합한 셀(suitable cell)에 캠프-온 하였을 경우, RRC 비활성화 모드 단말은 랜덤액세스 절차를 수행하고, RRCResumeRequest 메시지를 기지국으로 전송 시 타이머 T319를 구동할 수 있다. 구동한 타이머 T319가 만료될 때 까지 RRCResumeRequest 메시지에 대한 응답으로 RRCResume 메시지를 수신하지 못하면, RRC 비활성화 모드 단말은 RRC 유휴 모드로 천이할 수 있다.
상기 RRCResumeRequest 메시지의 전송과 관련된 제안하는 단말 동작은 다음과 같다(2f-30).
1. 단말은 시스템 정보를 확인하고, 시스템 정보에서 완전한 단말 연결 재개 식별자(I-RNTI 또는 Full resume ID)를 전송할 것을 지시하면 저장된 완전한 단말 연결 재개 식별자(I-RNTI)를 메시지에 포함하여 전송할 준비를 할 수 있다. 만약 시스템 정보에서 분할된 단말 연결 재개 식별자(truncated I-RNTI 또는 truncated resume ID)를 전송할 것을 지시하면 저장된 완전한 단말 연결 재개 식별자(I-RNTI)를 소정의 방법으로 분할된 단말 연결 재개 식별자(truncated resume ID)로 구성하고 메시지에 포함하여 전송할 준비를 할 수 있다.
2. 단말은 RRC 연결 설정 정보와 보안 컨텍스트 정보를 저장해두었던 단말 컨텍스트로부터 복구할 수 있다.
3. 그리고 단말은 새로운 KgNB 보안키를 현재 KgNB 보안키와 NH(NextHop) 값과 저장하였던 NCC 값을 기반으로 갱신할 수 있다.
4. 그리고 단말은 새롭게 갱신된 KgNB 보안키를 사용하여 무결섬 보호 및 검증 절차와 암호화 및 복호화 절차에서 사용할 새로운 보안키(K_RRCenc, K_RRC_int, K_UPint, K_UPenc)들을 유도할 수 있다.
5. 그리고 단말은 MAC-I를 계산하여 메시지에 포함하여 전송할 준비를 할 수 있다.
6. 그리고 단말은 SRB1을 재개(resume)할 수 있다(전송을 수행할 RRCResumeRequset 메시지에 대한 응답으로 RRCResume 메시지를 SRB1으로 수신할 것이기 때문에 미리 재개시켜 놓아야 한다).
7. RRCResumeRequset 메시지를 구성하여 하위 계층 장치로 전달할 수 있다.
8. SRB0를 제외한 모든 베어러들에 대해서 갱신된 보안키들과 이전에 설정된 알고리즘을 적용하여 무결성 보호 및 검증 절차를 재개하고 이후로 송신 및 수신되는 데이터들에 대해 무결성 검증 및 보호를 적용할 수 있다. (이후에 SRB1 또는 DRB들로부터 송수신되는 데이터들에 대한 신뢰성 및 보안성을 높이기 위해서)
9. SRB0를 제외한 모든 베어러들에 대해서 갱신된 보안키들과 이전에 설정된 알고리즘을 적용하여 암호화 및 복호화 절차를 재개하고 이후로 송신 및 수신되는 데이터들에 대해 암호화 및 복호화를 적용할 수 있다. (이후에 SRB1 또는 DRB들로부터 송수신되는 데이터들에 대한 신뢰성 및 보안성을 높이기 위해서)
상술한 내용에서, 단말이 연결을 설정할 필요가 발생하여 랜덤액세스 절차를 수행하고, RRCResumeRequest 메시지를 기지국으로 전송한 후에 그에 대한 응답으로 RRCResume 메시지를 수신하였을 때 제안하는 단말 동작은 다음과 같다(2f-35).
1. 단말은 RRCResumeRequest 메시지를 기지국으로 전송 시 구동한 타이머 T319를 멈춘다.
2. 단말은 메시지를 수신하면 PDCP 상태를 복원하고, COUNT 값을 리셋하고, SRB2와 모든 DRB들의 PDCP 계층 장치들을 재수립할 수 있다.
3. 만약 메시지에서 마스터 셀그룹(masterCellgroup) 설정 정보를 포함하고 있다면
A. 메시지에 포함된 마스터 셀그룹 설정 정보를 수행하고 적용할 수 있다. 마스터 셀그룹 정보는 마스터 셀그룹에 속하는 RLC 계층 장치들에 대한 설정 정보, 로지컬 채널 식별자, 베어러 식별자 등을 포함할 수 있다.
4. 만약 메시지에서 베어러 설정 정보(radioBearerConfig)를 포함하고 있다면
A. 메시지에 포함된 베어러 설정 정보(radioBearerConfig)를 수행하고 적용할 수 있다. 베어러 설정 정보(radioBearerConfig)는 각 베어러들에 대한 PDCP 계층 장치들에 대한 설정 정보, SDAP 계층 장치들에 대한 설정 정보, 로지컬 채널 식별자, 베어러 식별자 등을 포함할 수 있다.
5. 단말은 SRB2와 모든 DRB들을 재개(resume)할 수 있다.
6. 만약 메시지에서 주파수 측정 설정 정보(measConfig)를 포함하고 있다면
A. 메시지에 포함된 주파수 측정 설정 정보를 수행하고 적용할 수 있다. 즉, 설정에 따라서 주파수 측정을 수행할 수 있다.
7. 단말은 RRC 연결 모드로 천이할 수 있다.
8. 단말은 상위 계층 장치에게 중지되었던 RRC 연결이 재개되었다고 지시할 수 있다.
9. 그리고 하위 계층으로 전송을 위해서 RRCResumeComplete 메시지를 구성하고 전달할 수 있다(2f-40).
그리고 단말은 기지국과 데이터를 송수신할 수 있다(2f-45).
도 2g는 본 개시의 일 실시 예에 따라, 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 구동한 T380 타이머가 만료 되었을 때 적합한 셀에 캠프-온 하였는지 여부에 따른 단말 동작의 순서도를 도시한 것이다. RRC 연결 모드(RRC connected mode)에 있는 단말(2g-01)이 소정의 이유로 기지국으로부터 suspend 설정 정보를 포함하는 RRCRelease 메시지를 수신하는 경우(2g-05), 단말은 RRC 비활성화 모드로 천이할 수 있다(2g-10).
2g-10 단계에서 suspend 설정 정보에 T380 타이머 값이 포함되어 있을 경우, 단말은 T380 타이머를 구동할 수 있다. RRC 비활성화 모드 단말은 구동한 T380 타이머가 만료될 때까지 적합한 셀에 캠프-온 하지 않은 경우에도 RRC 유휴모드로 천이하지 않고, RRC 비활성화 모드를 유지한다. 2g-15 단계에서 RRC 비활성화 모드 단말은 2g-10 단계에서 구동한 타이머가 만료 될 경우, 현재 적합한 셀(suitable cell)에 캠프-온 하고 있는 지에 대한 여부를 판단할 수 있다(2g-20). 2g-20 단계에서 RRC 비활성화 모드 단말이 적합한 셀(suitable cell)에 캠프-온 하여 일반적으로 캠프-온 상태(Camped normally state)에 있을 경우, 2g-25 단계에서 랜 지시 영역을 업데이트(RNAU, Ran-Notification Area Update) 하기 위해 RRC 연결 재개 절차를 수행할 수 있다. 2g-25 단계에서 RRC 비활성화 모드 단말은 RRCResumeRequest 메시지를 기지국으로 전송 시 T319 타이머를 구동할 수 있다. RRC 비활성화 모드 단말은 구동한 T319 타이머가 만료될 때까지 기지국으로부터 RRCResume 메시지를 수신하지 못하면, RRC 유휴 모드로 천이할 수 있다.
2g-20 단계에서 RRC 비활성화 모드 단말이 적합한 셀에 캠프-온 하지 않고 있다고 확인하는 경우는 아래와 같이 3가지 경우로 확인할 수 있다.
1. RRC 비활성화 모드 단말이 캠프-온 상태에서 일시적으로 서비스를 받지 못하는 상태에 있는 경우(When an inactive UE is temporarily in out of coverage from Camped normally state)
2. RRC 비활성화 모드 단말이 용인되는 셀(acceptable cell)에 캠프-온 하여 모든 셀에 캠프-온 상태(Camped on any cell state)에 있는 경우
3. RRC 비활성화 모드 단말이 용인되는 셀을 찾지 못해 캠프-온 할 셀을 찾지 못하거나 모든 셀 선택 상태(any cell selection state)에서 모든 PLMN(Public Land Mobile Network)에서 용인되는 셀을 찾고 있는 경우
2g-20 단계에서 RRC 비활성화 모드 단말이 적합한 셀에 캠프-온 하지 않다고 확인하는 경우, 2g-30 단계에서 RRC 유휴모드로 천이 후 NAS recovery를 트리거 할 수 있다.
도 2h는 본 개시의 일 실시 예에 따라, 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 구동한 T380 타이머가 만료 되었을 때 적합한 셀에 캠프-온 한 경우 또는 캠프-온 상태에서 일시적으로 서비스를 받지 못하는 상태에 있는 경우 또는 용인되는 셀에 캠프-온 한 경우 또는 어떤 셀에도 캠프-온 하지 않은 여부에 따른 단말 동작의 순서도를 도시한 것이다.
도 2h에서 RRC 연결 모드(RRC connected mode)에 있는 단말(2h-01)이 소정의 이유로 기지국으로부터 suspend 설정 정보를 포함하는 RRCRelease 메시지를 수신하는 경우(2h-05), 단말은 RRC 비활성화 모드로 천이할 수 있다(2h-10). 2h-10 단계에서 suspend 설정 정보에 T380 타이머 값이 포함되어 있을 경우, 단말은 T380 타이머를 구동할 수 있다. RRC 비활성화 모드 단말은 구동한 T380 타이머가 만료될 때까지 적합한 셀에 캠프-온 하지 않은 경우에도 RRC 유휴모드로 천이하지 않고, RRC 비활성화 모드를 유지한다.
2h-15 단계에서 RRC 비활성화 모드 단말은 2h-10 단계에서 구동한 타이머가 만료 될 경우, 적합한 셀(suitable cell)에 캠프-온 하고 있는 지 또는 캠프-온 상태에서 일시적으로 서비스를 받지 못하는 상태에 있는 경우 또는 용인되는 셀(acceptable cell)에 캠프-온 하고 있는 지 또는 어떤 셀에도 캠프-온 하지 않은 상태인 지에 대한 여부를 판단할 수 있다(2h-20). 2h-20 단계에서 RRC 비활성화 모드 단말이 상기 상태 여부와 상관 없이 랜 지시 영역을 업데이트 (RNAU, Ran-Notification Area Update) 하기 위해 RRC 연결 재개 절차를 수행할 수 있다. 2h-25 단계에서 RRC 비활성화 모드 단말은 RRCResumeRequest 메시지를 기지국으로 전송 시 T319 타이머를 구동할 수 있다. 2h-35 단계에서 RRC 비활성화 모드 단말은 RRCResumeRequest 메시지를 기지국으로 전송 시 T319 타이머를 구동할 수 있다. RRC 비활성화 모드 단말은 구동한 T319 타이머가 만료될 때까지 기지국으로부터 RRCResume 메시지를 수신하지 못하면, RRC 유휴 모드로 천이할 수 있다.
도 2i는 본 개시의 일 실시 예에 따라, 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 구동한 T380 타이머가 만료 되었을 때 적합한 셀에 캠프-온 한 여부에 따라 새로운 타이머를 구동하는 단말 동작의 순서도를 도시한 것이다.
본 개시의 일 실시 예에 따르면, RRC 연결 모드(RRC connected mode)에 있는 단말(2i-01)이 소정의 이유로 기지국으로부터 suspend 설정 정보를 포함하는 RRCRelease 메시지를 수신하는 경우(2i-05), 단말은 RRC 비활성화 모드로 천이할 수 있다(2i-10). 2i-10 단계에서 suspend 설정 정보에 T380 타이머 값이 포함되어 있을 경우, 단말은 T380 타이머를 구동할 수 있다.
2i-15 단계에서 RRC 비활성화 모드 단말은 2i-10 단계에서 구동한 타이머가 만료 될 경우, 현재 적합한 셀(suitable cell)에 캠프-온 하고 있는 지에 대한 여부를 판단할 수 있다(2i-20).
2i-20 단계에서 RRC 비활성화 모드 단말이 적합한 셀(suitable cell)에 캠프-온 하여 일반적으로 캠프-온 상태(Camped normally state)에 있을 경우, 2i-25 단계에서 랜 지시 영역을 업데이트(RNAU, Ran-Notification Area Update) 하기 위해 RRC 연결 재개 절차를 수행할 수 있다. 2i-25 단계에서 RRC 비활성화 모드 단말은 RRCResumeRequest 메시지를 기지국으로 전송 시 T319 타이머를 구동할 수 있다.
2i-20 단계에서 RRC 비활성화 모드 단말이 적합한 셀에 캠프-온 하지 않고 있다고 확인하는 경우는 아래와 같이 3가지 경우로 확인할 수 있다.
1. RRC 비활성화 모드 단말이 캠프-온 상태에서 일시적으로 서비스를 받지 못하는 상태에 있는 경우(When an inactive UE is temporarily in out of coverage from Camped normally state)
2. RRC 비활성화 모드 단말이 용인되는 셀(acceptable cell)에 캠프-온 하여 모든 셀에 캠프-온 상태(Camped on any cell state)에 있는 경우
3. RRC 비활성화 모드 단말이 용인되는 셀을 찾지 못해 캠프-온 할 셀을 찾지 못하거나 모든 셀 선택 상태(any cell selection state)에서 모든 PLMN(Public Land Mobile Network)에서 용인되는 셀을 찾고 있는 경우
2i-20 단계에서 RRC 비활성화 모드 단말이 적합한 셀에 캠프-온 하지 않다고 확인하는 경우, 2i-30 단계에서 RRC 비활성화 모드를 유지한 채 새로운 wait 타이머를 구동할 수 있다. 단말은 새로운 wait 타이머에 대한 정보를 RRC Release 메시지로부터 제공받을 수도 있으며 또는 시스템 정보로부터 제공받을 수 있다.
2i-35 단계에서 새로운 wait 타이머가 만료되기 전에 셀 선택 절차 또는 셀리설렉션 절차를 수행하여 적합한 셀(suitable cell)을 찾아 캠프-온 할 셀을 찾으면 2i-40 단계에서 랜 지시 영역을 업데이트(RNAU, Ran-Notification Area Update) 하기 위해 RRC 연결 재개 절차를 수행할 수 있다.
2i-40 단계에서 RRC 비활성화 모드 단말은 RRCResumeRequest 메시지를 기지국으로 전송 시 T319 타이머를 구동할 수 있다. 단말은 구동한 T319 타이머가 만료될 때까지 기지국으로부터 RRCResume 메시지를 수신하지 못하면, RRC 유휴모드로 천이할 수 있다.
2i-45 단계에서 적합한 셀(suitable cell)에 캠프-온 하지 못하고 새로운 wait 타이머가 만료될 경우, 2i-50 단계에서 단말은 RRC 비활성화 모드에서 RRC 유휴 모드로 천이한 후 NAS recovery를 트리거할 수 있다.
도 2j는 본 개시의 일 실시 예에 따라 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 구동한 T380 타이머가 만료 되었을 때 적합한 셀에 캠프-온 한 경우 또는 캠프-온 상태에서 일시적으로 서비스를 받지 못하는 상태에 있는 경우 또는 용인되는 셀에 캠프-온 한 경우 또는 어떤 셀에도 캠프-온 하지 않은 여부에 따라 새로운 타이머를 구동하는 단말 동작의 순서도를 도시한 것이다.
도 2j에서 RRC 연결 모드(RRC connected mode)에 있는 단말(2j-01)이 소정의 이유로 기지국으로부터 suspend 설정 정보를 포함하는 RRCRelease 메시지를 수신하는 경우(2j-05), 단말은 RRC 비활성화 모드로 천이할 수 있다(2j-10).
2j-10 단계에서 suspend 설정 정보에 T380 타이머 값이 포함되어 있을 경우, 단말은 T380 타이머를 구동할 수 있다.
2j-15 단계에서 RRC 비활성화 모드 단말은 2j-10 단계에서 구동한 타이머가 만료 될 경우, 적합한 셀(suitable cell)에 캠프-온 하고 있는 지 또는 캠프-온 상태에서 일시적으로 서비스를 받지 못하는 상태에 있는 경우 또는 용인되는 셀(acceptable cell)에 캠프-온 하고 있는 지 또는 어떤 셀에도 캠프-온 하지 않은 상태인 지에 대한 여부를 판단할 수 있다(2j-20).
2j-20 단계에서 RRC 비활성화 모드 단말이 적합한 셀(suitable cell)에 캠프-온 하여 일반적으로 캠프-온 상태(Camped normally state)에 있을 경우, 2j-25 단계에서 랜 지시 영역을 업데이트(RNAU, Ran-Notification Area Update) 하기 위해 RRC 연결 재개 절차를 수행할 수 있다.
2j-25 단계에서 RRC 비활성화 모드 단말은 RRCResumeRequest 메시지를 기지국으로 전송 시 T319 타이머를 구동할 수 있다.
2j-20 단계에서 RRC 비활성화 모드 단말이 캠프-온 상태에서 셀리설렉션 절차를 수행하는 도중 적합한 셀(suitable cell)을 찾지 못해 일시적으로 서비스를 받지 못하는 경우 또는 용인되는 셀(acceptable cell)에 캠프-온 한 경우, 2j-30 단계에서 RRC 비활성화 모드를 유지한 채 새로운 타이머를 구동할 수 있다. 단말은 새로운 wait 타이머에 대한 정보를 RRC Release 메시지로부터 제공받을 수도 있으며 또는 시스템 정보로부터 제공받을 수 있다.
2j-35 단계에서 새로운 wait 타이머가 만료되기 전에 셀 선택 절차 또는 셀리설렉션 절차를 수행하여 적합한 셀(suitable cell)을 찾아 캠프-온 할 셀을 찾으면 2j-40 단계에서 랜 지시 영역을 업데이트(RNAU, Ran-Notification Area Update) 하기 위해 RRC 연결 재개 절차를 수행할 수 있다.
2j-40 단계에서 RRC 비활성화 모드 단말은 RRCResumeRequest 메시지를 기지국으로 전송 시 T319 타이머를 구동할 수 있다.
2j-45 단계에서 적합한 셀(suitable cell)에 캠프-온 하지 못하고 새로운 wait 타이머가 만료될 경우, 2j-50 단계에서 단말은 RRC 비활성화 모드에서 RRC 유휴 모드로 천이한 후 NAS recovery를 트리거할 수 있다.
2j-20 단계에서 RRC 비활성화 모드 단말이 용인되는 셀을 찾지 못해 캠프-온 할 셀을 찾지 못해 모든 셀 선택상태(any cell selection state)에서 모든 PLMN(Public Land Mobile Network)에서 용인되는 셀을 찾고 있는 경우에는, 2j-55 단계에서 RRC 비활성화 모드에서 RRC 유휴 모드로 천이 한 후 NAS recovery를 트리거 할 수 있다.
도 2k는 본 개시의 일 실시 예에 따라 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 랜 지시 영역 업데이트(RNAU, Ran-Notification Area Update)가 조기에 트리거 되는 것을 방지하기 위해, 적합한 셀에 캠프-온 한 여부에 따라, 단말이 설정된 랜 지시 영역에 있는 지에 대한 평가 여부를 수행하는 단말 동작의 순서도를 도시한 것이다.
도 2k를 참조하여 설명되는 본 개시의 일 실시 예는 본 개시의 모든 실시 예들에 적용 가능하다.
본 개시의 일 실시 예에 따르면, RRC 비활성화 모드(RRC inactive mode)에 있는 단말(2k-01)은 새로운 서빙 셀에 캠프-온 하고 해당 서빙 셀에서 방송되고 있는 시스템 정보를 읽어들인다(2k-05).
2k-05 단계에서 적합한 셀(suitable cell)에 캠프-온을 한 경우, 2k-10 단계에서 단말은 새로운 서빙 셀이 설정된 랜 지시 영역에 있는 지에 대한 평가를 할 수 있다. 단말에게 설정된 랜 지시 영역은 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 천이 시 suspendconfig 설정 정보를 포함하고 있는 RRCRelease 메시지에 포함될 수 있다.
2k-05 단계에서 적합한 셀에 캠프-온 한 경우, 2k-10 단계에서 RRC 비활성화 모드에 있는 단말은 현재 서빙 셀이 설정된 랜 지시 영역으로부터 벗어났는 지에 대한 여부를 평가할 수 있다. 설정된 랜 지시 영역으로부터 벗어난 경우, 2k-15 단계에서 랜 지시 영역 업데이트를 하기 위해 RRC 연결 재개 절차를 수행할 수 있다.
2k-05 단계에서 용인되는 셀에 캠프-온 한 경우, 2k-20 단계에서 단말은 현재 서빙 셀이 설정된 랜 지시 영역에 있는 지에 대한 평가를 하지 않고 RRC 비활성화 모드를 유지한 채 적합한 셀을 찾기 위해 셀 서치를 계속 수행할 수 있다. 또한 2k-05 단계에서 용인되는 셀에 캠프 온 한 경우, 2k-20 단계에서 단말은 현재 서빙 셀이 설정된 랜 지시 영역에서 벗어나더라도 RRC 비활성화 모드를 유지할 수 있다. 만약 2k-25 단계에서 RRC 비활성화 모드 단말이 응급 전화를 개시하고자 하면 (예를 들면 UE NAS가 시그널링을 보내고자 할 때), 2k-30 단계에서 용인되는 셀에 캠프-온 한 단말은 RRC 연결 재개 절차를 수행할 수 있다.
도 2l는 본 개시의 일 실시 예에 따라 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 랜 지시 영역 업데이트(RNAU, Ran-Notification Area Update)가 조기에 트리거 되는 것을 방지하기 위해, 적합한 셀에 캠프-온 한 여부에 따라, 단말이 설정된 랜 지시 영역에 있는 지에 대한 평가 여부를 수행하거나 연결 재개 절차 또는 NAS recovery 절차를 수행하는 단말 동작의 순서도를 도시한 것이다.
도 2l을 참조하여 설명되는 본 개시의 일 실시 예는 본 개시의 모든 실시 예들에 적용 가능하다.
도 2l에서 RRC 비활성화 모드(RRC inactive mode)에 있는 단말(2l-01)은 새로운 서빙 셀에 캠프-온 하고 해당 서빙 셀에서 방송되고 있는 시스템 정보를 읽어들인다(2l-05). 2l-05 단계에서 적합한 셀(suitable cell)에 캠프-온을 한 경우, 2l-10 단계에서 단말은 새로운 서빙 셀이 설정된 랜 지시 영역에 있는 지에 대한 평가를 할 수 있다.
단말에게 설정된 랜 지시 영역은 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 천이 시 suspendconfig 설정 정보를 포함하고 있는 RRCRelease 메시지에 포함되어 있다.
2l-05 단계에서 적합한 셀에 캠프-온 한 경우, 2l-10 단계에서 RRC 비활성화 모드에 있는 단말이 현재 서빙 셀이 설정된 랜 지시 영역으로 부터 벗어났는 지에 대한 여부를 평가할 수 있다. 설정된 랜 지시 영역으로부터 벗어난 경우, 2l-15 단계에서 랜 지시 영역 업데이트를 하기 위해 RRC 연결 재개 절차를 수행할 수 있다.
2l-05 단계에서 용인되는 셀(acceptable cell)에 캠프-온 한 경우, 2l-20 단계에서 단말은 현재 서빙 셀이 설정된 랜 지시 영역에 있는 지에 대한 평가를 하지 않고 RRC 비활성화 모드를 유지한 채 적합한 셀을 찾기 위해 셀 서치를 계속 수행할 수 있다. 또한 2l-05 단계에서 용인되는 셀에 캠프-온 한 경우, 2l-20 단계에서 단말은 현재 서빙 셀이 설정된 랜 지시 영역에서 벗어나더라도 RRC 비활성화 모드를 유지할 수 있다. 만약 2l-25 단계에서 용인되는 셀에 캠프-온 한 RRC 비활성화 모드 단말이 응급 전화를 개시하고자 하면 (예를 들면 UE NAS가 시그널링을 보내고자 할 때), 2l-30 단계에서 단말은 RRC 비활성화 모드에서 RRC 유휴 모드로 천이한 후 NAS recovery를 트리거 하여 응급 전화를 개시할 수 있다.
도 2m는 본 개시의 일 실시 예에 따라, 단말이 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환한 후 랜 지시 영역 업데이트(RNAU, Ran-Notification Area Update)가 조기에 트리거 되는 것을 방지하기 위해, 적합한 셀에 캠프-온 한 여부에 따라, 단말이 설정된 랜 지시 영역에 있는 지에 대한 평가 여부를 수행하거나 캠프-온 한 용인되는 셀의 종류에 따라 연결 재개 절차 또는 NAS recovery 절차를 수행하는 단말 동작의 순서도를 도시한 것이다.
도 2m을 참조하여 설명되는 본 개시의 일 실시 예는 본 개시의 모든 실시 예들에 적용 가능하다.
도 2m에서 RRC 비활성화 모드(RRC inactive mode)에 있는 단말(2m-01)은 새로운 서빙 셀에 캠프-온 하고 해당 서빙 셀에서 방송되고 있는 시스템 정보를 읽어들인다(2m-05).
2m-05 단계에서 적합한 셀(suitable cell)에 캠프-온을 한 경우, 2m-10 단계에서 단말은 새로운 서빙 셀이 설정된 랜 지시 영역에 있는 지에 대한 평가를 할 수 있다. 단말에게 설정된 랜 지시 영역은 RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 천이 시 suspendconfig 설정 정보를 포함하고 있는 RRCRelease 메시지에 포함되어 있다.
2m-15 단계에서 RRC 비활성화 모드에 있는 단말이 현재 서빙 셀이 설정된 랜 지시 영역에서 벗어날 경우 랜 지시 영역 업데이트를 하기 위해 RRC 연결 재개 절차를 수행할 수 있다.
2m-05 단계에서 용인되는 셀(acceptable cell)에 캠프-온 한 경우, 2m-20 단계에서 단말은 새로운 서빙 셀이 설정된 랜 지시 영역에 있는 지에 대한 평가를 하지 않고 RRC 비활성화 모드를 유지한 채 적합한 셀을 찾기 위해 셀 서치를 계속 수행할 수 있다. 또한 2m-05 단계에서 용인되는 셀에 캠프-온 한 경우, 2m-20 단계에서 단말은 현재 서빙 셀이 설정된 랜 지시 영역에서 벗어나더라도 RRC 비활성화 모드를 유지할 수 있다. 만약 2m-25 단계에서 용인되는 셀에 캠프-온 한 RRC 비활성화 모드 단말이 응급 전화를 개시하고자 하면, 만약 RRC 비활성화 모드 단말이 캠프-온 한 용인되는 셀이 금지되어 있는 트래킹 영역 지시자 리스트 (TAI list, Tracking Area Indicator list)의 TAI에 속한 셀인 경우가 아닌 경우에는 2m-30 단계에서 단말은 RRC 비활성화 모드에서 RRC 유휴 모드로 천이한 후 NAS recovery를 트리거 하여 응급 전화를 개시할 수 있다. 만약 2m-25 단계에서 용인되는 셀에 캠프-온 한 RRC 비활성화 모드 단말이 응급 전화를 개시하고자 하면, 만약 RRC 비활성화 모드 단말이 캠프-온 한 용인되는 셀이 금지되어 있는 트래킹 영역 지시자 리스트의 TAI에 속한 셀인 경우에는 2l-35 단계에서 단말은 RRC 비활성화 모드를 유지한 채 RRC 연결 재개 절차를 수행하여 응급 전화를 개시할 수 있다.
도 2n는 본 개시의 일 실시 예에 따라, RRC 비활성화 모드(RRC inactive mode)에 있는 단말이 용인되는 셀에 캠프-온 할 때 단말 동작의 순서도를 도시한 것이다.
도 2n을 참조하여 설명되는 본 개시의 일 실시 예는 본 개시의 모든 실시 예들에 적용 가능하다.
도 2n에서 RRC 비활성화 모드(RRC inactive mode)에 있는 단말(2n-01)은 적합한 셀을 찾지 못해 용인되는 셀에 캠프-온 할 수 있다(2n-05). 2n-05 단계에서 용인되는 셀에 캠프-온 할 경우, 제안하는 단말의 동작은 다음 중 하나가 될 수 있다.
1. 단말은 RRC 유휴 모드로 천이할 수 있다 (2n-10).
2. 단말은 RRC 비활성화 모드를 유지할 수 있다 (2n-15).
만약 RRC 비활성화 모드를 유지할 경우(2n-15), 단말은 추후 셀을 재선택할 수 있으며, RRC 연결 모드(RRC connected mode)에서 RRC 비활성화 모드(RRC inactive mode)로 전환 후 구동한 T380 타이머를 계속 구동할 수 있으며, RAN 페이징을 모니터링 하지 않고 CN 페이징을 모니터링 할 수 있다. 만약 2n-15 단계에서 RRC 비활성화 모드에 있는 단말이 equivalent PLMN 혹은 registered PLMN에 속하지 않는 용인되는 셀을 재선택할 경우, 단말은 RRC 유휴 모드로 천이할 수 있다(2n-20). 만약 2n-15 단계에서 RRC 비활성화 모드에 있는 단말이 equivalent PLMN 혹은 registered PLMN에 속한 용인되는 셀을 재선택할 경우, 단말은 RRC 비활성화 모드를 유지할 수 있다(2n-25).
도 2o는 본 개시의 일 실시 예에 따라, RRC 비활성화 모드(RRC inactive mode)에 있는 단말이 용인되는 셀에 캠프-온 할 경우 RRC 비활성화 모드를 유지하는 절차를 설명한 도면이다.
도 2o를 참조하여 설명되는 본 개시의 일 실시 예는 본 개시의 모든 실시 예들에 적용 가능하다.
도 2o에서 RRC 비활성화 모드(RRC inactive mode)에 있는 단말(2o-01)은 적합한 셀을 찾지 못해 용인되는 셀에 캠프-온 하여 해당 셀에서 시스템 정보를 읽어 들일 수 있다(2o-05). 2o-10 단계에서 RRC 비활성화 모드에 있는 단말을 유지한 채, 단말의 AS layer가 단말의 NAS layer에게 상기 셀의 시스템 정보로부터 읽어 들인 PLMN 정보와 RRC 유휴 모드로 천이하지 말고 RRC 비활성화 모드를 유지하라는 지시자를 함께 보낼 수 있다. 2o-15 단계에서 단말의 NAS layer는 RRC 유휴 모드로 천이하지 않고, 새로운 registration 절차를 수행하지 않을 수 있다. 만약 2o-20 단계에서 단말의 NAS layer가 새로운 절차를 수행하고자 할 때 혹은 단말의 AS layer에게 NAS PDU를 보내고자 할 때 혹은 AMF에게 NAS PDU를 보내고자 할 때, 2o-20 단계에서 RRC 유휴 모드로 천이할 수 있다.
도 2p은 본 개시의 일 실시 예에 따른 단말의 구조를 도시한 것이다.
본 개시의 일 실시 예에 따르면, 단말은 RF(Radio Frequency)처리부(2p-10), 기저대역(baseband)처리부(2p-20), 저장부(2p-30), 제어부(2p-40)를 포함할 수 있다.
본 개시의 일 실시 예에 따르면, RF처리부(2p-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, RF처리부(2p-10)는 기저대역처리부(2p-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환할 수 있다. 예를 들어, RF처리부(2p-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다.
도면에서는, 하나의 안테나만이 도시되었으나, 단말은 다수의 안테나들을 구비할 수 있다.
또한, RF처리부(2p-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, RF처리부(2p-10)는 빔포밍(beamforming)을 수행할 수 있다. 빔포밍을 위해, RF처리부(2p-10)는 다수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다. RF처리부(2p-10)는 제어부의 제어에 따라 다수의 안테나 또는 안테나 요소들을 적절하게 설정하여 수신 빔 스위핑을 수행하거나, 수신 빔이 송신 빔과 공조되도록 수신 빔의 방향과 빔 너비를 조정할 수 있다.
기저대역처리부(2p-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 기저대역처리부(2p-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(2p-20)은 RF처리부(2p-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 기저대역처리부(2p-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(2p-20)은 RF처리부(2p-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다.
기저대역처리부(2p-20) 및 RF처리부(2p-10)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다. 이에 따라, 기저대역처리부(2p-20) 및 RF처리부(2p-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 나아가, 기저대역처리부(2p-20) 및 RF처리부(2p-10) 중 적어도 하나는 서로 다른 다수의 무선 접속 기술들을 지원하기 위해 다수의 통신 모듈들을 포함할 수 있다. 또한, 기저대역처리부(2p-20) 및 RF처리부(2p-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 서로 다른 무선 접속 기술들은 LTE 망, NR 망 등을 포함할 수 있다. 또한, 서로 다른 주파수 대역들은 극고단파(super high frequency, SHF)(예: 2.2gHz, 2ghz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다.
저장부(2p-30)는 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 저장부(2p-30)는 제어부(2p-40)의 요청에 따라 저장된 데이터를 제공할 수 있다.
제어부(2p-40)는 단말의 전반적인 동작들을 제어할 수 있다. 예를 들어, 제어부(2p-40)는 기저대역처리부(2p-20) 및 RF처리부(2p-10)을 통해 신호를 송수신할 수 있다. 또한, 제어부(2p-40)는 저장부(2p-40)에 데이터를 기록하고, 읽는다. 이를 위해, 제어부(2p-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 제어부(2p-40)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다.
도 2q는 본 개시의 일 실시 예에 따른 기지국의 구조를 도시한 것이다.
본 개시의 일 실시 예에 따른 기지국은 하나 이상의 송수신점(Transmission Reception Point, TRP)를 포함할 수 있다.
본 개시의 일 실시 예에 따른 기지국은 RF처리부(2q-10), 기저대역처리부(2q-20), 백홀통신부(2q-30), 저장부(2q-40), 제어부(2q-50)를 포함하여 구성될 수 있다.
RF처리부(2q-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, RF처리부(2q-10)는 기저대역처리부(2q-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환할 수 있다. 예를 들어, RF처리부(2q-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 도면에서, 하나의 안테나만이 도시되었으나, 제1접속 노드는 다수의 안테나들을 구비할 수 있다. 또한, RF처리부(2q-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, RF처리부(2q-10)는 빔포밍을 수행할 수 있다. 빔포밍을 위해, RF처리부(2q-10)는 다수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다.
기저대역처리부(2q-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 기저대역처리부(2q-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(2q-20)은 RF처리부(2q-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 기저대역처리부(2q-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성할 수 있다. 또한, 데이터 수신 시, 기저대역처리부(2q-20)은 RF처리부(2q-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 기저대역처리부(2q-20) 및 RF처리부(2q-10)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다. 이에 따라, 기저대역처리부(2q-20) 및 RF처리부(2q-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.
통신부(2q-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공할 수 있다.
저장부(2q-40)는 주기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 특히, 저장부(2q-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 저장부(2q-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 저장부(2q-40)는 제어부(2q-50)의 요청에 따라 저장된 데이터를 제공할 수 있다.
제어부(2q-50)는 주기지국의 전반적인 동작들을 제어할 수 있다. 예를 들어, 제어부(2q-50)는 기저대역처리부(2q-20) 및 RF처리부(2q-10)을 통해 또는 백홀통신부(2q-30)을 통해 신호를 송수신할 수 있다. 또한, 제어부(2q-50)는 저장부(2q-40)에 데이터를 기록하고, 읽는다. 이를 위해, 제어부(2q-50)는 적어도 하나의 프로세서를 포함할 수 있다. 저장부(2q-20) 및 RF처리부(2q-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.
통신부(2q-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공할 수 있다.
저장부(2q-40)는 주기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 특히, 저장부(2q-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 저장부(2q-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 저장부(2q-40)는 제어부(2q-50)의 요청에 따라 저장된 데이터를 제공할 수 있다.
제어부(2q-50)는 주기지국의 전반적인 동작들을 제어할 수 있다. 예를 들어, 제어부(2q-50)는 기저대역처리부(2q-20) 및 RF처리부(2q-10)을 통해 또는 백홀통신부(2q-30)을 통해 신호를 송수신할 수 있다. 또한, 제어부(2q-50)는 저장부(2q-40)에 데이터를 기록하고, 읽는다. 이를 위해, 제어부(2q-50)는 적어도 하나의 프로세서를 포함할 수 있다.
본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함할 수 있다.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: Read Only Memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: Electrically Erasable Programmable Read Only Memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: Compact Disc-ROM), 디지털 다목적 디스크(DVDs: Digital Versatile Discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다.
또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(Local Area Network), WLAN(Wide LAN), 또는 SAN(Storage Area Network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.
상술한 본 개시의 구체적인 실시 예들에서, 개시에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (1)

  1. 무선 통신 시스템에서 단말의 셀 재선택 동작 방법에 있어서,
    기지국으로부터 시스템 정보를 수신하는 단계;
    상기 시스템 정보를 기초로, 주변 셀들에 대한 신호 품질 또는 수신 레벨을 측정하는 단계; 및
    상기 측정된 신호 품질 또는 수신 레벨을 기초로 셀 재선택 동작을 수행하는 단계를 포함하는
    방법.
KR1020180128489A 2018-08-03 2018-10-25 무선통신 시스템에서 데이터를 송수신하는 방법 및 장치 KR102509073B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980061327.0A CN112740753B (zh) 2018-08-03 2019-07-29 用于在无线通信系统中收发数据的方法和装置
EP19843372.4A EP3818750B1 (en) 2018-08-03 2019-07-29 Method and apparatus for transceiving data in wireless communication system
PCT/KR2019/009402 WO2020027520A1 (en) 2018-08-03 2019-07-29 Method and apparatus for transceiving data in wireless communication system
US16/530,458 US11146998B2 (en) 2018-08-03 2019-08-02 Method and apparatus for transceiving data in wireless communication system
US17/496,366 US20220030477A1 (en) 2018-08-03 2021-10-07 Method and apparatus for transceiving data in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180090911 2018-08-03
KR20180090911 2018-08-03

Publications (2)

Publication Number Publication Date
KR20200015339A true KR20200015339A (ko) 2020-02-12
KR102509073B1 KR102509073B1 (ko) 2023-03-13

Family

ID=69569442

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180128489A KR102509073B1 (ko) 2018-08-03 2018-10-25 무선통신 시스템에서 데이터를 송수신하는 방법 및 장치

Country Status (3)

Country Link
EP (1) EP3818750B1 (ko)
KR (1) KR102509073B1 (ko)
CN (1) CN112740753B (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060099462A (ko) * 2005-03-10 2006-09-19 삼성전자주식회사 이동통신 시스템에서 핑―퐁을 방지하기 위한 셀 재선택방법 및 장치
KR20090130293A (ko) * 2007-03-13 2009-12-22 인터디지탈 테크날러지 코포레이션 무선 통신에 대한 셀 재선택 프로세스
KR20130114457A (ko) * 2012-04-09 2013-10-18 주식회사 케이티 기지국, 그의 셀 재선택 제어 방법 및 단말의 셀 재선택 방법
KR20140057686A (ko) * 2007-06-18 2014-05-13 인터디지탈 테크날러지 코포레이션 무선 액세스 기술간 셀 재선택을 위한 방법
KR20140126390A (ko) * 2012-02-24 2014-10-30 퀄컴 인코포레이티드 모바일 디바이스들에 의한 펨토 셀들 간의 빈번한 핸드오버를 조절하기 위한 방법 및 시스템
KR20160021702A (ko) * 2014-08-18 2016-02-26 삼성전자주식회사 셀룰러 이동통신 시스템에서 셀 재선택을 위한 이동 단말기 및 그 동작 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140017883A (ko) * 2012-08-01 2014-02-12 삼성전자주식회사 이동 통신 시스템에서 단말의 lte 주파수 간 또는 시스템 간 셀 재선택 방법 및 장치
US20160316411A1 (en) * 2013-12-04 2016-10-27 Lg Electronics Inc. Cell selection method and measurement method for cell reselection
WO2016163545A1 (ja) * 2015-04-10 2016-10-13 京セラ株式会社 ユーザ端末及び無線基地局

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060099462A (ko) * 2005-03-10 2006-09-19 삼성전자주식회사 이동통신 시스템에서 핑―퐁을 방지하기 위한 셀 재선택방법 및 장치
KR20090130293A (ko) * 2007-03-13 2009-12-22 인터디지탈 테크날러지 코포레이션 무선 통신에 대한 셀 재선택 프로세스
KR20140057686A (ko) * 2007-06-18 2014-05-13 인터디지탈 테크날러지 코포레이션 무선 액세스 기술간 셀 재선택을 위한 방법
KR20140126390A (ko) * 2012-02-24 2014-10-30 퀄컴 인코포레이티드 모바일 디바이스들에 의한 펨토 셀들 간의 빈번한 핸드오버를 조절하기 위한 방법 및 시스템
KR20130114457A (ko) * 2012-04-09 2013-10-18 주식회사 케이티 기지국, 그의 셀 재선택 제어 방법 및 단말의 셀 재선택 방법
KR20160021702A (ko) * 2014-08-18 2016-02-26 삼성전자주식회사 셀룰러 이동통신 시스템에서 셀 재선택을 위한 이동 단말기 및 그 동작 방법

Also Published As

Publication number Publication date
CN112740753A (zh) 2021-04-30
KR102509073B1 (ko) 2023-03-13
EP3818750B1 (en) 2022-08-31
CN112740753B (zh) 2024-03-08
EP3818750A1 (en) 2021-05-12
EP3818750A4 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
US20240172070A1 (en) Method and device for effectively performing standby mode operation in next generation mobile communication system
KR102568700B1 (ko) 차세대 이동 통신 시스템에서 비활성화 모드에 있는 단말의 셀 선택 및 재선택 수행 방법 및 장치
US11889467B2 (en) Method and apparatus for transmitting or receiving signal in mobile communication system
US11146998B2 (en) Method and apparatus for transceiving data in wireless communication system
KR20220038091A (ko) 무선 통신 시스템에서 rrm 측정을 수행하는 방법 및 단말
KR102503003B1 (ko) 차세대 이동 통신 시스템에서 비활성화 모드에 있는 단말의 셀 선택 및 재선택 수행 방법 및 장치
US20220007212A1 (en) Method for processing node failure in integrated access and backhaul system and method for transmitting redirection information therein
US11310862B2 (en) Method and apparatus for operating method when terminal receives RRC reconfiguration message including configuration of secondary cell group in next-generation mobile communication system
US11963054B2 (en) Method and apparatus for performing cell reselection in wireless communication system
EP3922056B1 (en) Method and apparatus for updating list of cells to be measured in reselection of cell in idle mode in next-generation wireless communication system
KR20210073298A (ko) 무선 통신 시스템에서 셀을 재선택하기 위한 방법 및 장치
KR20200050287A (ko) 이동 통신 시스템에서 통신을 수행하는 방법 및 장치
KR20200035850A (ko) 백홀 액세스 통합 시스템에서 노드 실패 처리 방법 및 redirection 정보 전송 방법
EP3818778B1 (en) Methods and apparatuses for transmitting or receiving signal in mobile communication system
KR20200069207A (ko) 이동통신 시스템에서 랜덤 엑세스 응답 메시지를 통해 사용자 데이터를 전송하는 방법 및 장치
KR20220017755A (ko) 차세대 이동 통신 시스템에서 슬라이스 (Slice) 기반 셀 재선택을 수행하는 방법 및 장치
KR102509073B1 (ko) 무선통신 시스템에서 데이터를 송수신하는 방법 및 장치
US20220418034A1 (en) Method and apparatus for supporting voice call service in next-generation mobile communication system
US20230262504A1 (en) Method and device for processing early measurement result during plmn reselection in next generation mobile communication system
KR20210077341A (ko) 무선 통신 시스템에서 사설망에서 선택한 plmn의 보고 및 자동 이웃 관계를 구성하는 방법 및 장치

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant