KR20200013015A - Elemental coating on oxide materials for lithium rechargeable battery - Google Patents

Elemental coating on oxide materials for lithium rechargeable battery Download PDF

Info

Publication number
KR20200013015A
KR20200013015A KR1020200009766A KR20200009766A KR20200013015A KR 20200013015 A KR20200013015 A KR 20200013015A KR 1020200009766 A KR1020200009766 A KR 1020200009766A KR 20200009766 A KR20200009766 A KR 20200009766A KR 20200013015 A KR20200013015 A KR 20200013015A
Authority
KR
South Korea
Prior art keywords
single element
transition metal
metal oxide
phosphorus
element material
Prior art date
Application number
KR1020200009766A
Other languages
Korean (ko)
Inventor
강병우
김지은
이정화
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020200009766A priority Critical patent/KR20200013015A/en
Publication of KR20200013015A publication Critical patent/KR20200013015A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a surface coating method which can obtain a positive electrode active material for a lithium secondary battery with a uniform coating layer using a simple substance material and realize improved cycle properties and high efficiency properties. The surface coating method comprises steps of: mixing a simple substance material with a lithium transition metal oxide; and thermally treating the mixture and forming a coating layer made of a complex of the simple substance material on the surface of the lithium transition metal oxide, wherein the lithium transition metal oxide has an interlayer structure. The positive electrode active material manufactured by the present invention can realize significantly improved lifespan properties and high efficiency properties.

Description

리튬 이차 전지용 산화물을 위한 홑원소 물질을 이용한 표면 코팅 방법 {Elemental coating on oxide materials for lithium rechargeable battery}Surface coating method using single element material for oxide of lithium secondary battery {Elemental coating on oxide materials for lithium rechargeable battery}

본 발명은 리튬 이차 전지용 산화물을 위한 표면 코팅 방법에 관한 것으로, 보다 상세하게는 홑원소 물질을 이용해 균일한 코팅층이 형성된 리튬 이차 전지용 양극 활물질을 얻을 수 있고, 이를 통해 향상된 사이클 특성과 고율특성을 구현할 수 있는 표면 코팅 방법에 관한 것이다.The present invention relates to a surface coating method for an oxide for a lithium secondary battery, and more particularly, to obtain a cathode active material for a lithium secondary battery having a uniform coating layer formed using a single element material, thereby realizing improved cycle characteristics and high rate characteristics. To a surface coating method.

리튬 이차 전지는 최근까지 휴대전화, 노트북 등 소형의 전자기기에 많이 사용되었으나, 최근에는 전기자동차와 에너지 저장 시스템(ESS) 등으로의 사용량이 급격하게 증가하고 있으며, 이에 대응하여, 에너지 밀도, 안정성 등의 전지 성능이 향상된 리튬 이차 전지의 개발이 매우 중요해지고 있다.Lithium secondary batteries have been widely used in small electronic devices such as mobile phones and laptops until recently, but in recent years, the use of electric vehicles and energy storage systems (ESS) has increased rapidly. The development of lithium secondary batteries with improved battery performance has become very important.

리튬 이차 전지의 구성요소 중 양극이 전지 성능에 가장 크게 영향을 주므로 에너지 밀도가 높은 양극 활물질의 개발이 필수적이다.Since the positive electrode of the components of the lithium secondary battery most affect the battery performance, the development of a positive electrode active material with high energy density is essential.

한편, 리튬 이차 전지용 양극 활물질로 널리 사용되고 있는 층상구조의 리튬 코발트 산화물과 리튬 니켈계 산화물은 각각 274mAh/g, 275mAh/g의 높은 이론용량을 가지고 있다.On the other hand, lithium cobalt oxide and lithium nickel oxide having a layered structure widely used as a cathode active material for lithium secondary batteries have high theoretical capacities of 274 mAh / g and 275 mAh / g, respectively.

그러나 리튬 코발트 산화물과 리튬 니켈계 산화물은 고전압에서 구조적으로 불안정할 뿐 아니라 물질 표면에서 전해액과의 반응으로 인해 사이클이 진행됨에 따라 용량 유지율이 급격히 줄어드는 문제점이 있다.However, lithium cobalt oxide and lithium nickel-based oxide are not only structurally unstable at high voltage but also have a problem in that capacity retention rate is drastically reduced as the cycle progresses due to reaction with the electrolyte at the material surface.

이러한 용량 유지율의 감소는 사이클이 진행에 따른 양극 활물질과 전해액과의 반응에 의한 것이므로, 양극 활물질과 전해액 사이에 발생하는 반응을 억제하는 수단이 필요하다. 리튬 니켈계 전이금속 산화물의 경우, 양극 활물질의 표면에 니켈이 노출되어 있으면 상전이가 일어나 용량 유지율이 악화되므로 이를 막을 수 있는 코팅층이 더 요구된다.Since the reduction in capacity retention is due to the reaction between the positive electrode active material and the electrolyte as the cycle progresses, a means for suppressing the reaction occurring between the positive electrode active material and the electrolyte is required. In the case of lithium nickel-based transition metal oxides, when nickel is exposed on the surface of the positive electrode active material, phase transition occurs and the capacity retention rate is deteriorated, and thus a coating layer capable of preventing this is required.

이를 위해, 리튬 코발트 산화물과 리튬 니켈계 산화물의 표면에 코팅층을 형성시키는 연구가 많이 진행되어 왔고, 상기 코팅층은 대부분 원자층 증착법(ALD), 공침법과 같은 액상법으로 형성되었다.To this end, many studies have been made to form a coating layer on the surface of lithium cobalt oxide and lithium nickel-based oxide, the coating layer was formed by a liquid phase method such as atomic layer deposition (ALD), coprecipitation method.

이중 원자층 증착법은 박막 두께를 미세하게 조절할 수 있는 장점이 있으나 박막 성장 속도가 느려 대량 생산에 적합하지 않고, 타 제조법에 비해 상대적으로 고가의 장비를 사용해야 하므로 제조비용이 높아지는 문제점도 있다.Although the dual atomic layer deposition method has an advantage of finely controlling the thickness of the thin film, it is not suitable for mass production due to the slow growth rate of the thin film, and there is a problem in that the manufacturing cost increases because it requires the use of relatively expensive equipment compared to other manufacturing methods.

또한, 공침법과 같은 액상법으로 코팅층을 형성할 경우, 세정, 건조 등의 과정을 거쳐야 하므로 제조 공정이 복잡해지는 문제점이 있다.In addition, when the coating layer is formed by a liquid phase method such as coprecipitation, there is a problem in that the manufacturing process is complicated because it must go through a process such as washing and drying.

이에 따라, 원자층 증착법이나 공침법과 같은 액상법을 사용하지 않으면서 간단한 공정으로 리튬 코발트 산화물과 리튬 니켈계 산화물의 표면에 사이클 특성을 향상시킬 수 있는 균일한 코팅층을 형성시킬 필요가 있다.Accordingly, it is necessary to form a uniform coating layer on the surface of lithium cobalt oxide and lithium nickel-based oxide in a simple process without using a liquid phase method such as atomic layer deposition or coprecipitation.

1) Chem. Mater. 2000, 12, 3788-37911) Chem. Mater. 2000, 12, 3788-3791

본 발명은 리튬 이차 전지의 수명 특성, 용량 및 용량 유지율을 개선할 수 있는 리튬 이차 전지용 산화물의 코팅 방법을 제공하는 것을 과제로 한다.An object of this invention is to provide the coating method of the oxide for lithium secondary batteries which can improve the lifetime characteristic, capacity | capacitance, and capacity retention of a lithium secondary battery.

상기 과제를 해결하기 위한 본 발명의 일 측면은, 인(P)으로 이루어지는 홑원소 물질을 리튬 전이금속 산화물을 혼합시키는 단계와, 상기 혼합물을 상기 인(P)이 승화되는 온도인 250 ~ 600℃에서 열처리하여, 상기 리튬 전이금속 산화물의 표면에 상기 홑원소 물질의 화합물로 이루어진 균일한 코팅층을 형성하는 단계를 포함하고, 상기 리튬 전이금속 산화물은 층상 구조를 갖는, 하기 [화학식 1]로 표시되는 물질인, 리튬 이차 전지용 산화물을 위한 홑원소 물질을 이용한 표면 코팅 방법을 제공한다.One aspect of the present invention for solving the above problems is a step of mixing a lithium transition metal oxide of a single element material consisting of phosphorus (P), and the mixture at a temperature at which the phosphorus (P) is sublimed at 250 ~ 600 ℃ Heat-treating, forming a uniform coating layer made of the compound of the single element material on the surface of the lithium transition metal oxide, wherein the lithium transition metal oxide has a layered structure, the material represented by the following [Formula 1] It provides a surface coating method using a single element material for the oxide for lithium secondary batteries.

[화학식 1][Formula 1]

LiNi1-x-y-zMnxCoyMzO2 LiNi 1-xyz Mn x Co y M z O 2

(여기서, M은 Mg, Al, Fe, V, Cr, Ti, W, Ta, Na 및 Mo로 이루어진 군으로부터 선택된 1 종 이상이고, 0

Figure pat00001
x<1, 0≤y<1, 0≤z<1, 0≤x+y+z≤1)(Wherein M is one or more selected from the group consisting of Mg, Al, Fe, V, Cr, Ti, W, Ta, Na and Mo, 0
Figure pat00001
x <1, 0≤y <1, 0≤z <1, 0≤x + y + z≤1)

상기 과제를 해결하기 위한 본 발명의 다른 측면은, 인(P)으로 이루어지는 홑원소 물질을 리튬 전이금속 산화물을 혼합시키는 단계와, 상기 혼합물을 상기 인(P)이 승화되는 온도인 250 ~ 600℃에서 열처리하여, 상기 리튬 전이금속 산화물의 표면에 상기 홑원소 물질의 화합물로 이루어진 균일한 코팅층을 형성하는 단계를 포함하고, 상기 리튬 전이금속 산화물은 층상 구조를 갖는, 하기 [화학식 2]로 표시되는 물질인, 리튬 이차 전지용 산화물을 위한 홑원소 물질을 이용한 표면 코팅 방법을 제공한다.Another aspect of the present invention for solving the above problems is a step of mixing a lithium transition metal oxide with a single element material consisting of phosphorus (P), and the mixture at a temperature at which the phosphorus (P) is sublimated at 250 ~ 600 ℃ Heat-treating, forming a uniform coating layer made of a compound of the single element material on the surface of the lithium transition metal oxide, wherein the lithium transition metal oxide has a layered structure, the material represented by the following [Formula 2] It provides a surface coating method using a single element material for the oxide for lithium secondary batteries.

[화학식 2][Formula 2]

Li[LikNixMnyCozMw]O2 Li [Li k Ni x Mn y Co z M w ] O 2

(여기서, M은 Al, Fe, V, Cr, Ti, W, Ta, Na 및 Mo로 이루어진 군으로부터 선택된 1 종 이상이고, 0

Figure pat00002
k<1, 0≤x<1, 0≤y<1, 0≤z<1, 0≤w<1, 0<k+x+y+z+w≤1)(Wherein M is one or more selected from the group consisting of Al, Fe, V, Cr, Ti, W, Ta, Na and Mo, and 0
Figure pat00002
k <1, 0≤x <1, 0≤y <1, 0≤z <1, 0≤w <1, 0 <k + x + y + z + w≤1)

본 발명은, 인(P)과 같이 하나의 원소로 이루어진 홑원소 물질을 이용하여 열처리하는 방법을 사용하여 리튬 전이금속 산화물로 이루어진 양극 활물질의 표면을 홑원소 물질과 리튬 전이금속 산화물을 구성하는 원소간의 화합물로 이루어진 코팅층을 형성하는데, 이 방법에 의하면 양극 활물질의 표면에 균일한 코팅층이 형성할 수 있다.The present invention relates to a compound between elements forming a single element material and a lithium transition metal oxide on the surface of a positive electrode active material consisting of a lithium transition metal oxide using a method of heat treatment using a single element material composed of one element such as phosphorus (P). To form a coating layer consisting of, according to this method can be formed a uniform coating layer on the surface of the positive electrode active material.

이와 같이 형성된 코팅층을 구비한 양극 활물질은 높은 전압에서 전해액과의 부반응이나 상전이를 억제하여, 전지의 방전용량 유지특성, 수명 특성 및 고율특성을 향상시킨다.The positive electrode active material having the coating layer formed as described above suppresses side reactions and phase transitions with the electrolyte at high voltage, thereby improving discharge capacity retention characteristics, life characteristics, and high rate characteristics of the battery.

또한, 본 발명에 따른 방법은 기존에 개발된 코팅 공정에 비해 낮은 온도에서 열처리를 하여 공정 비용을 저감시킬 뿐 아니라, 공정이 단순하여 대량생산에 적합한 장점이 있다.In addition, the method according to the present invention not only reduces the process cost by heat treatment at a lower temperature than the conventionally developed coating process, there is an advantage that the process is simple and suitable for mass production.

도 1은 본 발명의 바람직한 실시형태에 따른 양극 활물질의 코팅 공정도이다.
도 2는 본 발명의 비교예 1과 실시예 2에 따른 양극 활물질의 XRD 패턴을 나타낸 것이다.
도 3은 본 발명의 비교예 1과 실시예 2에 따른 양극 활물질의 XPS 그래프이다((a)Ni 2p, (b)O 1s, (c)S 2p).
도 4은 본 발명의 비교예 1과 실시예 2에 따라 황 화합물이 코팅된 양극 활물질을 적용한 전지의 충방전 특성을 나타낸 그래프이다.
도 5는 본 발명의 비교예 1과 실시예 2에 따라 황 화합물이 코팅된 양극 활물질을 적용한 전지의 수명 특성을 나타낸 그래프이다.
도 6은 본 발명의 비교예 2와 실시예 4에 따라 인 화합물이 코팅된 양극 활물질을 적용한 전지의 충방전 특성을 나타낸 그래프이다.((a) 비교예 2, (b) 실시예 4)
1 is a coating process diagram of a positive electrode active material according to a preferred embodiment of the present invention.
Figure 2 shows the XRD pattern of the positive electrode active material according to Comparative Example 1 and Example 2 of the present invention.
3 is an XPS graph of the positive electrode active material according to Comparative Example 1 and Example 2 of the present invention ((a) Ni 2p, (b) O 1s, (c) S 2p).
4 is a graph showing charge and discharge characteristics of a battery to which a positive electrode active material coated with a sulfur compound according to Comparative Example 1 and Example 2 of the present invention.
5 is a graph showing the life characteristics of a battery to which the positive electrode active material coated with a sulfur compound according to Comparative Example 1 and Example 2 of the present invention.
Figure 6 is a graph showing the charge and discharge characteristics of a battery to which the positive electrode active material coated with a phosphorous compound according to Comparative Example 2 and Example 4 of the present invention ((a) Comparative Example 2, (b) Example 4).

본 발명의 실시예들을 설명하기 위해 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함하는 의미이다. 그리고 포함한다의 의미는 특정 특성, 영역, 정수, 단계, 동작. 요소 및/또는 성분을 구체화하며 다른 특정 특성, 영역, 정수, 단계, 동작. 요소, 성분 및/또는 군의 존재나 부가를 제외하는 것은 아니다.The singular forms used to describe the embodiments of the present invention are intended to include the plural forms as well, unless the phrases clearly indicate the opposite. And the meaning of includes specific characteristics, areas, integers, steps, actions. Specific elements, regions, integers, steps, actions that embody elements and / or components. It does not exclude the presence or addition of elements, components and / or groups.

다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학 용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진자가 일반적으로 이해하는 의미와 동일한 의미이다. 또한, 보통 사용되는 사전에 정의된 용어들은 관련 기술 문헌과 현재 개시된 내용에 부합하는 의미를 갖는 것으로 추가 해석되고 정의되지 않는 한, 이상적이거나 매우 공식적인 의미로 해석되지는 않는다.Unless defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In addition, commonly used terms defined in advance are not to be interpreted in an ideal or very formal sense unless further interpreted and defined as having a meaning consistent with the related technical literature and the presently disclosed contents.

본 발명에 따른 양극 활물질의 제조방법은, 홑원소 물질을 리튬 전이금속 산화물을 혼합시키는 단계와, 상기 혼합물을 열처리하여 상기 리튬 전이금속 산화물의 표면에 상기 홑원소 물질의 화합물로 이루어진 코팅층을 형성하는 단계를 포함하고, 상기 리튬 전이금속 산화물은 층상 구조를 갖는 것을 특징으로 한다.The method of manufacturing a cathode active material according to the present invention includes mixing a single element material with a lithium transition metal oxide, and heat treating the mixture to form a coating layer of the compound of the single element material on the surface of the lithium transition metal oxide. It includes, the lithium transition metal oxide is characterized in that it has a layered structure.

상기 리튬 전이금속 산화물은, 바람직하게, 하기 [화학식 1]로 표시되는 물질일 수 있다.The lithium transition metal oxide may be, preferably, a material represented by the following [Formula 1].

[화학식 1][Formula 1]

LiNi1-x-y-zMnxCoyMzO2 LiNi 1-xyz Mn x Co y M z O 2

(여기서, M은 Mg, Al, Fe, V, Cr, Ti, W, Ta, Na 및 Mo로 이루어진 군으로부터 선택된 1 종 이상로 이루어진 군으로부터 선택된 1종 이상, 0≤x<1, 0≤y<1, 0≤z<1, 0≤x+y+z≤1)(Wherein M is at least one member selected from the group consisting of Mg, Al, Fe, V, Cr, Ti, W, Ta, Na and Mo, 0 ≦ x <1, 0 ≦ y <1, 0≤z <1, 0≤x + y + z≤1)

또한, 상기 리튬 전이금속 산화물은 리튬 리치(Li-rich or Li-excess) 전이금속 산화물일 수 있으며, 바람직하게, 하기 [화학식 2]로 표시되는 물질일 수 있다.In addition, the lithium transition metal oxide may be a lithium rich (Li-rich or Li-excess) transition metal oxide, preferably, may be a material represented by the following [Formula 2].

[화학식 2][Formula 2]

Li[LikNixMnyCozMw]O2 Li [Li k Ni x Mn y Co z M w ] O 2

(여기서, M은 Mg, Al, Fe, V, Cr, Ti, W, Ta, Na 및 Mo로 이루어진 군으로부터 선택된 1 종 이상이고, 0≤k<1, 0≤x<1, 0≤y<1, 0≤z<1, 0≤w<1, 0<k+x+y+z+w≤1)(Wherein M is at least one member selected from the group consisting of Mg, Al, Fe, V, Cr, Ti, W, Ta, Na and Mo, and 0 ≦ k <1, 0 ≦ x <1, 0 ≦ y < 1, 0≤z <1, 0≤w <1, 0 <k + x + y + z + w≤1)

또한, 상기 홑원소 물질은 바람직하게, 황(S) 또는 인(P)을 포함할 수 있으나, 반드시 이에 제한되는 것은 아니며, 홑원소 물질로 양극 활물질의 표면에 코팅이 가능하고 이를 통해 높은 전압에서 전해액과의 부반응이나 상전이를 억제하는 기능을 할 수 있다면 특별히 제한되지 않을 수 있다.In addition, the single element material may preferably include sulfur (S) or phosphorus (P), but is not necessarily limited thereto. The single element material may be coated on the surface of the positive electrode active material with a single element material, and the electrolyte may be used at a high voltage. If it can function to suppress the side reaction or phase transition of may not be particularly limited.

또한, 상기 홑원소 물질은 바람직하게, 황(S) 또는 인(P)을 포함할 수 있으나, 반드시 이에 제한되는 것은 아니며, 홑원소 물질로 양극 활물질의 표면에 코팅이 가능하고 이를 통해 높은 전압에서 전해액과의 부반응이나 상전이를 억제하는 기능을 할 수 있다면 특별히 제한되지 않을 수 있다.In addition, the single element material may preferably include sulfur (S) or phosphorus (P), but is not necessarily limited thereto. The single element material may be coated on the surface of the positive electrode active material with a single element material, and the electrolyte may be used at a high voltage. If it can function to suppress the side reaction or phase transition of may not be particularly limited.

또한, 상기 홑원소 물질은 황(S)이고, 상기 코팅층의 형성은 상기 혼합물을 상기 황(S)이 승화되는 온도로 열처리하여 기상의 황(S)이 상기 리튬 전이금속 산화물과 반응하여 화합물을 형성하도록 할 수 있다. 이때, 상기 홑원소 물질의 원료로는 적린(red phosphorus), 백린(white phosphorus), 자린(violet phosphorus), 흑린(black phosphorus) 중에서 선택된 1종 이상일 수 있다.In addition, the single element material is sulfur (S), the formation of the coating layer is heat-treated the mixture to a temperature at which the sulfur (S) is sublimated sulfur (S) reacts with the lithium transition metal oxide to form a compound. You can do that. In this case, the raw material of the single element material may be at least one selected from red phosphorus, white phosphorus, violet phosphorus, and black phosphorus.

또한, 상기 홑원소 물질과 리튬 전이금속 산화물을 혼합은, 막자 사발을 사용해 직접 혼합하는 방법, 볼밀, 유성형 볼밀(planetary ball mill) 및 하이 에너지 볼밀(high energy ball mill) 중 적어도 하나의 방법을 통해 수행할 수 있다.In addition, mixing of the single element material and the lithium transition metal oxide may be performed by directly mixing using a mortar, at least one of a ball mill, a planetary ball mill, and a high energy ball mill. can do.

또한 혼합 방법은 막자 사발을 사용해 직접 혼합하는 방법, 볼밀, 유성형 볼밀(planetary ball mill) 및 고에너지 볼밀(high energy ball mill) 등 균일하게 홑원소 물질과 양극 활물질을 혼합할 수 있는 방법은 제한을 두지 않고 사용될 수 있다. In addition, the mixing method is a method of directly mixing using a mortar and pestle, ball mill, planetary ball mill and high energy ball mill, such as a method of uniformly mixing the single-element material and the positive electrode active material is not limited Can be used without.

또한, 상기 홑원소 물질과 리튬 전이금속 산화물을 혼합시키는 단계는, 홑원소물질과 양극 활물질의 무게 비율을, 상기 홑원소 물질과 리튬 전이금속 산화물의 전체 중량에 대한 홑원소 물질의 중량비가 10% 초과할 경우에는 반응하지 못하는 잔류물이 증가하거나 활물질의 양이 줄어서 전지의 전체 용량을 낮출 수 있어 바람직하지 않기 때문에, 0% 초과 ~ 10% 이하의 범위로 혼합되는 것이 바람직하다.In addition, the step of mixing the single element material and the lithium transition metal oxide, the weight ratio of the single element material and the positive electrode active material, when the weight ratio of the single element material to the total weight of the single element material and the lithium transition metal oxide exceeds 10% It is preferable to mix in the range of more than 0% to 10% or less, because the residue that fails to react increases or the amount of the active material decreases to lower the total capacity of the battery.

또한, 상기 열처리 온도는 150℃ 미만이면 코팅층이 균일하게 형성되지 않을 수 있어 바람직하지 못하고, 600℃ 이상이면 황(S)이나 인(P)이 양극 활물질과 반응하여 양극 활물질의 결정구조가 변화될 수 있으므로, 150℃ 이상 600℃ 이하의 온도 범위에서 열처리하는 것이 바람직하다. 한편, 홑원소 물질이 인(P)인 경우에는 인(P)이 황(S)에 비해 반응성이 낮기 때문에 더 높은 온도인 250℃ 이상 600℃ 이하의 온도범위에서 열처리하는 것이 보다 바람직하다.In addition, when the heat treatment temperature is less than 150 ° C., the coating layer may not be uniformly formed. If the heat treatment temperature is higher than 600 ° C., sulfur (S) or phosphorus (P) may react with the positive electrode active material to change the crystal structure of the positive electrode active material. It is preferable to heat-treat in the temperature range of 150 degreeC or more and 600 degrees C or less as it can. On the other hand, when the single element material is phosphorus (P), since the phosphorus (P) is less reactive than sulfur (S), it is more preferable to heat-treat at a temperature range of 250 ° C to 600 ° C higher temperature.

또한, 균일한 코팅층의 형성을 위해서 열처리 시간은 2시간 이상이 바람직하고, 열처리 시간을 지나치게 오래할 경우 에너지 비용이 과도하게 소요될 수 있으므로 24시간 이하로 열처리하는 것이 바람직하다.In addition, in order to form a uniform coating layer, the heat treatment time is preferably 2 hours or more, and if the heat treatment time is too long, energy costs may be excessively required, so heat treatment is preferably performed for 24 hours or less.

또한, 열처리 분위기는 양극 활물질의 종류에 따라서 달라질 수 있다. 특히 양극 활물질에 포함되는 니켈 몰 비율이 전체 전이금속 기준으로 50% 이상일 경우 공기와의 장시간 접촉 시 표면에서 부반응이 일어나 성능이 저하될 수 있으므로, 아르곤(Ar), 질소(N2), 헬륨(He), 수소(H2) 또는 이들의 혼합인 불활성 가스 분위기에서 열처리 하는 것이 균일한 표면 코팅층을 형성할 수 있어 바람직하다.In addition, the heat treatment atmosphere may vary depending on the type of the positive electrode active material. In particular, the nickel molar ratio is full when the transition is 50% by metal basis, because a side reaction on the surface during prolonged contact with air can be up to be degraded, argon (Ar), nitrogen (N 2), helium contained in the positive electrode active material ( Heat treatment in an inert gas atmosphere, such as He), hydrogen (H 2 ), or a mixture thereof, is preferable since it can form a uniform surface coating layer.

양극 활물질의 코팅Coating of positive electrode active material

[실시예 1] Example 1

도 1에 도시된 공정을 통해, 황(S)을 이용하여 니켈계 리튬 전이금속 산화물의 표면에 황화합물이 코팅된 리튬 이차전지용 양극 활물질을 제조하였다.Through the process shown in Figure 1, using a sulfur (S) to prepare a cathode active material for a lithium secondary battery coated with a sulfur compound on the surface of the nickel-based lithium transition metal oxide.

먼저 니켈계 리튬 전이금속 산화물(NMC811 분말, LiNi0.8Mn0.1Co0.1O2 (유미코어) 400mg과 황(S)(시그마 알드리치) 4mg을 막자 사발에서 혼합하였다.First, 400 mg of nickel-based lithium transition metal oxide (NMC811 powder, LiNi 0.8 Mn 0.1 Co 0.1 O 2 (Umicore)) and 4 mg of sulfur (S) (Sigma Aldrich) were mixed in a mortar.

다음으로 상기 혼합물을 Ar 가스 분위기 하의 250℃에서 4시간 동안 열처리 공정을 수행하였다.Next, the mixture was subjected to a heat treatment process at 250 ° C. for 4 hours under an Ar gas atmosphere.

이러한 과정을 통해, 황 화합물이 코팅된 니켈계 리튬 전이금속 산화물로 이루어진 리튬 이차전지용 양극 활물질이 생성되었다.Through this process, a cathode active material for a lithium secondary battery made of a nickel-based lithium transition metal oxide coated with a sulfur compound was produced.

[실시예 2]Example 2

열처리 온도를 300℃로 달리한 것을 제외하고는, 실시예 1과 동일한 방법으로 황화합물이 코팅된 니켈계 리튬 전이금속 산화물 LiNi0.8Mn0.1Co0.1O2로 이루어진 리튬 이차전지용 양극활물질을 제조하였다.Except that the heat treatment temperature was changed to 300 ℃, a positive electrode active material for a lithium secondary battery made of a nickel-based lithium transition metal oxide LiNi 0.8 Mn 0.1 Co 0.1 O 2 coated with a sulfur compound in the same manner as in Example 1.

[실시예 3]Example 3

열처리 온도를 350℃로 달리한 것을 제외하고는 실시예 1과 동일한 방법으로 황화합물이 코팅된 니켈계 리튬 전이금속 산화물 LiNi0.8Mn0.1Co0.1O2로 이루어진 리튬 이차전지용 양극 활물질을 제조하였다.Except that the heat treatment temperature was changed to 350 ℃ to prepare a positive electrode active material for a lithium secondary battery made of a nickel-based lithium transition metal oxide LiNi 0.8 Mn 0.1 Co 0.1 O 2 coated with a sulfur compound in the same manner as in Example 1.

[실시예 4]Example 4

인(P)을 이용하여 리튬 리치 전이금속 산화물의 표면에 인 화합물이 코팅된 리튬 이차전지용 양극 활물질을 제조하였다.Using a phosphorus (P) to prepare a cathode active material for a lithium secondary battery coated with a phosphorus compound on the surface of the lithium rich transition metal oxide.

먼저 Li1.2Ni0.2Mn0.6O2 400mg과 인(P)(시그마 알드리치) 4mg을 막자사발에서 혼합하였다. 다음 과정으로 상기 혼합물을 공기 분위기 하의 400℃에서 4시간 동안 열처리 공정을 수행하였다. 이렇게 열처리한 물질을 회수하였다.First, 400 mg of Li 1.2 Ni 0.2 Mn 0.6 O 2 and 4 mg of phosphorus (P) (Sigma Aldrich) were mixed in a mortar. Next, the mixture was subjected to a heat treatment process at 400 ° C. for 4 hours under an air atmosphere. The heat treated material was recovered.

상기 과정을 마친 후에, 인 화합물이 코팅된 리튬 리치 전이금속 산화물로 이루어진 리튬 이차전지용 양극 활물질이 생성되었다.After the above process, a positive electrode active material for a lithium secondary battery made of a lithium rich transition metal oxide coated with a phosphorus compound was produced.

[비교예 1] Comparative Example 1

본 발명의 비교예 1에서는 별도의 코팅층을 형성시키지 않은 채, 실시예1~3에서 사용한 니켈계 리튬 전이금속 산화물 LiNi0.8Mn0.1Co0.1O2로 이루어진 리튬 이차전지용 양극 활물질을 준비하였다.In Comparative Example 1 of the present invention, a lithium secondary battery positive electrode active material including nickel-based lithium transition metal oxide LiNi 0.8 Mn 0.1 Co 0.1 O 2 used in Examples 1 to 3 was prepared without forming a separate coating layer.

[비교예 2]Comparative Example 2

본 발명의 비교예 2에서는 별도의 코팅층을 형성시키지 않은 채, 실시예 4에 적용된 바와 동일한 리튬 리치 전이금속 산화물로 이루어진 리튬 이차전지용 양극 활물질을 준비하였다.In Comparative Example 2 of the present invention, a cathode active material for a lithium secondary battery including the same lithium rich transition metal oxide as applied in Example 4 was prepared without forming a separate coating layer.

구조 특성 평가Structural properties evaluation

상기 실시예 및 비교예에 따라 제조된 양극활물질의 구조적인 특성을 평가하기 위하여 X-선 회절(XRD) 분석 및 X-선 광전자 분광법(XPS) 분석을 실시하였으며, 이에 따른 결과를 도 2 및 도 3에 나타내었다.X-ray diffraction (XRD) analysis and X-ray photoelectron spectroscopy (XPS) analysis were performed to evaluate the structural characteristics of the positive electrode active materials prepared according to the above Examples and Comparative Examples. 3 is shown.

도 2를 참조하면, 본 발명의 실시예 2에 따라 제조된 양극 활물질 입자가 결정질의 LiNi0.8Mn0.1Co0.1O2 임을 알 수 있다. 즉, 본 발명에 따른 코팅 공정을 수행하는 과정에 양극 활물질의 결정 구조에 변형이 발생하지 않았다. 2 , it can be seen that the positive electrode active material particles prepared according to Example 2 of the present invention are crystalline LiNi 0.8 Mn 0.1 Co 0.1 O 2 . That is, no deformation occurred in the crystal structure of the cathode active material during the coating process according to the present invention.

또한, 도 3을 참조하면, 비교예 1의 양극활물질의 경우 NiO가 표면에 노출되어 있지만 실시예 2의 황이 표면에 코팅된 양극 활물질의 경우 그 표면에 NiO 가 거의 노출되지 않음이 확인되었다. 또한 실시예 2의 양극 활물질의 경우 그 표면에 황화 리튬 및 황산 리튬이 형성되어 있음이 확인되었다.In addition, referring to FIG. 3, NiO was exposed to the surface of the cathode active material of Comparative Example 1, but it was confirmed that NiO was hardly exposed to the surface of the cathode active material coated with sulfur of Example 2. In the case of the positive electrode active material of Example 2, it was confirmed that lithium sulfide and lithium sulfate were formed on the surface thereof.

코인 셀의 제조Manufacturing of coin cell

실시예 1~3과 비교예 1에 따라 준비된 양극 활물질을 사용하여 다음과 같은 방법으로 전기화학 특성 평가용 코인 셀을 제조하였다.Using the positive electrode active material prepared according to Examples 1 to 3 and Comparative Example 1 was prepared a coin cell for the electrochemical properties evaluation in the following manner.

먼저, 양극 활물질 80중량%, 도전재로 Super-P 15중량%, 바인더로 N-메틸 피론리돈(NMP)를 용매로 녹인 플루오르화 폴리비닐리덴(PVDF)을 5중량% 사용하여 슬러리를 제조하였다.First, a slurry was prepared using 80% by weight of a positive electrode active material, 15% by weight of Super-P as a conductive material, and 5% by weight of polyvinylidene fluoride (PVDF) in which N-methyl pyronelidone (NMP) was dissolved as a solvent. .

이 슬러리를 알루미늄 박(Al foil)에 도포하여 건조 후, 진공 분위기에서 130℃의 온도로 12시간 동안 건조시켜서 직경 8mm의 원형 양극을 제조하였다.This slurry was applied to an aluminum foil (Al foil), dried, and dried for 12 hours at a temperature of 130 ° C. in a vacuum atmosphere to prepare a circular positive electrode having a diameter of 8 mm.

또한, 음극으로는 직경 10mm로 펀칭을 한 리튬 금속을 사용하고, 분리막으로는 폴리프로필렌(PP) 필름을 사용하고, 전해액으로는 1M의 LiPF6의 에틸렌카보네이트/디에틸카보네이트(EC/DEC) 1:1 v/v의 혼합 용액을 사용하여 코인 셀을 제조하였다.In addition, a lithium metal punched to a diameter of 10 mm was used as the cathode, a polypropylene (PP) film was used as the separator, and 1 M of ethylene carbonate / diethyl carbonate (EC / DEC) 1 of LiPF 6 was used as the electrolyte. Coin cells were prepared using a: 1 v / v mixed solution.

전지 성능 평가Battery performance evaluation

실시예 1~3과 비교예 1에 따라 준비된 양극 활물질을 사용하여 제조한 전지의 충방전 특성평가는 정전류법을 이용하여 진행되었으며, 충방전 전압 범위는 2.5V에서 4.5V로 수행하였다. 초기 용량 평가는 1C를 200 mAh/g로 계산하여 0.1C의 전류 밀도로 실시하였으며, 수명 특성은 상온에서 C/3으로 실시하였다.Evaluation of the charge and discharge characteristics of the battery prepared using the positive electrode active material prepared according to Examples 1 to 3 and Comparative Example 1 was carried out using a constant current method, the charge and discharge voltage range was performed from 2.5V to 4.5V. Initial capacity evaluation was carried out at a current density of 0.1C, calculated as 200 mAh / g of 1C, the life characteristics were carried out at C / 3 at room temperature.

실시예 1~3 및 비교예 1에 따른 양극 활물질로 제조된 리튬 이차전지에 대한 전기화학 성능 평가는 도 4, 도 5 및 아래 표 1에 나타내었다.Electrochemical performance evaluation of the lithium secondary battery prepared from the cathode active material according to Examples 1 to 3 and Comparative Example 1 is shown in Figure 4, 5 and Table 1 below.

구분division 양극 활물질 성분Positive electrode active material 초기
방전용량
(mAh/g)
Early
Discharge capacity
(mAh / g)
80사이클 후 방전용량
(mAh/g)
Discharge capacity after 80 cycles
(mAh / g)
코어 성분Core components 코팅
전구체
coating
Precursor
코팅 온도
(℃)
Coating temperature
(℃)
실시예 1Example 1 LiNi0.8Mn0.1Co0.1O2 LiNi 0.8 Mn 0.1 Co 0.1 O 2 SS 250250 208.3208.3 123.5123.5 실시예 2Example 2 LiNi0.8Mn0.1Co0.1O2 LiNi 0.8 Mn 0.1 Co 0.1 O 2 SS 300300 228.1228.1 176.8176.8 실시예 3Example 3 LiNi0.8Mn0.1Co0.1O2 LiNi 0.8 Mn 0.1 Co 0.1 O 2 SS 350350 199.3199.3 145.7145.7 비교예 1Comparative Example 1 LiNi0.8Mn0.1Co0.1O2 LiNi 0.8 Mn 0.1 Co 0.1 O 2 -- -- 213.7213.7 68.468.4

상기 표 1에 나타난 것과 같이, 본 발명의 실시예 1~3에 따라 제조한 양극 활물질이 적용된 리튬 이차전지는 80 사이클 후 방전용량이 각각 123.5mAh/g, 176.8mAh/g, 145.7mAh/g이고, 코팅층을 형성하지 않은 비교예 1의 양극 활물질을 사용한 리튬 이차전지는 80 사이클 후 방전용량이 68.4mAh/g으로 실시예 1~3에 비해 현저하게 낮았다.즉, 본 발명의 실시예 1~3에 따라 코팅층을 형성한 것이 코팅층을 형성하지 않은 것에 비해 2배 이상 수명 특성이 향상되었다.As shown in Table 1, the lithium secondary battery to which the positive electrode active material prepared according to Examples 1 to 3 of the present invention is applied, has a discharge capacity of 123.5mAh / g, 176.8mAh / g, and 145.7mAh / g after 80 cycles, respectively. The lithium secondary battery using the positive electrode active material of Comparative Example 1, in which the coating layer was not formed, had a discharge capacity of 68.4 mAh / g after 80 cycles, which was remarkably lower than that of Examples 1 to 3. In other words, Examples 1 to 3 of the present invention. As a result, the life of the coating layer was improved by more than two times as compared with the absence of the coating layer.

특히, 실시예 2의 경우, 초기 방전용량과 80 사이클 후 방전용량이 실시예 1 및 2에 비해서도 향상되고 있어, 코팅 공정의 온도는 275~325℃에서 수행하는 것이 보다 양호한 코팅층이 형성될 수 있어 바람직하다.In particular, in the case of Example 2, the initial discharge capacity and the discharge capacity after 80 cycles is also improved compared to Examples 1 and 2, the coating process temperature can be formed at a higher temperature of 275 ~ 325 ℃ can be formed desirable.

실시예 4와 비교예 2에 따른 양극 활물질을 적용한 전지의 충방전 특성평가는 정전류법을 이용하여 진행되었으며, 충방전 전압 범위는 2.5V에서 4.7V로 수행하였다. 첫 사이클은 1C를 300 mAh/g로 계산하여 0.05C의 전류 밀도로 실시하였으며, 두 번째 사이클 부터 0.3C로 실시하였다. 도 6에서 확인되는 바와 같이, 인 화합물 코팅층이 형성된 실시예 4가 인 화합물 코팅층이 형성되지 않은 비교예 2보다 첫 사이클의 방전용량 및 이후의 수명 특성이 우수하다. Charging and discharging characteristics of the battery to which the cathode active materials according to Example 4 and Comparative Example 2 were applied were performed by using a constant current method, and the charging and discharging voltage range was performed from 2.5V to 4.7V. The first cycle was performed at a current density of 0.05C, with 1C calculated at 300 mAh / g, and 0.3C from the second cycle. As shown in FIG. 6, Example 4 having the phosphorus compound coating layer is superior to the discharge capacity and the lifespan characteristics of the first cycle than Comparative Example 2 in which the phosphorus compound coating layer is not formed.

이와 같이 상기 실시예들의 결과로부터, 본 발명에 따른 방법에 의하면, 코팅 공정 중에 양극 활물질의 결정 구조를 변화시키지 않으면서 그 표면에 사이클 특성, 고율특성 등을 향상시킬 수 있는 코팅층을 형성할 수 있다.As described above, according to the method of the present invention, the coating layer capable of improving cycle characteristics, high rate characteristics, and the like can be formed on the surface of the cathode active material without changing the crystal structure during the coating process. .

또한, 특히 황(S)의 경우 승화된 기상의 황(S)을 이용하여 합성반응을 수행하기 때문에 양극 활물질의 표면에 매우 균일한 코팅층을 형성할 수 있어, 전해액과 양극 활물질 간의 부반응을 억제하고 니켈 고함량 리튬 전이금속 산화물의 경우 양극 활물질 표면에 니켈 산화물이 노출되어 있는 것을 억제하여 충/방전 동안의 양극 활물질의 결정구조 변화를 막아준다. 이에 따라, 양극 활물질의 전기 전도도 및 리튬 이온의 확산 속도를 개선시켜, 전지의 특성을 향상시킬 수 있게 된다.In addition, in the case of sulfur (S), since the synthesis reaction is performed using sulfur (S) in the sublimed gas phase, a very uniform coating layer can be formed on the surface of the positive electrode active material, thereby suppressing side reactions between the electrolyte solution and the positive electrode active material. In the case of the nickel high content lithium transition metal oxide, the exposure of the nickel oxide to the surface of the positive electrode active material is suppressed to prevent the change of the crystal structure of the positive electrode active material during charge / discharge. Accordingly, the electrical conductivity and the diffusion rate of lithium ions of the positive electrode active material can be improved, thereby improving the characteristics of the battery.

또한, 본 발명에 따른 방법은 기존에 개발된 코팅 공정에 비해 낮은 온도에서 열처리를 할 뿐 아니라, 공정이 단순하여 대량생산에 적합한 장점이 있다.In addition, the method according to the present invention has the advantage that the heat treatment at a lower temperature than the coating process developed in advance, as well as the process is simple and suitable for mass production.

Claims (5)

인(P)으로 이루어지는 홑원소 물질을 리튬 전이금속 산화물을 혼합시키는 단계와,
상기 혼합물을 상기 인(P)이 승화되는 온도인 250 ~ 600℃에서 열처리하여, 상기 리튬 전이금속 산화물의 표면에 상기 홑원소 물질의 화합물로 이루어진 균일한 코팅층을 형성하는 단계를 포함하고,
상기 리튬 전이금속 산화물은 층상 구조를 갖는, 하기 [화학식 1]로 표시되는 물질인, 리튬 이차 전지용 산화물을 위한 홑원소 물질을 이용한 표면 코팅 방법.
[화학식 1]
LiNi1-x-y-zMnxCoyMzO2
(여기서, M은 Mg, Al, Fe, V, Cr, Ti, W, Ta, Na 및 Mo로 이루어진 군으로부터 선택된 1 종 이상이고, 0≤x<1, 0≤y<1, 0≤z<1, 0≤x+y+z≤1)
Mixing a single element material made of phosphorus (P) with a lithium transition metal oxide,
Heat treating the mixture at a temperature of 250 to 600 ° C. at which phosphorus (P) is sublimed, thereby forming a uniform coating layer made of a compound of a single element material on the surface of the lithium transition metal oxide;
The lithium transition metal oxide is a surface coating method using a single element material for the oxide for lithium secondary batteries, which is a material represented by the following [Formula 1] having a layered structure.
[Formula 1]
LiNi 1-xyz Mn x Co y M z O 2
(Wherein M is one or more selected from the group consisting of Mg, Al, Fe, V, Cr, Ti, W, Ta, Na and Mo, and 0 ≦ x <1, 0 ≦ y <1, 0 ≦ z < 1, 0≤x + y + z≤1)
인(P)으로 이루어지는 홑원소 물질을 리튬 전이금속 산화물을 혼합시키는 단계와,
상기 혼합물을 상기 인(P)이 승화되는 온도인 250 ~ 600℃에서 열처리하여, 상기 리튬 전이금속 산화물의 표면에 상기 홑원소 물질의 화합물로 이루어진 균일한 코팅층을 형성하는 단계를 포함하고,
상기 리튬 전이금속 산화물은 층상 구조를 갖는, 하기 [화학식 2]로 표시되는 물질인, 리튬 이차 전지용 산화물을 위한 홑원소 물질을 이용한 표면 코팅 방법.
[화학식 2]
Li[LikNixMnyCozMw]O2
(여기서, M은 Al, Fe, V, Cr, Ti, W, Ta, Na 및 Mo로 이루어진 군으로부터 선택된 1 종 이상이고, 0≤k<1, 0≤x<1, 0≤y<1, 0≤z<1, 0≤w<1, 0<k+x+y+z+w≤1)
Mixing a single element material made of phosphorus (P) with a lithium transition metal oxide,
Heat-treating the mixture at a temperature of 250 to 600 ° C. at which the phosphorus (P) is sublimed to form a uniform coating layer made of a compound of the single element material on the surface of the lithium transition metal oxide,
The lithium transition metal oxide is a surface coating method using a single element material for the oxide for lithium secondary batteries, which is a material represented by the following [Formula 2] having a layered structure.
[Formula 2]
Li [Li k Ni x Mn y Co z M w ] O 2
(Wherein M is one or more selected from the group consisting of Al, Fe, V, Cr, Ti, W, Ta, Na and Mo, and 0 ≦ k <1, 0 ≦ x <1, 0 ≦ y <1, 0≤z <1, 0≤w <1, 0 <k + x + y + z + w≤1)
제1항 또는 제2항에 있어서,
상기 홑원소 물질과 리튬 전이금속 산화물을 혼합시키는 단계는,
상기 홑원소 물질과 리튬 전이금속 산화물의 전체 중량에 대한 홑원소 물질의 중량비는 0% 초과 ~ 10% 이하인, 리튬 이차 전지용 산화물을 위한 홑원소 물질을 이용한 표면 코팅 방법.
The method according to claim 1 or 2,
The step of mixing the single element material and the lithium transition metal oxide,
The weight ratio of the single element material to the total weight of the single element material and the lithium transition metal oxide is greater than 0% to 10%, surface coating method using a single element material for the oxide for lithium secondary batteries.
제1항 또는 제2항에 있어서,
상기 홑원소 물질의 원료물질은, 적린(red phosphorus), 백린(white phosphorus), 자린(violet phosphorus), 흑린(black phosphorus) 중에서 선택된 1종 이상인, 리튬 이차 전지용 양극 활물질의 제조방법.
The method according to claim 1 or 2,
The raw material of the single element material, red phosphorus (white phosphorus), white phosphorus (white phosphorus), violet phosphorus (violet phosphorus), black phosphorus (black phosphorus) is at least one selected from the manufacturing method of the positive electrode active material for lithium secondary batteries.
제1항 또는 제2항에 있어서,
상기 홑원소 물질과 리튬 전이금속 산화물을 혼합은, 막자 사발을 사용해 직접 혼합하는 방법, 볼밀, 유성형 볼밀(planetary ball mill) 및 하이 에너지 볼밀(high energy ball mill) 중 적어도 하나의 방법을 통해 수행하는, 리튬 이차 전지용 산화물을 위한 홑원소 물질을 이용한 표면 코팅 방법.
The method according to claim 1 or 2,
Mixing of the single element material and the lithium transition metal oxide may be performed by directly mixing using a mortar, at least one of a ball mill, a planetary ball mill, and a high energy ball mill. Surface coating method using a single element material for the oxide for lithium secondary batteries.
KR1020200009766A 2020-01-28 2020-01-28 Elemental coating on oxide materials for lithium rechargeable battery KR20200013015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200009766A KR20200013015A (en) 2020-01-28 2020-01-28 Elemental coating on oxide materials for lithium rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200009766A KR20200013015A (en) 2020-01-28 2020-01-28 Elemental coating on oxide materials for lithium rechargeable battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180001047A Division KR102076035B1 (en) 2018-01-04 2018-01-04 Elemental coating on oxide materials for lithium rechargeable battery

Publications (1)

Publication Number Publication Date
KR20200013015A true KR20200013015A (en) 2020-02-05

Family

ID=69514675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200009766A KR20200013015A (en) 2020-01-28 2020-01-28 Elemental coating on oxide materials for lithium rechargeable battery

Country Status (1)

Country Link
KR (1) KR20200013015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768662A (en) * 2021-01-26 2021-05-07 南昌大学 High-nickel ternary layered cathode material coated by low-temperature vapor deposition and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1) Chem. Mater. 2000, 12, 3788-3791

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768662A (en) * 2021-01-26 2021-05-07 南昌大学 High-nickel ternary layered cathode material coated by low-temperature vapor deposition and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100428616B1 (en) Positive active material for lithium secondary battery and method of preparing same
EP1511101B1 (en) Negative active material for non-aqueous electrolyte battery, method of preparing same, and non-aqueous electrolyte battery comprising same
US9160031B2 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
KR100560540B1 (en) Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
KR100437340B1 (en) Method of preparing positive active material for rechargeable lithium battery
EP1751809B1 (en) Lithium metal oxide materials and methods of synthesis and use
KR20180121266A (en) Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
KR100424637B1 (en) A thin film for lithium secondary battery and a method of preparing the same
KR101047450B1 (en) Anode active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising same
KR100717780B1 (en) Negative active material for non-aqueous electrolyte battery, method of preparing same and non-aqueous electrolyte battery
EP3930051A1 (en) Positive electrode material and preparation method and application thereof
KR20180056310A (en) Composite cathode active material, Cathode and Lithium battery containing composite cathode active material and Preparation method thereof
KR20200085693A (en) Cathode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
KR101746188B1 (en) Electrode mixture additives for secondary battery, method for manufacturing the same, elelctrode including the same for secondary battery, and secondary battery
EP4033566A1 (en) Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
KR20200013015A (en) Elemental coating on oxide materials for lithium rechargeable battery
JPH10172564A (en) Active material, its manufacture, and lithium ion secondary battery using active material
Tian et al. A new lithium‐rich layer‐structured cathode material with improved electrochemical performance and voltage maintenance
KR100441520B1 (en) A positive active material for lithium secondary battery and a method of preparing same
KR102076035B1 (en) Elemental coating on oxide materials for lithium rechargeable battery
KR100709177B1 (en) Positive active material for lithium secondary battery and method of preparing same
CN112928272A (en) High-nickel ternary cathode material doped with aliovalent ions and preparation method and application thereof
KR20050020185A (en) Negative active material for non-aqueous electrolyte battery, method of preparing same, and non-aqueous electrolyte battery
CN112993240B (en) Positive electrode material, preparation method thereof, positive plate and lithium ion battery
KR102214599B1 (en) Preparation method of lithium-nikel composite oxide for secondary battery positive electrode active material

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application