KR20200003350A - Apparatus and method for detecting illegal call - Google Patents

Apparatus and method for detecting illegal call Download PDF

Info

Publication number
KR20200003350A
KR20200003350A KR1020180144892A KR20180144892A KR20200003350A KR 20200003350 A KR20200003350 A KR 20200003350A KR 1020180144892 A KR1020180144892 A KR 1020180144892A KR 20180144892 A KR20180144892 A KR 20180144892A KR 20200003350 A KR20200003350 A KR 20200003350A
Authority
KR
South Korea
Prior art keywords
information
illegal
call
learning
image
Prior art date
Application number
KR1020180144892A
Other languages
Korean (ko)
Other versions
KR102135242B1 (en
Inventor
백성복
김소진
안태진
양재호
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to EP19821679.8A priority Critical patent/EP3813347B1/en
Priority to PCT/KR2019/002966 priority patent/WO2019245131A1/en
Publication of KR20200003350A publication Critical patent/KR20200003350A/en
Application granted granted Critical
Publication of KR102135242B1 publication Critical patent/KR102135242B1/en
Priority to US17/125,339 priority patent/US11323560B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/2281Call monitoring, e.g. for law enforcement purposes; Call tracing; Detection or prevention of malicious calls
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1053IP private branch exchange [PBX] functionality entities or arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1076Screening of IP real time communications, e.g. spam over Internet telephony [SPIT]
    • H04L65/1079Screening of IP real time communications, e.g. spam over Internet telephony [SPIT] of unsolicited session attempts, e.g. SPIT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/65Network streaming protocols, e.g. real-time transport protocol [RTP] or real-time control protocol [RTCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/006Networks other than PSTN/ISDN providing telephone service, e.g. Voice over Internet Protocol (VoIP), including next generation networks with a packet-switched transport layer
    • H04M7/0078Security; Fraud detection; Fraud prevention
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2203/00Aspects of automatic or semi-automatic exchanges
    • H04M2203/55Aspects of automatic or semi-automatic exchanges related to network data storage and management
    • H04M2203/558Databases
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2203/00Aspects of automatic or semi-automatic exchanges
    • H04M2203/60Aspects of automatic or semi-automatic exchanges related to security aspects in telephonic communication systems
    • H04M2203/6027Fraud preventions

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Technology Law (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Telephonic Communication Services (AREA)

Abstract

An apparatus for detecting an illegal call comprises: a data collection unit which collects raw packets generated, according as a subscriber station uses a voice over Internet protocol (VoIP) service from at least one of the subscriber station or a call exchanger, and collects call detail record (CDR) data related to the raw packets from a billing server; a pre-processing unit which generates learning data by using service usage information extracted from the CDR data and service detail information extracted from the raw packets and converts the learning data into images according to a preset imaging rule to generate learning images; and a learning unit which, through an illegal call detection model, extracts one or more features from the learning images and learns whether the learning images are associated with an illegal call by using the features. By detecting and blocking the illegal call in real time, billing damage caused by the illegal call can be prevented.

Description

불법 전화 검출을 위한 장치 및 방법{APPARATUS AND METHOD FOR DETECTING ILLEGAL CALL}Apparatus and method for detecting illegal telephones {APPARATUS AND METHOD FOR DETECTING ILLEGAL CALL}

본 발명은 불법 전화 검출을 위한 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for illegal telephone detection.

인터넷 활용이 증가됨에 따라 인터넷 전화, VoLTE 또는 Mobile VoIP와 같은 인터넷 전화(VoIP) 서비스가 급속히 확산되고 있으며, 기업용 IP-PBX, CALL BOX 또는 Softphone 등과 같은 다양한 형태의 인터넷 전화 또한 보급되고 있다.As Internet utilization increases, Internet telephony (VoIP) services such as Internet telephony, VoLTE or Mobile VoIP are rapidly spreading, and various forms of internet telephony such as corporate IP-PBX, CALL BOX or Softphone are also spreading.

그러나, 인터넷 전화는 인터넷에 접속하여 사용하므로 보안에 취약하고, 특히 고객이 직접 구매하는 기업용 IP-PBX 등은 공장에서 생산될 당시 설정된 아이디 및 패스워드를 그대로 사용하거나, 간단한 프로그램으로 이를 쉽게 찾아낼 수 있는 경우가 많다. 이에 따라, 인터넷 전화에 사용되는 아이디 및 패스워드를 도용하여 불법적인 전화를 유발함으로서, 고객에게 한 달에 수 백 만원에서 수 천 만원에 달하는 과금 피해를 일으키고 있는 실정이다.However, Internet phones are vulnerable to security because they are connected to the Internet. Especially, corporate IP-PBX, which customers purchase directly, can use the ID and password set at the time of factory production or can be easily found with a simple program. There are many cases. Accordingly, by stealing the ID and password used in the Internet phone to cause illegal calls, the situation is causing damages to customers from millions of won to millions of won per month.

본 발명이 해결하고자 하는 과제는 발생된 불법 전화 패턴을 CNN 알고리즘을 통해 학습하여 불법 전화를 탐지 및 차단하는 기술을 제공하는 것이다.The problem to be solved by the present invention is to provide a technology for detecting and blocking illegal calls by learning the generated illegal telephone pattern through the CNN algorithm.

본 발명의 일 실시예에 따른 불법 전화 검출 장치는 가입자 단말이 VoIP(Voice over Internet Protocol) 서비스를 이용함에 따라 생성하는 로우 패킷(Raw packet)을 상기 가입자 단말 또는 통화 교환기 중 적어도 하나로부터 수집하고, 상기 로우 패킷과 관련된 CDR 데이터(Call Detail Record Data)를 과금 서버로부터 수집하는 데이터 수집부, 상기 CDR 데이터로부터 추출한 서비스 이용 정보 및 상기 로우 패킷으로부터 추출한 서비스 세부 정보를 이용하여 학습 데이터를 생성하고, 상기 학습 데이터를 기 설정된 이미지화 규칙에 따라 이미지로 변환하여 학습 이미지를 생성하는 전처리부, 그리고 불법 전화 검출 모델을 통해, 상기 학습 이미지로부터 적어도 하나 이상의 특징들을 추출하고, 상기 특징들을 이용하여 상기 학습 이미지가 불법 전화와 관련되었는지 학습하는 학습부를 포함한다.The illegal call detection apparatus according to an embodiment of the present invention collects a raw packet generated by the subscriber station using a Voice over Internet Protocol (VoIP) service from at least one of the subscriber station or the call exchanger. A data collector configured to collect Call Detail Record Data related to the low packet from a charging server, service usage information extracted from the CDR data, and service data generated from the low packet to generate learning data; The preprocessing unit converts the training data into an image according to a preset imaging rule to generate a training image, and extracts at least one feature from the training image using an illegal phone detection model, and uses the features to extract the training image. To learn if it's associated with an illegal call It includes parts of s.

상기 서비스 이용 정보는 검출 시각 정보, 발신 번호 정보 또는 착신 번호 정보 중 적어도 하나를 포함하고, 상기 서비스 세부 정보는 착신 국가 정보, 소스 IP 정보, IP 국가 정보, 단말 식별자 정보 중 적어도 하나를 포함한다.The service usage information includes at least one of detection time information, caller number information or called party number information, and the service detail information includes at least one of called country information, source IP information, IP country information, and terminal identifier information.

상기 전처리부는 상기 서비스 이용 정보에 포함된 정보, 상기 서비스 세부 정보에 포함된 정보 순으로 테이블에 순차적으로 정렬하여 상기 학습 데이터를 생성한다.The preprocessor generates the learning data by sequentially arranging information in a table in order of information included in the service usage information and information included in the service detailed information.

상기 전처리부는 상기 테이블에 정렬된 정보들의 바이트 크기를 기준으로 상기 정보들을 각각 시각화한 단위 다각형들을 생성하고, 상기 단위 다각형들을 상기 테이블에 정렬된 순서로 배열하여 상기 학습 이미지를 생성한다.The preprocessor generates unit polygons each of which visualizes the information based on the byte size of the information arranged in the table, and generates the learning image by arranging the unit polygons in the order arranged in the table.

상기 단위 다각형들은 상기 정보들 각각의 바이트 크기에 비례하는 길이를 마주보는 임의의 양 변의 길이로 갖는 직사각형으로 이루어지며, 상기 학습 이미지 상에서 엇갈리도록 수직 방향으로 상기 테이블에 정렬된 순서로 배열된다.The unit polygons are formed in a rectangle having a length of any both sides facing a length proportional to a byte size of each of the pieces of information, and are arranged in the order arranged in the table in the vertical direction to be staggered on the learning image.

상기 불법 전화 검출 장치는 신규 학습 이미지가 생성된 경우, 상기 신규 학습 이미지를 상기 불법 전화 검출 모델에 입력하여 상기 신규 학습 이미지가 불법 전화와 관련되었는지 결정하는 불법 전화 탐지부를 더 포함한다.The illegal telephone detection apparatus further includes an illegal telephone detector configured to determine whether the new training image is related to an illegal telephone by inputting the new training image into the illegal telephone detection model when a new training image is generated.

상기 불법 전화 검출 장치는 상기 신규 학습 이미지가 불법 전화와 관련된 경우 상기 신규 학습 이미지와 관련된 가입자 단말을 차단하는 조치부를 더 포함한다.The illegal phone detecting apparatus further includes a measurer that blocks the subscriber terminal associated with the new learning image when the new learning image is associated with an illegal call.

본 발명의 일 실시예에 따른 불법 전화 검출 장치가 불법 전화 검출 모델을 학습시키는 방법은 기 탐지된 불법 전화에 의해 생성된 로우 패킷을 불법 전화와 관련된 가입자 단말 또는 통화 교환기 중 적어도 하나로부터 수집하고, 상기 로우 패킷과 관련된 CDR 데이터를 과금 서버로부터 수집하는 단계, 상기 CDR 데이터로부터 서비스 이용 정보를 추출하고, 상기 로우 패킷으로부터 서비스 세부 정보를 추출하는 단계, 상기 서비스 이용 정보 및 상기 서비스 세부 정보에 포함된 정보들을 이용하여 불법 전화 패턴 정보를 결정하는 단계, 상기 서비스 이용 정보, 상기 서비스 세부 정보 및 상기 불법 전화 패턴 정보를 이용하여 학습 데이터를 생성하는 단계, 상기 학습 데이터를 기 설정된 이미지화 규칙에 따라 이미지로 변환하여 학습 이미지를 생성하는 단계, 그리고 불법 전화 검출 모델을 통해 상기 학습 이미지가 불법 전화와 관련된 것으로 학습하는 단계를 포함한다.According to an embodiment of the present invention, a method for learning an illegal telephone detection model by an illegal telephone detection apparatus collects a low packet generated by a previously detected illegal telephone from at least one of a subscriber station or a call exchanger associated with an illegal telephone. Collecting CDR data related to the raw packet from a charging server, extracting service usage information from the CDR data, and extracting service detail information from the raw packet, included in the service usage information and the service detail information; Determining illegal telephone pattern information using information, generating learning data using the service usage information, the service detail information, and the illegal telephone pattern information, and converting the training data into an image according to a preset imaging rule. To generate the training image And from illegal call detection model includes the step of learning by the learning image is associated with a rogue phone.

상기 서비스 이용 정보는 검출 시각 정보, 발신 번호 정보 또는 착신 번호 정보 중 적어도 하나를 포함하고, 상기 서비스 세부 정보는 착신 국가 정보, 소스 IP 정보, IP 국가 정보, 단말 식별자 정보 중 적어도 하나를 포함하고, 상기 불법 전화 패턴 정보는 누적 발신 수 정보 또는 누적 착신 수 정보 중 적어도 하나를 포함한다.The service usage information includes at least one of detection time information, calling number information, or called number information, and the service detail information includes at least one of called country information, source IP information, IP country information, and terminal identifier information, The illegal telephone pattern information includes at least one of cumulative outgoing call count information and cumulative incoming call count information.

상기 불법 전화 패턴 정보를 결정하는 단계는 상기 서비스 이용 정보에 포함된 발신 번호 정보를 이용하여, 임계 시간 동안 상기 가입자 단말에서 발신한 누적 발신 수 정보를 결정하는 단계, 상기 서비스 이용 정보에 포함된 착신 번호 정보를 이용하여, 상기 임계 시간 동안 상기 가입자 단말에서 착신한 누적 착신 수 정보를 결정하는 단계, 그리고 상기 누적 발신 수 정보 또는 상기 누적 착신 수 정보 중 적어도 하나를 불법 전화와 관련된 것으로 태깅하는 단계를 포함한다.The determining of the illegal telephone pattern information may include determining cumulative outgoing call number information transmitted from the subscriber station during a threshold time by using caller ID information included in the service use information, and incoming call included in the service use information. Determining cumulative called number information received by the subscriber station during the threshold time using number information, and tagging at least one of the cumulative outgoing number information or the cumulative called number information as related to an illegal telephone call; Include.

상기 학습 데이터를 생성하는 단계는 상기 서비스 이용 정보에 포함된 정보, 상기 서비스 세부 정보에 포함된 정보, 상기 불법 전화 패턴 정보에 포함된 정보 순으로 테이블에 순차적으로 정렬하여 상기 학습 데이터를 생성한다.In the generating of the learning data, the learning data is generated by sequentially arranging the information in a table in order of information included in the service usage information, information included in the service detailed information, and information included in the illegal telephone pattern information.

상기 학습 이미지를 생성하는 단계는 상기 테이블에 정렬된 정보들의 바이트 크기를 기준으로 상기 테이블에 정렬된 정보들을 각각 시각화한 단위 다각형들을 생성하는 단계, 그리고 상기 단위 다각형들을 상기 테이블에 정렬된 순서로 배열하여 상기 학습 이미지를 생성하는 단계를 포함한다.The generating of the training image may include generating unit polygons, each of which visualizes the information arranged in the table based on the byte size of the information arranged in the table, and arranges the unit polygons in the order arranged in the table. Generating the learning image.

상기 단위 다각형들은 상기 테이블에 정렬된 정보들의 바이트 크기에 비례하는 길이를 마주보는 임의의 양 변의 길이로 갖는 직사각형 형태로 이루어지며, 상기 학습 이미지 상에서 엇갈리도록 수직 방향으로 순차적으로 배열된다.The unit polygons may have a rectangular shape having a length of arbitrary sides facing a length proportional to a byte size of the information arranged in the table, and are sequentially arranged in the vertical direction to be staggered on the learning image.

상기 불법 전화 검출 장치가 불법 전화 검출 모델을 학습시키는 방법은 신규 학습 이미지가 생성된 경우, 상기 신규 학습 이미지를 상기 불법 전화 검출 모델에 입력하여 상기 신규 학습 이미지가 불법 전화와 관련되었는지 결정하는 단계, 그리고 상기 신규 학습 이미지가 불법 전화와 관련된 경우 상기 신규 학습 이미지와 관련된 가입자 단말을 차단하는 단계를 더 포함한다.The method for the illegal telephone detection apparatus to learn the illegal telephone detection model may include: when the new training image is generated, determining whether the new training image is related to an illegal telephone by inputting the new training image into the illegal telephone detection model; And blocking the subscriber terminal associated with the new learning image when the new learning image is associated with an illegal telephone call.

본 발명에 따르면, 실시간으로 불법 전화를 탐지 및 차단함으로써, 불법 전화로 인한 과금 피해를 원천적으로 방지할 수 있다.According to the present invention, by detecting and blocking illegal calls in real time, it is possible to prevent billing damage caused by illegal calls.

도 1은 본 발명의 한 실시예에 따른 불법 전화 검출 장치가 구현되는 환경을 도시한 도면이다.
도 2는 본 발명의 한 실시예에 따른 불법 전화 검출 장치를 설명하는 도면이다.
도 3은 전처리부가 학습 이미지를 생성하는 방법을 설명하는 도면이다.
도 4는 전처리부가 단위 직사각형들 각각에 포함된 콘텐츠들을 정수화하는 방법을 설명하는 도면이다.
도 5는 학습부가 컨볼루션 필터를 통해 학습 이미지를 학습하는 방법을 설명하는 도면이다.
도 6은 불법 전화 검출 장치가 불법 전화 검출 모델을 학습시키는 방법을 설명하는 도면이다.
1 is a diagram illustrating an environment in which an illegal call detection device according to an embodiment of the present invention is implemented.
2 is a diagram illustrating an illegal phone detection apparatus according to an embodiment of the present invention.
3 is a diagram for describing a method of generating, by the preprocessor, a learning image.
FIG. 4 is a diagram for describing a method of preprocessing the contents included in each of the unit rectangles by the preprocessor.
5 is a diagram illustrating a method of learning by a learner to learn a training image through a convolution filter.
6 is a diagram for explaining a method for the illegal telephone detection apparatus to learn an illegal telephone detection model.

아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise. In addition, the terms “… unit”, “… unit”, “module”, etc. described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software. have.

도 1은 본 발명의 한 실시예에 따른 불법 전화 검출 장치가 구현되는 환경을 도시한 도면이다.1 is a diagram illustrating an environment in which an illegal call detection device according to an embodiment of the present invention is implemented.

도 1을 참고하면, 가입자 단말(100)은 VoIP(Voice over Internet Protocol) 서비스를 이용함에 따라 로우 패킷(Raw packet)을 생성한다.Referring to FIG. 1, the subscriber station 100 generates a raw packet according to a Voice over Internet Protocol (VoIP) service.

구체적으로, 가입자 단말(100)은 VoIP 서비스에 가입한 가입자들의 인터넷 전화 서비스 이용을 위한 인터넷 전화 단말 장치이다.Specifically, the subscriber terminal 100 is an Internet telephone terminal device for using the Internet telephone service of subscribers subscribed to the VoIP service.

가입자 단말(100)은 VoIP 단말을 포함할 수 있고, SoIP 폰, IP-PBX 또는 Call Box 등 물리적 VoIP 단말 장치이거나, PC나 모바일 기기에서 소프트웨어적으로 작동하는 Softphone 일 수 있다. 또한, 가입자 단말(100)은 VoIP 네트워크(400)를 통해 VoIP 서비스를 제공받기 위한 단말 장치가 포함될 수 있다.The subscriber station 100 may include a VoIP terminal, and may be a physical VoIP terminal device such as a SoIP phone, an IP-PBX, or a Call Box, or a softphone operating in software on a PC or a mobile device. In addition, the subscriber station 100 may include a terminal device for receiving VoIP service through the VoIP network 400.

가입자 단말(100)이 VoIP 서비스를 이용하는 경우, 가입자 단말(100)은 VoIP 네트워크(400)를 통해 통화 연결 요청을 포함하는 로우 패킷을 통화 교환기(200)로 전송한다.When the subscriber station 100 uses the VoIP service, the subscriber station 100 transmits a low packet including a call connection request to the call exchanger 200 through the VoIP network 400.

통화 교환기(200)는 가입자 단말(100)로부터 로우 패킷을 수신하면, 로우 패킷에 포함된 통화 연결 요청에 해당하는 착신 단말(미도시)로 통화 연결 요청 신호를 전달한다.When the call exchanger 200 receives a low packet from the subscriber terminal 100, the call exchanger 200 transmits a call connection request signal to a called terminal (not shown) corresponding to the call connection request included in the low packet.

통화 교환기(200)는 VoIP 서비스 제공자 망에 포함되고, 과금 서버(300)와 연동되어 가입자 단말(100) VoIP 서비스를 이용함에 따라 발생한 정보를 과금 서버(300)로 전송한다.The call exchanger 200 is included in the VoIP service provider network, and interoperates with the charging server 300 to transmit information generated by using the subscriber station 100 VoIP service to the charging server 300.

과금 서버(300)는 통화 교환기(200)로부터 수신한 정보를 이용하여 가입자 단말(100)에 대한 CDR 데이터(Call Detail Record Data)를 생성한다.The billing server 300 generates CDR data (Call Detail Record Data) for the subscriber station 100 using the information received from the call exchanger 200.

한편, 과금 서버(300)는 가입자 단말(100)이 특정 VoIP 서비스(예를 들면, IP-센트릭스(IP-Centrex) 또는 CFC(Calls Free Calls))을 사용하는 경우에도, 가입자 단말(100)에 대한 CDR 데이터를 생성할 수 있다.On the other hand, the billing server 300, even when the subscriber station 100 uses a specific VoIP service (for example, IP-Centrex or Calls Free Calls (CFC)), the subscriber station 100 CDR data can be generated.

VoIP 네트워크(400)는 가입자 단말(100)와 통화 교환기(200)를 연결하며, 가입자 단말(100)이 VoIP 서비스를 제공받는데 필요한 데이터를 송수신 할 수 있도록 하는 통상적인 인터넷 망일 수 있다.The VoIP network 400 connects the subscriber station 100 and the call exchanger 200, and may be a typical internet network that enables the subscriber station 100 to transmit and receive data necessary for receiving VoIP service.

불법 전화 검출 장치(500)는 가입자 단말(100) 또는 통화 교환기(200) 중 적어도 하나로부터 로우 패킷을 수집하고, 과금 서버(300)로부터 CDR 데이터를 수집하며, 로우 패킷과 CDR 데이터를 이용하여 학습 이미지를 생성하고, 학습 이미지를 불법 전화 검출 모델을 통해 학습하여 불법 전화를 탐지 및 차단한다. 이하, 불법 전화 검출 장치(500)에 대해 자세히 설명한다.The illegal telephone detection apparatus 500 collects a low packet from at least one of the subscriber station 100 or the call exchanger 200, collects CDR data from the charging server 300, and learns using the low packet and the CDR data. An image is generated and the learning image is trained through an illegal phone detection model to detect and block illegal calls. Hereinafter, the illegal telephone detection apparatus 500 will be described in detail.

도 2는 본 발명의 한 실시예에 따른 불법 전화 검출 장치를 설명하는 도면이고, 도 3은 전처리부가 학습 이미지를 생성하는 방법을 설명하는 도면이고, 도 4는 전처리부가 단위 직사각형들 각각에 포함된 콘텐츠들을 정수화하는 방법을 설명하는 도면이고, 도 5는 학습부가 컨볼루션 필터를 통해 학습 이미지를 학습하는 방법을 설명하는 도면이다.2 is a diagram illustrating an illegal telephone detection apparatus according to an embodiment of the present invention, FIG. 3 is a diagram illustrating a method of generating a learning image by the preprocessor, and FIG. 4 is a diagram of the preprocessor included in each of the unit rectangles. FIG. 5 is a diagram illustrating a method of integerizing contents, and FIG. 5 is a diagram illustrating a method of learning by a learning unit through a convolution filter.

도 2를 참고하면, 불법 전화 검출 장치(500)는 데이터 수집부(510), 전처리부(520), 학습부(530), 불법 전화 탐지부(540) 및 조치부(550)를 포함한다.Referring to FIG. 2, the illegal telephone detection apparatus 500 includes a data collection unit 510, a preprocessor 520, a learning unit 530, an illegal telephone detection unit 540, and an action unit 550.

데이터 수집부(510)는 가입자 단말(100)이 VoIP 서비스를 이용함에 따라 생성하는 로우 패킷(Raw packet)을 가입자 단말(100) 또는 통화 교환기(200) 중 적어도 하나로부터 수집한다.The data collector 510 collects a raw packet generated by the subscriber station 100 using the VoIP service from at least one of the subscriber station 100 and the call exchanger 200.

구체적으로, 가입자 단말(100)은 SIP(Session Initiation Protocol) 또는 ISUP(Integrated Services Digital Network (ISDN) User Part)를 통해 VoIP 서비스가 처리되는 경우, 각종 신호 정보가 포함된 로우 패킷을 생성하고, 데이터 수집부(510)는 생성한 로우 패킷을 수신한다. 표 1은 SIP 프로토콜을 사용하는 경우 생성되는 예시적인 로우 패킷의 필드 정보들을 나타낸다.Specifically, the subscriber station 100 when the VoIP service is processed through the Session Initiation Protocol (SIP) or the Integrated Services Digital Network (ISDN) User Part (ISP), generates a fellow packet including various signaling information, and The collector 510 receives the generated raw packet. Table 1 shows field information of an exemplary low packet generated when using the SIP protocol.

INVITE SIP/2.0INVITE SIP / 2.0 Call-idCall-id ViaVia FromFrom ToTo

또한, 데이터 수집부(510)는 가입자 단말(100)이 생성한 로우 패킷과 관련된 CDR 데이터(Call Detail Record Data)를 과금 서버(300)로부터 수집한다.CDR 데이터는 가입자 단말(100)이 VoIP 서비스를 이용함에 따라 발생한 요금을 청구하기 위해 필요한 정보를 포함하며, 구체적으로, 발신 번호 정보, 착신 번호 정보, 통화 시작 시각 정보 및 통화 시간 정보를 포함한다.In addition, the data collection unit 510 collects CDR data (Call Detail Record Data) associated with the raw packet generated by the subscriber station 100 from the charging server 300. The CDR data is the subscriber station 100 VoIP service It includes information necessary to charge the charges generated by using, and specifically, the caller ID information, the called party information, call start time information and call time information.

전처리부(520)는 CDR 데이터로부터 추출한 서비스 이용 정보 및 로우 패킷으로부터 추출한 서비스 세부 정보를 이용하여 학습 데이터를 생성한다.The preprocessor 520 generates the training data using the service usage information extracted from the CDR data and the service detail information extracted from the raw packet.

구체적으로, 전처리부(520)는 CDR 데이터를 수집한 시각을 이용하여 검출 시각 정보를 결정하고, CDR 데이터에 포함된 발신 번호 정보 또는 착신 번호 정보 중 적어도 하나를 추출하여 서비스 이용 정보를 생성한다. 즉, 서비스 이용 정보는 검출 시각 정보, 발신 번호 정보 또는 착신 번호 정보 중 적어도 하나를 포함한다.In detail, the preprocessor 520 determines the detection time information by using the collected time of the CDR data, and extracts at least one of the calling number information and the called number information included in the CDR data to generate service usage information. That is, the service usage information includes at least one of detection time information, caller number information or called party number information.

또한, 전처리부(520)는 로우 데이터에 포함된 정보들을 이용하여 착신 국가 정보, 소스 IP 정보, IP 국가 정보, 단말 식별자 중 적어도 하나를 결정하여 서비스 세부 정보를 생성한다. 즉, 서비스 세부 정보는 착신 국가 정보, 소스 IP 정보, IP 국가 정보, 단말 식별자 중 적어도 하나를 포함한다.In addition, the preprocessor 520 determines service destination information by determining at least one of destination country information, source IP information, IP country information, and terminal identifier using information included in the raw data. That is, the service detail information includes at least one of called country information, source IP information, IP country information, and terminal identifier.

전처리부(520)는 서비스 이용 정보에 포함된 정보, 서비스 세부 정보에 포함된 정보 순으로 테이블에 순차적으로 정렬하여 학습 데이터를 생성한다.The preprocessor 520 sequentially generates the learning data by sequentially sorting the table in the order of the information included in the service usage information and the information included in the service detailed information.

구체적으로, 전처리부(520)는 검출 시각 정보, 발신 번호 정보, 착신 번호 정보, 착신 국가 정보, 소스 IP 정보, IP 국가 정보, 단말 식별자 정보 순으로 테이블에 순차적으로 정렬하여 학습 데이터를 생성한다. 표 2는 학습 데이터의 예시를 나타내며, 표 2의 학습 데이터는 총 244바이트로 구성될 수 있다. In detail, the preprocessing unit 520 generates the learning data by sequentially arranging the table in the order of detection time information, calling number information, called number information, called country information, source IP information, IP country information, and terminal identifier information. Table 2 shows an example of the training data, and the training data of Table 2 may be configured with a total of 244 bytes.

검출
시각
detection
Time
발신
번호
Sent
number
착신
번호
Incoming
number
착신
국가
Incoming
country
소스 IPSource IP IP 국가IP country 단말
식별자
Terminal
Identifier
20
바이트
20
byte
20
바이트
20
byte
40
바이트
40
byte
40
바이트
40
byte
20
바이트
20
byte
40
바이트
40
byte
64
바이트
64
byte
2018/10/15/14:002018/10/15/14: 00 010-2139-1230010-2139-1230 02-529-021902-529-0219 KRKR 110.111.111110.111.111 KRKR 1wk121wk12

전처리부(520)는 생성한 학습 데이터를 기 설정된 이미지화 규칙에 따라 이미지로 변환하여 학습 이미지를 생성한다.도 3을 참고하면, 전처리부(520)는 테이블에 정렬된 정보들의 바이트 크기를 기준으로 정보들을 각각 시각화한 단위 다각형들을 생성하고, 단위 다각형들을 테이블에 정렬된 순서로 배열하여 학습 이미지를 생성한다.The preprocessor 520 converts the generated training data into an image according to a preset imaging rule to generate a training image. Referring to FIG. 3, the preprocessor 520 is based on a byte size of information arranged in a table. Unit polygons are generated by visualizing the information, and the unit polygons are arranged in a table arranged in order to generate a training image.

이 경우, 단위 다각형들은 정보들 각각의 바이트 크기에 비례하는 길이를 마주보는 임의의 양 변의 길이로 갖는 직사각형으로 이루어지며, 학습 이미지 상에서 엇갈리도록 수직 방향으로 순차적으로 배열된다.In this case, the unit polygons are made of rectangles having lengths of arbitrary sides facing lengths proportional to the byte size of each of the information, and are sequentially arranged in the vertical direction to be staggered on the training image.

예를 들면, 도 3에서, 전처리부(520)는 표 2의 정보들 각각에 대해 동일한 세로 길이를 갖고 바이트 크기를 세로 길이로 갖는 단위 직사각형을 생성할 수 있다.For example, in FIG. 3, the preprocessor 520 may generate a unit rectangle having the same vertical length for each of the information in Table 2 and the byte size as the vertical length.

한편, 전처리부(520)는 학습 데이터에서 가장 작은 바이트 크기를 갖는 정보를 결정하고, 해당 정보의 바이트 크기보다 작은 바이트 크기를 한 변의 길이로 갖는 다각형을 결정한다. 이후, 전처리부(520)는 결정한 다각형 모양 내부에 단위 직사각형들을 순차적으로 배열한다.Meanwhile, the preprocessor 520 determines the information having the smallest byte size in the training data, and determines the polygon having the length of one side having a byte size smaller than the byte size of the information. Thereafter, the preprocessor 520 sequentially arranges the unit rectangles within the determined polygonal shape.

예를 들면, 전처리부(520)는 표 2의 각 정보들 중 가장 작은 바이트 크기가 20바이트이므로, 20바이트보다 작은 18바이트를 가로 길이로 갖는 다각형을 결정하고, 다각형 내부에 각 정보들에 대한 단위 직사각형을 검출 시각 정보부터 단말 식별자 정보까지 순차적으로 배열할 수 있다.For example, the preprocessor 520 determines a polygon having a horizontal length of 18 bytes smaller than 20 bytes since the smallest byte size of each of the information in Table 2 is 20 bytes. The unit rectangles may be sequentially arranged from the detection time information to the terminal identifier information.

이 경우, 검출 시각 정보의 20바이트 중 18바이트는 첫 번째 열에, 나머지 2바이트는 두 번째 열에 표시된다. 또한, 발신 번호 정보의 20바이트 중 16바이트는 두 번째 열에, 나머지 4바이트는 세 번째 열에 표시된다. 이와 같은 방법으로 단위 직사각형들을 순차적으로 배열하면 단위 직사각형들이 전체 다각형 내에서 서로 엇갈리게 배열될 수 있다.In this case, 18 bytes of the 20 bytes of the detection time information are displayed in the first column and the remaining two bytes are displayed in the second column. Also, 16 out of 20 bytes of caller ID information are displayed in the second column, and the remaining 4 bytes are displayed in the third column. By sequentially arranging the unit rectangles in this manner, the unit rectangles may be alternately arranged in the entire polygon.

전처리부(520)는 단위 직사각형들 각각에 포함된 콘텐츠들을 정수화한다.The preprocessor 520 integerizes the contents included in each of the unit rectangles.

구체적으로, 전처리부(520)는 단위 직사각형들 각각에 비트 형식으로 입력된 콘텐츠들을 미리 설정된 비트 단위로 분할하고, 분할된 비트 단위들을 정수화한다.In detail, the preprocessor 520 divides content input in a bit format into each of the unit rectangles in preset bit units, and integerizes the divided bit units.

예를 들면, 도 4를 참고하면, 임의의 단위 직사각형에 포함된 "두"라는 음절은 UFT-8(Unicode Transformation Format-8bit) 형식으로 입력되는 경우 "111010111001000110010000"의 총 24비트로 구성된다. 이 경우, 전처리부(520)는 "111010111001000110010000"를 8비트 단위로 분할하여 "11101011", "10010001" 및 "10010000"를 생성하고, 분할된 비트 단위들을 각각 정수화할 수 있다. 정수화된 결과는 "235", "145" 및 "144"에 해당한다.For example, referring to FIG. 4, a syllable of “two” included in an arbitrary unit rectangle is composed of a total of 24 bits of “111010111001000110010000” when input in UFT-8 (Unicode Transformation Format-8bit) format. In this case, the preprocessor 520 may divide “111010111001000110010000” into 8-bit units to generate “11101011”, “10010001”, and “10010000”, and may integer each of the divided bit units. The integer result corresponds to "235", "145" and "144".

전처리부(520)는 단위 직사각형들이 서로 엇갈리게 배열된 전체 다각형을 이미지화 알고리즘을 이용하여 이미지화하여 학습 이미지를 생성한다. 예를 들면, 도 3에서, 18바이트를 한 변의 길이로 갖는 다각형을 이미지화 하는 경우 한 변의 길이를 144픽셀로 갖는 동일한 다각형 모양의 학습 이미지를 생성할 수 있다.The preprocessor 520 generates a training image by imaging the entire polygon in which the unit rectangles are staggered using an imaging algorithm. For example, in FIG. 3, when an image of a polygon having 18 bytes of one side length is imaged, a learning image having the same polygonal shape having a side length of 144 pixels may be generated.

학습부(530)는 불법 전화 검출 모델을 통해, 학습 이미지로부터 적어도 하나 이상의 특징들을 추출하고, 특징들을 이용하여 학습 이미지가 불법 전화와 관련되었는지 학습한다.The learning unit 530 extracts at least one or more features from the training image through the illegal telephone detection model, and learns whether the training image is associated with the illegal telephone using the features.

구체적으로, 학습부(530)는 CNN 알고리즘을 통해 학습 이미지가 불법 전화와 관련되었는지 또는 정상 전화와 관련되었는지 분류하는 불법 전화 검출 모델을 이용한다.In detail, the learner 530 uses an illegal phone detection model that classifies whether a learning image is associated with an illegal phone or a normal phone through a CNN algorithm.

불법 전화 검출 모델은 뉴럴 네트워크에 적어도 하나 이상의 컨볼루션 계층들로 구성되며, 학습부(530)는 컨볼루션 계층들의 컨볼루션 필터들을 통해 학습 이미지에 대한 특징들을 추출하고, 추출된 특징들을 뉴럴 네트워크를 이용하여 불법 전화와 관련된 학습 이미지인지 정상 전화와 관련된 학습 이미지인지 분류한다.The illegal phone detection model is composed of at least one convolution layer in the neural network, and the learning unit 530 extracts features of the training image through convolution filters of the convolution layers, and extracts the extracted features from the neural network. Use this to classify whether it is a learning image related to an illegal call or a learning image related to a normal call.

예를 들면, 도 5를 참고하면, 학습부(530)는 도 3의 학습 이미지에 대해 3*3 크기의 컨볼루션 필터를 이용하여 특징들을 추출할 수 있다. 이 경우, 도 3의 학습 이미지는 각 정보들이 서로 엇갈려 배열된바, 복수의 정보들에 대한 특징들을 동시에 추출할 수 있다.For example, referring to FIG. 5, the learner 530 may extract features using a 3 * 3 size convolution filter with respect to the training image of FIG. 3. In this case, in the learning image of FIG. 3, since the pieces of information are alternately arranged, features of a plurality of pieces of information may be simultaneously extracted.

구체적으로, 도 5에서, 학습부(530)는 최초 필터링 당시 검출 시각 정보와 발신 번호 정보 사이의 수직 연관성에 대한 특징을 추출하여 학습할 수 있으며, 이후 컨볼루션 필터가 이동함에 따라 검출 시각 정보, 발신 번호 정보 및 착신 번호 정보의 3개의 정보 사이의 수직 연관성에 대한 특징을 추출하여 학습할 수 있다.Specifically, in FIG. 5, the learner 530 extracts and learns a feature of the vertical correlation between the detection time information and the calling number information at the time of initial filtering, and then detects the detection time information as the convolution filter moves. The feature of the vertical association between the three pieces of information of the calling number and called number can be extracted and learned.

한편, 관리자는 불법 전화와 관련된 학습 이미지 또는 정상 전화와 관련된 학습 이미지를 불법 전화 검출 모델에 입력하여 분류 정확도를 결정하고, 분류 정확도가 미리 설정된 임계 정확도 이상이 될 때까지 불법 전화 검출 모델을 학습시킬 수 있다.On the other hand, the administrator inputs the learning image related to the illegal phone call or the learning image related to the normal phone to the illegal phone detection model to determine the classification accuracy, and trains the illegal phone detection model until the classification accuracy is higher than or equal to a preset threshold accuracy. Can be.

불법 전화 탐지부(540)는 신규 학습 이미지가 생성된 경우, 신규 학습 이미지의 학습 이미지를 불법 전화 검출 모델에 입력하여 신규 학습 이미지가 불법 전화와 관련되었는지 결정한다.When the new learning image is generated, the illegal telephone detection unit 540 inputs the learning image of the new learning image into the illegal telephone detection model to determine whether the new learning image is associated with the illegal telephone.

조치부(550)는 신규 학습 이미지가 불법 전화와 관련된 경우 신규 학습 이미지와 관련된 가입자 단말을 차단한다.The action unit 550 blocks the subscriber terminal associated with the new learning image when the new learning image is associated with an illegal telephone call.

구체적으로, 만일 불법 전화와 관련된 신규 학습 이미지인 경우, 조치부(550)는 신규 학습 이미지와 관련된 신규 학습 데이터를 확인한다.Specifically, if the new learning image associated with the illegal telephone, the action unit 550 checks the new learning data associated with the new learning image.

이후, 조치부(550)는 신규 학습 데이터에 포함된 발신 번호 정보, 착신 번호 정보, 착신 국가 정보 또는 단말 식별 정보와 관련된 전화를 결정하고, 결정한 전화를 차단하거나 안내 방송을 통해 통화가 불가하다는 음성을 제공한다.Subsequently, the action unit 550 determines a call associated with the calling number information, the called number information, the called country information, or the terminal identification information included in the new learning data, and blocks the determined call or calls through the announcement. To provide.

도 6은 불법 전화 검출 장치가 불법 전화 검출 모델을 학습시키는 방법을 설명하는 도면이다.6 is a diagram for explaining a method for the illegal telephone detection apparatus to learn an illegal telephone detection model.

도 6에서, 도 1 내지 도 5와 동일한 내용은 설명을 생략한다.In FIG. 6, the same contents as in FIGS. 1 to 5 will be omitted.

도 6을 참고하면, 불법 전화 검출 장치(500)는 기 탐지된 불법 전화에 의해 생성된 로우 패킷을 불법 전화와 관련된 가입자 단말 또는 통화 교환기 중 적어도 하나로부터 수집하고, 로우 패킷과 관련된 CDR 데이터를 과금 서버로부터 수집한다(S100).Referring to FIG. 6, the illegal telephone detection apparatus 500 collects a low packet generated by a previously detected illegal telephone from at least one of a subscriber station or a call exchanger associated with the illegal telephone, and charges CDR data related to the raw packet. Collect from the server (S100).

불법 전화 검출 장치(500)는 CDR 데이터로부터 서비스 이용 정보를 추출하고, 로우 패킷으로부터 서비스 세부 정보를 추출한다(S110).The illegal phone detection apparatus 500 extracts service usage information from the CDR data and extracts service detail information from the raw packet (S110).

불법 전화 검출 장치(500)는 서비스 이용 정보 및 서비스 세부 정보에 포함된 정보들을 이용하여 불법 전화 패턴 정보를 결정한다(S120).The illegal telephone detection apparatus 500 determines illegal telephone pattern information using information included in the service usage information and the service detailed information (S120).

구체적으로, 불법 전화 검출 장치(500)는 서비스 이용 정보에 포함된 발신 번호 정보 및 착신 번호 정보를 기반으로 누적 통화 수 정보를 생성한다. 이 경우, 누적 통화 수 정보는 누적 발신 수 정보 및 누적 착신 수 정보를 포함한다.Specifically, the illegal telephone detection apparatus 500 generates cumulative call number information based on the calling number information and the called number information included in the service usage information. In this case, the cumulative call count information includes cumulative call count information and cumulative incoming call count information.

불법 전화 검출 장치(500)는 임계 시간 동안 가입자 단말(100)에서 발신된 통화 수를 카운트하여 누적 발신 수 정보를 결정한다. 예를 들면, 불법 전화 검출 장치(500)는 1분, 3분 및 60분 동안 가입자 단말(100)에서 발신된 통화 수를 카운트하여 누적 발신 수 정보를 결정할 수 있다. 여기서, 임계 시간은 미리 설정될 수 있거나 동적으로 설정될 수 있다.The illegal phone detection apparatus 500 determines the cumulative outgoing call count information by counting the number of calls made by the subscriber station 100 during the threshold time. For example, the illegal phone detection apparatus 500 may determine the cumulative outgoing call number information by counting the number of calls originating from the subscriber station 100 for 1 minute, 3 minutes, and 60 minutes. Here, the threshold time may be set in advance or may be set dynamically.

또한, 불법 전화 검출 장치(500)는 임계 시간 동안 가입자 단말(100)에서 착신한 통화 수를 카운트하여 누적 착신 수 정보를 결정한다. 예를 들면, 불법 전화 검출 장치(500)는 1분, 3분 및 60분 동안 가입자 단말(100)에서 착신된 통화 수를 이용하여 누적 착신 수 정보를 결정할 수 있다. 여기서, 임계 시간은 미리 설정될 수 있거나 동적으로 설정될 수 있다.In addition, the illegal phone detection apparatus 500 determines the cumulative incoming number information by counting the number of calls received by the subscriber station 100 during the threshold time. For example, the illegal phone detection apparatus 500 may determine the cumulative incoming number information using the number of calls received from the subscriber station 100 for 1 minute, 3 minutes, and 60 minutes. Here, the threshold time may be set in advance or may be set dynamically.

불법 전화 검출 장치(500)는 누적 발신 수 정보 또는 누적 착신 수 정보 중 적어도 하나를 포함하는 불법 전화 패턴 정보를 불법 전화와 관련된 것으로 태깅한다.The illegal telephone detection apparatus 500 tags illegal telephone pattern information including at least one of cumulative outgoing call count information and cumulative incoming call count information as related to an illegal call.

구체적으로, 불법 전화 검출 장치(500)는 수집된 로우 데이터 및 CDR 데이터가 불법 전화에 의해 생성된 것이므로, 결정한 정보들을 불법 전화와 관련된 것으로 태깅한다.Specifically, the illegal telephone detection apparatus 500 tags the determined information as related to the illegal telephone since the collected raw data and CDR data are generated by the illegal telephone.

불법 전화 검출 장치(500)는 서비스 이용 정보, 서비스 세부 정보 및 불법 전화 패턴 정보를 이용하여 학습 데이터를 생성한다.The illegal telephone detection apparatus 500 generates learning data using service usage information, service detail information, and illegal telephone pattern information.

구체적으로, 불법 전화 검출 장치(500)는 서비스 이용 정보에 포함된 정보, 서비스 세부 정보에 포함된 정보, 불법 전화 패턴 정보에 포함된 정보 순으로 테이블에 순차적으로 정렬하여 학습 데이터를 생성한다(S130).In detail, the illegal phone detecting apparatus 500 generates learning data by sequentially sorting the table in the order of information included in the service usage information, information included in the service detail information, and information included in the illegal telephone pattern information (S130). ).

예를 들면, 불법 전화 검출 장치(500)는 검출 시각 정보, 발신 번호 정보, 착신 번호 정보, 착신 국가 정보, 소스 IP 정보, IP 국가 정보, 단말 식별자 정보, 누적 발신 수 정보, 누적 착신 수 정보 순으로 테이블에 순차적으로 정렬하여 학습 데이터를 생성할 수 있다.For example, the illegal telephone detection apparatus 500 includes order of detection time information, caller ID information, caller ID information, callee country information, source IP information, IP country information, terminal identifier information, cumulative call count information, and cumulative call count information. You can create training data by sorting the table sequentially.

불법 전화 검출 장치(500)는 학습 데이터를 기 설정된 이미지화 규칙에 따라 이미지로 변환하여 학습 이미지를 생성한다.The illegal phone detection apparatus 500 generates a learning image by converting the learning data into an image according to a preset imaging rule.

구체적으로, 불법 전화 검출 장치(500)는 테이블에 정렬된 정보들의 바이트 크기를 기준으로 테이블에 정렬된 정보들을 각각 시각화한 단위 다각형들을 생성하고, 단위 다각형들을 테이블에 정렬된 순서로 배열한다(S140).In detail, the illegal telephone detection apparatus 500 generates unit polygons each of which visualizes the information arranged in the table based on the byte size of the information arranged in the table, and arranges the unit polygons in the order arranged in the table (S140). ).

불법 전화 검출 장치(500)는 단위 직사각형들 각각에 비트 형식으로 입력된 콘텐츠들을 미리 설정된 비트 단위로 분할하고, 분할된 비트 단위들을 정수화한다(S150).The illegal telephone detection apparatus 500 divides the content input in the bit format into each of the unit rectangles in preset bit units, and integers the divided bit units (S150).

불법 전화 검출 장치(500)는 단위 직사각형들이 서로 엇갈리게 배열된 전체 다각형을 이미지화 알고리즘을 이용하여 이미지화하여 학습 이미지를 생성한다(S160).The illegal phone detection apparatus 500 generates a learning image by imaging the entire polygon in which the unit rectangles are staggered from each other using an imaging algorithm (S160).

불법 전화 검출 장치(500)는 불법 전화 검출 모델을 통해 학습 이미지가 불법 전화와 관련된 것으로 학습한다(S170). 이 경우, 생성된 학습 이미지는 서비스 이용 정보 및 서비스 세부 정보 외에도 누적 발신 수 정보 또는 누적 착신 수 정보 중 적어도 하나를 포함하는 불법 전화 패턴 정보를 포함하므로, 임계 시간 동안 수집된 불법 전화와 관련된 패턴을 추가로 학습할 수 있다.The illegal phone detection apparatus 500 learns that the learning image is associated with an illegal phone through the illegal phone detection model (S170). In this case, the generated learning image includes illegal call pattern information including at least one of cumulative call count information or cumulative call count information in addition to the service usage information and the service detail information. You can learn more.

이후, 불법 전화 검출 장치(500)는 신규 학습 이미지가 생성된 경우, 신규 학습 이미지를 불법 전화 검출 모델에 입력하여 신규 학습 이미지가 불법 전화와 관련되었는지 결정하고, 신규 학습 이미지가 불법 전화와 관련된 경우 신규 학습 이미지와 관련된 가입자 단말을 차단할 수 있다.Subsequently, when the new phone image is generated, the illegal phone detection apparatus 500 determines whether the new phone image is associated with an illegal phone by inputting the new phone image into the illegal phone detection model, and when the new phone image is associated with an illegal phone. The subscriber station associated with the new learning image may be blocked.

본 발명에 따르면, 실시간으로 불법 전화를 탐지 및 차단함으로써, 불법 전화로 인한 과금 피해를 원천적으로 방지할 수 있다.According to the present invention, by detecting and blocking illegal calls in real time, it is possible to prevent billing damage caused by illegal calls.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (14)

불법 전화 검출 장치로서,
가입자 단말이 VoIP(Voice over Internet Protocol) 서비스를 이용함에 따라 생성하는 로우 패킷(Raw packet)을 상기 가입자 단말 또는 통화 교환기 중 적어도 하나로부터 수집하고, 상기 로우 패킷과 관련된 CDR 데이터(Call Detail Record Data)를 과금 서버로부터 수집하는 데이터 수집부,
상기 CDR 데이터로부터 추출한 서비스 이용 정보 및 상기 로우 패킷으로부터 추출한 서비스 세부 정보를 이용하여 학습 데이터를 생성하고, 상기 학습 데이터를 기 설정된 이미지화 규칙에 따라 이미지로 변환하여 학습 이미지를 생성하는 전처리부, 그리고
불법 전화 검출 모델을 통해, 상기 학습 이미지로부터 적어도 하나 이상의 특징들을 추출하고, 상기 특징들을 이용하여 상기 학습 이미지가 불법 전화와 관련되었는지 학습하는 학습부
를 포함하는 불법 전화 검출 장치.
As an illegal telephone detection device,
Collect a raw packet from at least one of the subscriber station or the call exchanger generated by the subscriber station using a Voice over Internet Protocol (VoIP) service, and call detail record data (CDR data) associated with the raw packet. Data collection unit for collecting the from the billing server,
A preprocessing unit generating training data by using the service usage information extracted from the CDR data and the service detail information extracted from the raw packet, and converting the training data into an image according to a preset imaging rule to generate a training image; and
A learning unit for extracting at least one or more features from the training image and learning whether the training image is associated with an illegal telephone through the illegal telephone detection model
Illegal call detection device comprising a.
제1항에서,
상기 서비스 이용 정보는
검출 시각 정보, 발신 번호 정보 또는 착신 번호 정보 중 적어도 하나를 포함하고,
상기 서비스 세부 정보는
착신 국가 정보, 소스 IP 정보, IP 국가 정보, 단말 식별자 정보 중 적어도 하나를 포함하는 불법 전화 검출 장치.
In claim 1,
The service usage information is
At least one of the detection time information, the calling number information, or the called number information,
The service details
And illegal phone detection device including at least one of a called country information, source IP information, IP country information, and terminal identifier information.
제1항에서,
상기 전처리부는
상기 서비스 이용 정보에 포함된 정보, 상기 서비스 세부 정보에 포함된 정보 순으로 테이블에 순차적으로 정렬하여 상기 학습 데이터를 생성하는 불법 전화 검출 장치.
In claim 1,
The pretreatment unit
And generating the learning data by sequentially arranging the information in the table in the order of the information included in the service usage information and the information included in the service detailed information.
제3항에서,
상기 전처리부는
상기 테이블에 정렬된 정보들의 바이트 크기를 기준으로 상기 정보들을 각각 시각화한 단위 다각형들을 생성하고, 상기 단위 다각형들을 상기 테이블에 정렬된 순서로 배열하여 상기 학습 이미지를 생성하는 불법 전화 검출 장치.
In claim 3,
The pretreatment unit
And generating unit polygons each of which visualizes the information on the basis of the byte size of the information arranged in the table, and generating the learning image by arranging the unit polygons in the order arranged in the table.
제4항에서,
상기 단위 다각형들은
상기 정보들 각각의 바이트 크기에 비례하는 길이를 마주보는 임의의 양 변의 길이로 갖는 직사각형으로 이루어지며, 상기 학습 이미지 상에서 엇갈리도록 수직 방향으로 상기 테이블에 정렬된 순서로 배열되는 불법 전화 검출 장치.
In claim 4,
The unit polygons
And a rectangle having a length of any both sides facing a length proportional to a byte size of each of the pieces of information, and arranged in an order arranged on the table in a vertical direction to be staggered on the learning image.
제1항에서,
신규 학습 이미지가 생성된 경우, 상기 신규 학습 이미지를 상기 불법 전화 검출 모델에 입력하여 상기 신규 학습 이미지가 불법 전화와 관련되었는지 결정하는 불법 전화 탐지부
를 더 포함하는 불법 전화 검출 장치.
In claim 1,
When a new learning image is generated, an illegal call detection unit for inputting the new learning image into the illegal phone detection model to determine whether the new learning image is related to an illegal call.
Illegal call detection device further comprising.
제6항에서,
상기 신규 학습 이미지가 불법 전화와 관련된 경우 상기 신규 학습 이미지와 관련된 가입자 단말을 차단하는 조치부
를 더 포함하는 불법 전화 검출 장치.
In claim 6,
An action unit that blocks a subscriber terminal associated with the new learning image when the new learning image is associated with an illegal telephone call
Illegal call detection device further comprising.
불법 전화 검출 장치가 불법 전화 검출 모델을 학습시키는 방법으로서,
기 탐지된 불법 전화에 의해 생성된 로우 패킷을 불법 전화와 관련된 가입자 단말 또는 통화 교환기 중 적어도 하나로부터 수집하고, 상기 로우 패킷과 관련된 CDR 데이터를 과금 서버로부터 수집하는 단계,
상기 CDR 데이터로부터 서비스 이용 정보를 추출하고, 상기 로우 패킷으로부터 서비스 세부 정보를 추출하는 단계,
상기 서비스 이용 정보 및 상기 서비스 세부 정보에 포함된 정보들을 이용하여 불법 전화 패턴 정보를 결정하는 단계,
상기 서비스 이용 정보, 상기 서비스 세부 정보 및 상기 불법 전화 패턴 정보를 이용하여 학습 데이터를 생성하는 단계,
상기 학습 데이터를 기 설정된 이미지화 규칙에 따라 이미지로 변환하여 학습 이미지를 생성하는 단계, 그리고
불법 전화 검출 모델을 통해 상기 학습 이미지가 불법 전화와 관련된 것으로 학습하는 단계
를 포함하는 모델 학습 방법.
As a method for the illegal telephone detection device to learn the illegal telephone detection model,
Collecting the raw packet generated by the detected illegal telephone from at least one of a subscriber station or a call exchanger associated with the illegal telephone, and collecting CDR data related to the raw packet from a charging server;
Extracting service usage information from the CDR data and extracting service details from the raw packet;
Determining illegal telephone pattern information using the service usage information and the information included in the service detailed information;
Generating learning data using the service usage information, the service detailed information, and the illegal telephone pattern information;
Generating a training image by converting the training data into an image according to a preset imaging rule, and
Learning that the learning image is related to an illegal call through an illegal call detection model
Model learning method comprising a.
제8항에서,
상기 서비스 이용 정보는
검출 시각 정보, 발신 번호 정보 또는 착신 번호 정보 중 적어도 하나를 포함하고,
상기 서비스 세부 정보는
착신 국가 정보, 소스 IP 정보, IP 국가 정보, 단말 식별자 정보 중 적어도 하나를 포함하고,
상기 불법 전화 패턴 정보는
누적 발신 수 정보 또는 누적 착신 수 정보 중 적어도 하나를 포함하는 모델 학습 방법.
In claim 8,
The service usage information is
At least one of the detection time information, the calling number information, or the called number information,
The service details
At least one of a called country information, source IP information, IP country information, and terminal identifier information;
The illegal call pattern information
A model training method comprising at least one of cumulative call count information or cumulative called count information.
제8항에서,
상기 불법 전화 패턴 정보를 결정하는 단계는
상기 서비스 이용 정보에 포함된 발신 번호 정보를 이용하여, 임계 시간 동안 상기 가입자 단말에서 발신한 누적 발신 수 정보를 결정하는 단계,
상기 서비스 이용 정보에 포함된 착신 번호 정보를 이용하여, 상기 임계 시간 동안 상기 가입자 단말에서 착신한 누적 착신 수 정보를 결정하는 단계, 그리고
상기 누적 발신 수 정보 또는 상기 누적 착신 수 정보 중 적어도 하나를 불법 전화와 관련된 것으로 태깅하는 단계
를 포함하는 모델 학습 방법.
In claim 8,
The determining of the illegal call pattern information
Determining cumulative outgoing call number information transmitted from the subscriber station during a threshold time using caller ID information included in the service usage information;
Determining cumulative called number information received by the subscriber station during the threshold time using the called number information included in the service usage information; and
Tagging at least one of the cumulative outgoing call information or the cumulative incoming call information as related to an illegal call;
Model learning method comprising a.
제8항에서,
상기 학습 데이터를 생성하는 단계는
상기 서비스 이용 정보에 포함된 정보, 상기 서비스 세부 정보에 포함된 정보, 상기 불법 전화 패턴 정보에 포함된 정보 순으로 테이블에 순차적으로 정렬하여 상기 학습 데이터를 생성하는 모델 학습 방법.
In claim 8,
Generating the training data
And generating the training data by sequentially arranging the information in the table in order of information included in the service usage information, information included in the service detailed information, and information included in the illegal telephone pattern information.
제11항에서,
상기 학습 이미지를 생성하는 단계는
상기 테이블에 정렬된 정보들의 바이트 크기를 기준으로 상기 테이블에 정렬된 정보들을 각각 시각화한 단위 다각형들을 생성하는 단계, 그리고
상기 단위 다각형들을 상기 테이블에 정렬된 순서로 배열하여 상기 학습 이미지를 생성하는 단계
를 포함하는 모델 학습 방법.
In claim 11,
Generating the training image
Generating unit polygons each of which visualizes the information arranged in the table based on the byte size of the information arranged in the table, and
Generating the training image by arranging the unit polygons in an order arranged on the table
Model learning method comprising a.
제12항에서,
상기 단위 다각형들은
상기 테이블에 정렬된 정보들의 바이트 크기에 비례하는 길이를 마주보는 임의의 양 변의 길이로 갖는 직사각형 형태로 이루어지며, 상기 학습 이미지 상에서 엇갈리도록 수직 방향으로 순차적으로 배열되는 모델 학습 방법.
In claim 12,
The unit polygons
And a rectangular shape having a length of any both sides facing a length proportional to a byte size of the information arranged in the table, and sequentially arranged in the vertical direction to be staggered on the training image.
제8항에서,
신규 학습 이미지가 생성된 경우, 상기 신규 학습 이미지를 상기 불법 전화 검출 모델에 입력하여 상기 신규 학습 이미지가 불법 전화와 관련되었는지 결정하는 단계, 그리고
상기 신규 학습 이미지가 불법 전화와 관련된 경우 상기 신규 학습 이미지와 관련된 가입자 단말을 차단하는 단계
를 더 포함하는 모델 학습 방법.
In claim 8,
When a new learning image is generated, inputting the new learning image into the illegal telephone detection model to determine whether the new learning image is associated with illegal telephone, and
Blocking the subscriber terminal associated with the new learning image when the new learning image is associated with an illegal telephone call;
Model learning method further comprising.
KR1020180144892A 2018-06-20 2018-11-21 Apparatus and method for detecting illegal call KR102135242B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19821679.8A EP3813347B1 (en) 2018-06-20 2019-03-14 Apparatus and method for detecting illegal call
PCT/KR2019/002966 WO2019245131A1 (en) 2018-06-20 2019-03-14 Apparatus and method for detecting illegal call
US17/125,339 US11323560B2 (en) 2018-06-20 2020-12-17 Apparatus and method for detecting illegal call

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180071042 2018-06-20
KR20180071042 2018-06-20
KR20180087377 2018-07-26
KR1020180087377 2018-07-26

Publications (2)

Publication Number Publication Date
KR20200003350A true KR20200003350A (en) 2020-01-09
KR102135242B1 KR102135242B1 (en) 2020-07-17

Family

ID=69154915

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180144892A KR102135242B1 (en) 2018-06-20 2018-11-21 Apparatus and method for detecting illegal call

Country Status (1)

Country Link
KR (1) KR102135242B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090079330A (en) * 2008-01-17 2009-07-22 한남대학교 산학협력단 Intrusion detection system using SVM and method for operating the same
KR20120010372A (en) * 2010-07-26 2012-02-03 에스케이 텔레콤주식회사 Auto detecting system and method for illegal call
KR20160141613A (en) * 2015-06-01 2016-12-09 주식회사 케이티 System and method for detecting illegal traffic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090079330A (en) * 2008-01-17 2009-07-22 한남대학교 산학협력단 Intrusion detection system using SVM and method for operating the same
KR20120010372A (en) * 2010-07-26 2012-02-03 에스케이 텔레콤주식회사 Auto detecting system and method for illegal call
KR20160141613A (en) * 2015-06-01 2016-12-09 주식회사 케이티 System and method for detecting illegal traffic

Also Published As

Publication number Publication date
KR102135242B1 (en) 2020-07-17

Similar Documents

Publication Publication Date Title
US11516339B2 (en) Systems and methods for providing calling party information
US20120287823A1 (en) Verification method and system for screening internet caller id spoofs and malicious phone calls
KR101129752B1 (en) Detection of spam/telemarketing phone campaigns with impersonated caller identities in converged networks
US11223955B2 (en) Mitigation of spoof communications within a telecommunications network
KR101218253B1 (en) Fraud security detection system and method
US8913493B2 (en) Obtaining and using confidence metric statistics to identify denial-of-service attacks
WO2003032614A1 (en) Method and apparatus for teleconferencing
WO2021033851A1 (en) Fraudulent call detection system based on machine learning and control method thereof
CN106850552A (en) A kind of method that harmful Call Intercept is realized based on signaling re-injection
CN110798460B (en) Media gateway detection method, device and readable storage medium
KR102135242B1 (en) Apparatus and method for detecting illegal call
WO2019190438A2 (en) Ott bypass fraud detection by using call detail record and voice quality analytics
US11323560B2 (en) Apparatus and method for detecting illegal call
Peterson Secure Telephone Identity Threat Model
EP2676425A1 (en) A bypass detection system resembling human behaviour
CN102752463A (en) Personal communication code multi-number simultaneous ringing system and method
KR101379779B1 (en) Caller Information Modulated Voice/Message Phishing Detecting and Blocking Method
KR20030035237A (en) Accounting Method In Gatekeeper Direct Mode
RU2765483C2 (en) Method for recognizing and processing spam call
Sherr et al. Can they hear me now? A security analysis of law enforcement wiretaps
CN100539617C (en) Detect the method for telephone subscriber at same gateway/gateway controller equipment
WO2015163563A1 (en) Illegal internet international outgoing call cut-off device and illegal internet international outgoing call cut-off method using pattern matching
Gruber et al. Architecture for trapping toll fraud attacks using a voip honeynet approach
FESTOR Understanding Telephony Fraud as an Essential Step to Better Fight It
Wu et al. International Caller ID Spoofing Fraud Prevention for IP Multimedia Subsystem Networks

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant