KR20190132113A - Dermal filler composition comprising porous microparticles of biodegradable polymer - Google Patents

Dermal filler composition comprising porous microparticles of biodegradable polymer Download PDF

Info

Publication number
KR20190132113A
KR20190132113A KR1020180057383A KR20180057383A KR20190132113A KR 20190132113 A KR20190132113 A KR 20190132113A KR 1020180057383 A KR1020180057383 A KR 1020180057383A KR 20180057383 A KR20180057383 A KR 20180057383A KR 20190132113 A KR20190132113 A KR 20190132113A
Authority
KR
South Korea
Prior art keywords
biodegradable polymer
filler composition
fine particles
molding
weight
Prior art date
Application number
KR1020180057383A
Other languages
Korean (ko)
Inventor
김진수
신왕수
박나정
고영주
김준배
Original Assignee
주식회사 삼양바이오팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양바이오팜 filed Critical 주식회사 삼양바이오팜
Priority to KR1020180057383A priority Critical patent/KR20190132113A/en
Publication of KR20190132113A publication Critical patent/KR20190132113A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0059Cosmetic or alloplastic implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Abstract

Provided is a dermal filler composition, comprising porous microparticles of biodegradable polymer. The present invention can provide the effect of maintaining the volume due to the volume of the polymer even immediately after the procedure.

Description

생분해성 고분자의 다공성 미립자를 포함하는 성형 필러 조성물{Dermal filler composition comprising porous microparticles of biodegradable polymer}Dermal filler composition comprising porous microparticles of biodegradable polymer

본 발명은 생분해성 고분자의 다공성 미립자를 포함하는 성형 필러 조성물에 관한 것이다.The present invention relates to a molding filler composition comprising porous fine particles of a biodegradable polymer.

과거에는 건강한 삶을 바라는 사람이 많았지만, 인구 고령화 시대가 다가오면서 사람들은 건강한 삶과 함께 아름다운 삶을 원하고 있다. 아름다운 삶을 원하는 사람이 많아질수록, 다양한 관련 제품들이 시장에 나오고 있다.In the past, many people wanted a healthy life, but as the age of population approaches, people want a healthy life and a beautiful life. As more people want a beautiful life, a variety of related products are on the market.

식품, 의약, 화장품 등 다양한 분야에서 노화를 예방하고 치료하는 제품이 출시되었다. 그 중에서 의약분야의 대표적인 제품으로는 보툴리늄 톡신과 안면용 필러가 있다. 처음에는 근육이완을 위한 목적으로 사용되던 보툴리늄 톡신의 경우 현재는 미용을 목적으로 안면 주름 개선을 위한 형태로 사용되는 경우가 훨씬 많다. 또한 콜라겐, 히알루론산 등 안전하면서 생체흡수가 되어 피부의 볼륨 충진제로 사용할 수 있는 필러 시장도 급격하게 성장하고 있다.Products for preventing and treating aging have been released in various fields such as food, medicine and cosmetics. Among them, botulinum toxin and facial fillers are typical products in the medical field. Botulinum toxin, which was initially used for muscle relaxation, is now more often used in the form of facial wrinkles for cosmetic purposes. In addition, the filler market, which can be used as a volume filler for skin by being safe and bioabsorbed, such as collagen and hyaluronic acid, is also rapidly growing.

필러 제품은 발전 과정에서 따라 4세대로 구분된다.Filler products are divided into four generations according to the development process.

1세대 필러는 동물에게서 추출한 콜라겐 성분을 사용하였다. 하지만 콜라겐 알레르기 반응이 발생하고, 1~3개월의 짧은 유지기간으로 인해 현재는 거의 사용되지 않고 있는 필러이다.First-generation fillers used collagen components extracted from animals. However, due to a collagen allergic reaction and a short maintenance period of 1 to 3 months, it is rarely used today.

2세대 필러는 히알루론산 성분의 필러로 현재 시장의 90%를 차지하고 있다. 히알루론산은 인체 내의 관절액, 연골, 피부 등에 존재하는 안전한 성분이다. 하지만 비가교 히알루론산의 경우는 피부내에 주사 주입 후 하루만에 분해가 되어 효과가 없다. 따라서 많은 업체들이 히알루론산을 가교하여 1~1.5년의 효과를 나타내는 필러를 만들고 있다. 이 때, 가교를 위해 사용되는 가교제가 많을수록, 인체에서 독성을 유발할 수 있기 때문에 사용된 가교제를 완벽히 제거하는 기술이 중요하다.The second-generation filler is a hyaluronic acid-based filler and currently occupies 90% of the market. Hyaluronic acid is a safe ingredient present in joint fluid, cartilage, and skin in the human body. However, non-crosslinked hyaluronic acid is ineffective in one day after injection into the skin. Therefore, many companies cross-link hyaluronic acid to make fillers that have a 1-1.5 year effect. At this time, the more crosslinking agents used for crosslinking, the more important is the technology to completely remove the crosslinking agent used because it may cause toxicity in the human body.

3세대 필러는 생체 내에서 쉽게 분해가 되지 않는 물질로 만들어진 칼슘 필러와 영구적으로 분해되지 않는 폴리메틸메타크릴레이트(PMMA) 필러이다. 칼슘 필러의 경우는 잘 분해가 되지 않기 때문에 시술이 잘 될 경우 효과가 오래 지속된다는 장점은 있으나, 시술 후 결과가 마음에 들지 않을 경우, 주입한 원료가 완전히 생분해되기까지 오랜 시간을 기다려야 한다는 단점이 있다. PMMA 필러는 영구적인 효과를 기대할 수 있으나, 시술이 잘 못될 경우 제거가 어렵다는 단점이 있다. 또한, 원료 물질이 인체 내에 오랜 시간 남아있게 되어 부작용 발생률도 높기 때문에 시장에서 퇴출 위기에 놓여 있다.Third generation fillers are calcium fillers made of materials that do not readily degrade in vivo and polymethylmethacrylate (PMMA) fillers that do not permanently degrade. Calcium fillers do not decompose well, so the effect is long lasting if the procedure is good, but if you do not like the results after the procedure, you have to wait a long time until the raw material is completely biodegraded have. PMMA fillers can be expected to have a permanent effect, but it is difficult to remove if the procedure is wrong. In addition, the raw material remains in the human body for a long time, so the side effects are high, and the market is in danger of exiting the market.

4세대 필러는 생분해성 고분자를 사용한 필러로 현재 시장에서 많은 주목을 받고 있다. 생분해성 고분자 필러는 제품 자체의 부피로 피부의 볼륨을 유지하는 히알루론산 필러와는 다르게, 고분자가 생분해되면서 콜라겐의 생성을 유도하여 자연스럽게 볼륨을 회복하고 유지하는 필러이다. 유지기간은 고분자의 분자량으로 조절이 가능하며 현재 출시된 제품들은 1~4년의 다양한 기간으로 볼륨 유지가 가능하다. 하지만 시술 후 1주일 이내에 초기 볼륨이 대폭 감소했다가, 4주~6개월에 걸쳐 서서히 볼륨이 차오른다는 단점이 있다.Fourth-generation fillers are currently attracting much attention in the market as fillers using biodegradable polymers. Biodegradable polymer fillers, unlike hyaluronic acid fillers that maintain the volume of the skin in the volume of the product itself, are fillers that naturally restore and maintain the volume by inducing the production of collagen as the polymer biodegrades. The maintenance period can be controlled by the molecular weight of the polymer, and currently released products can maintain the volume for various periods of 1 to 4 years. However, there is a disadvantage that the initial volume decreases significantly within one week after the procedure, and the volume gradually rises over four weeks to six months.

한국등록특허 제1572256호는 폴리카프로락톤 폴리머를 용매에 가용화한 후 가용화된 폴리카프로락톤 폴리머를 계면활성제가 포함되어 있고, 20 내지 대략 10,000 cP 사이 범위의 점도를 가지는 액체와 혼합하고; 얻어진 용액으로부터 폴리카프로락톤-포함 마이크로입자들을 형성하는 단계를 포함하는 폴리카프로락톤-포함 마이크로 입자의 제조방법, 및 상기 제조방법에 의해 얻어진, 적어도 i) 5 내지 200 ㎛ 범위의 직경, ii) 균일한(homogenous) 밀도, 형태 및 함량(content), iii) 필수적으로 구형인 미소구체(spherical microspheres), iv) 부드러운 표면의 특징을 갖는 마이크로 입자를 개시하고 있다. 그러나, 이러한 마이크로 입자는 부드럽고 매끈한 표면을 갖는 것으로, 제조된 필러는 시술 후 1주일 이내에 초기 볼륨이 대폭 감소했다가, 4주~6개월에 걸쳐 서서히 볼륨이 차오른다는 단점이 있다.Korean Patent No. 1572256 discloses solubilizing a polycaprolactone polymer in a solvent and then mixing the solubilized polycaprolactone polymer with a liquid containing a surfactant and having a viscosity ranging from 20 to approximately 10,000 cP; A process for preparing polycaprolactone-comprising microparticles comprising forming polycaprolactone-comprising microparticles from a solution obtained, and at least i) a diameter in the range of from 5 to 200 μm, ii) uniformity obtained by said process Homogenous density, morphology and content, iii) essentially spherical microspheres, iv) soft particles characterized by a smooth surface. However, these microparticles have a smooth and smooth surface, and the prepared filler has a disadvantage in that the initial volume decreases significantly within one week after the procedure, and then gradually increases in volume over 4 weeks to 6 months.

한국등록특허 제1142234호는 체내 투입 후 요실금 치료용 벌킹제 또는 필러로 사용되는 다공성의 생분해성 고분자 미세입자, 및 온도감응성 상전이 생체적합성 고분자 수용액을 포함하고 체외에서 겔상으로 변환시킨 후, 체내에 도입되는 주사주입제를 개시하고 있다. 상기 생분해성 고분자 미세입자는 다공율이 80 ~ 96 %이고, 그 기공의 직경이 25 ~ 500㎛이며, 입자의 직경이 100 ~ 5,000㎛ 범위로서, 입자의 크기가 너무 커서, 주사주입에 상당한 어려움이 있을 뿐만 아니라 안면용으로는 사용이 거의 불가능하다.Korean Patent No. 1142234 includes a porous biodegradable polymer microparticle used as a bulking agent or filler for urinary incontinence after incorporation, and a temperature-sensitive phase-transfer biocompatible polymer aqueous solution, which is converted into a gel form in vitro and then introduced into the body. Injectables are disclosed. The biodegradable polymer microparticles have a porosity of 80 to 96%, the pore diameter of 25 to 500㎛, the diameter of the particle ranges from 100 to 5,000㎛, the size of the particles is too large, significant difficulty in injection injection Not only that, but it is almost impossible to use for facial use.

한국공개특허 제2017-0126416호는 다공성의 생분해성 미세입자 및 수용성 천연고분자를 포함하는 성형 필러용 주사제 조성물로서, 다공성의 생분해성 미세입자의 함량, 히알루론산의 가교율, 가교 히알루론산 및 정제수의 혼합 농도를 조합함으로써 조직수복력 및 콜라겐 함량을 향상시킬 수 있다고 기재하고 있으나, 그 기재내용에 따라서는 다공성의 미세입자를 제조하는 것 자체가 불가능하고, 주입 8주 후 조직수복력이 38 내지 76%로 여전히 미흡한 수준에 불과하다.Korean Patent Publication No. 2017-0126416 An injection composition for molding fillers comprising porous biodegradable microparticles and water-soluble natural polymers, the composition comprising a combination of content of porous biodegradable microparticles, crosslinking rate of hyaluronic acid, crosslinked hyaluronic acid, and purified water. Although it can be described that the collagen content can be improved, according to the description, it is impossible to prepare porous microparticles per se, and the tissue resilience after 8 weeks of injection is still insufficient at only 38 to 76%.

그러므로 생체친화적이면서 콜라겐 생성을 유도하고, 유지 기간을 길고 다양하게 조절할 수 있는 생분해성 고분자 소재이면서도 기존의 히알루론산 필러처럼 시술 직후부터 볼륨을 유지할 뿐만 아니라, 입자의 크기가 작아 가는 주사바늘로 주사 가능하여 주사 후 환자들이 느끼는 통증과 이물감을 최소화할 수 있는 고분자 필러에 대한 요구가 계속되고 있다.Therefore, it is biocompatible, biodegradable polymer material that can induce collagen production, control the maintenance period for a long time, and maintain the volume right after the procedure like the existing hyaluronic acid filler, and can also be injected with needles with small particle size. There is a continuing need for polymer fillers that can minimize pain and foreign body feeling after injection.

본 발명은 상기한 종래 필러 제품들의 문제점을 해결하고자 한 것으로, 인체 내로 주입 후 콜라겐 생성을 유도하고 유지 기간이 긴 생분해성 고분자 소재이면서도 기존 히알루론산 필러처럼 시술 직후부터 볼륨을 유지할 뿐만 아니라, 입자의 크기가 작아 가는 주사바늘로 주사 가능하여 주사 후 환자들이 느끼는 통증과 이물감을 최소화할 수 있는 성형 필러 조성물을 제공하는 것을 기술적 과제로 한다.The present invention is to solve the problems of the above-mentioned conventional filler products, induce collagen generation after injection into the human body, and is a biodegradable polymer material with a long maintenance period, as well as maintaining the volume immediately after the procedure, like conventional hyaluronic acid fillers, It is a technical problem to provide a molded filler composition which can be injected with a needle having a smaller size to minimize the pain and foreign body feeling felt after the injection.

본 발명의 일 태양은One aspect of the present invention

생분해성 고분자의 다공성 미립자; 및Porous fine particles of a biodegradable polymer; And

생체적합성 캐리어를 포함하는, 성형 필러 조성물을 제공한다.Provided is a molded filler composition comprising a biocompatible carrier.

구체예에서, 생분해성 고분자의 다공성 미립자는 아래 ⅰ) 내지 ⅳ) 중 하나 이상, 예를 들어 아래 ⅰ) 내지 ⅳ) 모두를 만족시키는 것일 수 있다:In an embodiment, the porous microparticles of the biodegradable polymer can be one or more of the following i) to i), for example all of i) to i) below:

ⅰ) 구형(spherical);Iii) spherical;

ⅱ) 입자 직경 10 내지 200 ㎛;Ii) particle diameter 10 to 200 μm;

ⅲ) 직경 0.1 내지 20 ㎛인 기공을 가짐;Iii) have pores with a diameter of 0.1-20 μm;

ⅳ) 다공율 5 내지 50%.Iii) 5-50% porosity.

본 발명에 따른 성형 필러 조성물은 다공성 고분자 입자로 인하여 기존 제품과 동일 질량 대비하여 더 많은 부피를 가질 수 있어, 시술 직후에도 고분자의 부피로 인해 볼륨을 유지하는 효과를 제공할 수 있다.Molding filler composition according to the present invention may have a larger volume compared to the same mass as the existing product due to the porous polymer particles, it can provide an effect of maintaining the volume due to the volume of the polymer immediately after the procedure.

본 발명의 성형 필러 조성물은 기존 고분자 필러와 유사하게 고분자 미립자와 캐리어가 혼합되어 사용되고, 종래 제품과 마찬가지로 캐리어가 먼저 흡수되고 남아 있는 고분자가 천천히 생분해되면서 주변 조직의 자가 콜라겐 생성을 장기간 유도하여 히알루론산 필러보다 긴 유지 기간을 나타낸다. 또한, 본 발명에 따른 성형 필러 조성물은 캐리어가 먼저 흡수되어도 기존 고분자 필러보다 고분자 자체의 부피가 많아서 볼륨 감소효과가 거의 없다. 또한, 다공성 입자의 다공율을 조절하여 시술 직후의 볼륨 감소 정도를 조절하여 원하는 만큼의 볼륨을 제공할 수 있다. 일 구체예에서, 본 발명의 성형 필러 조성물은 주입 1주일 후 초기 볼륨의 80% 이상, 예를 들어 85% 이상, 예를 들어 90% 이상, 예를 들어 95% 이상을 유지하는 것일 수 있다.The molded filler composition of the present invention is mixed with the polymer particles and the carrier similarly to the conventional polymer filler, and like the conventional products, the carrier is absorbed first and the remaining polymer is slowly biodegraded to induce self collagen production of surrounding tissues for a long time, thereby making hyaluronic acid Longer retention period than the filler. In addition, the molding filler composition according to the present invention has almost no volume reduction effect because the volume of the polymer itself is larger than that of the existing polymer filler even when the carrier is absorbed first. In addition, by adjusting the porosity of the porous particles can be adjusted to provide a volume as desired by adjusting the degree of volume reduction immediately after the procedure. In one embodiment, the molding filler composition of the present invention may be one or more weeks after the injection to maintain at least 80%, for example at least 85%, for example at least 90%, for example at least 95% of the initial volume.

따라서, 본 발명에 따른 성형 필러 조성물은 입자 크기 및 다공율에 따라서 사람에게 사용되는 필러로서 안면을 포함한 신체의 다양한 부위에 사용될 수 있다. 뿐만 아니라, 입자의 크기가 작아 가는 주사바늘로 주사 가능하여 주사 후 환자들이 느끼는 통증과 이물감을 최소화할 수 있다.Therefore, the molded filler composition according to the present invention can be used in various parts of the body including the face as a filler used in humans depending on the particle size and porosity. In addition, the particle size can be injected with a needle that is small in size to minimize the pain and foreign body feeling after the injection.

도 1은 본 발명에 따른 성형 필러 조성물에 사용되는, 생분해성 고분자의 다공성 미립자의 구체예에 대한 주사전자현미경(SEM) 사진이다.
도 2는 본 발명의 비교예 1에 따른 미립자에 대한 주사전자현미경(SEM) 사진이다.
도 3은 본 발명의 비교예 2에 따른 미립자에 대한 주사전자현미경(SEM) 사진이다.
도 4는 본 발명의 실시예 1 및 비교예 1에 따른 미립자의 입자 크기와 분포를 보여주는 도면이다.
도 5는 본 발명의 실시예1에서 제조한 성형 필러 조성물과 비교예1의 필러를 쥐에 주입한 후, 주입 부위를 촬영한 사진이다.
1 is a scanning electron microscope (SEM) photograph of an embodiment of porous fine particles of a biodegradable polymer, which is used in the molding filler composition according to the present invention.
2 is a scanning electron microscope (SEM) photograph of the fine particles according to Comparative Example 1 of the present invention.
3 is a scanning electron microscope (SEM) photograph of the fine particles according to Comparative Example 2 of the present invention.
4 is a view showing the particle size and distribution of the fine particles according to Example 1 and Comparative Example 1 of the present invention.
5 is a photograph of the injection site after injecting the molded filler composition prepared in Example 1 of the present invention and the filler of Comparative Example 1 into the rat.

이하에서 본 발명에 대하여 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 성형 필러 조성물은 생체적합성과 생분해성을 지닌 폴리머로 제조된 생분해성 고분자의 다공성 미립자를 포함한다. 본 발명에 있어서, 생분해성 고분자의 다공성 미립자의 제조에 사용될 수 있는 생분해성 고분자는 폴리락틱산(Poly(lactic acid)), 폴리글리콜산(Poly(glycolic acid)), 폴리다이옥산온(Poly(dioxanone)), 폴리카프로락톤(Poly(caprolactone)), 락틱산-글리콜산 공중합체(Poly(lactic acid-co-glycolic acid)), 다이옥산온-카프로락톤 공중합체(Poly(dioxanone-co-caprolactone)), 락틱산-카프로락톤 공중합체(Poly(lactic acid-co-caprolactone)), 이들의 유도체 및 이들의 공중합체로 구성된 군에서 선택된 1종 이상일 수 있다. 바람직하게는, 폴리락틱산 또는 폴리카프로락톤, 특히 바람직하게는 폴리카프로락톤이다.The molding filler composition of the present invention comprises porous fine particles of a biodegradable polymer made of a polymer having biocompatibility and biodegradability. In the present invention, biodegradable polymers that can be used in the preparation of porous fine particles of biodegradable polymers are polylactic acid (Poly (lactic acid)), polyglycolic acid (Poly (glycolic acid)), polydioxanone (Poly (dioxanone) )), Poly (caprolactone), lactic acid-glycolic acid copolymer (Poly (lactic acid-co-glycolic acid)), dioxanone-caprolactone copolymer (Poly (dioxanone-co-caprolactone) And lactic acid-caprolactone copolymers (Poly (lactic acid-co-caprolactone)), derivatives thereof, and copolymers thereof. Preferably, they are polylactic acid or polycaprolactone, particularly preferably polycaprolactone.

또한 상기 생분해성 고분자는, 필러 유지 기간을 2년 이상으로 유지하기 위해서는 수평균분자량(Mn)이 바람직하게는 10,000~1,000,000 g/mol, 보다 바람직하게는 10,000 ~ 100,000 g/mol 의 범위일 수 있다.In addition, the biodegradable polymer may have a number average molecular weight (Mn) of preferably 10,000 to 1,000,000 g / mol, more preferably 10,000 to 100,000 g / mol in order to maintain the filler retention period for 2 years or more. .

상기 생분해성 고분자의 다공성 미립자의 입자 크기는 주사 주입이 가능하도록 사용되는 주사 바늘의 직경보다는 작아야 하고, 입자의 형태는 환자에게 통증을 유발하지 않고 촉감으로 느낄 수 없도록 실질적으로 구형(spherical)의 형태이다. The particle size of the porous microparticles of the biodegradable polymer should be smaller than the diameter of the needle used to enable injection, and the shape of the particles is substantially spherical in shape so as not to cause pain and feel to the patient. to be.

일 구체예에서, 상기 생분해성 고분자의 다공성 미립자의 입자 크기(입자 직경)는 통상적으로 200㎛ 이하일 수 있고, 생체 조직 내에서 대식 세포에 의해 탐식되지 않도록 10㎛ 이상의 직경을 가지는 것이 바람직하다. 바람직한 구체예에서, 생분해성 고분자의 다공성 미립자는 10~100 ㎛ 미만, 보다 바람직하게는 10~80 ㎛, 보다 더 바람직하게는 10~50 ㎛, 가장 바람직하게는 20~40 ㎛의 직경을 갖는다.In one embodiment, the particle size (particle diameter) of the porous fine particles of the biodegradable polymer may be typically 200 μm or less, and preferably has a diameter of 10 μm or more so as not to be phagocytized by macrophages in biological tissues. In a preferred embodiment, the porous microparticles of the biodegradable polymer have a diameter of less than 10-100 μm, more preferably 10-80 μm, even more preferably 10-50 μm, most preferably 20-40 μm.

바람직한 구체예에서, 생분해성 고분자의 다공성 미립자는 입도분포의 기준이 되는 d10이 20㎛보다 크고, d90은 100㎛보다 작고, 바람직하게는 d10은 20㎛보다 크고, d90은 60㎛보다 작고, 보다 바람직하게는 d10은 25㎛보다 크고, d90은 40㎛보다 작다. In a preferred embodiment, the porous fine particles of the biodegradable polymer have d 10, which is the basis of the particle size distribution, larger than 20 μm, d 90 smaller than 100 μm, preferably d 10 larger than 20 μm, and d 90 is 60 μm. Smaller, more preferably d 10 is larger than 25 μm and d 90 is smaller than 40 μm.

또한 바람직한 구체예에서, 생분해성 고분자의 다공성 미립자는 입자의 고른 분포를 나타내는 span 값이 1보다 작아야 하며, 바람직하게는 0.8 보다 작아야 하고, 보다 바람직하게는 0.6 보다 작아야 한다. span값은 입자의 분포도가 넓어질수록 수치가 크게 나타나고, 분포도가 좁아질수록 0에 가까워진다. span값은 아래의 식으로 계산된다.Also in a preferred embodiment, the porous microparticles of the biodegradable polymer should have a span value of less than 1 indicating an even distribution of the particles, preferably less than 0.8, and more preferably less than 0.6. The span value is larger when the particle distribution is wider, and becomes closer to zero when the distribution is narrower. The span value is calculated by the following equation.

Figure pat00001
Figure pat00001

[D10, D50, D90 정의: 입자의 누적분포에서 최대값에 대하여 10%, 50%, 90%에 해당하는 크기 값으로, 크기에 따른 입자의 상대적인 누적 양을 곡선으로 나타내는 입도 분포 곡선을 측정 및 도식화하고 10조각으로 나누었을 때, 각각 1/10, 5/10, 9/10에 해당하는 입자의 크기를 구하여 표시한 것.][D 10 , D 50 , D 90 Definition: A particle size distribution curve representing the relative cumulative amount of particles by size, corresponding to 10%, 50%, and 90% of the maximum value in the cumulative distribution of the particles. Measured, plotted, and divided into 10 pieces, showing the size of particles corresponding to 1/10, 5/10, 9/10 respectively.]

본 발명에서 사용되는 생분해성 고분자의 다공성 미립자는 다공을 가지고 있어, 다공율에 따라 동일 질량 대비 더 많은 부피를 가진다. The porous fine particles of the biodegradable polymer used in the present invention have pores, and thus have more volume to the same mass depending on the porosity.

일 구체예에서, 상기 생분해성 고분자의 다공성 미립자의 다공율은 5~50%일 수 있고, 바람직하게는 10~50%일 수 있으며, 더 바람직하게는 10~30%일 수 있다.In one embodiment, the porosity of the porous fine particles of the biodegradable polymer may be 5 to 50%, preferably 10 to 50%, more preferably 10 to 30%.

본 발명에 있어서, "다공율"은 아래 식에 따라 얻어지는 것이다.In the present invention, the "porosity" is obtained by the following formula.

다공율 = (다공성 고분자 미립자의 부피 - 비다공성 고분자 미립자의 부피) / 다공성 고분자 미립자의 부피 x 100Porosity = (volume of porous polymeric microparticles-volume of nonporous polymeric microparticles) / volume of porous polymeric microparticles x 100

본 발명에 따른 생분해성 고분자의 다공성 미립자의 기공 크기(직경)는 0.1㎛ ~20㎛, 바람직하게는 0.1~10㎛일 수 있다.The pore size (diameter) of the porous fine particles of the biodegradable polymer according to the present invention may be 0.1㎛ ~ 20㎛, preferably 0.1 ~ 10㎛.

이러한 생분해성 고분자의 다공성 미립자의 제조 방법은 당업계에서 일반적으로 사용되는 유화법, 용매증발법, 침전법 또는 기타 방법을 사용할 수 있으며, 다공성 미립자의 제조 방법에 의해 본 발명이 제한받지는 않는다.The method for preparing porous microparticles of such biodegradable polymers may be emulsification, solvent evaporation, precipitation, or other methods generally used in the art, and the present invention is not limited by the method for preparing porous microparticles.

본 발명의 성형 필러 조성물에 포함되는 생분해성 고분자의 다공성 미립자의 양은 통상적으로 조성물 100중량%를 기준으로, 10~50 중량%일 수 있고, 보다 구체적으로는 10~30 중량%일 수 있으며, 원하는 주사 부위의 원하는 볼륨 효과에 따라 조절이 가능하다. The amount of the porous microparticles of the biodegradable polymer included in the molding filler composition of the present invention may be 10 to 50% by weight, more specifically 10 to 30% by weight, based on 100% by weight of the composition. It can be adjusted according to the desired volume effect of the injection site.

본 발명의 성형 필러 조성물은 하나 이상의 생체적합성 캐리어를 또한 포함한다. 이러한 캐리어는 주사 후 통상 1일~6개월 이내에 체내에 흡수된다.The molded filler composition of the present invention also includes one or more biocompatible carriers. Such carriers are usually absorbed into the body within one to six months after injection.

일 구체예에서, 생체적합성 캐리어는 히알루론산, 예를 들어 가교된 히알루론산이 아닌 것일 수 있다.In one embodiment, the biocompatible carrier may be other than hyaluronic acid, such as crosslinked hyaluronic acid.

다른 구체예에서, 생체적합성 캐리어는 온도 감응성 졸-겔 상전이 생체적합성 고분자, 예를 들어 폴리에틸렌옥사이드(PEO)-폴리프로필렌옥사이드(PPO) 공중합체, 폴리에틸렌옥사이드(PEO)-폴리락트산(PLA) 공중합체, 폴리에틸렌옥사이드(PEO)-폴리글리콜릭락트산(PLGA) 공중합체 및 폴리에틸렌옥사이드 (PEO)- 폴리카프로락톤 (PCL) 공중합체로 이루어지는 군으로부터 선택된 1종 이상의 온도 감응성 졸-겔 상전이 생체적합성 고분자가 아닌 것일 수 있다.In another embodiment, the biocompatible carrier is a temperature sensitive sol-gel phase transfer biocompatible polymer such as polyethylene oxide (PEO) -polypropylene oxide (PPO) copolymer, polyethylene oxide (PEO) -polylactic acid (PLA) copolymer At least one temperature sensitive sol-gel phase change not selected from the group consisting of polyethylene oxide (PEO) -polyglycolic acid (PLGA) copolymer and polyethylene oxide (PEO) -polycaprolactone (PCL) copolymer It may be.

또 다른 구체예에서, 상기 생체적합성 캐리어로는 카르복시메틸셀룰로우스(Carboxymethyl cellulose), 히알루론산(hyaluronic acid), 덱스트란(Dextran), 콜라겐(Collagen) 및 이들의 조합으로부터 선택된 것을 사용할 수 있다.In another embodiment, the biocompatible carrier may be selected from carboxymethyl cellulose, hyaluronic acid, dextran, collagen, and combinations thereof.

본 발명의 성형 필러 조성물에 포함되는 생체적합성 캐리어의 양은 통상적으로 조성물 100중량%를 기준으로, 50~90 중량%일 수 있고, 보다 구체적으로는 70~90 중량%일 수 있다. The amount of the biocompatible carrier included in the molding filler composition of the present invention may be 50 to 90% by weight, and more specifically 70 to 90% by weight, based on 100% by weight of the composition.

상기 생체적합성 캐리어에는, 상기 성분들 이외에, 주사 제형에 통상 포함되는 첨가제 성분들, 예컨대, 글리세린 등의 윤활제, 인산 완충액 등이 더 포함될 수 있다. In addition to the above components, the biocompatible carrier may further include additive components normally included in the injection formulation, for example, a lubricant such as glycerin, a phosphate buffer, and the like.

본 발명의 성형 필러 조성물은 주사제로 사용하기 위한 것일 수 있다. 본 발명의 성형 필러 주사제 조성물은 멸균 주사기 또는 멸균 바이알에 넣어 제공할 수 있으며, 전처리가 필요 없어 사용편의성이 높고, 주입 후 정해진 시간에 걸쳐 100% 생분해되기 때문에 생체 조직 내에 이물질을 남기지 않아 안전하며 동물 유래 물질을 전혀 포함하지 않기 때문에 알러지를 일으키지 않는다. The molding filler composition of the present invention may be for use as an injection. The molded filler injectable composition of the present invention can be provided in a sterile syringe or a sterile vial, and is easy to use because it does not require pretreatment, and is 100% biodegradable over a predetermined time after injection, so that it does not leave foreign substances in biological tissues and is safe and animal. It does not cause allergies because it does not contain any derived material.

일 구체예에서, 본 발명의 성형 필러 주사제는 23 게이지(공칭 외경 0.635 mm, 공칭 내경 0.318 mm) 내지 30 게이지(공칭 외경 0.305 mm, 공칭 내경 0.140 mm), 예를 들어 25 게이지(공칭 외경 0.508 mm, 공칭 내경 0.241 mm) 내지 29 게이지(공칭 외경 0.330 mm, 공칭 내경 0.165 mm)의 주사바늘로 주입될 수 있다. 본 발명에 따른 성형 필러 주사제 조성물은 종래 제품 보다 가는 바늘로 주입 가능하여, 안면 성형용으로 보다 안전하고 효과적으로 사용될 수 있다. 또한 본 발명의 성형 필러 조성물은 기존 고분자 제품(예컨대, 고분자 비율이 30%)과 비교하여 동일량의 고분자로 더 많은 부피 효과를 낼 수 있어, 캐리어가 흡수되어도 볼륨 효과를 유지할 수 있다. 따라서, 본 발명의 성형 필러 조성물은 주름 개선, 안면 성형 또는 바디 성형용으로 바람직하게 사용될 수 있다.
In one embodiment, the molded filler injection of the present invention comprises from 23 gauge (nominal outer diameter 0.635 mm, nominal inner diameter 0.318 mm) to 30 gauge (nominal outer diameter 0.305 mm, nominal inner diameter 0.140 mm), for example 25 gauge (nominal outer diameter 0.508 mm) , Nominal inner diameter 0.241 mm) to 29 gauge (nominal outer diameter 0.330 mm, nominal inner diameter 0.165 mm) can be injected into the needle. The molding filler injection composition according to the present invention can be injected with a thinner needle than a conventional product, and thus can be used more safely and effectively for face molding. In addition, the molding filler composition of the present invention can produce more volume effect with the same amount of polymer compared to existing polymer products (eg, polymer ratio of 30%), so that the volume effect can be maintained even if the carrier is absorbed. Therefore, the molding filler composition of the present invention can be preferably used for wrinkle improvement, face molding or body molding.

이하, 실시예에 의거하여 본 발명을 보다 상세히 설명한다. 그러나, 이하의 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail based on Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention should not be construed as being limited by these examples.

[[ 실시예Example ]]

실시예Example 1 One

수평균 분자량 50,000 g/mol인 폴리카프로락톤(PCL)을 사용하여, 막 유화법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 10%)를 제조하였다. 즉, 생분해성 고분자인 PCL 1g과 다공형성을 위한 tetradecane 0.2g을 methylene chloride 20g에 녹이고, PVA 수용액 내에서 균질하게 혼합하여 다공율 10%의, 생분해성 고분자의 다공성 미립자를 제조하였다.Polycaprolactone (PCL) having a number average molecular weight of 50,000 g / mol was used to prepare porous fine particles (porosity: 10%) of a biodegradable polymer having a diameter of 20 to 40 µm by membrane emulsification. That is, 1 g of a biodegradable polymer and 0.2 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and homogeneously mixed in an aqueous PVA solution to prepare porous fine particles of a biodegradable polymer having a porosity of 10%.

제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액70중량%으로 제조한 캐리어와 혼합하였다. 이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 30중량% 및 캐리어 70중량%이었다. The porous fine particles of the biodegradable polymer thus prepared were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 30% by weight of the porous fine particles and 70% by weight of the carrier based on 100% by weight of the mixture.

실시예Example 2 2

수평균 분자량 50,000 g/mol인 폴리카프로락톤(PCL)을 사용하여, 막 유화법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 20%)를 제조하였다. 즉, 생분해성 고분자인 PCL 1g과 다공형성을 위한 tetradecane 0.3g을 methylene chloride 20g에 녹이고, PVA 수용액 내에서 균질하게 혼합하여 다공율 20%의, 생분해성 고분자의 다공성 미립자를 제조하였다.Using polycaprolactone (PCL) having a number average molecular weight of 50,000 g / mol, porous fine particles (porosity: 20%) of a biodegradable polymer having a diameter of 20 to 40 µm were prepared by membrane emulsification. That is, 1 g of biodegradable polymer and 0.3 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and homogeneously mixed in PVA aqueous solution to prepare porous microparticles of biodegradable polymer having a porosity of 20%.

제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액 70중량%으로 제조한 캐리어와 혼합하였다. 이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 30중량% 및 캐리어 70중량%이었다.Porous microparticles of the prepared biodegradable polymer were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 30% by weight of the porous fine particles and 70% by weight of the carrier based on 100% by weight of the mixture.

실시예Example 3 3

수평균 분자량 50,000 g/mol인 폴리카프로락톤(PCL)을 사용하여, 막 유화법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 10%)를 제조하였다. 즉, 생분해성 고분자인 PCL 1g과 다공형성을 위한 tetradecane 0.2g을 methylene chloride 20g에 녹이고, PVA 수용액 내에서 균질하게 혼합하여 다공율 10%의, 생분해성 고분자의 다공성 미립자를 제조하였다.Polycaprolactone (PCL) having a number average molecular weight of 50,000 g / mol was used to prepare porous fine particles (porosity: 10%) of a biodegradable polymer having a diameter of 20 to 40 µm by membrane emulsification. That is, 1 g of a biodegradable polymer and 0.2 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and homogeneously mixed in an aqueous PVA solution to prepare porous fine particles of a biodegradable polymer having a porosity of 10%.

제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액 70중량%로 제조한 캐리어와 혼합하였다. 이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 40중량% 및 캐리어 60중량%이었다.  Porous microparticles of the prepared biodegradable polymer were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 40% by weight of the porous fine particles and 60% by weight of the carrier based on 100% by weight of the mixture.

실시예Example 4 4

수평균 분자량 50,000 g/mol인 폴리카프로락톤(PCL)을 사용하여, 막 유화법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 20%)를 제조하였다. 즉, 생분해성 고분자인 PCL 1g과 다공형성을 위한 tetradecane 0.3g을 methylene chloride 20g에 녹이고, PVA 수용액 내에서 균질하게 혼합하여 다공율 20%의, 생분해성 고분자의 다공성 미립자를 제조하였다.Using polycaprolactone (PCL) having a number average molecular weight of 50,000 g / mol, porous fine particles (porosity: 20%) of a biodegradable polymer having a diameter of 20 to 40 µm were prepared by membrane emulsification. That is, 1 g of biodegradable polymer and 0.3 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and homogeneously mixed in PVA aqueous solution to prepare porous microparticles of biodegradable polymer having a porosity of 20%.

제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액 70중량%로 제조한 캐리어와 혼합하였다. 이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 40중량% 및 캐리어 60중량%이었다.Porous microparticles of the prepared biodegradable polymer were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 40% by weight of the porous fine particles and 60% by weight of the carrier based on 100% by weight of the mixture.

실시예Example 5 5

수평균 분자량 50,000 g/mol인 폴리카프로락톤(PCL)을 사용하여, Microfluidic 법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 10%)를 제조하였다. 즉, 생분해성 고분자인 PCL 1g과 다공형성을 위한 tetradecane 0.2g을 methylene chloride 20g에 녹이고, Microfluidic 장치를 이용하여 PVA수용액으로 균일하게 투입하여 다공율 10%의, 생분해성 고분자의 다공성 미립자를 제조하였다.Using polycaprolactone (PCL) having a number average molecular weight of 50,000 g / mol, porous microparticles (porosity: 10%) of a biodegradable polymer having a diameter of 20 to 40 µm were prepared by the Microfluidic method. In other words, 1 g of biodegradable polymer PCL and 0.2 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and microfluidic devices were used to uniformly add PVA aqueous solution to prepare porous microparticles of biodegradable polymer having a porosity of 10%. .

제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액70중량%으로 제조한 캐리어와 혼합하였다.  이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 30중량% 및 캐리어 70중량%이었다. The porous fine particles of the biodegradable polymer thus prepared were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 30% by weight of the porous fine particles and 70% by weight of the carrier based on 100% by weight of the mixture.

실시예Example 6 6

수평균 분자량 50,000 g/mol인 폴리카프로락톤(PCL)을 사용하여, Microfluidic 법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 10%)를 제조하였다. 즉, 생분해성 고분자인 PCL 1g과 다공형성을 위한 tetradecane 0.3g을 methylene chloride 20g에 녹이고, Microfluidic 장치를 이용하여 PVA수용액으로 균일하게 투입하여 다공율 20%의, 생분해성 고분자의 다공성 미립자를 제조하였다.Using polycaprolactone (PCL) having a number average molecular weight of 50,000 g / mol, porous microparticles (porosity: 10%) of a biodegradable polymer having a diameter of 20 to 40 µm were prepared by the Microfluidic method. That is, 1 g of biodegradable polymer PCL and 0.3 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and microfluidic devices were used to uniformly add PVA aqueous solution to prepare porous microparticles of biodegradable polymer having a porosity of 20%. .

제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액 70중량%으로 제조한 캐리어와 혼합하였다. 이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 30중량% 및 캐리어 70중량%이었다.Porous microparticles of the prepared biodegradable polymer were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 30% by weight of the porous fine particles and 70% by weight of the carrier based on 100% by weight of the mixture.

실시예Example 7 7

수평균 분자량 80,000 g/mol인 폴리락틱산(PLA)을 사용하여, 막 유화법으로 20~40㎛ 직경의, 생분해성 고분자의 다공성 미립자(다공율: 10%)를 제조하였다. 즉, 생분해성 고분자인 PLA 1g과 다공형성을 위한 tetradecane 0.2g을 methylene chloride 20g에 녹이고, PVA 수용액 내에서 균질하게 혼합하여 다공율 10%의, 생분해성 고분자의 다공성 미립자를 제조하였다.Using polylactic acid (PLA) having a number average molecular weight of 80,000 g / mol, porous fine particles (porosity: 10%) of a biodegradable polymer having a diameter of 20 to 40 µm were prepared by membrane emulsification. That is, 1 g of biodegradable polymer PLA and 0.2 g of tetradecane for pore formation were dissolved in 20 g of methylene chloride, and homogeneously mixed in an aqueous PVA solution to prepare porous microparticles of biodegradable polymer having a porosity of 10%.

제조된 생분해성 고분자의 다공성 미립자를, 카르복시메틸셀룰로우스 3중량%와 글리세린 27중량% 및 인산완충액70중량%으로 제조한 캐리어와 혼합하였다.  이 때, 혼합비율은 혼합물 100중량% 기준으로 다공성 미립자 30중량% 및 캐리어 70중량%이었다.The porous fine particles of the biodegradable polymer thus prepared were mixed with a carrier made of 3% by weight of carboxymethyl cellulose, 27% by weight of glycerin and 70% by weight of phosphate buffer. At this time, the mixing ratio was 30% by weight of the porous fine particles and 70% by weight of the carrier based on 100% by weight of the mixture.

비교예Comparative example 1 One

기존 판매중인 PCL을 원료로 나온 안면용 필러(Ellanse®)를 구입하였다.We purchased a facial filler (Ellanse®) from PCL.

비교예Comparative example 2 2

기존 판매중인 폴리락틱산(PLA)을 원료로 나온 안면용 필러(Sculptra®)를 구입하였다.Facial fillers (Sculptra®) were purchased from existing polylactic acid (PLA).

실험예Experimental Example 1 One

상기 실시예 1에서 얻어진 생분해성 고분자의 다공성 미립자와 비교예 1및 2의 미립자를 주사전자현미경(SEM)으로 관찰하였다. 그 결과를 각각 도 1, 도2 및 도3에 나타내었다. 도 1에 나타난 바와 같이, 본 발명에 따른 생분해성 고분자의 다공성 미립자는 20 내지 40㎛의 입자 직경 및 0.1 내지 6 ㎛의 기공 직경을 가져, 기존 제품에 비해 더 작은 크기를 가지며 더 작은 직경의 균일한 기공을 갖는다.The porous fine particles of the biodegradable polymer obtained in Example 1 and the fine particles of Comparative Examples 1 and 2 were observed by scanning electron microscope (SEM). The results are shown in FIGS. 1, 2 and 3, respectively. As shown in FIG. 1, the porous fine particles of the biodegradable polymer according to the present invention have a particle diameter of 20 to 40 μm and a pore diameter of 0.1 to 6 μm, and thus have a smaller size and a smaller diameter uniformity than conventional products. Has one pore

실험예Experimental Example 2 2

실시예 1에서 제조된 생분해성 고분자의 다공성 미립자와 비교예 1의 미립자의 입자 크기 및 분포를 측정하였다. 그 결과를 도 4에 나타내었다. 도 4 에 나타난 바와 같이, 본 발명에 따른 생분해성 고분자의 다공성 미립자는 비교예 1의 미립자에 비해 전체적으로 크기가 더 작고(실시예 1: 20~40 ㎛, 비교예 1: 30~50 ㎛) 평균값으로 보았을 때 더 균일하며, 더 좁은 분포를 나타냄을 확인할 수 있다. 그 결과를 표1에 나타내었다.Particle sizes and distributions of the porous microparticles of the biodegradable polymer prepared in Example 1 and the microparticles of Comparative Example 1 were measured. The results are shown in FIG. As shown in FIG. 4, the porous fine particles of the biodegradable polymer according to the present invention have a smaller overall size than the fine particles of Comparative Example 1 (Example 1: 20 to 40 μm, Comparative Example 1: 30 to 50 μm), and an average value. It can be seen that it is more uniform and shows a narrower distribution. The results are shown in Table 1.

D10 D 10 D50 D 50 D90 D 90 C.V.1) CV 1) spanspan 실시예 1Example 1 24.92㎛24.92 μm 29.82㎛29.82 μm 36.59㎛36.59 μm 19.1%19.1% 0.3910.391 비교예 1Comparative Example 1 31.06㎛31.06㎛ 38.83㎛38.83 μm 51.01㎛51.01 μm 24.3%24.3% 0.5140.514

1) C.V. (coefficient of variation): 표준편차를 평균값으로 나눈 것으로, 상대적으로 흩어진 정도를 측정하기 위한 척도이며, 계산된 값이 0에 가까울수록, 입자가 평균에 밀집되어 있고 산포가 작다는 것을 의미한다.1) C.V. (coefficient of variation): The standard deviation divided by the mean value, which is a measure of the degree of relative scattering, and the closer the calculated value is to 0, the denser the particle is and the less scatter it means.

실험예Experimental Example 3 3

혼합된 제형을 시린지에 충전 후, 헤어리스 마우스의 등에 200㎕를 주사하였다. 실시예 1 내지 7에서 제조한 성형 필러 조성물과 비교예1 및 2의 고분자 필러를 쥐에 주입하고, 2주 동안 주입 부위를 촬영한 사진을 도 5에 나타내었다. 주사 주입된 부위의 크기를 측정하였고, 일정 기간을 주기로 지속적으로 크기의 변화를 측정하였다. 그 결과를 표 2에 나타내었다. The mixed formulation was filled in a syringe and then 200 μl injected into the back of the hairless mice. The molded filler compositions prepared in Examples 1 to 7 and the polymer fillers of Comparative Examples 1 and 2 were injected into mice, and photographs of the injection sites for 2 weeks are shown in FIG. 5. The size of the injection-injected site was measured, and the size change was continuously measured at regular intervals. The results are shown in Table 2.

표 2에 나타낸 바와 같이, 본 발명에 따른 생분해성 고분자의 다공성 미립자를 포함하는 필러 제형의 경우 시술 초기 볼륨 감소가 현저히 개선됨을 확인할 수 있다.As shown in Table 2, in the case of the filler formulation including the porous fine particles of the biodegradable polymer according to the present invention it can be seen that the initial volume reduction is significantly improved.

실시예 1Example 1 실시예 2 Example 2 실시예 3 Example 3 실시예 4 Example 4 실시예 5 Example 5 실시예 6 Example 6 실시예 7 Example 7 비교예 1Comparative Example 1 비교예 2Comparative Example 2 시술 직후 볼륨Volume immediately after the procedure 100%100% 100%100% 100%100% 100%100% 100%100% 100%100% 100%100% 100%100% 100%100% 1주일 후 볼륨Volume after 1 week 90%90% 95%95% 95%95% 100%100% 90%90% 95%95% 85%85% 50%50% 10%10% 3주일 후 볼륨Volume after 3 weeks 100%100% 105%105% 100%100% 110%110% 100%100% 100%100% 95%95% 80%80% 60%60%

Claims (15)

생분해성 고분자의 다공성 미립자; 및
생체적합성 캐리어를 포함하는, 성형 필러 조성물.
Porous fine particles of a biodegradable polymer; And
A molded filler composition comprising a biocompatible carrier.
제1항에 있어서, 생분해성 고분자의 다공성 미립자가 아래 i) 내지 iv) 중 하나 이상을 만족시키는 것인, 성형 필러 조성물:
ⅰ) 구형(spherical);
ⅱ) 입자 직경이 10 내지 200 ㎛;
ⅲ) 직경 0.1 내지 20 ㎛의 기공;
ⅳ) 다공율이 5 내지 50%.
The molding filler composition of claim 1, wherein the porous microparticles of the biodegradable polymer satisfy at least one of the following i) to iv):
Iii) spherical;
Ii) particle diameter from 10 to 200 mu m;
Iii) pores with a diameter of 0.1-20 탆;
Iii) 5 to 50% porosity.
제2항에 있어서, 생분해성 고분자의 다공성 미립자가 i) 내지 iv)를 모두 만족시키는 것인, 성형 필러 조성물.The molding filler composition according to claim 2, wherein the porous fine particles of the biodegradable polymer satisfy all of i) to iv). 제1항에 있어서, 생분해성 고분자가 폴리락틱산, 폴리글리콜산, 폴리다이옥산온, 폴리카프로락톤, 락틱산-글리콜산 공중합체, 다이옥산온-카프로락톤 공중합체, 락틱산-카프로락톤 공중합체, 이들의 유도체 및 이들의 공중합체로 구성된 군에서 선택된 1종 이상인 것을 특징으로 하는 성형 필러 조성물.The method of claim 1, wherein the biodegradable polymer is polylactic acid, polyglycolic acid, polydioxanone, polycaprolactone, lactic acid-glycolic acid copolymer, dioxanone-caprolactone copolymer, lactic acid-caprolactone copolymer, Molding filler composition, characterized in that at least one selected from the group consisting of derivatives and copolymers thereof. 제1항에 있어서, 생분해성 고분자의 수평균분자량(Mn)이 10,000~1,000,000 g/mol인 것을 특징으로 하는 성형 필러 조성물.The molding filler composition according to claim 1, wherein the number-average molecular weight (Mn) of the biodegradable polymer is 10,000 to 1,000,000 g / mol. 제2항에 있어서, 생분해성 고분자의 다공성 미립자가 10~100 ㎛ 미만의 직경을 갖는 것을 특징으로 하는 성형 필러 조성물.The molding filler composition according to claim 2, wherein the porous fine particles of the biodegradable polymer have a diameter of less than 10 to 100 μm. 제2항에 있어서, 생분해성 고분자의 다공성 미립자 d10이 20㎛보다 크고, d90은 100㎛보다 작은 것을 특징으로 하는 성형 필러 조성물.The molding filler composition according to claim 2, wherein the porous fine particles d 10 of the biodegradable polymer are larger than 20 μm, and d 90 is smaller than 100 μm. 제2항에 있어서, 생분해성 고분자의 다공성 미립자 span 값이 1보다 작은 것을 특징으로 하는 성형 필러 조성물.The molded filler composition of claim 2, wherein the porous fine particle span value of the biodegradable polymer is less than one. 제1항 내지 제8항 중 어느 한 항에 있어서, 생체적합성 캐리어가 히알루론산이 아닌 것인 성형 필러 조성물.The molding filler composition of claim 1, wherein the biocompatible carrier is not hyaluronic acid. 제1항 내지 제8항 중 어느 한 항에 있어서, 생체적합성 캐리어가 온도 감응성 졸-겔 상전이 생체적합성 고분자가 아닌 것인, 성형 필러 조성물.The molding filler composition of claim 1, wherein the biocompatible carrier is not a temperature sensitive sol-gel phase change biocompatible polymer. 제1항 내지 제8항 중 어느 한 항에 있어서, 생체적합성 캐리어가 카르복시메틸셀룰로우스, 덱스트란, 콜라겐 및 이들의 조합으로부터 선택되는 것을 특징으로 하는 성형 필러 조성물.The molded filler composition of claim 1, wherein the biocompatible carrier is selected from carboxymethylcellulose, dextran, collagen, and combinations thereof. 제1항 내지 제8항 중 어느 한 항에 있어서, 생분해성 고분자의 다공성 미립자의 함량이 10~50 중량%이고, 생체적합성 캐리어의 함량이 50~90 중량%인 것을 특징으로 하는 성형 필러 조성물.The molded filler composition according to any one of claims 1 to 8, wherein the content of the porous fine particles of the biodegradable polymer is 10 to 50% by weight, and the content of the biocompatible carrier is 50 to 90% by weight. 제1항 내지 제8항 중 어느 한 항에 있어서, 주사제로 사용하기 위한 성형 필러 조성물.The molding filler composition according to any one of claims 1 to 8 for use as an injection. 제13항에 있어서, 23 게이지 내지 30 게이지의 주사바늘로 주사되는 성형 필러 조성물.The molding filler composition according to claim 13, which is injected with a needle of 23 to 30 gauge. 제1항 내지 제8항 중 어느 한 항에 있어서, 안면 성형용으로 사용하기 위한 성형 필러 조성물.
The molding filler composition according to any one of claims 1 to 8, for use for face molding.
KR1020180057383A 2018-05-18 2018-05-18 Dermal filler composition comprising porous microparticles of biodegradable polymer KR20190132113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180057383A KR20190132113A (en) 2018-05-18 2018-05-18 Dermal filler composition comprising porous microparticles of biodegradable polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180057383A KR20190132113A (en) 2018-05-18 2018-05-18 Dermal filler composition comprising porous microparticles of biodegradable polymer

Publications (1)

Publication Number Publication Date
KR20190132113A true KR20190132113A (en) 2019-11-27

Family

ID=68730194

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180057383A KR20190132113A (en) 2018-05-18 2018-05-18 Dermal filler composition comprising porous microparticles of biodegradable polymer

Country Status (1)

Country Link
KR (1) KR20190132113A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102173939B1 (en) * 2020-03-25 2020-11-04 권한진 The filler making method of mixture of biodegradable, fine polymers
KR102181033B1 (en) * 2020-03-31 2020-11-20 주식회사 휴메딕스 Biodegradable polymer microsphere, polymer filler comprising biodegradable polymer microsphere and method for producing thereof
KR20210106796A (en) * 2020-02-21 2021-08-31 차의과학대학교 산학협력단 Biodegradable polymeric microspheres comprising ceramic particles and the uses thereof
KR102587872B1 (en) * 2022-06-14 2023-10-12 주식회사 바임 Complex, method for manufacturing the same, and filler composition for plastic surgery using the same
WO2023244012A1 (en) * 2022-06-14 2023-12-21 주식회사 바임 Composite, method for manufacturing same, and filler composition for molding, using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210106796A (en) * 2020-02-21 2021-08-31 차의과학대학교 산학협력단 Biodegradable polymeric microspheres comprising ceramic particles and the uses thereof
KR102173939B1 (en) * 2020-03-25 2020-11-04 권한진 The filler making method of mixture of biodegradable, fine polymers
KR102181033B1 (en) * 2020-03-31 2020-11-20 주식회사 휴메딕스 Biodegradable polymer microsphere, polymer filler comprising biodegradable polymer microsphere and method for producing thereof
KR102587872B1 (en) * 2022-06-14 2023-10-12 주식회사 바임 Complex, method for manufacturing the same, and filler composition for plastic surgery using the same
WO2023244011A1 (en) * 2022-06-14 2023-12-21 주식회사 바임 Composite, manufacturing method therefor, and cosmetic surgery filler composition using same
WO2023244012A1 (en) * 2022-06-14 2023-12-21 주식회사 바임 Composite, method for manufacturing same, and filler composition for molding, using same

Similar Documents

Publication Publication Date Title
KR102259560B1 (en) Porous microparticles of biodegradable polymer, and polymeric filler comprising the same
KR20190132113A (en) Dermal filler composition comprising porous microparticles of biodegradable polymer
Ramot et al. Biocompatibility and safety of PLA and its copolymers
AU782265B2 (en) Biodegradable polymer composition
DE60208869T2 (en) Porous scaffold matrix for the repair and regeneration of dermal tissue
KR102181033B1 (en) Biodegradable polymer microsphere, polymer filler comprising biodegradable polymer microsphere and method for producing thereof
US20100226956A1 (en) Production of moldable bone substitute
CN111558083B (en) Biodegradable injection filler, preparation method and application thereof
CN111617315B (en) Biodegradable injection filler, preparation method and application thereof
JP2019503832A (en) Skin augmentation surgical suture
KR101987783B1 (en) Biodegradable polymeric microparticle and method for preparing the same, and biodegradable polymeric filler comprising the same
KR102378824B1 (en) Biodegradable polymeric thread filler for promoting the formation of collagen in skin and method for preparing the same
CA2516728C (en) Biodegradable bone implant material
CN113117142B (en) Biodegradable injection filler, preparation method and application thereof
WO2018110792A1 (en) Porous microparticles of biodegradable polymer, and polymer filler comprising same
CN113117143B (en) Use of hyaluronic acid for producing biodegradable polymer microparticle formulations
Taş et al. In vivo degradation and release kinetics of chloramphenicol-loaded poly (D, L)-lactide sponges