KR20190128312A - Method of Photochemical Ammonia Synthesis - Google Patents

Method of Photochemical Ammonia Synthesis Download PDF

Info

Publication number
KR20190128312A
KR20190128312A KR1020180052326A KR20180052326A KR20190128312A KR 20190128312 A KR20190128312 A KR 20190128312A KR 1020180052326 A KR1020180052326 A KR 1020180052326A KR 20180052326 A KR20180052326 A KR 20180052326A KR 20190128312 A KR20190128312 A KR 20190128312A
Authority
KR
South Korea
Prior art keywords
photochemical
ammonia
ammonia synthesis
transition metal
photocatalyst
Prior art date
Application number
KR1020180052326A
Other languages
Korean (ko)
Other versions
KR102157023B1 (en
Inventor
유충열
박종현
김종남
윤형철
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020180052326A priority Critical patent/KR102157023B1/en
Publication of KR20190128312A publication Critical patent/KR20190128312A/en
Application granted granted Critical
Publication of KR102157023B1 publication Critical patent/KR102157023B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • B01J35/004
    • B01J35/1009
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0417Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the synthesis reactor, e.g. arrangement of catalyst beds and heat exchangers in the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a photochemical ammonia synthesis method using a photochemical reactor and a photocatalyst. Since the photochemical ammonia synthesis method using the photocatalyst of the present invention can directly use solar energy, it is possible to synthesize ammonia without applying an external current in which an electrode catalyst for promoting a hydrogen production reaction is used.

Description

광화학적 암모니아 합성 방법{Method of Photochemical Ammonia Synthesis}Method of Photochemical Ammonia Synthesis

본 발명은 암모니아 합성방법에 관한 것으로, 보다 상세하게는 광화학 반응기 및 광촉매를 이용한 광화학적 암모니아 합성방법에 관한 것이다.The present invention relates to a method for synthesizing ammonia, and more particularly, to a method for synthesizing photochemical ammonia using a photochemical reactor and a photocatalyst.

암모니아는 질소와 산소로 이루어진 화합물로, 분자식은 NH3이고 상온에서 자극적인 냄새가 나는 기체상태로 존재한다. 대기 중에 소량이 포함되어 있으며, 천연수에도 미량 함유되어 있고, 토양 중에도 세균의 질소 유기물을 분해하는 과정에서 생성되어 존재할 수 있다. 암모니아는 각종 화학공업의 원료, 암모니아수의 제조, 그리고 이온성 물질에 대한 용매로 사용된다. 암모니아를 생산하는 가장 일반적인 방법은 수소와 질소로부터 합성하는 하버-보슈 공정으로 철 또는 루테늄 촉매의 존재 하에 하기 화학식 1과 같이 고압(~ 200 bar), 고온(~ 400 ℃)에서 수행된다. 이러한 반응은 약 34.4 GJ/ton NH3의 막대한 양의 에너지를 소모하고 있으며, 이러한 에너지의 공급을 위해 사용되는 화석연료로 인해 1.8 ton CO2/ton NH3에 해당하는 다량의 온실가스를 배출하는 문제점을 갖는다. Ammonia is a compound consisting of nitrogen and oxygen. The molecular formula is NH 3 and exists in a gaseous state with an irritating odor at room temperature. It contains a small amount in the atmosphere, a small amount in natural water, and may be generated and present in the process of decomposing bacteria nitrogen organic matter in the soil. Ammonia is used as a raw material for various chemical industries, for the production of ammonia water, and as a solvent for ionic substances. The most common method of producing ammonia is a Haber-Bosch process synthesized from hydrogen and nitrogen, and is carried out at high pressure (˜200 bar) and high temperature (˜400 ° C.) in the presence of an iron or ruthenium catalyst. This reaction consumes an enormous amount of energy of about 34.4 GJ / ton NH 3 , and because of the fossil fuel used to supply this energy, it generates a large amount of greenhouse gases equivalent to 1.8 ton CO 2 / ton NH 3 . I have a problem.

화학식 1 Formula 1

N2 + 3H2 -> 2NH3 + 92.2kJN 2 + 3H 2- > 2NH 3 + 92.2kJ

이러한 하버-보슈 공정의 한계를 극복하기 위해 이온전도성 산화물 전해질을 이용한 전기화학적 암모니아 합성법이 제안되었으며, 물과 질소를 원료로 사용하여 전해질을 이용한 전기화학적 암모니아 합성법이 연구가 활발히 진행되고 있다(Marnellos et al). 전기화학적 암모니아 합성법 중 수계 전해질을 기반으로 한 합성방법은 산화극에서 물이 분해되어 수소이온과 전자로 나뉘는 반응과 수소이온과 전자가 질소분자를 환원시켜 암모니아를 생성하는 반응을 포함한다. 이러한 암모니아 전기화학적 합성법의 최종 생산물은 암모니아와 산소로 탄소배출은 없지만, 외부전력이 필요하며 금속 전극 및 촉매가 요구되며, 암모니아 합성 반응이 수소 생성반응과 경쟁 반응이고 현재까지 알려진 전극 촉매가 암모니아 생성 반응 보다는 수소 생성 반응을 촉진시키는 단점이 있다.In order to overcome these limitations of the Haber-Bosch process, electrochemical ammonia synthesis using an ion conductive oxide electrolyte has been proposed, and electrochemical ammonia synthesis using electrolyte using water and nitrogen as a raw material has been actively studied (Marnellos et. al). Among electrochemical ammonia synthesis methods, a synthesis method based on an aqueous electrolyte includes a reaction in which water is decomposed into an anode and divided into hydrogen ions and electrons, and hydrogen ions and electrons reduce nitrogen molecules to generate ammonia. The final product of the ammonia electrochemical synthesis method does not emit carbon into ammonia and oxygen, but requires external power, requires a metal electrode and a catalyst. There is a drawback to promoting the hydrogen production reaction rather than the reaction.

일본 공개특허 제2016-519215호는 암모니아 합성방법에 관한 것으로 이온교환막 세퍼레이터를 구비한 전해셀에서 알칼리 전해질을 사용하고 질소와 수소를 주입하여 전기화학적으로 암모니아를 합성하는 방법을 개시한다. 그러나 이는 외부전류를 필요로 할 뿐 아니라 수소와 질소기체를 주입해야하며 복잡한 장치 구성이 요구된다. Japanese Patent Laid-Open No. 2016-519215 relates to a method for synthesizing ammonia, and discloses a method for synthesizing ammonia electrochemically by using an alkaline electrolyte and injecting nitrogen and hydrogen in an electrolytic cell equipped with an ion exchange membrane separator. However, this requires not only external currents, but also hydrogen and nitrogen gas injection and complex device configurations.

따라서 보다 수율이 높고 제조 단가가 저렴한 에너지 친화적 암모니아 합성방법이 필요하다.Therefore, there is a need for an energy-friendly ammonia synthesis method with higher yield and lower manufacturing cost.

일본 공개특허 제2016-519215호Japanese Patent Application Laid-Open No. 2016-519215

본 발명은 전술한 종래의 문제점을 해결하기 위해 안출된 것으로, 전기화학적 방법이 아닌 태양광 에너지를 직접 이용한 암모니아 합성방법을 제공하고자 한다.The present invention has been made to solve the above-mentioned conventional problems, and to provide a method for synthesizing ammonia using solar energy directly rather than an electrochemical method.

본 발명자들은 광촉매를 사용한 광화학적 암모니아 합성방법으로 암모니아를 합성하면 상온, 상압에서 외부전류의 필요없이 암모니아를 합성하여 에너지 효율이 개선됨을 발견하여 본 발명을 완성하기에 이르렀다.The present inventors have found that synthesizing ammonia by the photochemical ammonia synthesis method using a photocatalyst can improve energy efficiency by synthesizing ammonia without the need of an external current at room temperature and atmospheric pressure, thereby completing the present invention.

본 발명은 상기 방법은, 하부에 질소 주입부, 상부에 기체 포집부 및 측면에 광조사부를 구비한 암모니아 합성 반응기를 준비하는 단계; 상기 합성 반응기에 극성 양성자성 액체를 채우고 광촉매를 분산시키는 단계; 상기 질소 주입부로 질소기체를 공급하는 단계; 상기 광조사부로 태양광 또는 인공광을 조사하여 암모니아를 합성하는 단계; 및 상기 기체포집부에서 암모니아를 포집하는 단계를 포함하고, 상기 광촉매는 4주기(Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, 및 Zn), 5주기(Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, 및 Cd), 및 6주기(Hf, Ta, W, Re, Os, Ir, Pt, 및 Au)로 이루어진 군에서 선택되는 하나 이상의 전이금속, 전이금속 합금, 전이금속 산화물, 전이금속 질화물 또는 전이금속 칼코게나이드 화합물을 제공한다.The method comprises the steps of: preparing an ammonia synthesis reactor having a nitrogen injection portion at the bottom, a gas collecting portion and a light irradiation portion at the side; Filling a polar protic liquid into said synthesis reactor and dispersing a photocatalyst; Supplying nitrogen gas to the nitrogen injection unit; Irradiating sunlight or artificial light with the light irradiation unit to synthesize ammonia; And collecting ammonia from the gas collecting unit, wherein the photocatalyst is 4 cycles (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn), 5 cycles (Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, and Cd), and one or more transition metals, transition metals selected from the group consisting of 6 cycles (Hf, Ta, W, Re, Os, Ir, Pt, and Au) Provided are alloys, transition metal oxides, transition metal nitrides or transition metal chalcogenide compounds.

본 발명은 또한, 상기 광촉매는 비표면적 0.1 내지 3 m2 이고, 상기 태양광 또는 인공광 조사에서 빛의 강도는 1 내지 100mW/cm2 인, 광화학적 암모니아 합성방법을 제공한다.The present invention also provides a photochemical ammonia synthesis method, wherein the photocatalyst has a specific surface area of 0.1 to 3 m 2 and the intensity of light in the sunlight or artificial light irradiation is 1 to 100 mW / cm 2 .

본 발명은 또한, 상기 질소기체는 반응기 용적 대비 분당(min.) 1:1 내지 10:1 의 부피비의 유량으로 공급되는, 광화학적 암모니아 합성방법을 제공한다.The present invention also provides a method for synthesizing photochemical ammonia, wherein the nitrogen gas is supplied at a flow rate of the volume ratio of the reactor volume per minute (min.) 1: 1 to 10: 1.

본 발명은 또한, 상기 하나 이상의 전이금속, 전이금속 합금, 전이금속 산화물, 전이금속 질화물 또는 전이금속 칼코게나이드 화합물은 Fe2O3, CoFe2O4, Co3O4, ZrN, VN, Fe2N, TiO2, MoS2, Fe-VN 및 Fe-TiO2로 이루어진 군에서 선택되는 하나 이상인, 광화학적 암모니아 합성방법을 제공한다.The present invention also provides the at least one transition metal, transition metal alloy, transition metal oxide, transition metal nitride or transition metal chalcogenide compound is Fe 2 O 3 , CoFe 2 O 4 , Co 3 O 4 , ZrN, VN, Fe N 2, TiO 2, MoS 2, provides one or more, a photochemical synthesis of ammonia is selected from the group consisting of Fe-VN, and Fe-TiO 2.

본 발명은 또한, 상기 암모니아 합성은 상온, 상압조건에서 수행되는, 광화학적 암모니아 합성방법을 제공한다.The present invention also provides a photochemical ammonia synthesis method, the ammonia synthesis is carried out at room temperature, atmospheric pressure conditions.

본 발명은 또한, 상기 광촉매는 극성 양성자성 액체에 0.001 내지 10 중량%로 분산되는, 광화학적 암모니아 합성방법을 제공한다.The present invention also provides a method for synthesizing photochemical ammonia, wherein the photocatalyst is dispersed at 0.001 to 10% by weight in the polar protic liquid.

본 발명은 또한, 상기 극성 양성자성 액체는 증류수, 포름산, 부탄올, 이소프로판올, 에탄올, 메탄올 및 초산으로 이루어진 군에서 선택되는 하나 이상인, 광화학적 암모니아 합성방법을 제공한다.The present invention also provides a photochemical ammonia synthesis method, wherein the polar protic liquid is at least one selected from the group consisting of distilled water, formic acid, butanol, isopropanol, ethanol, methanol and acetic acid.

본 발명의 광촉매를 사용한 광화학적 암모니아 합성방법은 태양광에너지를 직접 이용하여 암모니아를 합성함에 따라 외부 에너지가 필요없어 암모니아 생산 효율이 개선되는 효과가 있다. The photochemical ammonia synthesis method using the photocatalyst of the present invention has an effect of improving the efficiency of ammonia production by eliminating external energy by synthesizing ammonia using solar energy directly.

도 1은 광촉매가 암모니아를 합성하는 메커니즘에 관한 원리를 나타낸다.
도 2는 본 발명의 한 구현예에 따라 광화학적 암모니아 합성 반응기를 나타내는 개략도이다.
1 shows the principle regarding the mechanism by which the photocatalyst synthesizes ammonia.
2 is a schematic diagram illustrating a photochemical ammonia synthesis reactor according to one embodiment of the invention.

이하 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있을 정도로 바람직한 실시예를 도면을 참조하여 상세하게 설명하면 다음과 같다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily perform the following.

한 양태에서 본 발명은 광화학적 암모니아 합성방법으로, 상기 방법은, 하부에 질소 주입부, 상부에 기체 포집부 및 측면에 광조사부를 구비한 암모니아 합성 반응기를 준비하는 단계; 상기 합성 반응기에 극성 양성자성 액체를 채우고 광촉매를 분산시키는 단계; 상기 질소 주입부로 질소기체를 공급하는 단계; 상기 광조사부로 태양광 또는 인공광을 조사하여 암모니아를 합성하는 단계; 및 상기 기체포집부에서 암모니아를 포집하는 단계를 포함한다. In one embodiment, the present invention provides a method for synthesizing photochemical ammonia, the method comprising: preparing an ammonia synthesis reactor having a nitrogen injection portion at the bottom, a gas collection portion at the top, and a light irradiation portion at the side; Filling a polar protic liquid into said synthesis reactor and dispersing a photocatalyst; Supplying nitrogen gas to the nitrogen injection unit; Irradiating sunlight or artificial light with the light irradiation unit to synthesize ammonia; And collecting ammonia from the gas collecting unit.

본 발명의 광촉매란 빛을 받아들여 화학반응을 촉진시키는 물질을 일컬으며 이와 같이 광촉매에 의한 반응을 광화학 반응이라고 한다. 본 발명의 일 구현예에서 상기 광촉매는 도 1 및 하기 화학식 1 내지 5와 같이 외부에서 빛이 조사되면 광촉매가 여기된 홀-전자 쌍을 생성하고 주변의 물을 분해시킨다. 광화학반응은 질소 조건하에 물을 분해하여 암모니아를 생성할 수 있으며, 본 발명의 일 구현예에서 상기 광촉매는 1.23 V 이상의 밴드 갭을 가지는 반도체로 구성되는 것이 바람직하다. 본 발명의 일 구현예에서는 암모니아 합성 반응기 내 광촉매가 분산된 액체에 질소기체를 주입하고 광을 조사하여 암모니아를 합성한다. 본 발명의 방법은 외부 전원장치 필요없이 태양광에너지로 암모니아를 제조하는 것이 가능하다. The photocatalyst of the present invention refers to a substance that receives light to promote a chemical reaction, and the photocatalyst reaction is called a photochemical reaction. In one embodiment of the present invention, when the photocatalyst is irradiated with light from outside as shown in FIG. The photochemical reaction may decompose water under nitrogen conditions to generate ammonia, and in one embodiment of the present invention, the photocatalyst is preferably composed of a semiconductor having a band gap of 1.23 V or more. In one embodiment of the present invention, nitrogen gas is injected into a liquid in which the photocatalyst is dispersed in the ammonia synthesis reactor, and the light is irradiated to synthesize ammonia. The method of the present invention makes it possible to produce ammonia from solar energy without the need for an external power supply.

화학식Chemical formula

Photocatalyst + hν h+ VB + e- CB (1)Photocatalyst + hν h + VB + e - CB (1)

H2O + e- CB H + OH- (2) H 2 O + e - CB H + OH - (2)

2H2O + h+ VB 1/4O2 + H+ (3)2H 2 O + h + VB 1/4 O 2 + H + (3)

N2 + 3H 2NH3 (4)N 2 + 3 H 2 NH 3 (4)

OH- + H+ H2O (5) OH - + H + H 2 O (5)

질소는 원자간에 삼중결합을 가지고 있어 원자 또는 이온으로 해리되기 어려운 기체이나, 본 발명의 광화학적 암모니아 합성에서는 외부 빛에 의해 광촉매의 전도대(conduction band)에 생성되는 전자와 질소 분자 간의 높은 반응성으로 질소를 해리시킨다. 본 발명의 일 구현예에서 광촉매의 기능은 질소분자의 삼중결합 해리를 촉진하는 것이다. 본 발명의 일 구현예에서 암모니아 합성량을 증가시키기 위하여 다양한 전이금속의 산화물, 질화물, 칼코게나이드 물질을 광촉매로 반응기 내 액체에 분산시켜 사용할 수 있다. Nitrogen is a gas that has triple bonds between atoms and is difficult to dissociate into atoms or ions, but in the photochemical ammonia synthesis of the present invention, nitrogen is highly reactive between electrons and nitrogen molecules generated in the conduction band of the photocatalyst by external light. Dissociate In one embodiment of the invention the function of the photocatalyst is to promote triple bond dissociation of nitrogen molecules. In one embodiment of the present invention, in order to increase the amount of ammonia synthesis, various transition metal oxides, nitrides, and chalcogenide materials may be dispersed in a liquid in a reactor as a photocatalyst.

도 2는 본 발명의 한 구현예에 따른 광화학적 암모니아 합성 반응기(10)를 사용한, 암모니아 합성 공정을 나타내는 개략도이다. 상기 반응기는 하부에 질소 주입부(11), 상부에 기체 포집부(13)를 구비하고 측면에는 광이 상기 반응기 내부로 투과해 갈 수 있도록 광조사부(12)를 구비한다. 본 발명의 일 구현예에서 질소 주입부(11)는 질소 기체가 주입되는 곳으로 상기 질소 주입부는 다공성 금속으로 형성되고 반응기와 연결되며, 역류(back flow)방지 밸브를 구비할 수 있다. 본 발명의 일 구현예에서 상부 기체 포집부(13)는 반응기내 생성된 암모니아, 산소 또는 수소 기체가 포집될 수 있으며, 암모니아 포집은 당업자에게 알려진 포집공정이면 어느 것이든 적용할 수 있다. 본 발명의 일 구현예에서 상기 광조사부(12)는 합성 반응기 측면에 위치하며 쿼츠(Quartz)를 포함하는 광투과성 창을 형성하여 반응기 내로 광을 조사한다. 2 is a schematic diagram illustrating an ammonia synthesis process using a photochemical ammonia synthesis reactor 10 according to one embodiment of the invention. The reactor includes a nitrogen injection unit 11 at the bottom, a gas collection unit 13 at the upper side, and a light irradiation unit 12 at the side thereof to allow light to pass into the reactor. In one embodiment of the present invention, the nitrogen injection unit 11 is a place where nitrogen gas is injected, and the nitrogen injection unit is formed of a porous metal and connected to the reactor, and may include a back flow prevention valve. In one embodiment of the present invention, the upper gas collecting unit 13 may collect ammonia, oxygen, or hydrogen gas generated in the reactor, and the ammonia collecting may be applied to any collection process known to those skilled in the art. In one embodiment of the present invention, the light irradiator 12 is positioned on the side of the synthesis reactor and forms a light transmitting window including quartz (Quartz) to irradiate light into the reactor.

본 발명의 일 구현예에서 암모니아 합성을 위해서는, 상기 암모니아 합성 반응기에 극성 양성자성 액체(40)를 채우고 광촉매(30)를 분산시켜 광화학 반응을 수행하며, 상기 분산은 예를 들면 초음파를 이용하여 수행할 수 있다. 한 구현예에서 상기 광촉매는 비표면적 0.1 내지 3 m2 인 입자를 사용할 수 있다. 상기 액체는 극성 양성자성 액체면 어느 것이나 사용가능하며, 암모니아 합성에 필요한 수소를 제공하는 것으로 한 구현예에서 증류수, 포름산, 부탄올, 이소프로판올, 에탄올, 메탄올 및 초산으로 이루어진 군에서 선택되는 하나 이상이고 사용하는 광촉매에 따라 선택적으로 사용할 수 있다. 본 발명의 일 구현예에서 상기 광촉매는 4주기(Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, 및 Zn), 5주기(Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, 및 Cd), 및 6주기(Hf, Ta, W, Re, Os, Ir, Pt, 및 Au)로 이루어진 군에서 선택되는 하나 이상의 전이금속, 전이금속 합금, 전이금속 산화물, 전이금속 질화물 또는 전이금속 칼코게나이드 화합물이다. 바람직하게 상기 광촉매는 Fe2O3, CoFe2O4, Co3O4, ZrN, VN, Fe2N, TiO2, MoS2, Fe-VN 및 Fe-TiO2로 이루어진 군에서 선택되는 하나 이상이다. 본 발명의 일 구현예에서 상기 광촉매는 극성 양성자성 액체에 0.001 내지 10 중량%로 분산된다. 상기 광촉매가 0.001 중량% 이하로 분산되면 암모니아가 충분히 합성되지 못하여 합성효율이 떨어지고 10 중량% 이상이면 응집현상이 일어나 촉매 활성이 떨어져 암모니아 합성 효율이 낮아질 수 있다.In one embodiment of the present invention, in order to synthesize ammonia, the ammonia synthesis reactor is filled with a polar protic liquid 40 and the photocatalyst 30 is dispersed to perform a photochemical reaction, and the dispersion is performed using, for example, ultrasonic waves. can do. In one embodiment, the photocatalyst may use particles having a specific surface area of 0.1 to 3 m 2 . The liquid may be any polar protic liquid and may be used and provide at least one hydrogen selected for the ammonia synthesis. In one embodiment, the liquid may be at least one selected from the group consisting of distilled water, formic acid, butanol, isopropanol, ethanol, methanol and acetic acid. According to the photocatalyst to be used, it can be used selectively. In one embodiment of the invention the photocatalyst is 4 cycles (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn), 5 cycles (Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, and Cd), and one or more transition metals, transition metal alloys, transition metal oxides, transition metals selected from the group consisting of 6 cycles (Hf, Ta, W, Re, Os, Ir, Pt, and Au) Nitride or transition metal chalcogenide compound. Preferably the photocatalyst is at least one selected from the group consisting of Fe 2 O 3 , CoFe 2 O 4 , Co 3 O 4 , ZrN, VN, Fe 2 N, TiO 2 , MoS 2 , Fe-VN and Fe-TiO 2 . In one embodiment of the invention the photocatalyst is dispersed in a polar protic liquid at 0.001 to 10% by weight. If the photocatalyst is dispersed at 0.001% by weight or less, ammonia may not be sufficiently synthesized, and thus, the synthesis efficiency may be reduced. If the photocatalyst is more than 10% by weight, aggregation may occur, resulting in poor catalytic activity, resulting in low ammonia synthesis efficiency.

광촉매가 분산된 극성 양성자성 액체에 상기 질소 주입부로 질소기체(20)를 공급하고 광조사부로 광을 조사하여 암모니아를 합성한다. 본 발명의 일 구현예에서 반응기 용적 대비 분당(min.) 1:1 내지 10:1의 부피비의 유량으로 공급된다. 반응기 용적 대비 분당(min.) 1:1 부피비 이상으로 공급하면 다량의 질소기체가 반응기 상부로 빠져나가 암모니아 합성 효율을 감소시킨다. 반응기 용적 대비 분당(min.) 10:1 이하로 공급하면 반응기 내의 질소 공급률이 낮아 암모니아 합성 효율을 감소시킨다. 본 발명의 일 구현예에서 상이 광조사는 이로 제한하는 것은 아니나 1 내지 100mW/cm2 강도의 빛을 조사하는 것이며, 예를 들면 1 내지 50시간 동안 수행될 수 있으며 LED 등 인조광 또는 태양광을 사용할 수 있다. 광조사로 인해 반응기 내에서 광화학 반응으로 암모니아가 합성되면 반응기 액체 내 기체가 포화되고, 공급된 잔여 질소기체와 함께 반응기 상부로 암모니아 기체가 빠져나간다. 기체 포집부에서 암모니아를 포집하는 것이며, 본 발명의 일 구현예에서는 0.1N의 묽은 황산을 이용하여 NH3를 NH4 +로 수득할 수 있다. 본 발명의 광화학적 암모니아 합성방법은 상온 상압 조건에서 수행되는 온화한 조건에서 수행되는 합성방법으로 태양광에너지를 직접 이용하여 암모니아를 합성함에 따라 외부 에너지가 필요없어 암모니아 생산 효율이 개선되는 효과가 있다.The nitrogen gas 20 is supplied to the nitrogen injecting unit to the polar protic liquid in which the photocatalyst is dispersed, and light is irradiated to the light irradiating unit to synthesize ammonia. In one embodiment of the invention it is supplied at a flow rate of volume ratio of 1: 1 to 10: 1 per minute (min.) To the reactor volume. When supplied at a volume ratio of more than 1: 1 per minute (min.) Of the reactor volume, a large amount of nitrogen gas escapes to the top of the reactor to reduce the ammonia synthesis efficiency. If the feed rate is less than 10: 1 per minute (min.) Of the reactor volume, the nitrogen supply rate in the reactor is low, thereby reducing the ammonia synthesis efficiency. In one embodiment of the present invention, the different light irradiation is not limited thereto, but irradiates light of 1 to 100 mW / cm 2 intensity, for example, may be performed for 1 to 50 hours, and may be applied to artificial or solar light such as an LED. Can be used. When ammonia is synthesized by photochemical reaction in the reactor due to light irradiation, the gas in the reactor liquid is saturated, and the ammonia gas is discharged to the top of the reactor along with the remaining nitrogen gas supplied. The ammonia is collected in the gas collecting unit, and in one embodiment of the present invention, NH 3 may be obtained as NH 4 + using 0.1 N of dilute sulfuric acid. The photochemical ammonia synthesis method of the present invention is a synthesis method performed under mild conditions performed at room temperature and atmospheric pressure conditions, and thus, since ammonia is synthesized using solar energy directly, external energy is not required, thereby improving ammonia production efficiency.

본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다. All technical terms used in the present invention, unless defined otherwise, are used in the meaning as commonly understood by those skilled in the art in the related field of the present invention. The contents of all publications described herein by reference are incorporated into the present invention.

이하, 본 발명의 이해를 돕기 위해서 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다. Hereinafter, examples are provided to help understand the present invention. However, the following examples are merely provided to more easily understand the present invention, and the present invention is not limited to the following examples.

실시예Example 1.  One. 광촉매를Photocatalyst 이용한 광화학적 암모니아 합성 Photochemical Ammonia Synthesis Using

광화학 반응기내에 100 ml의 증류수를 채우고 BET 측정결과로부터 환산한 비표면적 2 m2의 표 1에 기재된 광촉매를 각각 분산시키고, 질소유량 50 ml/min, 상온/상압 조건에서 1 sun 조건(100mW/cm2의 세기를 갖는 태양광이 광화학 반응기에 수직으로 조사되는 조건)으로 5시간 동안 암모니아를 합성하여, 그 결과를 표 1에 나타냈다. Fill the photochemical reactor with 100 ml of distilled water and disperse the photocatalysts listed in Table 1 of the specific surface area 2 m 2 converted from the BET measurement results, respectively, and at 1 sun conditions (100 mW / cm at a nitrogen flow rate of 50 ml / min and room temperature / atmospheric pressure). Ammonia was synthesized for 5 hours under the condition that sunlight having an intensity of 2 was irradiated perpendicularly to the photochemical reactor, and the results are shown in Table 1.

광촉매가 없는 비교군(blank)에서는 암모니아가 합성되지 않았으며, VN(2.0% Fe)(V0.98Fe0.02N)에서 가장 높은 효율로 암모니아가 생성되었다. No ammonia was synthesized in the blank without photocatalyst, and ammonia was produced at the highest efficiency in VN (2.0% Fe) (V 0.98 Fe 0.02 N).

본 발명의 실시예에 따른 VN, FeN, ZrN, MoS2와 같은 금속성(metallic) 광촉매는 촉매에 존재하는 다량의 자유전자들이 광화학적 암모니아 합성 반응에 참여하여 높은 암모니아 합성 효율을 나타내는 것으로 이는 종래의 반도체 광촉매를 이용한 광화학적 암모니아 합성 효율보다 더 높은 암모니아 합성효율을 나타냈다.Metallic photocatalysts such as VN, FeN, ZrN, MoS 2 according to an embodiment of the present invention exhibit a high ammonia synthesis efficiency due to a large amount of free electrons present in the catalyst participating in the photochemical ammonia synthesis reaction. It showed higher ammonia synthesis efficiency than photochemical ammonia synthesis efficiency using semiconductor photocatalyst.

[표 1]TABLE 1

Figure pat00001
Figure pat00001

또 다른 실시예에서 암모니아의 시간당 합성량을 알아보기 위해 5시간 및 50시간에서 광화학적 암모니아 합성을 수행하고 이를 비교하였다. 그 결과를 표 2에 나타냈다. 5시간 합성을 수행하였을 때와 같이 VN(2.0% Fe)(V0. 98Fe0 .02N) 광촉매를 사용한 경우에 가장 많은 암모니아 합성량을 나타냈다. 그러나 5시간 합성 실험에서는 ZrN가 두 번째로 많은 양의 암모니아 합성량을 나타냈으나, 50시간의 실험에서는 VN(4.0% Fe) 및 VN(8.0% Fe) 광촉매를 사용한 경우에 더욱 높은 합성량을 나타냈다.In another embodiment, photochemical ammonia synthesis was performed at 5 hours and 50 hours to compare the hourly synthesis amount of ammonia. The results are shown in Table 2. VN (2.0% Fe), such as when carried out for 5 hours synthesized (V 0. 98 Fe 0 .02 N ) showed the highest synthesis amount of ammonia in the case of using the photocatalyst. However, ZrN showed the second highest amount of ammonia synthesis in the 5-hour synthesis experiment, while higher synthesis was achieved with the VN (4.0% Fe) and VN (8.0% Fe) photocatalysts in the 50-hour experiment. Indicated.

[표 2]TABLE 2

Figure pat00002
Figure pat00002

본 발명의 광화학적 암모니아 합성방법은 상온, 상압조건에서 암모니아 합성이 가능하고 태양광을 사용하여 합성할 수 있기 때문에 기존의 합성방법인 하버-보슈법 또는 전기화학적 합성방법 등, 고온조건, 외부전력이 필요한 합성방법에 비하여 경제적일 뿐 아니라, 수소생성반응 촉진 등 암모니아 합성 방해요인이 없다는 장점을 가진다.Since the photochemical ammonia synthesis method of the present invention is capable of synthesizing ammonia at room temperature and atmospheric conditions and can be synthesized using sunlight, the high temperature conditions such as the conventional synthesis method such as Haber-Bosch method or electrochemical synthesis method, It is economical in comparison with this necessary synthesis method, and has the advantage that there are no obstacles to ammonia synthesis such as promotion of hydrogen production reaction.

10. 반응기
11. 질소 공급부
12. 광조사부
13. 기체 포집부
20. 질소기체
30. 광촉매
40. 극성 양성자성 액체
10. Reactor
11. Nitrogen supply
12. Light irradiation part
13. Gas collector
20. Nitrogen Gas
30. Photocatalyst
40. Polar protic liquid

Claims (7)

광화학적 암모니아 합성방법으로,
상기 방법은, 하부에 질소 주입부, 상부에 기체 포집부 및 측면에 광조사부를 구비한 암모니아 합성 반응기를 준비하는 단계;
상기 합성 반응기에 극성 양성자성 액체를 채우고 광촉매를 분산시키는 단계;
상기 질소 주입부로 질소기체를 공급하는 단계;
상기 광조사부로 태양광 또는 인공광을 조사하여 암모니아를 합성하는 단계; 및
상기 기체포집부에서 암모니아를 포집하는 단계를 포함하고,
상기 광촉매는 4주기(Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, 및 Zn), 5주기(Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, 및 Cd), 및 6주기(Hf, Ta, W, Re, Os, Ir, Pt, 및 Au)로 이루어진 군에서 선택되는 하나 이상의 전이금속, 전이금속 합금, 전이금속 산화물, 전이금속 질화물 또는 전이금속 칼코게나이드 화합물인,
광화학적 암모니아 합성방법.
Photochemical ammonia synthesis method,
The method comprises the steps of preparing an ammonia synthesis reactor having a nitrogen injection portion at the bottom, a gas collecting portion at the top and a light irradiation portion at the side;
Filling a polar protic liquid into said synthesis reactor and dispersing a photocatalyst;
Supplying nitrogen gas to the nitrogen injection unit;
Irradiating sunlight or artificial light with the light irradiation unit to synthesize ammonia; And
Collecting ammonia from the gas collecting unit,
The photocatalyst has 4 cycles (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn), 5 cycles (Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, and Cd). And at least one transition metal, transition metal alloy, transition metal oxide, transition metal nitride or transition metal chalcogenide selected from the group consisting of 6 cycles (Hf, Ta, W, Re, Os, Ir, Pt, and Au) Compound,
Photochemical ammonia synthesis method.
제 1 항에 있어서,
상기 광촉매는 비표면적 0.1 내지 3 m2 이고,
상기 태양광 또는 인공광 조사에서 빛의 강도는 1 내지 100mW/cm2 인,
광화학적 암모니아 합성방법.
The method of claim 1,
The photocatalyst has a specific surface area of 0.1 to 3 m 2 ,
The intensity of light in the sunlight or artificial light irradiation is 1 to 100mW / cm 2 ,
Photochemical ammonia synthesis method.
제 1항에 있어서,
상기 질소기체는 반응기 용적 대비 분당(min.) 1:1 내지 10:1의 부피비의 유량으로 공급되는,
광화학적 암모니아 합성방법.
The method of claim 1,
The nitrogen gas is supplied at a flow rate of volume ratio of 1: 1 to 10: 1 per minute (min.) To the reactor volume,
Photochemical ammonia synthesis method.
제 1 항에 있어서,
상기 하나 이상의 전이금속, 전이금속 합금, 전이금속 산화물, 전이금속 질화물 또는 전이금속 칼코게나이드 화합물은 Fe2O3, CoFe2O4, Co3O4, ZrN, VN, Fe2N, TiO2, MoS2, Fe-VN 및 Fe-TiO2로 이루어진 군에서 선택되는 하나 이상인,
광화학적 암모니아 합성방법.
The method of claim 1,
The at least one transition metal, transition metal alloy, transition metal oxide, transition metal nitride or transition metal chalcogenide compound is Fe 2 O 3 , CoFe 2 O 4 , Co 3 O 4 , ZrN, VN, Fe 2 N, TiO 2 At least one selected from the group consisting of, MoS 2 , Fe-VN and Fe-TiO 2 ,
Photochemical ammonia synthesis method.
제 1 항에 있어서,
상기 암모니아 합성은 상온, 상압조건에서 수행되는,
광화학적 암모니아 합성방법.
The method of claim 1,
The ammonia synthesis is carried out at room temperature, atmospheric pressure conditions,
Photochemical ammonia synthesis method.
제 1 항에 있어서,
상기 광촉매는 극성 양성자성 액체에 0.001 내지 10 중량%로 분산되는,
광화학적 암모니아 합성방법.
The method of claim 1,
The photocatalyst is dispersed in a polar protic liquid at 0.001 to 10% by weight,
Photochemical ammonia synthesis method.
제 1 항에 있어서,
상기 극성 양성자성 액체는 증류수, 포름산, 부탄올, 이소프로판올, 에탄올, 메탄올 및 초산으로 이루어진 군에서 선택되는 하나 이상인,
광화학적 암모니아 합성방법.
The method of claim 1,
The polar protic liquid is at least one selected from the group consisting of distilled water, formic acid, butanol, isopropanol, ethanol, methanol and acetic acid,
Photochemical ammonia synthesis method.
KR1020180052326A 2018-05-08 2018-05-08 Method of Photochemical Ammonia Synthesis KR102157023B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180052326A KR102157023B1 (en) 2018-05-08 2018-05-08 Method of Photochemical Ammonia Synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180052326A KR102157023B1 (en) 2018-05-08 2018-05-08 Method of Photochemical Ammonia Synthesis

Publications (2)

Publication Number Publication Date
KR20190128312A true KR20190128312A (en) 2019-11-18
KR102157023B1 KR102157023B1 (en) 2020-09-17

Family

ID=68727695

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180052326A KR102157023B1 (en) 2018-05-08 2018-05-08 Method of Photochemical Ammonia Synthesis

Country Status (1)

Country Link
KR (1) KR102157023B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112427005A (en) * 2020-10-31 2021-03-02 同济大学 Micro-channel whole-building filler for catalyzing ozone to form advanced oxidation
CN113441165A (en) * 2021-07-30 2021-09-28 陕西科技大学 VN/g-C3N4Composite photocatalyst and preparation method thereof
WO2021227078A1 (en) * 2020-05-15 2021-11-18 北京光合启源科技有限公司 Method for catalytic synthesis of ammonia by means of radiation
CN114672823A (en) * 2022-05-16 2022-06-28 西安交通大学 Reactor and method for synthesizing ammonia through photoelectrocatalysis based on high-low frequency sound wave combination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151291A (en) * 2013-02-12 2014-08-25 Denso Corp Ammonia-producing catalyst
JP2016519215A (en) 2013-03-26 2016-06-30 オハイオ・ユニバーシティ Electrochemical synthesis of ammonia in alkaline media
CN205773380U (en) * 2016-07-01 2016-12-07 南京科技职业学院 A kind of room temperature ammonia synthesis reaction device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151291A (en) * 2013-02-12 2014-08-25 Denso Corp Ammonia-producing catalyst
JP2016519215A (en) 2013-03-26 2016-06-30 オハイオ・ユニバーシティ Electrochemical synthesis of ammonia in alkaline media
CN205773380U (en) * 2016-07-01 2016-12-07 南京科技职业学院 A kind of room temperature ammonia synthesis reaction device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. Am. Chem. Soc., 2017, Vol.139, No.31, pp.10929-10936* *
Journal of Photochemistry and Photobiology A Chemistry, 1996, Vol. 96, pp. 181-185 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227078A1 (en) * 2020-05-15 2021-11-18 北京光合启源科技有限公司 Method for catalytic synthesis of ammonia by means of radiation
CN115667144A (en) * 2020-05-15 2023-01-31 北京光合启源科技有限公司 Method for catalytically synthesizing ammonia by energy radiation
CN112427005A (en) * 2020-10-31 2021-03-02 同济大学 Micro-channel whole-building filler for catalyzing ozone to form advanced oxidation
CN112427005B (en) * 2020-10-31 2021-09-03 同济大学 Micro-channel whole-building filler for catalyzing ozone to form advanced oxidation
CN113441165A (en) * 2021-07-30 2021-09-28 陕西科技大学 VN/g-C3N4Composite photocatalyst and preparation method thereof
CN114672823A (en) * 2022-05-16 2022-06-28 西安交通大学 Reactor and method for synthesizing ammonia through photoelectrocatalysis based on high-low frequency sound wave combination

Also Published As

Publication number Publication date
KR102157023B1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
Jia et al. Cu-based bimetallic electrocatalysts for CO2 reduction
Liang et al. Unveiling in situ evolved In/In2O3− x heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate
Guo et al. Dual-doping NiMoO4 with multi-channel structure enable urea-assisted energy-saving H2 production at large current density in alkaline seawater
Zhou et al. Strain-induced in situ formation of NiOOH species on CoCo bond for selective electrooxidation of 5-hydroxymethylfurfural and efficient hydrogen production
KR102157023B1 (en) Method of Photochemical Ammonia Synthesis
John et al. Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions
Ren et al. Sustainable ammonia electrosynthesis from nitrate wastewater coupled to electrocatalytic upcycling of polyethylene terephthalate plastic waste
Zhang et al. Electrochemical ammonia synthesis from N2 and H2O catalyzed by doped LaFeO3 perovskite under mild conditions
Ren et al. Continuous production of ethylene from carbon dioxide and water using intermittent sunlight
CN113020614B (en) Copper-based monatomic alloy catalyst, preparation method and application thereof, and membrane electrode electrolyte battery for preparing formic acid through carbon dioxide electroreduction
CN112481663B (en) Preparation method of copper nanoflower applied to efficient carbon dioxide reduction reaction to generate ethylene
Zhang et al. High spin polarization ultrafine Rh nanoparticles on CNT for efficient electrochemical N2 fixation to ammonia
Zhou et al. Palladium-Copper bimetallic catalysts for electroreduction of CO2 and nitrogenous species
Ren et al. Electrochemical co-production of ammonia and biodegradable polymer monomer glycolic acid via the co-electrolysis of nitrate wastewater and waste plastic
Jiao et al. The lab-to-fab journey of copper-based electrocatalysts for multi-carbon production: Advances, challenges, and opportunities
Bian et al. Strategies and reaction systems for solar-driven CO2 reduction by water
Ampelli et al. An artificial leaf device built with earth-abundant materials for combined H 2 production and storage as formate with efficiency> 10%
Feng et al. Recent developments and prospects for engineering first-row transition metal-based catalysts for electrocatalytic NO x− reduction to ammonia
Yin et al. Electrochemical ammonia synthesis via nitrate reduction on perovskite La x FeO 3− δ with enhanced efficiency by oxygen vacancy engineering
Ma et al. Metal–oxide heterointerface synergistic effects of copper–zinc systems for highly selective CO 2-to-CH 4 electrochemical conversion
Zhang et al. High efficiency coupled electrocatalytic CO 2 reduction to C 2 H 4 with 5-hydroxymethylfurfural oxidation over Cu-based nanoflower electrocatalysts
Li et al. Recent advances of metal oxide catalysts for electrochemical NH3 production from nitrogen-containing sources
Xu et al. Synergistic multisite CuPdP nanodendrites for efficient ambient neutral electrosynthesis of ammonia from nitrate
Zhang et al. A review on electrocatalytic CO2 conversion via C–C and C–N coupling
Chen et al. Introduction of element Bi in the P-block promotes N2 activation for efficient electrocatalytic nitrogen reduction to produce ammonia

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right