KR20190124970A - Medical cooling device - Google Patents
Medical cooling device Download PDFInfo
- Publication number
- KR20190124970A KR20190124970A KR1020180049109A KR20180049109A KR20190124970A KR 20190124970 A KR20190124970 A KR 20190124970A KR 1020180049109 A KR1020180049109 A KR 1020180049109A KR 20180049109 A KR20180049109 A KR 20180049109A KR 20190124970 A KR20190124970 A KR 20190124970A
- Authority
- KR
- South Korea
- Prior art keywords
- coolant
- temperature
- unit
- heat
- cooling
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 258
- 239000002826 coolant Substances 0.000 claims abstract description 453
- 238000002347 injection Methods 0.000 claims abstract description 81
- 239000007924 injection Substances 0.000 claims abstract description 81
- 230000004888 barrier function Effects 0.000 claims abstract description 9
- 238000012546 transfer Methods 0.000 claims description 81
- 238000000034 method Methods 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 19
- 235000013399 edible fruits Nutrition 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 10
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 206010002091 Anaesthesia Diseases 0.000 abstract description 12
- 230000037005 anaesthesia Effects 0.000 abstract description 12
- 230000006378 damage Effects 0.000 abstract description 11
- 230000005934 immune activation Effects 0.000 abstract description 5
- 230000007012 clinical effect Effects 0.000 abstract description 4
- 230000017525 heat dissipation Effects 0.000 description 27
- 230000000694 effects Effects 0.000 description 26
- 210000004027 cell Anatomy 0.000 description 25
- 238000010257 thawing Methods 0.000 description 19
- 239000007788 liquid Substances 0.000 description 17
- 239000007789 gas Substances 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 239000012071 phase Substances 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 13
- 239000000306 component Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000003902 lesion Effects 0.000 description 9
- 230000033001 locomotion Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 238000005507 spraying Methods 0.000 description 9
- 239000007787 solid Substances 0.000 description 8
- 239000007921 spray Substances 0.000 description 8
- 230000004044 response Effects 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- 230000030833 cell death Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 210000005036 nerve Anatomy 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 230000006907 apoptotic process Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000012782 phase change material Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 230000005679 Peltier effect Effects 0.000 description 3
- 230000003444 anaesthetic effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 208000026278 immune system disease Diseases 0.000 description 3
- 238000002690 local anesthesia Methods 0.000 description 3
- 229910001120 nichrome Inorganic materials 0.000 description 3
- 230000036407 pain Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 206010033799 Paralysis Diseases 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 238000000315 cryotherapy Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 201000000849 skin cancer Diseases 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 108010057266 Type A Botulinum Toxins Proteins 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 208000002352 blister Diseases 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 229940089093 botox Drugs 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 208000021090 palsy Diseases 0.000 description 1
- 208000035824 paresthesia Diseases 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000036573 scar formation Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 210000005167 vascular cell Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B18/0218—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques with open-end cryogenic probe, e.g. for spraying fluid directly on tissue or via a tissue-contacting porous tip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/0085—Devices for generating hot or cold treatment fluids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00041—Heating, e.g. defrosting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00047—Cooling or heating of the probe or tissue immediately surrounding the probe using Peltier effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00714—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0231—Characteristics of handpieces or probes
- A61B2018/0237—Characteristics of handpieces or probes with a thermoelectric element in the probe for cooling purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0059—Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit
- A61F2007/0063—Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit for cooling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/007—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
- A61F2007/0071—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating using a resistor, e.g. near the spot to be heated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/007—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
- A61F2007/0075—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating using a Peltier element, e.g. near the spot to be heated or cooled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/02—Compresses or poultices for effecting heating or cooling
- A61F2007/0282—Compresses or poultices for effecting heating or cooling for particular medical treatments or effects
- A61F2007/0285—Local anaesthetic effect
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Otolaryngology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Vascular Medicine (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
Abstract
본 발명은 냉각재를 분사하는 제1 분사부와, 상기 목표영역의 경계에 열을 공급할 수 있는 경계열공급부(heat providing barrier) 및 상기 경계열공급부에 가해지는 열을 제어하는 제어부를 포함하여, 병변세포의 효과적 파괴, 주변 정상세포의 파괴 최소화, 냉각마취, 냉각에 의한 면역활성화 등 다양한 임상효과에 요구되는 냉각조건을 안정적으로 구현할 수 있는 의료용 냉각장치를 제공한다.The invention includes a first injection unit for injecting coolant, a heat providing barrier capable of supplying heat to the boundary of the target area, and a control unit for controlling heat applied to the boundary heat supply unit. The present invention provides a medical cooling apparatus that can stably implement cooling conditions required for various clinical effects such as effective destruction of cells, minimization of destruction of surrounding normal cells, cooling anesthesia, and immune activation by cooling.
Description
본 발명은 냉각재를 이용한 의료용 냉각장치에 관한 것으로서, 더욱 상세하게는 피부의 국소 부위에 냉각재를 분사하여 원하는 조직을 선택적으로 냉각 시켜 치료 또는 마취시키는 의료용 냉각장치에 관한 것이다.The present invention relates to a medical cooling apparatus using a coolant, and more particularly, to a medical cooling apparatus for spraying a coolant to a local part of the skin to selectively cool a desired tissue for treatment or anesthesia.
일반적으로 한랭요법(Cryotherapy)은, 병변세포를 제거-치료하기 위해 국소 부위를 냉각하는 것으로, 얼음조각에 의한 마사지, 미리 냉각된 냉각봉에 의한 전도를 이용하는 방법, 노즐을 통해 분사되는 냉각재(예: 드라이아이스, 액체질소)를 이용한 방법 등으로 피부 또는 장기 등 신체의 일부를 냉각시킴을 통해 이루어 진다. 이러한 국부냉각은 낮은 온도에서 병변세포를 파괴하여 제거-치료에 이용될 뿐만 아니라, 시술부위에 가해지는 냉각온도에 따라, 세포기능저하 (예: 신경마비), 면역활성화 및 세포자살 등의 다양한 임상효과를 가져올 수 있어, 주로 고온 세포사멸을 통한 제거-치료에 제한되어 사용되는 레이저 또는 RFA에 비해, 냉각마취, 면역질환치료 등 다양한 임상목적을 위해 사용할 수 있다. In general, cryotherapy is the cooling of topical areas to remove-treat lesion cells, massage with ice cubes, use of conduction with pre-cooled cold rods, coolant sprayed through nozzles (eg : Dry ice, liquid nitrogen) is used to cool parts of the body such as skin or organs. This local cooling is not only used to remove and treat lesion cells at low temperatures, but also depends on the cooling temperature applied to the treatment site, and can be used for various clinical functions such as cell dysfunction (e.g. nerve palsy), immune activation, and apoptosis. It can be used for various clinical purposes, such as cold anesthesia and immune disease treatment, compared to laser or RFA, which is mainly limited to removal-treatment through high temperature apoptosis.
상기한 바와 같은 종래의 국부 냉각장치에 관한 기술로는 대한민국 공개특허 제 10-2010-0054097호가 개시되어 있다. As a technique related to the conventional local cooling apparatus as described above, Korean Patent Publication No. 10-2010-0054097 is disclosed.
의료용 국부냉각을 위해 개발된 공개되어 있는 종래 기술들을 살펴보면 액체질소, 드라이아이스 등 극저온의 냉각재를 이용하여 국부냉각을 사용하는데, 이러한 냉각재가 가지는 고유온도가 세포사멸 온도보다 크게 낮아, 앞서 설명한 냉각마취, 면역활성화 등의 효과가 나타나는 냉각조건을 안정적으로 구현하기 어려워 다양한 임상목적으로 사용을 제한받고 있다. 이러한 기술 부재는, 근본적으로 세포가 가지는 큰 비열에서 기인하는데, 공학적으로 효과적인 세포냉각을 위해 필요한 고출력의 냉각량을 가진 냉각재의 온도를 그 고유온도범위를 벗어나 임의의 온도에서 정밀하게 제어하기가 어렵기 때문이다. Looking at the disclosed conventional technologies developed for medical local cooling using local cooling using cryogenic coolant such as liquid nitrogen, dry ice, the intrinsic temperature of such coolant is significantly lower than the apoptosis temperature, the cooling anesthesia described above It is difficult to reliably implement cooling conditions that show effects such as immune activation, and is limited in use for various clinical purposes. This lack of technology is fundamentally due to the large specific heat of the cell, which makes it difficult to precisely control the temperature of the coolant with a high output cooling amount necessary for engineering effective cell cooling beyond its intrinsic temperature range. Because.
상기한 한랭요법의 확장된 사용예인 냉각마취의 경우, 화학물질이 신경까지 확산하는데 그 시간이 소모되는 국소마취약(Lidocaine)과 달리, 신경온도를 물리적으로 냉각시켰을 때, 즉시 해당 부위의 마취 상태를 생성시킬 수 있어 여러 의료 시술 시 필요한 빠른 국소마취에 유용하다. 부연하면, 국소 부위 마취를 위한 마취제의 경우, 마취제가 두꺼운 피부층을 투과하여 통감 신경에 도달하기까지 시간이 오래 걸린다는 한계뿐만 아니라, 화학물질이 확산이 잘 안되는 피부의 경우, 직접 주사가 없이는 마취효과 또한 미비한 경우가 많다는 단점이 있다. 이러한 마취의 목적으로 냉각된 공기를 이용하여 피부의 국소부위를 통증을 절감시키는 종래 의료용 냉각장치가 개발되어 있으나, 공기의 낮은 열용량으로 인해 마취효과가 나타나는 온도까지 시술부위 온도를 낮추기 어려운 한계를 가진다. In the case of cold anesthesia, which is an extended use of the above-mentioned cold therapy, unlike local anesthetic (Lidocaine), which takes time for chemicals to spread to nerves, when the nerve temperature is physically cooled, the anesthetic state of the site is immediately changed. It can be used for rapid local anesthesia for many medical procedures. In addition, in the case of anesthetics for local anesthesia, not only does the anesthetic take a long time to penetrate the thick skin layer to reach the nerves of the nerve, but in the case of skin with poor diffusion of chemicals, anesthesia without direct injection There are also disadvantages that the effect is often insignificant. For the purpose of anesthesia, a conventional medical cooling apparatus has been developed that uses a cooled air to reduce pain in the local area of the skin. However, due to the low heat capacity of the air, it is difficult to lower the temperature of the procedure to an anesthetic effect. .
한편, 병변세포 제거-치료를 위한 고출력의 냉각을 필요로 하는 종래 의료용 냉각장치는, 액화 질소, CO2 등의 냉각재를 이용하고, 이러한 냉각재가 상변화 시 가지는 잠열로 인해 냉각효과가 강력하고 신속하게 이루어진다. 그러나, 현재 냉각기술은 사용하는 냉각재의 기화점 또는 액화점에 냉각온도가 제한되는 한계를 가진다. 특히, 명시한 액화 질소, CO2 를 포함한 일반적인 의료용 냉각재가 세포가 물리적으로 파괴되는 사멸온도보다 크게 낮아, 냉각재의 온도를 제대로 조절하지 못할 경우, 시술 영역의 온도가 안전 범위 이하로 내려가 주변 정상세포의 과도한 파괴를 일으킬 수 있다는 문제점이 있다. 이러한 과도한 정상세포 파괴로 인한 부작용으로는 혈, 부종, 수포형성, 감염, 색소변성, 감각이상, 반흔 형성 등이 있다.On the other hand, the conventional medical cooling device that requires high power cooling for lesion cell removal-treatment, uses a coolant such as liquefied nitrogen, CO2, and the cooling effect is strong and rapid due to the latent heat of the coolant phase change Is done. However, current cooling technology has a limitation that the cooling temperature is limited to the vaporization point or liquefaction point of the coolant used. In particular, the general medical coolant containing liquefied nitrogen and CO2 is significantly lower than the temperature at which the cells are physically destroyed. If the temperature of the coolant is not properly controlled, the temperature of the treatment area drops below the safe range, causing excessive There is a problem that can cause destruction. Side effects due to excessive normal cell destruction include blood, edema, blistering, infection, pigmented degeneration, paresthesia, and scar formation.
과도 냉각을 방지하기 위해 냉각재의 분사량이나 분사시간을 조절할 수 있으나, 이 경우에는 시술 영역에 가해지는 냉각재 자체의 온도는 여전히 세포파괴를 가져오는 위험온도에 머물러 있어 과도 냉각으로 인한 위험성을 낮추기 어렵다. In order to prevent excessive cooling, the amount of injection of the coolant or the injection time may be adjusted, but in this case, the temperature of the coolant itself applied to the treatment area remains at a dangerous temperature resulting in cell destruction, and thus it is difficult to lower the risk of overcooling.
이처럼 냉각재의 고유온도가 아닌 세포사멸을 포함하여 신경마비온도 또는 면역활성화온도를 안정적으로 제어할 수 있는 의료용 냉각장치는, 한랭요법이 가지는 다양한 임상적 효과를 시술자의 숙련도에 의존하지 않고 정량적으로 구현함에 있어서 핵심적이라 할 수 있다.As such, the medical cooling device capable of stably controlling neuronal paralysis or immune activation temperature, including cell death rather than intrinsic temperature of the coolant, quantitatively realizes various clinical effects of cold therapy without depending on the skill of the operator. It's the key to that.
본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 창출된 것으로, 병변세포의 효과적 파괴, 주변 정상세포의 파괴 최소화, 냉각마취, 냉각에 의한 면역활성화 등 다양한 임상효과에 요구되는 냉각조건을 안정적으로 구현할 수 있는 의료용 냉각장치를 제공하는 것을 그 목적으로 한다.The present invention was created to solve the problems described above, it is possible to stably implement the cooling conditions required for various clinical effects, such as effective destruction of lesion cells, minimization of destruction of surrounding normal cells, cooling anesthesia, immune activation by cooling It is an object of the present invention to provide a medical cooling device.
본 발명에 따른 의료용 냉각장치는 냉각재를 분사하는 제1 분사부와, 상기 목표영역의 경계에 열을 공급할 수 있는 경계열공급부(heat providing barrier) 및 상기 경계열공급부에 가해지는 열을 제어하는 제어부를 포함한다.The medical cooling apparatus according to the present invention includes a first injection unit for injecting coolant, a heat providing barrier capable of supplying heat to the boundary of the target region, and a control unit controlling heat applied to the boundary heat supply unit. It includes.
이때 본 발명에 따른 상기 경계열공급부는 열을 발생시킬 수 있는 발열부와 상기 목표영역 경계로 열을 전달하는 열매개체를 포함한다. In this case, the boundary heat supply unit according to the present invention includes a heat generating unit capable of generating heat and a fruit object transferring heat to the target area boundary.
그리고 본 발명에 따른 상기 발열부는 열전소자로 구성되고 상기 열전소자의 발열면이 상기 열매개체와 열적으로 결합되거나, 상기 발열부는 전기히터로 구성되고 상기 열매개체와 열적으로 결합될 수 있다.In addition, the heat generating unit according to the present invention may be composed of a thermoelectric element and the heat generating surface of the thermoelectric element is thermally coupled with the heat medium, or the heat generating part is composed of an electric heater and thermally coupled with the heat medium.
또한 본 발명에 따른 상기 열매개체는 열전도도 10W/m-K 이상의 재질로 만들어지고 목표영역과 접촉을 통해 상기 발열부의 열을 전달하고, 상기 열매개체는 상기 목표영역의 경계에 유체를 분사하는 제2 분사부로 구성되며, 상기 제2 분사부를 통해 흐르는 유체를 통해 상기 목표영역 경계에 열을 공급한다.In addition, the fruit object according to the present invention is made of a material having a thermal conductivity of 10W / mK or more and transfers the heat of the heat generating portion through contact with the target area, the fruit object is a second powder spraying fluid to the boundary of the target area Comprising a four-part, the heat is supplied to the target area boundary through the fluid flowing through the second injection.
더불어 본 발명에 따른 상기 제2 분사부는 상기 냉각재와 효율적인 열전달을 위해 복수의 핀(fin)을 형성하는 것이 바람직하다.In addition, the second injection unit according to the present invention preferably forms a plurality of fins for efficient heat transfer with the coolant.
그리고 본 발명에 따른 의료용 냉각장치는 상기 발열부와 상기 열매개체가 일체로 구성되어 제2 분사부를 이루고, 상기 열전소자의 냉각면이 상기 제1 분사부와 열적으로 결합하여 상기 목표영역의 경계부를 차등적으로 냉각할 수 있는 차등경계열전달부를 포함하며, 상기 차등경계열전달부의 냉각온도가 -40℃ 이상 10℃ 이하의 온도범위를 가진다.In the medical cooling apparatus according to the present invention, the heat generating portion and the fruit object are integrally formed to form a second spraying portion, and the cooling surface of the thermoelectric element is thermally coupled to the first spraying portion to form a boundary of the target area. It includes a differential boundary heat transfer unit that can be differentially cooled, the cooling temperature of the differential boundary heat transfer unit has a temperature range of -40 ℃ to 10 ℃.
또한 본 발명에 따른 상기 경계열공급부는 상기 목표영역 경계의 온도를 측정하기 위한 온도센서부를 포함하고, 상기 제어부는 미리 설정된 목표영역 온도조건과 상기 온도센서부에서 측정된 온도를 바탕으로 경계열공급부에 가해지는 열을 제어한다.In addition, the boundary heat supply unit according to the present invention includes a temperature sensor unit for measuring the temperature of the target area boundary, the control unit is based on a preset target area temperature conditions and the temperature measured by the temperature sensor unit in the boundary heat supply unit Control the heat applied.
본 발명에 따른 의료용 냉각장치에 의해 나타나는 효과는 다음과 같다. The effect of the medical cooling device according to the present invention is as follows.
냉각재 분사부에 인접한 위치에서 냉각재의 압력을 지속적으로 유지함을 통해 빠른 동적반응을 가지고 냉각재가 미리 설정한 열역학적 상태에 도달할 수 있다. 또한, 냉각재의 열역학적 상을 시술부위에 분사되기 직전에 제어하여 시술부위에 분사되는 냉각재의 온도가 원하는 온도로 조절된 채로 분사될 수 있는 효과가 있다. 또한, 냉각목표부위 이외의 시술부위에 열을 제어함으로써, 목표영역 외에서 과도한 냉각이 일어나지 않게 할 수 있는 효과를 가진다.By continuously maintaining the pressure of the coolant at a location adjacent to the coolant jet, the coolant can reach a pre-set thermodynamic state with fast dynamic response. In addition, by controlling the thermodynamic phase of the coolant just before the injection site, there is an effect that the temperature of the coolant injected to the treatment site can be sprayed while being adjusted to a desired temperature. In addition, by controlling the heat to the surgical site other than the cooling target site, there is an effect that can prevent excessive cooling outside the target area.
이러한 냉각재의 온도를 빠르게 제어하는 동시에 냉각부위를 통제함을 통해, 다양한 임상효과, 예를 들어, 냉각마취, 면역활성화를 이용한 병변세포치료, 정상세포 파괴를 최소화한 병변세포 사멸치료, 또는 다양한 임상효과를 복합적으로 조합한 치료, 예를 들어, 냉각마취에 해당하는 냉각조건을 먼저 적용한 후 통증이 최소화된 상태에서 수행하는 병변세포 사멸치료 등의 다양한 치료 프로토콜을 위한 냉각프로토콜을 안정적으로 구현할 수 있는 효과를 가진다.By rapidly controlling the temperature of the coolant and controlling the cooling site, various clinical effects such as cooling anesthesia, treatment of lesion cells using immunoactivation, treatment of lesion cells with minimal normal cell destruction, or various clinical It is possible to stably implement cooling protocols for various treatment protocols such as treatment of complex combinations of effects, for example, application of cooling conditions corresponding to cold anesthesia, followed by lesion cell death treatment performed with minimal pain. Has an effect.
도 1a은 본 발명의 바람직한 실시예에 따른 냉각시스템의 구성을 나타낸 도면이다.
도 1b는 본 발명의 바람직한 실시예에 따른 냉각시스템의 외관을 나타낸 도면이다.
도 1c은 본 발명의 바람직한 실시예에 따른 온도 제어 방법을 나타낸 도면이다.
도 1d는 본 발명의 바람직한 실시예에 따른 온도 제어 상태를 나타낸 도면이다.
도 1e는 본 발명의 바람직한 실시예에 따른 냉각장치의 제어부의 동작을 나타낸 순서도이다.
도 2a는 본 발명의 바람직한 실시예에 따른 의료용 냉각장치의 냉각압력유지부의 구성을 나타낸 도면이다.
도 2b는 본 발명의 바람직한 실시예에 따른 의료용 냉각장치의 냉각온도압력유지부의 구성을 나타낸 도면이다.
도 3a는 본 발명의 바람직한 실시예에 따른 냉각재온도압력조절부의 구성을 나타낸 도면이다.
도 3b는 본 발명의 바람직한 실시예에 따른 냉각재온도압력조절부의 분해도이다.
도 3c는 본 발명의 바람직한 실시예에 따른 냉각재온도압력조절부의 단면을 나타낸 도면이다.
도 3d는 본 발명의 바람직한 실시예에 따른 발열부의 장착 상태를 나타낸 도면이고,
도 3c는 본 발명의 바람직한 실시예에 따른 홀더부의 구성을 나타낸 도면이다.
도 4a는 본 발명의 바람직한 실시예에 따른 의료용 냉각장치의 냉각재회전부를 나타낸 도면이다.
도 4b는 본 발명의 바람직한 실시예에 따른 냉각재회전부의 구성을 나타낸 분해사시도이다.
도 4c는 본 발명의 바람직한 실시예에 따라 사이클론생성부의 구성을 나타낸 도면이다.
도 5a는 본 발명의 실시예에 따른 냉각장치 경계열공급부의 사용예를 나타낸 도면이다.
도 5b는 본 발명의 바람직한 실시예에 따른 경계열공급부의 구성을 나타낸 도면이다.
도 5c은 본 발명의 바람직한 실시예에 따른 경계열공급부의 실시 상태를 나타낸 도면이다.
도 5d는 본 발명의 바람직한 다른 실시예에 따른 경계열공급부의 실시 상태를 나타낸 도면이다.1A is a view showing the configuration of a cooling system according to a preferred embodiment of the present invention.
Figure 1b is a view showing the appearance of a cooling system according to a preferred embodiment of the present invention.
Figure 1c is a view showing a temperature control method according to a preferred embodiment of the present invention.
1D is a diagram illustrating a temperature control state according to a preferred embodiment of the present invention.
Figure 1e is a flow chart showing the operation of the controller of the cooling apparatus according to a preferred embodiment of the present invention.
Figure 2a is a view showing the configuration of the cooling pressure maintaining unit of the medical cooling apparatus according to a preferred embodiment of the present invention.
Figure 2b is a view showing the configuration of the cooling temperature pressure holding unit of the medical cooling apparatus according to a preferred embodiment of the present invention.
Figure 3a is a view showing the configuration of the coolant temperature pressure control unit according to a preferred embodiment of the present invention.
Figure 3b is an exploded view of the coolant temperature pressure control unit according to a preferred embodiment of the present invention.
Figure 3c is a view showing a cross section of the coolant temperature pressure control unit according to a preferred embodiment of the present invention.
3d is a view showing a mounting state of the heat generating unit according to a preferred embodiment of the present invention,
Figure 3c is a view showing the configuration of the holder portion according to a preferred embodiment of the present invention.
Figure 4a is a view showing a coolant rotating part of the medical cooling apparatus according to a preferred embodiment of the present invention.
Figure 4b is an exploded perspective view showing the configuration of the coolant rotating unit according to a preferred embodiment of the present invention.
Figure 4c is a view showing the configuration of the cyclone generating unit in accordance with a preferred embodiment of the present invention.
Figure 5a is a view showing an example of the use of the boundary heat supply of the cooling device according to an embodiment of the present invention.
5B is a view showing the configuration of a boundary heat supply unit according to a preferred embodiment of the present invention.
5C is a view showing an embodiment of a boundary heat supply unit according to a preferred embodiment of the present invention.
Figure 5d is a view showing an embodiment of the boundary heat supply unit according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that it can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들은 대체할 수 있는 균등한 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the present specification and the configuration shown in the drawings are only the most preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention. It should be understood that there may be variations.
I. 동적경계냉각제어I. Dynamic boundary cooling control
도 1a 내지 도 1e는 본 발명에 따른 동적 경계 냉각제어를 위한 냉각시스템 및 냉각장치의 구성을 도시한 도면이다. 본 발명은 냉각재가 이동하는 경로에 대응하여 냉각재의 온도조절이 가능하며, 실시예에 따르면 냉각재가 저장되는 저장부, 전달부 및 냉각장치의 각 구성 요소의 선택적 또는 서로 연계하여 히팅 또는 냉각을 통한 냉각재의 온도제어가 가능하다.1A to 1E are diagrams showing the configuration of a cooling system and a cooling apparatus for dynamic boundary cooling control according to the present invention. The present invention is capable of controlling the temperature of the coolant in response to the path of the coolant movement, and according to the embodiment through the heating or cooling of the storage unit, the delivery unit and the respective components of the cooling device is selectively or in conjunction with each other through Temperature control of the coolant is possible.
본 발명의 일 실시예에 의할 때, 냉각장치를 구성하는 냉각재압력유지부(Cryogen Pressure Keeper)의 냉각, 냉각재온도압력조절부(Cryogen Temperature Pressure Controller)의 히팅, 또는 경계열공급부(Heat Providing Barrier)의 냉각 또는 히팅을 통하여 냉각재의 정밀한 온도제어를 수행할 수 있다.According to an embodiment of the present invention, the cooling of the coolant pressure maintainer (Cryogen Pressure Keeper) constituting the cooling device, the heating of the coolant temperature pressure controller (Cryogen Temperature Pressure Controller), or the boundary heat supply (Heat Providing Barrier) Precise temperature control of the coolant can be performed by cooling or heating.
도 1a 및 도 1b는 본 발명의 바람직한 실시예에 따른 냉각시스템의 구성 및 외관을 나타낸 도면이다.1a and 1b is a view showing the configuration and appearance of a cooling system according to a preferred embodiment of the present invention.
도 1a를 참조하면, 본 발명의 일 실시예에 의할 때, 의료용 냉각시스템은 냉각재를 통해 목표영역을 냉각함에 있어, 냉각재를 저장하는 저장부(10)와, 상기 냉각재를 냉각장치로 전달하는 전달부(20) 및 냉각장치(100)를 포함할 수 있다. 상기 냉각장치(100)는 냉각재 압력유지부(Cryogen Pressure Keeper: 30), 냉각재 온도압력조절부(Cryogen Temperature Pressure Controller: 40), 냉각재 회전부(Cryogen Cyclone Generator: 50), 경계열공급부(Heat Providing Barrier: 60)와 상기 구성요소를 제어하기 위한 제어부(70)를 포함한다.Referring to Figure 1a, according to an embodiment of the present invention, in the medical cooling system to cool the target area through the coolant, the
다른 실시예에 의할 때, 상기 냉각장치(100)는 영역별로 냉각재가 입력되는 입력부(110) 및 냉각재를 처리하는 처리부(120) 그리고 냉각재를 출력하는 출력부(130)로 구분할 수 있으며, 상기 입력부(110)에는 냉각재 압력유지부(Cryogen Pressure Keeper: 30)가 구비되고, 상기 처리부(120)에는 냉각재 온도압력조절부(Cryogen Temperature Pressure Controller: 40) 또는 냉각재 회전부(Cryogen Cyclone Generator: 50)가 구비될 수 있고, 상기 출력부(130)에는 경계열공급부(Heat Providing Barrier: 60)가 구비될 수 있다.According to another embodiment, the
상기 의료용 냉각시스템에 있어 저장부(10)는 냉각재 탱크 등의 형태로 구현될 수 있고, 전달부(20)는 저장부(10)의 냉각재를 냉각장치(100)로 전달하는 기능을 수행하며, 호스 등의 형태로 구현될 수 있다.In the medical cooling system, the
또한, 본 발명의 실시예에 따르면, 냉각재의 이동 경로에 따라 필요한 곳에 개폐부를 구비할 수 있고, 상기 개폐부는 상기 제어부(70)와 전기적으로 연결되어, 상기 제어부(70)의 제어에 의해 그 개폐가 제어되는 될 수 있다. 상기 개폐부는 솔레노이드 밸브 등으로 구현되어 개폐여부를 제어할 수 있고, 액추에이터 등으로 구현되어 냉각재의 유량까지 제어하도록 구성할 수 있다. 상기 적어도 하나의 개폐부는 제어부(70) 및 분사버튼과 전기적으로 연결되어, 사용자가 분사버튼을 조작함에 따라 발생한 신호가 상기 제어부(70)로 입력되고, 상기 제어부(70)가 이를 바탕으로 상기 개폐부를 제어하여, 냉각재의 분사가 원활이 이루어지도록 할 수 있다.In addition, according to an embodiment of the present invention, the opening and closing portion may be provided where necessary according to the movement path of the coolant, the opening and closing portion is electrically connected to the
본 발명에 따른 의료용 냉각장치는, 분사되는 냉각재의 온도를 제어하는 의료용 냉각장치에 관한 것으로, 상기 의료용 냉각장치는 냉각재가 가지는 속성 온도와 상이한 온도로 냉각재를 목표영역에 분사하도록 제어할 수 있다. 일 실시예에 의할 때, 냉각목표온도, 냉각 속도, 해동목표온도, 해동 속도 중 적어도 하나를 포함하여 상기 냉각재의 온도를 동적으로 제어할 수 있고, 이러한 냉각 온도를 제어함에 있어, 상기 냉각재에 가하는 열을 포함하는 매개변수를 이용하여, 상기 목표영역을 미리 설정된 온도로 냉각할 수 있다.The medical cooling apparatus according to the present invention relates to a medical cooling apparatus for controlling the temperature of the injected coolant, and the medical cooling apparatus may control to spray the coolant to a target region at a temperature different from the attribute temperature of the coolant. According to an embodiment, the temperature of the coolant may be dynamically controlled, including at least one of a cooling target temperature, a cooling rate, a thawing target temperature, and a thawing speed, and in controlling the cooling temperature, The target area may be cooled to a preset temperature by using a parameter including heat applied.
상기한 의료용 냉각장치는 어떠한 신체 부위라도 가능하며, 예를 들면, 피부, 안구, 잇몸 등일 수 있다. 이하에서는 설명의 편의를 위하여 의료용 냉각장치를 피부에 적용하는 경우를 중심으로 설명하기로 하나, 이에 한정되지 아니함은 당연하다. 또한, 의료용 냉각장치는 냉각을 이용한 치료뿐만 아니라, 마취 또는 지혈이 필요한 경우, 항균이 필요한 경우, 피부의 점, 사마귀, 티눈 제거와 같이 국소부위를 냉동시켜 제거하는 경우, 제모, 박피, 보톡스 시술 등과 같이 소규모 레이저 시술 등과 같이 비교적 짧은 시간에 국소 부위 마취가 필요한 경우 등에 적용 가능함은 물론이다. The medical cooling apparatus may be any body part, and may be, for example, skin, eyes, gums, or the like. Hereinafter, for the convenience of the description will be described with a focus on the case of applying the medical cooling device to the skin, but is not limited thereto. In addition, the medical cooling device, in addition to treatment with cooling, when anesthesia or hemostasis is required, when antibacterial is needed, when removing the frozen areas such as skin spots, warts, corn removal, hair removal, dermabrasion, Botox procedure Of course, it can be applied to a case where local anesthesia is required in a relatively short time such as a small laser procedure.
또한, 상기 의료용 냉각장치의 바디부는 사용자가 손으로 파지할 수 있도록 인체공학적 형태를 이루는데, 일례로 펜 또는 권총 형태 중 어느 하나의 형태로 이루어질 수 있다. 이하, 본 발명에서는 상기 바디부의 형태를 권총 형태를 기준으로 설명하나, 이에 한정하지 않고 선택적으로 다양한 형태로 실시될 수 있다.In addition, the body portion of the medical cooling device forms an ergonomic shape so that the user can be gripped by hand, for example, it may be made of any one form of pen or pistol. Hereinafter, in the present invention, the shape of the body portion is described based on the form of the pistol, but the present invention is not limited thereto and may be selectively implemented in various forms.
상기 저장부(10)인 냉각재탱크는 액화가스를 수용하는 통상의 봄베로, 그 내부에는 저온 고압의 액화 질소(N) 또는 이산화탄소(CO₂) 등을 수용할 수 있다. 그리고 상기 저장부(10)인 냉각재탱크의 유출부에는 사용자의 자동 또는 수동조작으로 개폐되는 밸브가 구비되어, 상기 밸브의 선택적인 개방으로 상기 저장부(10)인 냉각재탱크 내부에 수용된 고압의 냉각재 유출이 이루어진다.The coolant tank, which is the
상기 전달부(20)는 상기 저장부(10)의 유출부에 구비된 밸브에 일측단이 연결되고, 상기 밸브의 개방으로 상기 저장부(10)에서 유출되는 고압의 냉각재를 상기 전달부(20)가 일측에서 타측으로 유도하는 유로를 제공한다. 이때 상기 전달부(20)는 고압의 냉각재가 외부로 유출되지 않도록, 내압성/내후성/내열성을 갖는 재질로 이루어지는 것이 바람직하며, 호스 등의 형태로 구현될 수 있다.One side end of the
그리고 상기 온도압력조절부(40)는 상기 전달부(20)의 타측단에 연결되어, 선택적으로 상기 전달부(20)를 통해 유입된 냉각재를 분사하며, 냉각재가 분사되는 부위는 노즐 등의 형태로 구현될 수 있다. 상기 노즐에서 분사된 냉각재는 본 발명에 따른 냉각재 출력부를 통하여 정확한 목표 영역, 즉 시술부위에 분출된 냉각재를 분사하며, 목표영역 외부의 냉각을 방지하기 위하여 경계열공급부(60)를 더 포함할 수 있다.And the temperature and
여기서 상기 온도압력조절부(40)와 전달부(20)가 연결되는 영역에 냉각재압력유지부(30)가 구비될 수 있는데, 상기 냉각재압력유지부(30)는 상기 온도압력조절부(40)로 유입되기 전의 냉각재를 고압의 상태로 유지되도록 하여, 상기 냉각재의 압력손실을 방지하고 빠른 응답속도로 냉각재의 분사가 이루어지도록 한다. Here, the coolant
도 1b를 참조하면, 본 발명에 따른 냉각장치의 외관이 도시되어 있다. 일 실시예에 의할 때, 상기 냉각장치(100)는 헨드헬드형의 바디부를 포함할 수 있다. 상기 바디부는 치료 또는 사용 시 조작의 용이성을 위하여, 펜, 권총, 다각형 또는 기타 모양으로 형성되어, 사용자가 파지할 수 있는 파지부를 제공할 수도 있다1b, there is shown an appearance of a cooling apparatus according to the present invention. According to one embodiment, the
즉, 본 발명에 따른 냉각장치의 바디부는 세장형 구조(elongated body) 및 비세장형 구조(non-elongated body)를 포함하며, 비세장형 구조는 개방형 구조 및 폐쇄형 구조를 포함한다. 여기서, 비세장형 구조는 다각형 구조, 또는 곡선 구조를 포함하며, 상기 다각형 구조 및 곡선 구주는 개방형으로 구성될 수도 있고, 폐쇄형으로 구성될 수도 있다.That is, the body portion of the cooling apparatus according to the present invention includes an elongated body and a non-elongated body, and the non-elongated structure includes an open structure and a closed structure. Here, the non-elongated structure includes a polygonal structure or a curved structure, and the polygonal structure and the curved sphere may be configured as an open type or closed type.
일 실시예에 의할 때, 상기 냉각재압력유지부(30)는 냉각장치(100) 내에 구비될 수 있고, 일 실시예에 의할 때, 상기 바디부는 복수개의 바디부 유닛으로 구성될 수 있으며, 상기 냉각재압력유지부(30)는 사용자가 파지할 수 있는 바디부 유닛에 상기 냉각재압력유지부(30)가 위치하도록 구성될 수 있다. According to one embodiment, the coolant
상기 바디부의 외주에는 상기 제어부(70)와 전기적으로 연결된 복수 개의 버튼과 표시부가 외부로 노출되도록 구비되는데, 상기 복수 개의 버튼을 통해 냉각재의 분사 및 냉각재의 온도를 조절할 수 있고, 상기 표시부를 통해 냉각재의 온도/압력 및 피시술부위의 온도, 장치의 상태를 확인할 수 있다. 예를 들어, 상기 복수 개의 버튼 중 어떤 버튼은 미리 설정된 냉각프로토콜을 제어부로부터 자동으로 구현할 때 사용하는 버튼일 수 있으며, 다른 버튼은 작동 시 냉각재 온도압력조절기에 전력을 차단하거나 또는 공급하여 사용자가 임의로 냉각조건을 수동으로 조절할 때 사용할 수 있다.The outer circumference of the body portion is provided so that a plurality of buttons and a display portion electrically connected to the
도 1c 및 도 1d는 본 발명의 바람직한 실시예에 따른 온도 제어 방법을 나타낸 도면이다.1C and 1D illustrate a temperature control method according to a preferred embodiment of the present invention.
본 발명은 냉각재의 분사 온도를 동적으로 제어하여, 치료 또는 사용 목적에 따라 다양한 부위 및 다양한 깊이의 치료 영역 및 치료 목적에 따른 최적화된 프로토콜에 따라 동적으로 냉각재의 온도를 제어하면서 목표영역을 냉각할 수 있다.The present invention is to dynamically control the spraying temperature of the coolant to cool the target area while dynamically controlling the temperature of the coolant according to the treatment area of various parts and depths according to the treatment or use purpose and the optimized protocol according to the treatment purpose. Can be.
도 1c를 참조하면, 목표 영역의 온도가 냉각재의 온도 제어에 대응하여 동적으로 제어되는 것을 알 수 있다. 일 실시예에 의할 때, 본 발명에 따른 의료용 냉각장치의 동적온도 제어는 피시술부위의 세포가 냉각에 의해 파괴되는 것을 방지하기 위해 피시술부위의 온도를 세포가 파괴되지 않는 해당 온도범위 내로 유지되도록 조절하는 것으로, 냉각재의 분사를 확인하고, 피시술부위의 온도를 추적하면서 기준 온도 이하로 냉각되면 냉각재의 냉각을 정지 또는 냉각재의 히팅을 통하여 피시술부위의 온도를 동적으로 조절할 수 있다.Referring to FIG. 1C, it can be seen that the temperature of the target region is dynamically controlled in response to the temperature control of the coolant. According to one embodiment, the dynamic temperature control of the medical cooling apparatus according to the present invention is to prevent the destruction of the cells of the surgical site by cooling the temperature of the surgical site within the temperature range that the cells are not destroyed. By adjusting to maintain the injection of the coolant, and after cooling to the reference temperature while tracking the temperature of the treatment site can stop the cooling of the coolant or dynamically adjust the temperature of the treatment site through the heating of the coolant.
즉, 냉각재의 정밀한 온도제어를 통하여, 냉각재의 가지는 기본적인 속성 온도와 상이한 온도로 냉각재를 목표영역에 분사할 수 있고, 이러한 냉각재의 온도제어는 냉각목표온도, 냉각 속도, 해동목표온도, 해동 속도 중 적어도 하나를 포함하여 제어할 수 있다.That is, through precise temperature control of the coolant, the coolant can be injected into the target region at a temperature different from the basic attribute temperature of the coolant, and the temperature control of the coolant is performed in the cooling target temperature, cooling rate, thawing target temperature, and thawing speed. Including at least one can be controlled.
본 발명의 일 실시예에 있어서, 제어부(70)에서 냉각재에 가해지는 열량 Q (단위: W)을 계산함에 있어 사용될 수 있는 냉각매개변수는 목표 시술부위의 열물성, 냉각재의 열물성에 의하여 정해질 수 있다. 여기서, 상기 냉각재에 의한 냉각량은 냉각재의 상변화 잠열 또는 비열 중 적어도 하나를 포함한 단위 질량당 냉각량(C, 단위: J/g), 냉각재 유량(V, 단위: g/sec) 및 냉각재의 고유온도(To, 단위: K) 중 적어도 하나의 의하여 정해질 수 있다. 단, 시술부위로부터 거리가 미리 설정된 거리에서 벗어나는 경우, 상기 열량 Q는 거리의 제곱에 반비례하는 것이 자명하므로, 앞으로 소개될 매개변수에는 포함시키지 않기로 한다. 예를 들어, 냉각목표온도에 도달하기 위해 필요한 Q는, 냉각재가 분사되는 거리가 미리 설정한 거리보다 x배 늘어났을 때, Q/x²로 바뀐다. In one embodiment of the present invention, the cooling parameters that can be used in the calculation of the amount of heat Q (unit: W) applied to the coolant in the
그리고 상기 냉각매개변수는 다음과 같이 정의될 수 있다. 표면에서의 냉각목표온도(Tc,₁, 단위: K), 냉각속도(단위: K/sec), 해동목표온도(Tc,₂, 단위: K), 해동속도(단위: K/sec)를 치역으로 가지고, 냉각부위의 표면으로부터의 깊이(d, 단위: mm), 표면에서의 냉각면적(A, 단위: mm²), 시술부위의 비열(Ct, 단위: J/g)과 상기 냉각재의 냉각량과 더불어서, 냉각재에 가해지는 열량(Q, 단위: W)을 정의역으로 가지는 열공식을 이용하여, 냉각재에 가해지는 열량 Q가 2가지 매개변수(G₁, G₂) 로 표현될 수 있다. 이러한 냉각매개변수는 본 발명의 일 실시예에서 냉각재의 고유온도 To이상 30℃ 이하로 주어지는 냉각목표온도 및 해동목표온도를 구현하기 위해 필요한 최소의 Q를 정할 수 있다. 한편으로, 냉각속도와 해동속도의 절대값이 0.001 K/sec 이상의 속도를 가지도록 필요한 Q를 정할 수 있고, 이러한 냉각-해동목표온도와 냉각속도-해동속도에 연계된 각각의 Q를 2가지 매개변수의 범위로 표현할 수 있다. The cooling parameter may be defined as follows. Cooling target temperature (Tc, ₁, unit: K), cooling rate (unit: K / sec), thawing target temperature (Tc, ₂, unit: K), thawing speed (unit: K / sec) Depth (d, unit: mm) from the surface of the cooling site, cooling area (A, unit: mm²) on the surface, specific heat (Ct, unit: J / g) of the treatment site, and cooling amount of the coolant. In addition, by using a thermal formula having the heat quantity Q (unit: W) applied to the coolant as a domain, the heat quantity Q applied to the coolant can be expressed by two parameters (G₁, G₂). Such cooling parameters may determine a minimum Q required to implement the cooling target temperature and the thawing target temperature, which are given to the intrinsic temperature To of the coolant to 30 ° C. or less in one embodiment of the present invention. On the other hand, it is possible to determine the required Q so that the absolute values of the cooling rate and the thawing speed have a speed of 0.001 K / sec or more, and each of the two Q parameters associated with the cooling-thawing target temperature and the cooling rate-thawing speed Can be expressed as a range of variables.
여기서, △T는 냉각과정 또는 해동과정에 따라, 각각 Tc,1-To 또는 Tc,2-To 으로 표시될 수 있으며, 이를 목표온도(Tt) 기준으로 Tt-To 로도 표현할 수 있다.Here, ΔT may be expressed as Tc, 1-To or Tc, 2-To, respectively, depending on the cooling process or thawing process, and may also be expressed as Tt-To based on the target temperature (Tt).
일 실시예에 의할 때, 본 발명은 예를 들면 30℃ 이하 To 이상의 온도를 구현하기 위해 매개변수 G₁의 범위를 다음과 같은 조건을 만족하도록 할 수 있다.According to one embodiment, the present invention, for example, in order to implement a temperature of 30 ° C. or less To or more, may make the range of the parameter G₁ satisfy the following conditions.
한편, 냉각속도와 해동속도에 관계되는 냉각매개변수 G₂는 다음과 같이 정의되고, 0.001 K/sec 이상의 냉각속도-해동속도의 절대값을 가지기 위해 다음과 같이 한정된다.On the other hand, the cooling parameter G2 related to the cooling rate and the thawing rate is defined as follows, and is defined as follows to have an absolute value of the cooling rate-thaw rate of 0.001 K / sec or more.
여기서 △T는 냉각과정 또는 해동과정에 따라, 각각 Tc,₁-To 또는 Tc,₂-To 로 표시될 수 있다.ΔT may be expressed as Tc, ₁-To or Tc, ₂-To, respectively, depending on the cooling process or thawing process.
본 발명의 실시예에 의할 때, 상기 변수들에 관계되어 냉각목표온도 또는 해동목표온도에 대한 반응속도(K/sec)를 나타내는 매개변수 G₃를 정의할 수 있으며, 구체적으로 동적 제어의 반응속도는 1℃/초 이상에 해당하는 G₃는 다음과 같이 한정된다.According to an embodiment of the present invention, in relation to the above variables, it is possible to define a parameter G3 which represents the reaction rate (K / sec) with respect to the cooling target temperature or the thawing target temperature, specifically, the reaction rate of the dynamic control. G 3 corresponding to 1 ° C / sec or more is defined as follows.
위 세가지 냉각매개변수에서 사용된, 상기 냉각목표온도 및 해동목표온도는 목표영역의 표면을 포함하고, 일 실시예에 의할 때, 목표영역으로부터 깊이 1mm 사이에서 측정된 온도를 말하는 것이다. 본 발명에 따른 의료용 냉각장치의 냉각목표온도가 시술부위의 표면온도에 해당할 때, -200℃ 이상 0℃ 이하의 범위를 가질 수 있고, 세포의 자살 온도범위로는 냉각목표온도가 -70℃ 이상 0℃ 이하의 범위를 가질 수 있고, 상기 해동목표온도는 상기 냉각목표온도 이상 37℃ 이하의 범위를 가질 수 있다.As used in the above three cooling parameters, the cooling target temperature and the thawing target temperature include the surface of the target area, and according to one embodiment, refers to a temperature measured between a depth of 1 mm from the target area. When the cooling target temperature of the medical cooling apparatus according to the present invention corresponds to the surface temperature of the treatment site, it may have a range of -200 ℃ to 0 ℃, the target temperature of the cell cooling target temperature is -70 ℃ The thawing target temperature may be in the range of 0 ° C. or less, and the thawing target temperature may be in the range of 37 ° C. or more.
또한, 본 발명에 따른 의료용 냉각장치는 다단계의 냉각제어를 위해서는 복수의 냉각목표온도, 복수의 냉각속도, 복수의 해동목표온도, 복수의 해동속도로 이루어진 다단계의 냉각 프로토콜을 가질 수 있다. In addition, the medical cooling apparatus according to the present invention may have a multi-stage cooling protocol consisting of a plurality of cooling target temperatures, a plurality of cooling speeds, a plurality of thawing target temperatures, a plurality of thawing speeds for multi-step cooling control.
도 1e는 본 발명의 바람직한 실시예에 따른 냉각장치의 제어부의 동작을 나타낸 순서도이다. Figure 1e is a flow chart showing the operation of the controller of the cooling apparatus according to a preferred embodiment of the present invention.
본 발명에 따른 냉각장치의 제어부(70)는 동적으로 냉각재의 온도 및 이에 대응하는 목표 영역의 온도를 조절하기 위하여, 냉각 장치의 각 구성요소를 독립적 또는 연계하여 제어할 수 있다. 이하, 본 발명에 따른 냉각장치의 제어부(70)는, 설명의 편의상, 동적으로 온도를 제어한다는 의미에서 동적온도제어부와 혼용하여 사용하기로 한다. The
동적온도제어부는 미리 설정된 냉각 프로토콜에 따라 각 구성요소를 제어할 수 있다. 냉각프로토콜 제어부는 비접촉식 냉각프로토콜에 따라 냉각재의 온도와 시술부위 온도에 기반한 동적 냉각제어를 수행하며, 정밀한 온도제어를 위하여, 시술부위 온도 실시간 측정 기술 및 오차 수정 제어 및 시술부위 및 냉각재 온도 시간차 고려한 제어를 통하여 적응증에 대응하는 프로토콜에 따라 제어를 동작시킬 수 있다. The dynamic temperature controller may control each component according to a preset cooling protocol. The cooling protocol control unit performs dynamic cooling control based on the temperature of the coolant and the treatment site according to the non-contact cooling protocol.For precise temperature control, the real-time measurement technology of the treatment site and error correction control and the control considering the treatment site and coolant temperature time difference Through the control can be operated according to the protocol corresponding to the indication.
본 발명에 따른 제어부(70)는 냉각거리에 대응하여 냉각재의 분사속도, 분사온도, 분사압력 등을 제어할 수 있다. 다른 실시예에 의할 때, 냉각재가 분사되는 분사부와 인접하여 설치되며 상기 분사부와 상기 목표영역 간의 이격 거리를 유지하기 위한 물리적인 냉각거리유지부의 제어를 통하여, 냉각효과를 최적화할 수 있다. The
이러한 제어를 위하여, 본 발명은 상기 목표영역의 온도를 측정하기 위한 제1 온도센서부와, 상기 분사부의 온도를 측정하기 위한 제2 온도센서부와, 상기 냉각재온도압력조절부(40) 온도를 측정하기 위한 제3 온도센서부와, 상기 냉각재의 온도를 측정하기 위한 제4 온도센서부 중 적어도 하나를 포함하는 온도센서부를 포함할 수 있다.For this control, the present invention provides a first temperature sensor unit for measuring the temperature of the target area, a second temperature sensor unit for measuring the temperature of the injection unit, and the coolant temperature
이때 상기 제1 온도센서부는 비접촉 온도센서로 구성되는 것이 바람직하고, 상기 비접촉 온도센서는 상기 냉각거리유지부로부터 주어지는 이격거리에 따라 각도가 조절되어 목표영역 중심 부근의 온도를 측정하는 것이 바람직하다. 예를 들어, 본 발명의 의료용 냉각장치는 복수의 거리에 해당하는 상기 냉각거리유지부를 구비할 수 있고, 이때 상기 냉각거리유지부는 상기 비접촉 온도센서와 기계적으로 연동되어 해당 냉각거리에 대한 냉각 중심부를 조사하기 위한 비접촉 온도센서의 설치각도를 조절할 수 있다. In this case, it is preferable that the first temperature sensor unit is configured as a non-contact temperature sensor, and the non-contact temperature sensor is preferably configured to measure a temperature near the center of the target area by adjusting an angle according to the separation distance given from the cooling distance maintaining unit. For example, the medical cooling apparatus of the present invention may include the cooling distance maintaining part corresponding to a plurality of distances, wherein the cooling distance maintaining part is mechanically linked with the non-contact temperature sensor to provide a cooling center for the corresponding cooling distance. The installation angle of the non-contact temperature sensor can be adjusted.
일례로 상기 제어부(70)는 상기 노즐부 및 발열부와 전기적으로 연결되어, 상기 노즐부에서 냉각재의 분사를 제어하고, 상기 발열부의 구동제어로 냉각재의 온도조절로 피시술부위의 온도를 제어한다. 이때 상기 제어부는 제1 온도센서부 및 제2 온도센서부에서 측정 온도를 바탕으로 상기 노즐부 및 발열부를 제어하게 되는데, 상기 제1 온도센서부는 상기 제어부(70)와 전기적으로 연결되고, 상기 노즐부의 전단에 구비되어, 상기 노즐부에서 분사되는 기상의 냉각재 온도를 측정하여 상기 제어부로 출력한다.For example, the
그리고 상기 제2 온도센서부는 상기 제어부(70)와 전기적으로 연결되고, 상기 노즐부의 전단에 구비되어, 피시술부위의 온도를 측정하여 상기 제어부로 출력하는데, 이때 상기 제2 온도센서부는 피시술부위와 거리를 두고 피시술부위의 온도를 측정하는 비접촉 타입으로 구비되는 것이 바람직하다.The second temperature sensor unit is electrically connected to the
상기 제어부는 미리 설정된 냉각조건, 또는 상기 온도센서부에서 측정된 온도 정보 중 적어도 하나를 이용하여, 상기 냉각재온도압력조절부(200)에 가해지는 열 또는 냉각재 분사시간 중 적어도 하나를 제어할 수 있다.The controller may control at least one of heat or coolant injection time applied to the coolant temperature pressure adjusting unit 200 by using at least one of preset cooling conditions or temperature information measured by the temperature sensor unit. .
또한, 본 발명의 바람직한 일 실시예에 의할 때, 상기 제어부는 미리 설정된 프로토콜에 따라 자동으로 동작하는 모드 및 사용자 운용 모드에 따라서 사용자로부터 입력 받는 명령에 따라 동작하는 모드를 포함하며, 사용자 모드의 경우, 상기 온도센서부에서 측정된 온도데이터를 저장하고, 저장된 빅데이터를 위하여 향후 다양한 분야에 활용할 수 있다.In addition, according to an exemplary embodiment of the present invention, the control unit includes a mode that operates automatically according to a preset protocol and a mode that operates according to a command received from a user according to a user operating mode. In this case, the temperature data measured by the temperature sensor unit may be stored and used in various fields in the future for the stored big data.
본 발명에 따른 제어부는 각 구성요소 및 제어부 간 전기신호 및 전력 공급 커넥터 최적화하여 효율적인 제어 및 전원 공급이 이루어지도록 구성될 수 있다. 여기서, 제어부는 프로세서(processor)와 같이 데이터를 처리할 수 있는 모든 종류의 장치를 포함할 수 있다. 여기서, '프로세서(processor)'는, 예를 들어 프로그램 내에 포함된 코드 또는 명령으로 표현된 기능을 수행하기 위해 물리적으로 구조화된 회로를 갖는, 하드웨어에 내장된 데이터 처리 장치를 의미할 수 있다. 이와 같이 하드웨어에 내장된 데이터 처리 장치의 일예로써, 마이크로프로세서(microprocessor), 중앙처리장치(central processing unit: CPU), 프로세서 코어(processor core), 멀티프로세서(multiprocessor), ASIC(application-specific integrated circuit), FPGA(field programmable gate array) 등의 처리 장치를 망라할 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니다. The control unit according to the present invention may be configured to efficiently control and power supply by optimizing the electrical signal and power supply connector between each component and the control unit. Here, the controller may include all kinds of devices capable of processing data, such as a processor. Here, the 'processor' may refer to a data processing apparatus embedded in hardware having, for example, a circuit physically structured to perform a function represented by code or instructions included in a program. As an example of a data processing device embedded in hardware, a microprocessor, a central processing unit (CPU), a processor core, a multiprocessor, an application-specific integrated circuit ), But may include a processing device such as a field programmable gate array (FPGA), but the scope of the present invention is not limited thereto.
또한, 제어부는 냉각매체로서, 이러한 냉각재가 일정한 온도로 유지되도록 냉각발생부를 제어할 수 있다. 다른 실시예로서, 제어부는 적어도 하나 이상의 온도값이 사전에 설정되고, 냉각이 수행되는 시간 동안 냉각재가 각 온도값을 순차적으로 또는 주기적으로 갖도록 냉각발생부를 제어할 수 있다. In addition, the control unit may control the cooling generating unit to maintain the coolant at a constant temperature as the cooling medium. In another embodiment, the control unit may control the cooling generation unit such that at least one or more temperature values are preset, and the coolant sequentially or periodically has each temperature value during the cooling time.
본 발명에 의할 때, 고출력 및 고정밀 냉각온도 제어를 통하여, 각 치료 목적에 따라 피부암, 양성종양, 염증성 질환, 면역이상질환 또는 질환별 최적화된 프로토콜을 설정하여, 상기 프로토콜에 따라 냉각장치를 제어할 수 있다. 또한, 제어부를 통하여 정밀 냉각 제어를 통해 주변 정상세포 사멸을 방지하고, 피부암, 양성종양, 염증성 질환, 면역이상 질환 또는 질환 별로 정확하고 안전한 맞춤형 냉각치료가 가능하다, 또한, 기술적 또는 임상적 차별화 통해 피부영역 및 타 치료영역으로 확대 가능함은 물론이고, 본 냉각장치를 이용하여 진단 및 치료 융복합 냉각장치를 구현할 수 있다.According to the present invention, through the control of high power and high-precision cooling temperature, by setting the optimized protocol for each skin cancer, benign tumor, inflammatory disease, immunodeficiency disease or disease according to each treatment purpose, controlling the cooling device according to the protocol can do. In addition, it is possible to prevent peripheral normal cell death through precise cooling control through the control unit, and accurate and safe customized cooling treatment for each skin cancer, benign tumor, inflammatory disease, immunological disorder or disease is possible, and also through technical or clinical differentiation. As well as being expandable to the skin area and other treatment areas, it is possible to implement a diagnostic and therapeutic fusion cooling device using the present cooling device.
본 발명에 따른 제어부(70)는 상기 프로토콜에 대응하여 목표영역과 미리 설정된 이격 거리에서 시술이 이루어질 수 있도록 유도하며, 거리센서로 측정된 시술부위까지의 거리가 상기 정적 냉각거리를 벗어난 경우, 예를 들면, 적정 거리 이내로 목표영역과 접근하거나, 목표영역와 일정 거리 이상으로 떨어지는 경우, 냉각장치의 동작을 제한하거나, 사용자가 인식하도록 경고음을 울리도록 제어할 수 있다. 즉, 본 발명에 따른 제어부는 상기 분사부와 상기 목표영역 간의 이격거리를 유지하기 위한 냉각거리를 제어하기 위한 제어부를 포함하며, 상기 제어부(70)는 온도센서부로부터 온도 정보를 수신하고, 상기 온도 정보를 이용하여 냉각 장치를 제어할 수 있으며, 이러한 온도센서부는 상기 목표영역의 온도를 측정하기 위한 제1 온도센서부, 상기 분사부의 온도를 측정하기 위한 제2 온도센서부, 상기 냉각재 온도압력조절부 온도를 측정하기 위한 제3 온도센서부 및 상기 냉각재의 온도를 측정하기 위한 제4 온도센서부 중 적어도 하나를 포함할 수 있다.The
여기서, 비접촉 온도센서는 상기 냉각거리유지부로부터 주어지는 이격거리에 따라 각도가 조절되어 목표영역 중심 부근의 온도를 측정하도록 구성되며, 상기 제어부는 미리 설정된 냉각조건, 또는 상기 온도센서부에서 측정된 온도 정보 중, 적어도 하나를 이용하여, 냉각재온도압력조절부에 가해지는 열 또는 냉각재 분사시간 중 적어도 하나를 제어할 수 있다. Here, the non-contact temperature sensor is configured to measure the temperature near the center of the target area by adjusting the angle according to the separation distance given from the cooling distance maintaining unit, the control unit is a predetermined cooling condition, or the temperature measured by the temperature sensor unit At least one of the information may be used to control at least one of heat or coolant injection time applied to the coolant temperature pressure adjusting unit.
상기 제어부는 미리 설정된 프로토콜에 따라 자동으로 동작하는 모드 및 사용자 운용 모드에 따라서 사용자로부터 입력받는 명령에 따라 동작하는 모드를 포함하며, 사용자 모드의 경우, 상기 온도센서부에서 측정된 온도데이터를 저장하여, 이러한 데이터를 이용하여 활용할 수 있다. 그리고 미리 설정된 온도 이하에서 냉각시와 갈은 주의를 요하는 모드의 경우, 사용자로부터 복수개의 버튼 조작을 입력받는 경우에 동작하도록 한정하여, 사용자의 조작 실수에 따른 오동작을 방지할 수 있다.The controller includes a mode that operates automatically according to a preset protocol and a mode that operates according to a command received from a user according to a user operating mode. In the case of a user mode, the controller stores temperature data measured by the temperature sensor unit. This data can then be used. In the case of the mode requiring the caution when cooling and grinding below a preset temperature, it is limited to operate when a plurality of button operations are input from the user, thereby preventing a malfunction due to a user's mistake of operation.
이하, 도 1e를 참조하면, 상기한 본 발명의 일 실시예에 따른 냉각장치의 피시술부위 온도 제어방법을 단계별로 살펴보면 다음과 같다. Hereinafter, referring to FIG. 1E, a method of controlling the temperature of a surgical site of a cooling apparatus according to an embodiment of the present invention will be described below.
상기한 본 발명의 일 실시예에 따른 국부냉각장치의 피시술부위 온도 제어방법을 단계별로 살펴보면 다음과 같다.Looking at the step-by-step temperature control method of the local cooling device according to an embodiment of the present invention as follows.
먼저, 피시술부위의 온도를 해당 온도범위 내로 유지하기 위해 냉각재에 열을 제공하는 경우에는, First, when heat is supplied to the coolant to maintain the temperature of the surgical site within the temperature range,
a-1)단계로, 냉각재의 분사를 확인한다. 여기서 냉각재의 분사는 상기 노즐하우징에서 외부로 노출된 버튼을 사용자가 조작함에 따라 이루어지는데, 사용자가 버튼을 조작하면 이를 제어부가 감지하고, 상기 제어부는 감지된 버튼의 신호로 솔레노이드벨브를 통해 유로를 개방하면, 냉각재압력유지부를 통해 해당 고압력을 유지하고 있던 냉각재가 온도압력조절부로 유입되면서 노즐을 통해 냉각재의 분사가 이루어진다.In step a-1), confirm the injection of the coolant. In this case, the injection of the coolant is performed by a user operating a button exposed to the outside in the nozzle housing. When the user operates the button, the control unit detects the button, and the control unit opens a flow path through the solenoid valve as a signal of the detected button. When opened, the coolant maintained at the high pressure through the coolant pressure holding unit flows into the temperature pressure adjusting unit, and the coolant is injected through the nozzle.
이때 상기 제어부(50)가 냉각재의 분사 여부를 확인할 수 있고, 상기 냉각재의 분사가 이루어지지 않으면, 이에 대응하는 동작을 하거나, 냉각장치의 작동을 종료할 수 있다.In this case, the
다음은 b-1)단계로, 분사되는 냉각재 및 피시술부위의 온도를 측정한다.Next, in the step b-1), the temperature of the injected coolant and the surgical site is measured.
여기서 분사되는 냉각재 및 피시술부위의 온도는 상기 온도압력조절부(30)에 구비된 제1 온도센서 및 제2 온도센서를 통해 측정할 수 있다.The temperature of the coolant to be injected and the portion to be treated may be measured through a first temperature sensor and a second temperature sensor provided in the temperature
상기 a-1)단계에서 냉각재의 분사가 확인되면, 제1 온도센서는 분사되는 냉각재의 온도를 실시간으로 측정하여 상기 제어부로 측정값을 인가할 수 있고, 제2 온도센서는 피시술부위의 온도를 실시간으로 측정하여 상기 제어부로 측정값을 인가한다.When the injection of the coolant is confirmed in step a-1), the first temperature sensor may measure the temperature of the injected coolant in real time and apply the measured value to the controller, and the second temperature sensor may measure the temperature of the surgical site. Measure in real time and apply the measured value to the controller.
다음은 c-1)단계로, 측정된 냉각재 및 피시술부위의 온도가 각각 기설정된 하한기준온도보다 낮은 온도인지 비교한다. 여기서 하한기준온도는 피시술부위의 세포가 파괴되지 않도록 하는 온도범위의 하한 기준으로, 일 실시에 의할 때, 치료부위, 치료 목적에 따라 상이하게 설정될 수 있다. 상기 하한기준온도는 상기 제어부에 기설정되어 있는 것이 바람직하나, 필요에 따라 사용자가 온도압력조절부에 구비된 버튼을 조작하여 임의 변경도 가능하다.Next, in step c-1), the measured temperatures of the coolant and the treated part are respectively lower than the preset lower limit reference temperature. Here, the lower limit reference temperature may be set differently according to the treatment site and the purpose of treatment as the lower limit reference of the temperature range for preventing the cells of the surgical site from being destroyed. The lower limit reference temperature is preferably set in the controller, but the user may optionally change the button by operating a button provided in the temperature pressure controller.
따라서 상기 b)단계에서 상기 제1 온도센서 및 제2 온도센서가 분사되는 냉각재 및 피시술부위의 온도를 측정하여 상기 제어부로 측정값을 인가하면, 상기 제어부는 상기 제1 온도센서 및 제2 온도센서를 통해 실시간으로 측정된 냉각재 및 피시술부위의 온도와 기설정된 하한기준온도와 비교하여 기설정된 하한기준온도보다 낮은 측정온도를 감지할 수 있다.Therefore, in step b), when the first temperature sensor and the second temperature sensor is measured the temperature of the coolant and the surgical site to be sprayed and the measured value is applied to the controller, the controller is the first temperature sensor and the second temperature The sensor may detect the measurement temperature lower than the preset lower limit reference temperature by comparing the temperature of the coolant and the treated part measured in real time with the preset lower limit reference temperature.
다음은 d-1)단계로, 측정된 온도가 하한기준온도보다 낮으면, 발열부가 냉각재에 열을 제공하여 피시술부위의 온도를 조절한다. 여기서 상기 c-1)단계에서 상기 제어부가 측정된 피시술부위의 온도가 하한기준온도보다 낮은 온도로 감지되면, 상기 온도압력조절부에 구비된 발열부에 전원 인가되면서 구동이 ON 되어, 상기 발열부가 발열되도록 하고, 상기 발열부가 발열함에 따라 상기 노즐공을 따라 유동하는 냉각재에 열을 제공하여 냉각재의 온도를 상승시켜, 이전 시점보다 높은 온도의 냉각재가 피시술부위에 분사되어 피시술부위의 온도를 조절한다. 예를 들어, 상기 온도압력조절부에 인가되는 전력은 PID (proportional, integral, differential) 기법으로 제어될 수 있다.Next, in step d-1), if the measured temperature is lower than the lower limit reference temperature, the heat generating unit provides heat to the coolant to adjust the temperature of the surgical site. Here, in step c-1), when the control unit detects that the measured temperature of the surgical site is lower than the lower limit reference temperature, driving is turned on while the power is supplied to the heating unit provided in the temperature pressure control unit. The heat is generated by the additional heat, and as the heat is generated, the heat is supplied to the coolant flowing along the nozzle hole to increase the temperature of the coolant. Adjust For example, the power applied to the temperature pressure controller may be controlled by a PID (proportional, integral, differential) technique.
다음은 e-1)단계로, 분사되는 냉각재 및 피시술부의 온도를 다시 측정한다.Next, in step e-1), the temperature of the injected coolant and the treated part is measured again.
여기서 상기 d)단계의 실시로, 상기 발열부가 구동하면, 다시 분사되는 냉각재 및 피시술부의 온도를 측정하는데, 이때에도 상기 온도압력조절부에 구비된 제1 온도센서 및 제2 온도센서를 통해 측정하고, 제1 온도센서는 분사되는 냉각재의 온도를 실시간으로 측정하여 상기 제어부로 측정값을 인가하고, 제2 온도센서는 피시술부위의 온도를 실시간으로 측정하여 상기 제어부로 측정값을 인가한다.Here, in the step d), when the heating unit is driven, the temperature of the coolant and the surgical part to be injected again is measured, and at this time, the first temperature sensor and the second temperature sensor provided in the temperature pressure control unit The first temperature sensor measures the temperature of the sprayed coolant in real time and applies the measured value to the controller, and the second temperature sensor measures the temperature of the surgical site in real time and applies the measured value to the controller.
다음은 f-1)단계로, 측정된 냉각재 및 피시술부위의 온도가 각각 기설정된 상한기준온도보다 높은 온도인지 비교한다. 여기서 상한기준온도는 냉각재에 열을 제공하지 않는 발열부가 구동 off되거나 발열부에 가해지는 전력을 줄이는 시점으로, 상기 제어부에 기설정되어 있는 것이 바람직하나, 필요에 따라 사용자가 온도압력조절부에 구비된 버튼을 조작하여 임의 변경도 가능하다. 예를 들어, 상기 온도압력조절부에 인가되는 전력은 PID (proportional, integral, differential) 기법으로 제어될 수 있다.Next, in the step f-1), the measured temperatures of the coolant and the treated part are respectively higher than the preset upper limit reference temperature. Here, the upper limit reference temperature is a time point at which the heat generating unit which does not provide heat to the coolant is turned off or reduces the power applied to the heat generating unit. The upper limit reference temperature is preferably set in the control unit, but the user is provided with the temperature pressure adjusting unit if necessary. It can also be changed by operating the button. For example, the power applied to the temperature pressure controller may be controlled by a PID (proportional, integral, differential) technique.
따라서 상기 e-1)단계에서 상기 제1 온도센서 및 제2 온도센서가 분사되는 냉각재 및 피시술부위의 온도를 측정하여 상기 제어부로 측정값을 인가하면, 상기 제어부는 상기 제1 온도센서 또는 제2 온도센서를 통해 실시간으로 측정된 냉각재 및 피시술부위의 온도와 기설정된 상한기준온도와 비교하여 기설정된 상한기준온도보다 높은 측정온도를 감지할 수 있다.Therefore, in step e-1), when the temperature of the coolant and the treatment part to which the first temperature sensor and the second temperature sensor are sprayed is measured and the measured value is applied to the controller, the controller is configured to measure the first temperature sensor or the first temperature sensor. 2 The temperature sensor can detect the measured temperature higher than the preset upper limit reference temperature by comparing the temperature of the coolant and the treated part measured in real time with the preset upper limit reference temperature.
다음은 g-1)단계로, 측정된 온도가 상한기준온도보다 높으면, 발열부의 구동을 off하거나 발열부에 가해지는 전력을 줄여 피시술부위의 온도를 조절한다. Next, in step g-1), when the measured temperature is higher than the upper limit reference temperature, the driving of the heating unit is turned off or the power applied to the heating unit is reduced to adjust the temperature of the surgical site.
여기서 상기 f-1)단계에서 상기 제어부가 측정된 피시술부위의 온도가 상한기준온도보다 높은 온도로 감지되면, 상기 온도압력조절부에 구비된 발열부에 전원 인가가 해지되어 구동이 off 되거나 발열부에 가해지는 전력을 감소시킴으로써, 이전 시점보다 낮은 온도의 기상 냉각재가 피시술부위에 분사되어 피시술부위의 온도를 조절한다. 예를 들어, 상기 온도압력조절부에 인가되는 전력은 PID (proportional, integral, differential) 기법으로 제어될 수 있다.Here, in step f-1), when the control unit detects that the temperature of the measured surgical site is higher than the upper limit reference temperature, the power is released to the heating unit provided in the temperature pressure control unit so that the driving is turned off or generates heat. By reducing the power applied to the part, a gaseous coolant having a lower temperature than the previous time point is sprayed on the part to control the temperature of the part. For example, the power applied to the temperature pressure controller may be controlled by a PID (proportional, integral, differential) technique.
II. 냉각재 압력유지부 (Cryogen Pressure Keeper)II. Cryogen Pressure Keeper
도 2a 내지 도 2b는 본 발명의 바람직한 실시예에 따른 의료용 냉각장치의 냉각압력유지부의 구성을 나타낸 도면이다.2a to 2b is a view showing the configuration of the cooling pressure holding unit of the medical cooling apparatus according to a preferred embodiment of the present invention.
본 발명에 따른 의료용 냉각장치는 냉각재를 통해 목표영역을 냉각함에 있어, 냉각재를 저장하는 저장부(10)에서, 상기 냉각재를 냉각장치로 전달하는 전달부(20) 및 냉각장치의 냉각재온도압력조절부(40)로 유입되어, 상기 냉각재는 미리 설정된 온도와 압력으로 분사된다.In the medical cooling apparatus according to the present invention, in cooling the target area through the coolant, in the
여기서, 상기 전달부(20) 및 상기 냉각재온도압력조절부(40)의 전달경로로 인하여, 냉각재가 이동하면서 전달부(20)와의 열적-기계적 접촉을 함에 따라 온도 및 압력의 손실이 발생하며, 또 버튼 제어에 따른 냉각재 분사의 반응 시간도 지연될 수 있다. 본 발명은 냉각재온도압력조절부(40)의 입력단에 인접하여 냉각재압력유지부(30)를 구비하여, 전달부(20)에서 일어나는 손실과 무관하게, 미리 설정된 온도 또는 압력으로 안정적으로 냉각재를 분사부에 공급함으로써, 냉각재가 미리 설정된 온도에 정상상태로 도달하는 시간을 최소화하여 냉각재를 분사할 수 있다. 이러한 빠른 정상상태 도달 시간은, 앞서 설명한 동적냉각제어에 핵심적인 성능이다. 또한, 일 실시예에 의할 때, 전달경로가 긴 경우, 상기 전달 경로에 대응하여 복수개의 냉각재압력유지부(30)를 구성할 수 있다. Here, due to the transmission path of the
상술한 바와 같이, 본 발명에 따른 동적온도제어부는 경로에 대응하여 냉각재의 온도조절이 가능하며, 실시예에 의할 때 냉각재가 저장되는 저장부(10), 전달부(20) 및 냉각장치의 각 구성 요소의 선택적 또는 서로 연계하여 히팅 또는 냉각을 통한 냉각재의 온도제어가 가능하다. As described above, the dynamic temperature control unit according to the present invention is capable of controlling the temperature of the coolant corresponding to the path, and according to the embodiment of the
일 실시예에 의할 때, 냉각 장치를 구성하는 냉각재압력유지부(Cryogen Pressure Keeper: 30)의 냉각, 냉각재온도압력조절부(Cryogen Temperature Pressure Controller: 40)의 히팅 또는 경계열공급부(Heat Providing Barrier: 60)의 냉각 또는 히팅을 통하여 냉각재의 정밀한 온도제어를 수행할 수 있으며, 이하, 도 2a를 참조하여 냉각재압력유지부(30)의 구성을 설명하기로 한다. According to one embodiment, the cooling of the Cryogen Pressure Keeper (30) constituting the cooling device, the heating of the Cryogen Temperature Pressure Controller (Cryogen Temperature Pressure Controller) (40) or the heating heat supply (Heat Providing Barrier) It is possible to perform precise temperature control of the coolant through cooling or heating of 60). Hereinafter, the configuration of the coolant
도 2a를 참조하면, 냉각재온도압력조절부(40)는 호스 등으로 이루어진 전달부(20)와 상기 냉각재를 미리 설정된 온도 및 압력으로 분사하는 냉각재온도압력조절부(40) 사이에 구비되며, 상기 냉각재가 분사될 때, 미리 설정된 조건에 빠르게 도달하여 분산되도록, 분사부에 냉각재가 공급될 때, 일정량의 냉각재가 빠져나가더라도 냉각재의 압력을 미리 설정된 압력 이상으로 유지하는 기능을 수행한다.Referring to Figure 2a, the coolant temperature
발명의 일 실시예에 의할 때, 냉각재압력유지부(30)는 분사부에서 분사되는 냉각재보다 질량기준으로 더 많은 냉각재를 저장할 수 있고, 하나의 예로, 분사부에서 1초 동안 분사되는 질량보다 10배 이상의 질량을 가진 냉각재를 저장할 수 있다. 또한, 냉각재압력유지부(30)는 저장되는 냉각재를 액상의 상태에서 보관함으로써, 같은 부피에서 훨씬 큰 질량의 냉각재를 보관하여, 분사부에서 냉각재가 소모될 때 냉각재의 압력을 유지할 수 있다.According to one embodiment of the invention, the coolant
일 실시예에 의할 때, 본 발명에 따른 냉각재압력유지부(30)는 냉각재온도압력조절부(40)의 근단, 즉 냉각재 유입측에 위치하며, 냉각재온도압력조절부(40) 및 냉각재압력유지부(30)는 냉각재 이송로를 포함한 결합부을 통하여 결합되어 있다. 상기 결합부는 고압밸브를 포함하며, 수동 또는 자동으로 동작 여부를 제어할 수 있다.According to one embodiment, the coolant
일 실시예에 의할 때, 상기 제어부(70)의 제어에 따라 미리 설정된 냉각조건이 되도록 유량을 제어할 수 있다. 이러한 경우, 상기 결합부의 밸브는 Needle Valve 등 회전(Rotation) 운동 또는 액추에이터(motorized actuator)를 통해 유량을 조절할 수 있으며, 상기 바디부의 내부에는 상기 냉각재압력유지부(30)를 통해 유입된 냉각재를 냉각재온도압력조절부(40)로 안내하는 유로가 구비되고, 냉각재의 분사를 및 온도를 제어하는 제어부가 PCB 등의 전자회로로 내장될 수 있다.According to an embodiment, the flow rate may be controlled to be a preset cooling condition under the control of the
일 실시예에서, 상기 고압밸브는 on-off 기능을 수행하는 솔레노이드벨브로 구성될 수 있고, 이 때, 미리 설정된 유량을 솔레노이드벨브를 주기적으로 여는 시간을 조절함으로써 제어할 수 있다. In one embodiment, the high pressure valve may be composed of a solenoid valve to perform an on-off function, at this time, it is possible to control the predetermined flow rate by adjusting the time to periodically open the solenoid valve.
일 실시예에 의할 때, 앞서 설명하였듯이 단위 부피당 더 큰 질량의 냉각재를 보관하기 위해, 상기 냉각재압력유지부(30)는 냉각재의 온도를 상기 저장부의 온도 이하의 온도에서 유지하여 저장되는 냉각재를 액상으로 유지시킬 수 있다. 일 실시예에 의할 때, 상기 냉각재압력유지부(30)는 저장된 냉각재를 미리 설정된 열역학적 상태로 유지시켜 분사시 냉각재의 압력을 유지함을 통해, 상기 냉각재온도압력조절부(40)에서 분사되는 냉각재가 미리 설정된 열역학적 상태로 5초 이내에 도달할 수 있으며, 다른 실시예에 의할 때 1초 이내로 상기 열역학적 상태로 도달할 수 있다. 여기서, 분사되는 냉각재의 열역학적 상태(state)는 고체 또는 액체 상태 중 적어도 어느 하나의 상태를 포함할 수 있다. According to one embodiment, in order to store a larger mass of coolant per unit volume as described above, the coolant
도 2a를 참조하면, 상기 냉각재압력유지부(30)는 냉각재를 저장하는 냉각재 리저버(31), 상기 냉각재 리저버(31)를 냉각하는 냉각발생부(32), 상기 냉각발생부(32)에서 발생된 열을 방열하기 위한 방열부(33) 및 상기 냉각발생부(32)와 상기 방열부(33)를 열적으로 결합하는 히트파이프(34)를 포함하여 구성된다. 상기 냉각재 리저버(31)에 저장된 냉각재는 상기 냉각재압력유지부(30)의 일측에 구비된 냉각발생부(32)인 열전소자에 의해 냉각되어 액체상태 또는 기체 상태와 혼합하여 존재하며, 제어부 및 냉각발생부(32)를 통한 냉각을 통하여, 상기 리저버(31)에 존재하는 냉각재는 액체상태의 냉각재로 열역학적 상태에서 유지시키는 것이 바람직하다. Referring to FIG. 2A, the coolant
일 실시예에 의할 때, 상기 냉각재압력유지부(30)는 상기 냉각재온도압력조절부(40)와 30cm 이하의 거리 내에서 위치하고, 이러한 냉각재압력유지부(30)는 내부에 저장된 냉각재의 열역학적 상을 일정하게 유지하기 위해 열전도도 10W/m-K 이상을 가지는 재질로 구성될 수 있다. 또한 상기 냉각재압력유지부(30)는 열전도도가 10W/m-K 이하의 재질로 만들어진 단열부재로 단열되어, 외부로부터 영향을 최소화 할 수 있다.According to one embodiment, the coolant
또한, 상기 냉각재압력유지부(30)와 냉각재온도압력조절부(40)를 열적으로 독립시키기 위해, 상기 냉각재압력유지부(30)와 상기 냉각재온도압력조절부(40)가 연결되는 유로에서, 적어도 하나의 구성품이 가지는 열전도(thermal conductance)는 10 W/K 이하로 가질 수 있다. 또한, 일 실시예에 의할 때, 상기 냉각재압력유지부(30)는 선택적으로 냉각재가 유동하는 유로를 따라 복수 개로 구비될 수도 있다.In addition, in order to thermally separate the coolant
본 발명에 의할 때, 냉각재압력유지부(30)의 개폐 또는 유량을 조절하는 밸브를 통하여, 냉각재온도압력조절부(40)로 냉각재를 공급한다. 여기서, 본 발명의 바람직한 실시예에 의할 때, 상기 제어부(70)와 전기적으로 연결되어, 상기 제어부의 제어에 의해 그 개폐가 제어되는 솔레노이드밸브(35)가 내장되는데, 상기 솔레노이드밸브(35)는 상기 제어부의 제어로 냉각재가 유동하는 유로를 선택적으로 개폐한다.According to the present invention, the coolant is supplied to the coolant temperature
이때 상기 솔레노이드밸브(35)는 고압인 냉각재의 압력을 지속 유지시키도록 상기 냉각재온도압력조절부(40)와 냉각재압력유지부(30) 사이의 유로 상에 배치되는 것이 바람직하다. At this time, the
따라서 상기 솔레노이드밸브(35)는 제어부 및 분사버튼과 전기적으로 연결되어, 사용자가 분사버튼을 조작함에 따라 발생한 신호가 상기 제어부(70)로 입력되고, 상기 제어부가 이를 바탕으로 상기 솔레노이드밸브(35)를 개방 제어하여 냉각재의 분사가 이루어지도록 한다. 또 다른 실시예에서는, 상기 솔레노이드밸브(35)는 상기 제어부(70)로부터 미리 설정된 프로토콜에 따라 복수의 개폐동작을 자동으로 수행하여 시술시간 중에 일정 시간의 부분의 시간 동안만 밸브를 개방할 수 있다. 예를 들어, 상기 제어부(70)는 Pulsed Width Modulation (PWM) 기법으로 상기 솔레노이드밸브(35)는 주기적으로 부분 개방할 수 있다. 더 구체적으로, 상기 제어부(70)는 3 Hz의 속도로 50% duty cycle 로 상기 솔레노이드밸브(35)를 개방할 수 있다.Therefore, the
도 2b는 본 발명의 바람직한 실시예에 따른 냉각재압력유지부(30)가 냉각발생부(32)에서 공급되는 냉각을 통해 열역학적 상을 유지시키는 냉각재온도압력유지부로써 추가적으로 기능할 때 가지는 냉각 구조를 나타낸 도면이다. 부연하여 설명하면, 냉각재압력유지부(30)에 파생된 실시예인 냉각재온도압력유지부는, 냉각재의 열역학적 상에 대한 신속한 동적 제어를 수행하는 냉각재온도압력조절부(40)와 구분됨은 자명하다. Figure 2b is a cooling structure when the coolant
이하, 도 2b를 참조하면, 본 발명에 따른 냉각재온도압력유지부는 열적으로 결합된 냉각발생부(32)에 의하여 냉각을 유지하는데, 상기 냉각발생부(32)의 구성은 냉각재압력유지부(30)로 냉각에너지를 공급할 수 있는 어떠한 형태든 가능하며, 냉각에너지를 발생시킬 수 있는 하나 이상의 냉각소자로 이루어질 수 있다. Hereinafter, referring to FIG. 2B, the coolant temperature pressure holding unit according to the present invention maintains cooling by a thermally coupled cooling generating
상기, 냉각소자는 스털링 냉각장치(stirling cooler) 또는 증기 압축 냉각 사이클(vapor compression refrigeration cycle)과 같은 열역학적 사이클을 이용하거나, 액체 증발을 이용하거나, 팽창 가스를 이용한 줄-톰슨(Joule-Thomson) 방식을 이용하여 냉각에너지를 발생시킬 수 있다. 또한, 냉각소자는 액체 질소 또는 이산화탄소를 이용하여 냉각에너지를 발생시키거나, 펠티에(Peltier) 소자와 같은 열전소자를 이용하여 냉각에너지를 공급할 수도 있다. 본 발명에서는 냉각소자의 냉각 방식에 대한 제한은 없으나, 설명의 편의를 위하여 이하에서는 열전소자를 이용하는 경우를 중심으로 설명하기로 한다. 여기서 펠티에 효과란, n,p형 열전 물질(Thermoelectric materials)을 짝지어 전류를 흐르게 하면 한쪽면은 발열하고, 다른 쪽 면은 흡열(냉각)하는 현상을 의미한다. 이러한 펠티에(Peltier) 효과는, 다른 의미로 전기적 피드백 제어(feedback control)가 가능한 히트 펌프(heat-pump)라 할 수 있다. The cooling device uses a thermodynamic cycle such as a stirling cooler or a vapor compression refrigeration cycle, a liquid evaporation, or a Joule-Thomson method using an expansion gas. By using the cooling energy can be generated. In addition, the cooling device may generate cooling energy using liquid nitrogen or carbon dioxide, or may supply cooling energy using a thermoelectric device such as a Peltier device. There is no restriction on the cooling method of the cooling device in the present invention, but for the convenience of description, the following description will be given with reference to the case of using a thermoelectric device. Here, the Peltier effect refers to a phenomenon in which one side generates heat and the other endothermic (cools) when n, p type thermoelectric materials are paired to flow an electric current. The Peltier effect is, in other words, a heat-pump capable of electrical feedback control.
냉각발생부(32)가 열전소자를 이용하는 경우, 열전소자에 전류를 인가하면, 펠티에 효과에 의하여, 열전소자에서 냉각재온도압력유지부와 접촉하는 면은 흡열이 일어나고, 열전소자에서 방열부(33)와 접촉하는 면은 발열이 일어날 수 있다. 이를 통해, 냉각발생부(32)와 대상체가 접촉하는 영역에서의 냉각열은 냉각발생부(32), 냉각재온도압력유지부를 통해 분사되는 냉각재로 전달되고, 냉각발생부(32)에서 발생되는 열은 후술하는 방열부(33)를 거쳐 외부로 방출될 수 있다. When the
방열부(33)는 냉각발생부(32)로부터 발생된 열을 외부로 배출시킬 수 있다. 방열부(33)는 히트싱크, 열배출부, 열발산부, 열분산부 등으로도 지칭될 수 있다. 방열부(33)는 냉각발생부(32)가 냉각에너지를 발생시키는 과정에서 생성되는 열을 효율적으로 배출하기 위하여 열전도성 재질로 이루어질 수 있다. 방열부(33)는 방열의 효율성을 위하여, 둘 이상의 방열 유닛으로 이루어져 결합될 수 있다.The
상기 방열부(33) 및 냉각발생부(32)는 열전달매개체를 통하여 이격하여 위치하며, 냉각재온도압력유지부의 냉각을 유지할 수 있다. 본 발명에 따른 방열부(33)는 방열핀 사이에 냉각팬으로부터 형성된 공기흐름이 통과할 수 있도록 흡입구 및 배출구가 형성될 수 있다. 다른 실시예로서, 방열부(33)는 냉각핀의 개수에 대응하는 흡입구 및 배출구가 형성될 수 있다. 다시 말해, 방열부(33)는 바디부의 축방향에 평행하지 않은 방향으로 관통하는 복수개의 흡입구 및 배출구가 형성될 수 있다. 냉각핀의 작용에 의해, 방열부(33)의 흡입구로는 공기가 흡입되고 배출구로는 공기가 배출될 수 있다. 이때, 복수개의 흡입구 및 복수개의 배출구는 각각 중첩될 수 있도록 위치가 대응되며, 흡입구와 배출구 사이 각각에 냉각핀이 배치될 수 있다. 이를 통해, 복수의 냉각핀으로부터 형성되는 복수개의 공기흐름이 각각의 흡입구와 배출구로 형성될 수 있어, 방열부(33)와 공기 사이의 열전달을 극대화할 수 있다. The
본 발명에 따른 히트파이프(34)는 냉각발생부(32) 및 방열부(33) 사이에 열전달을 매개하는 역할을 수행한다, 히트파이프(34) 등으로 구성된 상기 열전달매개체는 냉각발생부(32)와 방열부(33)를 연결하여 냉각발생부(32)의 열을 방열부(33)로 전달하는 기능을 수행함과 동시에, 냉각팬 등으로 구성된 방열부의 위치를 이격하여 배치하는 것이 가능하게 함으로써, 바디부의 구성을 사용자 편의성을 고려하여 구성할 수 있도록 할 수 있다. 즉, 본 발명에 따른 바디부 구조는 복수 개의 바디부 유닛으로 구성되며, 제1 바디부에는 냉각재압력유지부(30)를 배치하고, 제2 바디부 유닛에는 방열부(34)를 구성함으로써, 조작의 편의성 및 냉각팬의 방열 효율성을 각각 향상시킬 수 있다.The
본 발명에 따른 이때 상기 열전달매개체는 히트파이프(heat pipe: 34) 또는 증기 챔버(vapor chamber)일 수 있으며, 파이프 본체와 파이프 본체 내부에 구비되는 상변화물질(Phase Change Material)을 포함할 수 있다. 열전달매개체의 파이프 본체는 냉각발생부(32)와 접촉하여, 냉각발생부로부터 발생되는 열을 내부의 상변화물질 효과적으로 전달하도록 하기 위하여, 열전도율이 높은 재질로 이루어질 수 있다. 여기서, 상변화물질은 상변화과정을 통해 많은 향의 열에너지를 저장하거나 상기 저장된 열에너지를 방출하는 물질로서, 상변화물질은 고유의 열저장 능력을 가진다.In this case, the heat transfer medium may be a
또한, 의료용 냉각장치는 냉각재가 분사되는 선단의 시술부위와 이격이 된, 바디부 후단에 방열부(33) 및 냉각핀을 배치함으로써, 시술부위에서 발생 가능한 공기흐름 효과를 최소화하여 감염 등의 위험을 방지할 수 있다. 이와 같이, 방열부(33)가 냉각재온도압력유지부에 인접하게 배치되지 않고, 이격되어 배치되는 것에 의해 본 실시예의 냉각 장치는 사용자에게 조작의 용이성을 제공하기 위하여 파지할 수 있는 구조를 제공함과 동시에, 성능의 효율성을 위하여, 실시예에 기재되지 아니한 다양한 다른 구조로 냉각장치를 구현할 수 있다.In addition, the medical cooling device by disposing the
III. 온도압력조절부(Cryogen Temperature Pressure Controller)III. Cryogen Temperature Pressure Controller
도 3a 내지 3e는 본 발명의 바람직한 실시예에 따른 온도압력조절부의 구성을 나타낸 도면이다. 본 발명은 냉각재가 이동하는 경로에 대응하여 냉각재의 열역학적 상(온도, 압력)의 조절이 가능하며, 냉각장치의 각 구성 요소의 선택적 또는 서로 연계하여 히팅 또는 냉각을 통한 냉각재의 열역학적 상에 대한 제어가 가능하다. 일 실시예에 의할 때, 냉각재의 열역학적 상에 대한 제어를 열에너지를 통해서 제어하는 것을 중심으로 설명하나, 다른 에너지를 통해, 예를 들어, 기계적 에너지를 이용한 압력에 대한 제어를 수행할 수 있다. 또 다른 실시예에 의할 때, 냉각재압력유지부는 냉각 제어, 냉각재온도압력조절부(40)는 히팅 제어를 중심으로 설명하나, 이에 한정되지 아니하고 다양한 방식으로 구성요소의 온도제어를 수행할 수 있다. 예를 들어, 의료용 냉각장치가 암치료 등 세포사멸을 위해 사용될 때, 냉각재온도압력조절부(40) 또한 냉각 제어를 받을 수 있다.3a to 3e is a view showing the configuration of the temperature pressure control unit according to a preferred embodiment of the present invention. The present invention is capable of adjusting the thermodynamic phase (temperature, pressure) of the coolant in response to the path of the coolant movement, and control of the coolant thermodynamic phase through the heating or cooling of the components of the cooling device selectively or in conjunction with each other Is possible. According to one embodiment, the control of the thermodynamic phase of the coolant will be described based on the control of the thermal energy, but the control of the pressure using other energy, for example, mechanical energy can be performed. According to another embodiment, the coolant pressure holding unit is described in the cooling control, the coolant temperature
도 3a는 본 발명의 바람직한 실시예에 따른 냉각재온도압력조절부(40)의 구성을 나타낸 도면이고, 도 3b는 본 발명의 바람직한 실시예에 따른 냉각재온도압력조절부(40)의 분해도, 도 3은 본 발명의 바람직한 실시예에 따른 냉각재온도압력조절부(40)의 투영도를 나타낸 도면이다.Figure 3a is a view showing the configuration of the coolant temperature
일 실시예에 의할 때, 본 발명에 따른 냉각재온도압력조절부(40)는 열전소자 기반 히팅 제어를 중심으로, 냉각재-열전소자 간 열전달 매개구조로 이루어져 있다. 또한, 냉각재온도압력조절부(40)는 냉각재 분사량 및 Joule-Thomson 효과를 최적화 될 수 있는 노즐 구조를 포함한다. According to one embodiment, the coolant temperature
도 3a를 참조하면, 본 발명에 따른 의료용 냉각장치의 냉각재온도압력조절부(40)는 피시술부위에 분사되는 냉각재를 미리 설정된 압력 또는 온도로 분사를 조절할 수 있으며, 이러한 냉각재온도압력조절부(40)의 구성은 상기 냉각재가 유입 및 노즐부(41)로 유동하기 위한 배럴부 및 상기 배럴부에서 유입된 냉각재를 분사하기 위한 노즐부(41)를 포함한다.Referring to Figure 3a, the coolant temperature
본 발명의 바람직한 실시예에 의할 때, 상기 냉각재가 유동하는 유로가 형성된 배럴부 중 노즐부(41)에 유입되는 일측에는, 배럴 내부에서 상기 냉각재와의 열적 접촉을 통하여, 냉각재 분사전 냉각재에 대한 사전 열처리를 하기 위한 열전달매개체(42)가 더 구비될 수 있다.According to a preferred embodiment of the present invention, one side of the barrel portion in which the flow path for the coolant flows is introduced into the
상기 노즐부(41)는 그 내부에 고압의 냉각재가 유동하는 배럴부의 유로보다, 폭이 좁은 노즐이 형성되어 있으며, 상기 유로가 개방됨에 따라 고압의 냉각재가 유로를 따라 상기 노즐로 안내되고, 상기 노즐을 통해 유출된 냉각재는 줄-톰슨 효과로 상기 노즐을 통하여 냉각된 상태에서 분사된다.The
여기서, 줄-톰슨 효과란 압축한 기체가 팽창할 때, 온도가 떨어지는 현상이다. 압력-온도로 이루어지는 열역학적 상에 연관해서 온도가 변하는 것으로, 공기를 액화시킬 때나 냉매를 통한 냉각에 응용되는 현상이다. 유체의 유로 안에 오리피스와 같은 조리개를 삽입할 경우, 유체의 온도가 조리개 뒤쪽에서 저하되는 현상이다. 가스가 자유 팽창(free expansion)할 때, 즉 외부와 일의 교환 없이 단열 팽창할 때는 거의 내부 에너지는 변하지 않는 현상으로 가스액화 장치로 저온을 얻기 위해 단열 자유 팽창시키는 효과를 말한다.Here, the Joule-Thomson effect is a phenomenon in which the temperature drops when the compressed gas expands. The temperature changes in association with a thermodynamic phase consisting of pressure and temperature, and is a phenomenon applied to liquefying air or cooling through a refrigerant. When the diaphragm such as an orifice is inserted into the fluid passage, the temperature of the fluid decreases behind the diaphragm. When the gas is free expansion, that is, when it is adiabatic expansion without exchanging work with the outside, almost no internal energy is changed, which is an effect of adiabatic free expansion to obtain a low temperature with the gas liquefaction apparatus.
줄-톰슨효과로, 상기 노즐을 통해 분사된 냉각재는 급격한 압력 해제로 냉각재 주변의 열을 빼앗아 냉각이 이루어지고, 상기한 냉각재가 피시술부위에 분사되면, 상기 냉각재가 피시술부위와 접촉하면서 냉각재가 피시술부위의 열을 빼앗아 피시술부위의 냉각이 이루어진다.By the Joule-Thomson effect, the coolant injected through the nozzle is cooled by taking heat around the coolant by rapid pressure release, and when the coolant is sprayed on the treatment site, the coolant is in contact with the treatment site. The heat is taken from the surgical site to cool the surgical site.
여기서, 상기 분사되는 냉각재의 정밀한 온도 조절은 상기 노즐부(41)에 구비된 냉각재온도압력조절부(40)에 의해 이루어지고, 이하, 냉각재온도압력조절부(40)를 중심으로 설명하기로 한다. 이하, 도면을 참조하여 냉각재온도압력조절부(40)의 열전달매개체(43)를 통한 냉각재의 온도 제어를 더욱 상세하게 살펴보면 다음과 같다.Here, the precise temperature control of the sprayed coolant is made by the coolant temperature
상기 냉각재의 온도 및 압력을 조절하는 냉각재온도압력조절부(cryogen temperature-pressure controller: 40)에서 분산된 냉각재는 상기 노즐부(41)를 통하여 냉각장치 외부, 즉 목표영역에 분사되어, 목표 영역을 원하는 온도도 냉각한다. The coolant dispersed in a cryogen temperature-
본 발명에 따른 냉각재온도압력조절부(40)는 분사전에 상기 냉각재에 열을 제공하여 정밀한 온도제어가 가능하도록 하는데, 일 실시예에 의할 때, 이런 구성을 통하여 냉각재의 분사 온도를 상승시켜, 피시술부위의 세포가 과냉각에 의해 괴사하지 않도록 피시술부위의 냉각 온도를 제어할 수 있다. Coolant temperature
종래 액체질소(liquid nitrogen)를 이용한 한랭요법(cryotherapy / cold therapy)이 주로 사용되나, 냉각조건이 제어되지 않아, 병변세포 사멸 시 주변 다량의 정상 세포를 파괴하는 부작용이 있다. 본 발명에 따른 냉각 치료는 -40˚C 이하에서는 혈관세포를 포함한 세포 사멸을 목적으로 하는 반면, -40˚C ~ 0˚C 범위에서는 세포자살(apoptosis) 또는 면역활성화 효과를 목적으로 할 수 있다. 본 발명은 상술한 냉각재온도압력조절부(40)를 통하여, 목표영역, 시술부위 또는 치료목적에 따라 최적의 온도에 대응하여 냉각재를 분사할 수 있는 효과가 있다.Conventional cryotherapy (liquid therapy / cold therapy) using the liquid nitrogen (liquid nitrogen) is mainly used, but the cooling conditions are not controlled, there is a side effect of destroying a large amount of normal cells surrounding the lesion cell death. Cooling treatment according to the present invention may be aimed at cell death including vascular cells at -40 ° C or less, whereas -40 ° C to 0 ° C can be used for apoptosis or immunoactivating effect. . The present invention has the effect that through the coolant temperature and
도 3c를 참조하여, 본 발명에 따른 상기 냉각재온도압력조절부(40)의 구성을 보다 상세하게 살펴보면, 상기 냉각재온도압력조절부(40)는 내부에 중공형태의 배럴이 형성되며, 외주면에는 발열부(44)가 접촉하기 위한 접촉면이 형성된 홀더부(42)를 포함하고, 상기 홀더부(42)의 외주면에 상기 발열부(44)가 열적으로 결합되어, 냉각재온도압력조절부(40)의 배럴부에 유동하는 냉각재에 열을 공급하는 기능을 수행한다.Referring to Figure 3c, looking at the configuration of the coolant temperature
본 발명의 바람직한 실시예에 의할 때, 상기 홀더부(42)의 배럴, 즉 중공의 일측에는 냉각재의 열전달을 효율적으로 수행하기 위한 열전달매개체(43)가 수용될 수 있다. 일 실시예에 의할 때, 상기 열전달매개체(43)는 열전도도 10 W/m-K 이상의 재질로 이루질 수 있으며, 냉각재가 유동하는 배럴 중 노즐부(41)의 유입부에 형성된다. 일 실시예에 의할 때, 상기 열전달매개체(43)는 냉각재로 열전달을 효율적으로 하기 위해, 냉각재와의 접촉면적을 크게 할 수 있는 구조를 가지고 있다. 예를 들어, 상기 열전달매개체(43)는 다공성 물질로 형성될 수 있다. 예를 들어, 상기 열전달매개체(43)는 고열전도도를 가지는 금속입자가 sintering 되어 형성된 다공성 물질로 구성될 수 있다.According to a preferred embodiment of the present invention, a
상기 발열부(44), 홀더부(42) 그리고 열전달매개체(43)는 열적으로 결합되어 있으며, 상기 유로에 구비된 복수 개의 열전달매개체(43)와 냉각재는 열적 접촉을 통하여 열교환이 이루어진다. 그러므로 상기 홀더부(42)의 중공을 통해 상기 냉각재는 노즐로 유입되고, 유입된 냉각재는 외부로 유출되면서 분사가 이루어진다, 상기 냉각재가 배럴의 중공으로 유입되면, 유로에 형성된 열전달매개체(43)와의 열적 접촉을 통하여 냉각재의 열역학적 상, 즉, 온도와 압력을 제어 또는 상승시킬 수 있다.The
이러한, 냉각재온도압력조절부(40)의 냉각재의 온도뿐만 아니라 압력을 조절하는 기능은, 냉각재온도압력조절부(40)에 가해지는 에너지로 인한 압력으로 인해, 냉각재의 흐름이 제한 받는 즉, 열역학적 능동밸브로써의 기능을 수행하여, 냉각재의 온도뿐만 아니라 유량 자체를 줄일 수 있다.The function of adjusting the pressure as well as the temperature of the coolant of the coolant temperature
일 실시예에 의할 때, 상기 발열부(44)는 열전소자로 구성되어 발열부(44)에서 발생되는 열을 선택적인 방향으로, 즉, 홀더부(42)가 있는 방향으로 전달할 수 있다. 이 때, 제어부의 제어로 상기 발열부(44)에 전원이 공급되면, 상기 전원으로 발열할 수 있다. 상기 발열부(44)에서 생성된 열은 홀더부(42)로 전도되고, 상기 홀더부(42)로 전도된 열은 상기 홀더부(42)의 내부에 내장된 열전달매개체(43)로 열이 전도되면서, 상기 열전달매개체(43)의 유로를 따라 유동하는 냉각재가 열을 전달 받아 히팅이 된다.According to one embodiment, the
도 3d는 본 발명의 바람직한 실시예에 따른 발열부의 장착구조를 나타낸 도면이고, 도 3e는 본 발명의 바람직한 실시예에 따른 홀더부의 구성을 나타낸 도면이다.Figure 3d is a view showing the mounting structure of the heating portion according to a preferred embodiment of the present invention, Figure 3e is a view showing the configuration of the holder portion according to a preferred embodiment of the present invention.
일 실시예에 의할 때, 상기 홀더부(42)는 내부에 냉각재가 유동하는 중공이 형성된 관 형태로, 상기 홀더부(42)의 외주면은 상기 발열부(44)가 접합 고정되는 접합고정면(47)으로 기능을 수행한다. 이때 상기 접합고정면(47)은 상기 홀더부(42)의 중심축을 기준으로 복수 개가 방사상 또는 대칭구조로 배치될 수 있는데, 일례로 도 3d와 같이, 상기 접합고정면(47)이 상기 홀더부(42)의 중공을 기준으로 4방으로 형성되어 총 4개의 발열부(44)가 각각 접합 고정될 수 있다.According to one embodiment, the
여기서 본 발명에서는 상기 홀더부(42)의 접합고정면(47)을 4방으로 형성되는 것으로 한정하여 설명하나, 이에 한정하지 않고 제어 온도범위 및 발열부(44)의 발열량에 따라 2방면, 3방면, 5방면 등 다양하게 적용될 수 있다.In the present invention, the
이때 상기 발열부(44)는 외부의 전원으로 발열하는 열전소자로 구성되는 것이 바람직하나, 상기 발열부(44)를 외부의 전원으로 발열하는 니크롬선으로 이루어질 수 있다.At this time, the
여기서 본 발명에 따른 상기 열전달매개체(43)는 냉각재와의 열전달 면적을 늘리도록, 냉각재가 유동하는 유로에 복수의 핀(fin)을 형성할 수 있고, 또는 상기 열전달매개체(43)가 다공성 구조체로 이루어져 냉각재와의 열전달 면적을 늘릴 수 있다. 이때 다공성 구조체로 이루어진 열전달매개체(43)는 냉각재의 유동 시 발생하는 소음을 흡수하면서 냉각재의 압력을 감압하는 기능을 동시에 실시한다.Here, the
또한 상기 열전달매개체(43)는 냉각재의 유량을 조절할 수 있는데, 상기 열전달매개체(43)가 형성된 구간의 길이, 열전달매개체(43)의 크기 또는 구조에 따라, 기존 배럴 대비 상기 열전달매개체(43)의 유로가 협소해져 상기 열전달매개체(43)의 유로를 통과하는 냉각재의 유동 유량이 감소하는 역할을 수행하며, 더불어 상기 열전달매개체(43)는 흡음의 역할도 수행할 수 있다.In addition, the
즉, 본 발명은 냉각재온도압력조절부(40)에 구비된 발열부(44)로 냉각재에 열을 선택적으로 제공하면, 상기 열전달매개체(43)가 냉각재를 히팅함은 물론, 유량을 조절하여 피시술부위의 세포가 동결되어 파괴되지 않도록 피시술부위의 온도를 조절할 수 있다.That is, according to the present invention, when the heat is selectively provided to the coolant by the
더불어 본 발명에 따른 상기 열전달매개체(43)는 열전달을 매개하는 열전달 매개체가 아니라, 스스로 발열하는 발열소재로 구성할 수도 있다. 일 실시예로, 상기 냉각재가 유동하는 상기 홀더부(42) 중공의 내부면을 따라 니크롬선으로 이루어진 발열소재가 설치되어, 상기 홀더부(42)의 중공을 통해 유동하는 냉각재에 직접 열을 제공할 수도 있다. In addition, the
그리고 상기 냉각재온도압력조절부(40)는 주변 기구물과 작은 접촉면적을 가지거나 또는 10W/m-K 이하의 열전도도를 가진 단열부재(46)를 통해 주변 기구물과 단열이 이루어지는데, 이때 상기 단열부재(46)로는 테프론이 적용될 수 있다. 상기 단열부재(46)는 상기 홀더부(42)의 유입측 및 유출측에 각각 구비되어, 노즐부(41) 및 전달부(20)와 열적으로 단열시켜 외부의 영향을 최소화하면서, 미리 설정된 조건으로 상기 냉각재를 분사할 수 있다. In addition, the coolant temperature
본 발명의 바람직한 실시예에 의할 때, 상기 냉각재온도압력조절부(40)는 상기 의료용 냉각장치가 사용된 후 해당 지정시간 동안 발열하여, 내부에 남아있는 냉각재를 제거할 수 있다.According to a preferred embodiment of the present invention, the coolant temperature and
IV. 냉각재 회전부 (Cryogen Cyclone Generator)IV. Cryogen Cyclone Generator
도 4a 내지 도 4c는 본 발명의 바람직한 실시예에 따는 냉각재 회전부의 구성을 나타낸 도면이다. 보다 상세하게 도 4a 및 도 4b는 냉각재 회전부의 구성을 나타낸 도면이고, 도 4c는 본 발명의 바람직한 실시예에 따라 사이클론생성부의 구성을 나타낸 도면이다. 본 발명에 따른 의료용 냉각장치는 냉각재를 사선으로 분사시켜 와류 형태의 회전운동을 통하여, 공기와 냉각재를 회전시킨 후, 외부로 분사되도록 하는 냉각재회전부(52)를 포함하며, 상기 냉각재회전부(52)는 그 내부에 핵심 구성요소로서 사이클론생성부(53)를 포함한다. 이하, 도면을 참조하여, 냉각재회전부(52)의 구성을 상세 설명하기로 한다.4A to 4C are views showing the configuration of the coolant rotating part according to the preferred embodiment of the present invention. 4A and 4B are views showing the configuration of the coolant rotating unit, and FIG. 4C is a view showing the configuration of the cyclone generating unit according to the preferred embodiment of the present invention. Medical cooling apparatus according to the present invention comprises a
도 4a는 냉각재회전부(52)의 구성을 나타낸 도면이고, 도 4b는 냉각재회전부(52)의 분해도를 나타낸 도면이다. 4A is a view showing the configuration of the
먼저, 도 4a를 참조하면, 본 발명에 따른 의료용 냉각장치는 냉각재가 유입되는 냉각재유입부(51) 및 냉각재유입부(51)에서 유입된 냉각재를 사선방향으로 분사하기 위한 사이클론생성부(53), 그리고 상기 냉각재의 와류 운동으로 회전하게 유도하는 냉각재회전부(52)를 포함한다. 일 실시예에 의할 때, 상기 냉각재유입부(51)와 냉각재회전부(52) 또는 사이클론생성부(53)는 개스킷 등의 밀폐부재(54)로 결합되어 있다.First, referring to FIG. 4A, the medical cooling apparatus according to the present invention includes a
저장부에서 전달부를 통하여 전달된 냉각재는 상기 냉각재유입부(51)를 통하여 사이클론생성부(53)로 유입된다, 상기 사이클론생성부(53)는 유입된 냉각재를 사선으로 분사시켜 와류 형태의 회전운동을 통하여, 공기와 냉각재를 회전시킨 후, 외부로 분사되도록 구성한다. The coolant transmitted from the storage unit through the delivery unit is introduced into the
사선 방향으로 분산된 공기 및 냉각재의 혼합유체는 상기 냉각재회전부(52)의 내주면과의 직선 접촉이 아닌 사선 접촉을 함으로써, 냉각재의 흐름 자체를 조정하여 열전달매개체의 질량 증가가 없는 상태로 실질적인 접촉면적을 늘일 수 있다. 즉, 앞서 설명한 냉각재온도압력조절부에 구성된 열전달매개체와 달리, 늘어난 냉각재와의 접촉면적이 열전달매개체의 질량증가가 없는 상태로 이루어져, 열전달량을 늘이는 동시에 열적 반응 속도를 높일 수 있는 효과가 있다. 또한, 냉각재가 냉각재회전부(52) 내주면에서 회전 운동을 하면서 원심력에 의한 기체, 액체 또는 고체 상태의 냉각재가 냉각재회전부(52)의 내주면과 접촉에서 일어나는 마찰력의 차이로 인하여, 선별적이고 효과적으로 상기 냉각재의 분사속도 또는 분사 온도를 제어할 수 있는 효과가 있다. 예를 들어, 고체 상태의 냉각재가 가지는 높은 냉각재회전부(52) 내주면과의 마찰력으로 인해, 회전속도가 선택적으로 느려지며, 이로 인해 늘어난 냉각재회전부(52) 내주면과의 접촉 시간으로 인해, 냉각재회전부(52) 내주면으로부터 고체 상태의 냉각재로 주어지는 열전달이 선택적으로 늘어날 수 있다.The mixed fluid of air and coolant dispersed in the oblique direction is not in linear contact with the inner circumferential surface of the
상술한 냉각재온도압력조절부의 열전달매개체를 통한 냉각제 제어는 냉각재 분사전 제어라고 한다면, 냉각재회전부(52)에 의한 냉각재 제어는 냉각재 분사후 제어로 구분할 수 있다. 여기서 상기 냉각재회전부(52)의 외주면에는 열전달매개체가 접촉하여 구비되고, 이러한 구성을 통하여 냉각재회전부(52) 및 열전달매개체는 열적으로 결합되어 있는 상태에서, 상기 냉각재가 와류 형태로 회전하면서 상기 냉각재 회전부의 내주면과 열적 접촉을 하면서, 상기 냉각재회전부와 상기 냉각재간의 열전달을 통하여 냉각재의 온도를 노즐 분사후에도 제어할 수 있다.If the coolant control through the heat transfer medium of the coolant temperature pressure control unit is controlled before the coolant injection, the coolant control by the
도 4a를 참조하면, 냉각재회전부(52)의 단면도가 도시되어 있다. 냉각재회전부(52)의 내부에는 사이클론생성부(53)가 구비되어 있으며, 일 실시예에 의할 때, 상기 사이클론생성부(53)의 외관은 원형으로 형성되어 있으나, 다른 형태로 구현할 수 있음은 당연하다. 상기 사이클론생성부(53)는 적어도 하나의 사선으로 형성된 유로(56)가 형성되어 있으며, 상기 사선방향 유로(56)는 상기 사이클론생성부(53)의 중심축을 기준으로 방사형태 또는 대칭 형태로 형성되는 것이 바람직하다.Referring to FIG. 4A, a cross-sectional view of the
사선방향 유로(56)에 의해 분사된 냉각재는 사선방향 유로(56)를 통하여 사선 방향으로 유출함과 동시에, 줄-톰슨 현상으로 냉각되어 분사된다. 상기 냉각재는 사선으로 유동한 후 냉각재회전부(52)의 내주면과 충동을 통하여 와류 운동을 하며, 외부로 분출되어 감소된 분사속도와 온도로 목표영역에 도달하게 된다.The coolant injected by the
도 4b를 참조하면, 상기 냉각재회전부(52)의 외주면은 열전소자(55)와의 접촉하도록 구성되며, 본 발명의 바람직한 실시예에 의할 때, 상기 냉각재회전부(52)의 외주면, 즉 열전소자(55)와의 접촉면은 상기 열전소자(55)와의 접촉 또는 열전달의 효율성을 위하여 평면으로 형성될 수 있다, 이때 상기 외주면은 상기 냉각재회전부(52)의 중심축을 기준으로 복수 개가 방사상 또는 대칭구조로 배치될 수 있는데, 도 2와 같이 4방으로 형성되어 총 4개의 총 열전소자(55)가 각각 접합 고정될 수 있다. 여기서 본 발명에서는 상기 외주면을 4방으로 형성되는 것으로 한정하여 설명하나, 이에 한정하지 않고 제어 온도범위, 목표영역, 치료부위 또는 목적에 따라 2방면, 3방면, 5방면 등 다양하게 적용될 수 있다.Referring to FIG. 4B, the outer circumferential surface of the
여기서, 상기 냉각재회전부(52)의 길이도 제어 온도범위, 목표영역, 치료부위 또는 목적에 따라 길이를 변형할 수 있음은 당연하다, 상술한 바와 같이, 상기 냉각재회전부(52)의 내주면은 사선 방향으로 분사된 냉각재의 출동을 통하여, 냉각재의 속도도 완화되고, 냉각재의 온도도 조절될 수 있으므로, 일 실시예에 의할 때, 상기 냉각재회전부(52)는 냉각재 속도 제어 또는 냉각재 온도 제어가 가능하도록 충분한 길이를 가지도록 구성되는 것이 바람직하다.Here, it is obvious that the length of the
본 발명의 실시예에 의할 때, 상기 냉각재유입부(51) 및 상기 사이클론생성부(53)의 결합부는 개스킷인 밀폐부재(54)로 결합되어, 밀폐 성능을 향상시킴과 동시에 상기 밀폐부재(54)는 테플론과 같은 소재로 형성되어 열전달을 효과적으로 차단할 수 있다.According to the embodiment of the present invention, the coupling portion of the
도 4c는 본 발명의 바람직한 실시예에 따는 사이클론생성부(53)의 구성을 나타낸 도면이다.4C is a diagram showing the configuration of the
본 발명에 따른 사이클론생성부(cryogen cyclone generator: 53)는 냉각재가 와류 형태로 냉각재가 유동되도록 한 것으로, 냉각재를 통해 목표영역을 냉각함에 있어, 사선 방향으로 분사된 냉각재를 와류 형태의 회전 운동으로 유도하는 냉각재회전부(cryogen cyclone rotator: 52)를 통하여 회전운동을 하며, 시술 영역에 분사된다.The
여기서, 이러한 회전 운동을 위해서는, 냉각재를 사선방향으로 분사하기 위하여 제1 사선방향 유로(56)가 형성된 사이클론생성부(53)가 필요하며, 도 3을 참조하면, 사이클론생성부의 사시도 및 투영도가 도시되어 있다. Here, for this rotational movement, a
상기 사이클론생성부(53)는 냉각재를 사선방향으로 분사하기 위하여 제2 사선방향 유로(56)를 더 포함할 수 있는데, 이때 상기 사이클론생성부(53)에 복수 개의 사선방향 유로(56)가 형성된 경우, 서로 대칭구조를 갖도록 배치되는 것이 바람직하고, 서로 대향하는 방향으로 냉각재를 분사시켜, 냉각재의 와류를 대칭적이고 안정적으로 생성할 수 있다. The
본 발명의 바람직한 실시예에 의할 때, 상기 사이클론생성부(53)는 냉각재의 수직 입사를 발생하는 유로를 추가적으로 구비하여, 사선 방향의 분사 및 직진 방향의 분사를 연계하여 보다 정밀하게 분사 속도를 제어하도록 구성할 수 있다.According to a preferred embodiment of the present invention, the
상기 냉각재회전부(52)는 분사되는 냉각재와의 접촉을 통하여 상기 냉각재의 온도를 조절하며, 상기 사선 방향 입사에 따른 늘어난 유체 궤적으로 상기 냉각재와 상기 냉각재회전부(52)의 접촉면 및 접촉시간이 수직 입사 대비 증가한다. 그리고 상기 증가한 냉각재와 상기 냉각재회전부(52)와의 접촉면적 및 접촉시간을 통해, 냉각재와 상기 냉각재회전부(52)와의 열전달을 증가시킬 수 있다.The
또한 냉각재가 기체, 액체 및 고체 중 적어도 2개를 포함하는 복수 개의 페이즈(상)로 분사된 상기 냉각재에서, 액체 또는 고체로 존재하는 냉각재와 상기 냉각재회전부(52)와의 접촉 또는 마찰이 상대적으로 많이 발생할 수 있다. 즉, 액체 또는 고체로 존재하는 냉각재가 기체보다 느린 회전속도를 가지며, 이와 같이 상대적으로 느린 회전운동으로 하는 고체 또는 액체로 존재하는 냉각재에 상대적으로 더 많은 열전달을 수행할 수 있다.In addition, in the coolant in which the coolant is injected into a plurality of phases (phases) including at least two of a gas, a liquid, and a solid, the contact or friction between the coolant present as a liquid or a solid and the
V. 경계열공급부 (Heat Providing Barrier)V. Heat Providing Barrier
도 5a 내지 5b는 본 발명의 바람직한 실시예에 따른 경계열공급부의 구성을 나타낸 도면이다. 이하, 도면을 참조하여, 경계열공급부의 구성을 상세히 설명하기로 한다.5a to 5b are views showing the configuration of the boundary heat supply unit according to a preferred embodiment of the present invention. Hereinafter, with reference to the drawings, the configuration of the boundary heat supply unit will be described in detail.
도 5a는 본 발명의 실시예에 따른 냉각장치의 사용예를 나타낸 도면이고, 도 5b는 본 발명의 바람직한 실시예에 따른 경계열공급부의 구성을 나타낸 도면이다.Figure 5a is a view showing an example of the use of the cooling apparatus according to an embodiment of the present invention, Figure 5b is a view showing the configuration of the boundary heat supply unit according to a preferred embodiment of the present invention.
도 5a 및 도 5b를 참조하면, 본 발명에 따른 냉각장치의 출력부 영역에는 냉각재를 분사하는 분사부(61) 및 경계열공급부(63)가 구비될 수 있다, 여기서, 경계열공급부(63)는 목표 영역, 즉 시술부위 이외의 영역으로, 냉각이 확산되는 것을 방지하기 위하여, 시술부위 경계에 열을 공급하는 기능을 수행한다. 또한, 경계열공급부(63)가 시술부위 경계에 공급되는 열을 통하여, 시술부위 중심부의 온도를 더 낮출 수 있고, 이를 통해 시술목적에 요구되는 냉각온도를 더 깊은 부위에서 주변 정상세포 파괴를 최소화한 상태에서 실현시키는 효과가 있다. 이때, 경계열공급부(63)에서 공급되는 열을 시술부위 주변의 온도가 냉각마취가 일어나는 온도로 유지되도록 제어됨을 통해, 단순 주변 정상세포 보호뿐만 아니라, 시술부위 중심에 위치하는 병변세포를 제거할 때 고통을 최소화할 수 있는 효과를 가진다. 5A and 5B, an
일 실시예에 의할 때, 상기 경계열공급부(63)는 출력부의 하우징(64)에 구비될 수 있고, 경계열공급부(63)에서 목표영역의 경계부로 열을 공급하는 방식은 물리적인 접촉에 의한 제1 방식 및 별도의 기체 등을 통하여 비접촉 방식으로 경계열을 제공하는 제2 방식을 포함하며, 접촉식 경계열 공급방식은 도 5c에서 상세히 설명하고, 비접촉식 경계열공급부 구성은 도 5d에서 설명하기로 한다.According to an embodiment, the boundary
여기서, 본 발명에 따른 제1 방식은 상기 냉각재가 목표영역에 접촉한 후, 외부로 유출되기 위한 별도의 유출구(66)가 필요하며, 본 발명에 따른 제2 방식은 냉각재를 분사하기 위한 분사부(61)와 더불어, 경계열을 제공하기 위한 기체를 분사하기 위한 다른 분사부를 더 포함할 수 있다.Here, the first method according to the present invention requires a
본 발명에 따른 제어부는 상기 경계열공급부(63)에 가해지는 열을 제어하며, 상기 제어부에 제어에 따라 상기 의료용 냉각장치의 경계열공급부(heat providing barrier: 63)는 상기 목표영역의 경계에 미리 설정된 온도로 열을 공급하는 역할을 수행할 수 있다.The control unit according to the present invention controls the heat applied to the boundary
여기서, 상기 경계열공급부(63)의 내측에는 경계열 공급에 열을 공급하기 위한 열전소자와 같은 차등경계열전달부(65)가 구비된다. 일 실시예에 의할 때, 상기 차등경계열전달부(65)는 경계열공급부(63)와 일면과 열적 결합을 함과 동시에, 타면은 분사부(61)와 열적 결합을 하면서, 경계열공급부(63)의 히팅과, 분사부(61)의 냉각을 동시에 수행하는 차등경계열전달부(65)로 구성할 수 있다. 여기서, 상기 차등경계열전달부(65)는 열전소자 등으로 구현할 수 있다. Here, the differential boundary
본 발명에 의할 때, 상기 분사부(61)가 차등경계열전달부(65)에서 냉각되는 경우, 노즐에서 분사된 냉각재는 분사부(61)의 내면과 접촉을 통하여 냉각재의 온도가 조절된다. 즉, 노즐에서 분사된 냉각재는 분사부(61)를 통하여 유동하면서 외부로 분출되는데, 여기서, 상기 냉각재가 분사부를 통하여 유동하는 동안, 상기 분사부(61)의 내주면과의 열적접촉 또는 열적교환을 통하여 냉각재의 온도를 조절할 수 있다. 이러한 구성을 통하여 상기 목표영역의 온도 및 목표영역의 경계에 대한 온도제어를 수행할 수 있고, 이러한 경계열공급부(63)를 통하여, 목표영역 바깥의 영역까지의 냉각효과가 확장되는 것을 방지할 수 있다. According to the present invention, when the
도 5c는 본 발명의 바람직한 실시예에 따른 접촉 타입의 경계열 공급방식의 구성을 나타낸 도면이다. 5C is a diagram illustrating a configuration of a contact type boundary heat supply system according to a preferred embodiment of the present invention.
접촉 방식에 따른 경계열 공급 방식은 제1 분사부(61), 차등경계열전달부(65), 경계열공급부(63)를 포함할 수 있다.The boundary heat supply method according to the contact method may include a
상기 제1 분사부(61)는 일측을 통해 유입된 냉각재를 외부로 분사하는 노즐이 구비되는데, 즉 냉각재가 노즐을 통하여 분사됨으로써 피시술부위를 냉각시킬 수 있다. The
일 실시예에 의할 때, 상기 제1 분사부(61)를 통해 분사되는 냉각재는 적어도 액체 입자 또는 기체 입자를 포함할 수 있으며, 상기 냉각재가 상기 제1 분사부(61)의 노즐로 분사됨으로써, 줄-톰슨효과(Joule-Thomson effect)에 의하여 온도가 내려간 냉각재가 피부의 국소부위를 냉각시킬 수 있다. According to an embodiment, the coolant injected through the
그리고 상기 경계열공급부(63)는 시술부위 주변의 세포가 손상되는 것을 최소화하기 위한 것으로, 상기 제1 분사부(61)의 외면을 따라 구비되는데, 더욱 상세하게는 상기 경계열공급부는 상기 제1 분사부(61)와 열매개체, 즉 차등경계열전달부(65)를 통하여 열적으로 결합될 수 있다.In addition, the boundary
일 실시예에 의할 때, 상기 경계열공급부(63)는 열전도도 10W/m-K 이상의 재질로 구성할 수 있으며, 이러한 재질의 경계열공급부(63)는 상기 목표영역과 접촉을 통해, 상기 차등경계열전달부(65)에서 공급받은 열을 목표영역에 경계에 전달할 수 있다. 여기서 상기 차등경계열전달부(65)는 열전소자뿐만 아니라, 니크롬선 등으로 구성하여 상기 경계열공급부(63)와 열적으로 결합할 수 있다. According to an embodiment, the boundary
일 실시예에 의할 때, 상기 경계열공급부(63)는 상기 제1 분사부(61)의 외주면을 따라 구비되는 역원뿔형상으로, 상기 경계열공급부(63)의 일측 내부에는 냉각재가 유동하는 이동공간이 형성될 수 있으며, 노즐에서 분사되는 냉각재는 가이드부에 형성된 이동공간을 따라서 피부에 분사된 후, 상기 냉각재는 냉각재 출구를 통하여 외부로 유출된다.According to one embodiment, the boundary
상기 경계열공급부(63)에 의하여 피시술부위에 대한 경계가 형성됨으로써 피시술부위 외측으로 냉각재가 이동하는 것을 방지할 수 있으며, 피시술부위로 냉각재가 집중 분사되도록 유도함으로써 냉각 치료의 효율 및 정확성을 높여 안전성을 향상시킬 수 있다.By forming the boundary for the treatment site by the boundary
도 5d는 본 발명의 바람직한 실시예에 따라 비접촉 방식의 경계열공급부의 구성을 나타낸 도면이다.Figure 5d is a view showing the configuration of the boundary heat supply of the non-contact type in accordance with a preferred embodiment of the present invention.
본 발명에 따른 비접촉 방식에 따른 경계열공급부(63)는 기체로 이루어진 분사재를 경계영역에 분사하여, 냉각재의 확산을 방지함과 동시에 시술부위의 냉각효과도 시술부부위의 경계 외부로 확산되는 것을 방지할 수 있다.The boundary
도 5d를 참조하면, 상기 경계열공급부(63)는 상기 목표영역의 경계에 유체를 분사하는 제2 분사부(62)를 더 포함하며, 상기 제2 분사부(62)를 통해 흐르는 유체를 통해 상기 목표영역 경계에 열을 공급할 수 있다. 여기서, 상기 제2 분사부(62)는 상기 분사재와의 효율적인 열전달을 위해 복수의 방열핀이 형성될 수 있다.Referring to FIG. 5D, the boundary
여기서, 상기 제1 분사부(61)는 냉각재를 분사하고, 제2 분사부(62)는 분사재를 분사한다. 상기 냉각재가 수용되는 냉각재 탱크로부터 냉각재를 전달받아, 국소부위의 시술부위에 냉각재를 분사함으로써 피부를 냉각할 수 있는데, 이때 냉각재는 이산화탄소(CO₂)인 것이 바람직하나 이에 한정하는 것은 아니며, 피부의 시술목적에 따라 다른 냉각재로 적용가능하며, 상기 냉각재 탱크는 냉각재를 액화가스의 형태로 저장하는 것이 바람직하다.Here, the
일 실시예에 의할 때, 상기 분사재는 냉각재와 동일할 수도 있고, 다른 기체의 냉각재를 사용할 수 있으며, 동일한 기체의 냉각재를 사용하더라도 하나의 저장탱크로 저장하거나, 각각 별도의 저장탱크에 저장할 수도 있다.According to one embodiment, the spray material may be the same as the coolant, may use a coolant of a different gas, even if the coolant of the same gas may be stored in one storage tank, or may be stored in a separate storage tank respectively. have.
본 발명의 의할 때, 상기 제2 분사부(62)는 원의 원주 형상으로 형성되어 분사재를 분사되며, 상기 제2 분사부(62)의 외측부는 케이스를 형성하고, 상기 제2 분사부(62)의 내측부는 차등경계열전달부(65)와 열적 결합될 수 있다. According to the present invention, the
즉, 상기 차등경계열전달부(65)의 발열면은 상기 내주부의 일면과 열적결합을 하고, 상기 차등경계열전달부(65)의 냉각면은 상기 제1분사부(61)의 일면과 열적결합을 할 수 있다. 이러한 구성을 통하여, 상기 제2 분사부(62)를 이동하는 분사재는 상기 내측부와의 열적 접촉을 통하여 분사중에도 열을 공급받은 효과가 발생할 수 있다That is, the heat generating surface of the differential boundary
일 실시예에 의할 때, 이러한 경계열 냉각부를 통하여, 시술 부위의 냉각온도를 -40℃ 이상 10℃ 이하의 온도범위를 제어하면서, 시술부위 이외의 영역으로 냉각에너지가 확산되는 것을 방지할 수 있다.According to one embodiment, through the boundary heat cooling unit, while controlling the cooling temperature of the treatment site temperature range of -40 ℃ to 10 ℃, it is possible to prevent the diffusion of cooling energy to the area other than the treatment site. have.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
10: 저장부
20: 전달부
30: 냉각재압력유지부
31: 냉각재 리저버
32: 냉각발생부
33: 방열부
34: 히트파이프
35: 솔레노이드 밸브
40: 냉각재온도압력조절부
41: 노즐부
42: 홀더부
43: 열전달매개체
44: 발열부
46: 단열부재
47: 접합고정면
50: 냉각재 회전부
51: 냉각재유입부
52: 냉각재회전부
53: 사이클론생성부
54: 밀폐부재
55: 열전소자
56: 사선방향유로
60: 경계열공급부
61: 분사부(제1 분사부)
62: 제2 분사부
63: 경계열공급부
64: 하우징
65: 차등경계열전달부
70: 제어부
100: 냉각장치
110: 입력부
120: 처리부
130: 출력부 10: storage unit 20: transfer unit
30: coolant pressure holding unit 31: coolant reservoir
32: cooling unit 33: heat dissipation unit
34: heat pipe 35: solenoid valve
40: coolant temperature pressure control part 41: nozzle part
42: holder portion 43: heat transfer medium
44: heat generating portion 46: heat insulating member
47: bonding fixing surface 50: coolant rotating part
51: coolant inlet 52: coolant rotating section
53: cyclone generating portion 54: sealing member
55: thermoelectric element 56: diagonal directional flow path
60: boundary heat supply unit 61: injection unit (first injection unit)
62: second injection portion 63: boundary heat supply portion
64: housing 65: differential boundary heat transfer
70: control unit 100: cooling device
110: input unit 120: processing unit
130: output unit
Claims (12)
상기 냉각재를 분사하는 제1 분사부;
상기 목표영역의 경계에 열을 공급할 수 있는 경계열공급부(heat providing barrier); 및
상기 경계열공급부에 가해지는 열을 제어하는 제어부;를 포함하는 의료용 냉각장치.
In the medical cooling device for cooling the target area through the coolant,
A first injector for injecting the coolant;
A heat providing barrier capable of supplying heat to the boundary of the target area; And
And a control unit for controlling heat applied to the boundary heat supply unit.
상기 경계열공급부는,
열을 발생시킬 수 있는 발열부와 상기 목표영역 경계로 열을 전달하는 열매개체를 포함하는 의료용 냉각장치.
The method according to claim 1,
The boundary heat supply unit,
Medical cooling apparatus comprising a heat generating unit capable of generating heat and a fruit object to transfer heat to the boundary of the target area.
상기 발열부는,
열전소자로 구성되고 상기 열전소자의 발열면이 상기 열매개체와 열적으로 결합된 의료용 냉각장치.
The method according to claim 2,
The heating unit,
Medical cooling device comprising a thermoelectric element and the heat generating surface of the thermoelectric element is thermally coupled with the fruit.
상기 발열부는,
전기히터로 구성되고 상기 열매개체와 열적으로 결합된 의료용 냉각장치.
The method according to claim 2,
The heating unit,
Medical cooling device consisting of an electric heater and thermally coupled to the fruit entity.
상기 열매개체는,
열전도도 10W/m-K 이상의 재질로 만들어지고 목표영역과 접촉을 통해 상기 발열부의 열을 전달하는 의료용 냉각장치.
The method according to claim 2,
The fruit entity is,
A medical cooling apparatus made of a material having a thermal conductivity of 10 W / mK or more and transferring heat of the heat generating part through contact with a target area.
상기 열매개체는,
상기 목표영역의 경계에 유체를 분사하는 제2 분사부로 구성되고,
상기 제2 분사부를 통해 흐르는 유체를 통해 상기 목표영역 경계에 열을 공급하는 의료용 냉각장치.
The method according to claim 2,
The fruit entity is,
And a second injector for injecting a fluid to the boundary of the target area,
Medical cooling device for supplying heat to the target area boundary through the fluid flowing through the second injection.
상기 제2 분사부는,
상기 냉각재와 효율적인 열전달을 위해 복수의 핀(fin)을 형성한 의료용 냉각장치.
The method according to claim 6,
The second injection unit,
Medical cooling apparatus formed with a plurality of fins for efficient heat transfer with the coolant.
상기 발열부와 상기 열매개체가 일체로 구성되어 제2 분사부를 이루는 의료용 냉각장치.
The method according to claim 6,
Medical cooling apparatus comprising the heat generating portion and the fruit object integrally to form a second injection portion.
상기 열전소자의 냉각면이 상기 제1 분사부와 열적으로 결합하여 상기 목표영역의 경계부를 차등적으로 냉각할 수 있는 차등경계열전달부를 포함한 의료용 냉각장치.
The method according to claim 8,
And a differential boundary heat transfer part capable of differentially cooling the boundary of the target area by thermally coupling the cooling surface of the thermoelectric element with the first injection part.
상기 차등경계열전달부의 냉각온도가 -40℃ 이상 10℃ 이하의 온도범위를 가지는 의료용 냉각장치.
The method according to claim 8,
Medical cooling apparatus having a temperature range of -40 ℃ to 10 ℃ cooling temperature of the differential boundary heat transfer unit.
상기 경계열공급부는,
상기 목표영역 경계의 온도를 측정하기 위한 온도센서부를 포함하는 의료용 냉각장치.
The method according to claim 1,
The boundary heat supply unit,
Medical cooling apparatus including a temperature sensor for measuring the temperature of the target area boundary.
상기 제어부는,
미리 설정된 목표영역 온도조건과 상기 온도센서부에서 측정된 온도를 바탕으로 경계열공급부에 가해지는 열을 제어할 수 있는 의료용 냉각장치.The method according to claim 1,
The control unit,
And a medical cooling device capable of controlling heat applied to the boundary heat supply unit based on a predetermined target region temperature condition and the temperature measured by the temperature sensor unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180049109A KR102161877B1 (en) | 2018-04-27 | 2018-04-27 | Medical cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180049109A KR102161877B1 (en) | 2018-04-27 | 2018-04-27 | Medical cooling device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190124970A true KR20190124970A (en) | 2019-11-06 |
KR102161877B1 KR102161877B1 (en) | 2020-10-05 |
Family
ID=68541919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180049109A KR102161877B1 (en) | 2018-04-27 | 2018-04-27 | Medical cooling device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102161877B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100786539B1 (en) * | 2007-06-27 | 2007-12-21 | 주식회사 루트로닉 | Cooling Temperature Control Skin Cooling Handpiece |
KR100851274B1 (en) * | 2007-03-08 | 2008-08-08 | 주식회사 엘바이오 | Probes for Local Skin Anesthesia |
JP2008545462A (en) * | 2005-05-20 | 2008-12-18 | ミオサイエンス インコーポレーティッド | Subcutaneous cryogenic remodeling |
US20110137268A1 (en) * | 2009-12-04 | 2011-06-09 | Mt Industries, Inc. | Hand held skin treatment spray system with proportional air and liquid control |
-
2018
- 2018-04-27 KR KR1020180049109A patent/KR102161877B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008545462A (en) * | 2005-05-20 | 2008-12-18 | ミオサイエンス インコーポレーティッド | Subcutaneous cryogenic remodeling |
KR100851274B1 (en) * | 2007-03-08 | 2008-08-08 | 주식회사 엘바이오 | Probes for Local Skin Anesthesia |
KR100786539B1 (en) * | 2007-06-27 | 2007-12-21 | 주식회사 루트로닉 | Cooling Temperature Control Skin Cooling Handpiece |
US20110137268A1 (en) * | 2009-12-04 | 2011-06-09 | Mt Industries, Inc. | Hand held skin treatment spray system with proportional air and liquid control |
Also Published As
Publication number | Publication date |
---|---|
KR102161877B1 (en) | 2020-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20190124971A (en) | Medical cooling method and medical cooling device | |
CN111918625B (en) | Cooling device and cooling method | |
KR102533817B1 (en) | Medical cooling device | |
KR102735829B1 (en) | Cooling device and cooling method | |
KR20190124969A (en) | Medical cooling device | |
US6226996B1 (en) | Device for controlled cooling of a surface | |
EP2057952B1 (en) | Cooling system for a catheter | |
JP7443489B2 (en) | Thermal management devices and systems | |
CN116077793A (en) | Local cryogenic anesthetic device, control method for local cryogenic anesthetic device, and cooling temperature regulator for local cryogenic anesthetic device | |
KR102289913B1 (en) | Medical cooling device | |
KR20190124973A (en) | Medical cooling device | |
KR102226322B1 (en) | Medical cooling device | |
KR20190124970A (en) | Medical cooling device | |
KR102668974B1 (en) | Cryoanesthesia device, method for controlling cryoanesthesia device and temperature controller of coolant in cryoanesthesia device | |
KR102168702B1 (en) | Medical cooling device | |
KR20190124974A (en) | Medical cooling device | |
KR102506676B1 (en) | Cryoanesthesia device, method for controlling cryoanesthesia device and temperature controller of coolant in cryoanesthesia device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20180427 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20191127 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20200510 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20191127 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
PN2301 | Change of applicant |
Patent event date: 20200605 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
AMND | Amendment | ||
PX0901 | Re-examination |
Patent event code: PX09011S01I Patent event date: 20200510 Comment text: Decision to Refuse Application Patent event code: PX09012R01I Patent event date: 20200123 Comment text: Amendment to Specification, etc. |
|
PX0701 | Decision of registration after re-examination |
Patent event date: 20200624 Comment text: Decision to Grant Registration Patent event code: PX07013S01D Patent event date: 20200609 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20200510 Comment text: Decision to Refuse Application Patent event code: PX07011S01I Patent event date: 20200123 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I |
|
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20200924 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20200924 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20230802 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20240913 Start annual number: 5 End annual number: 5 |