KR20190118254A - A method for manufacturing a hydrogel drug contact lens containing a drug (lidocaine, vitamin E) manufactured by a phase separation method - Google Patents

A method for manufacturing a hydrogel drug contact lens containing a drug (lidocaine, vitamin E) manufactured by a phase separation method Download PDF

Info

Publication number
KR20190118254A
KR20190118254A KR1020180041381A KR20180041381A KR20190118254A KR 20190118254 A KR20190118254 A KR 20190118254A KR 1020180041381 A KR1020180041381 A KR 1020180041381A KR 20180041381 A KR20180041381 A KR 20180041381A KR 20190118254 A KR20190118254 A KR 20190118254A
Authority
KR
South Korea
Prior art keywords
drug
vitamin
lidocaine
phase separation
contact lens
Prior art date
Application number
KR1020180041381A
Other languages
Korean (ko)
Inventor
김근희
Original Assignee
김근희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김근희 filed Critical 김근희
Priority to KR1020180041381A priority Critical patent/KR20190118254A/en
Publication of KR20190118254A publication Critical patent/KR20190118254A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • A61K9/0051Ocular inserts, ocular implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • A61K31/355Tocopherols, e.g. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/58Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin

Abstract

The present invention relates to a method for manufacturing a drug delivery contact lens polymerized with a drug (lidocaine, vitamin E) manufactured by HEMA and a phase separation method. The method for manufacturing the drug delivery contact lens polymerized with the drug (vitamin E) manufactured by HEMA and the phase separation method has excellent biosynthesis and biodegradability, thereby being applied to a drug delivery media to manufacture contact lenses for preventing and treating eye diseases by varying a polymerization ratio of drug particles manufactured by the phase separation method. Therefore, there is a remarkable effect that a drug delivery effect can be increased by applying different contact lenses to each person.

Description

상분리 방법으로 제조된 약물(리도케인, 비타민 E)을 함유한 하이드로젤 약물 콘택트렌즈의 제조방법{A method for manufacturing a hydrogel drug contact lens containing a drug (lidocaine, vitamin E) manufactured by a phase separation method}A method for manufacturing a hydrogel drug contact lens containing a drug (lidocaine, vitamin E) manufactured by a phase separation method}

본 발명은 HEMA에 약물(리도케인, 비타민 E)을 중합한 콘택트렌즈의 제조방법에 관한 것으로, 더욱 상세하게는 HEMA와 상분리된 약물(리도케인, 비타민 E)을 중합하여 약물 콘택트렌즈를 제조하는 것에 관한 것이다.The present invention relates to a method for producing a contact lens polymerized with a drug (lidocaine, vitamin E) in HEMA, and more particularly to a method for manufacturing a drug contact lens by polymerizing a drug (lidocaine, vitamin E) phase-separated from HEMA will be.

눈에 사용하는 연고와 안약의 형태는 편리함과 비용적인 면에서 장점이 있어 여러 종류가 시판되어 사용되고 있다. 최근에는 새로운 에멀전 타입의 안약으로 지질막의 두께, 증상개선 그리고 눈물막이 형성되는 시간 등 다양한 연구가 이루어지고 있다. 하지만, 안약의 형태가 90% 이상으로 사용률이 높음에도 5% 이하만이 투약되는 낮은 흡수 능력으로 인해 최적의 치료효과를 위해서는 반복적인 투약이 필요하다는 결과가 보고되고 있다. 또한 만성적 안구질환의 치료를 위해서 약제의 효능이 지속적이며 적절한 장소에 타겟되어 방출속도가 제어되는 생체이용적합성을 높여야 하는 과제들이 대두되었다. 스마트 하이드로젤로 불려지는 감응성 하이드로젤은 빛, 화학적, 압력, 온도, pH 그리고 전기적 민감성 등에 따라 약물을 저장하고 방출하는 특성이 변하며 약물이 요청되는 특정지점에 적절한 전달이 가능하다. Hydroxyethyl methacrylate 재질의 하이드로젤은 높은 수소이온 농도에서 하이드록시 그룹과의 상호작용에 의해 팽창한다.      Ointments and eye drops used in the eye have advantages in terms of convenience and cost, and various types are commercially available. Recently, a new emulsion-type eye drops have been studied, such as lipid film thickness, symptom improvement, and tear film formation time. However, it is reported that repeated dosages are required for the optimal therapeutic effect due to the low absorption capacity of only 5% or less, even though the use of the eye drops is higher than 90%. In addition, for the treatment of chronic eye diseases, the problem of increasing the bioavailability in which the efficacy of the drug is continuously and targeted at the appropriate place and the release rate is controlled has emerged. Sensitive hydrogels, called smart hydrogels, store and release drugs depending on light, chemicals, pressure, temperature, pH and electrical sensitivity, and can be delivered to specific locations where drugs are requested. Hydrogels of hydroxyethyl methacrylate are expanded by interaction with hydroxy groups at high concentrations of hydrogen ions.

외부 pH에 반응하는 하이드로젤 네트워크 결합구조의 형태 변화로 인하여 젤 내 약물 입자는 방출, 안정성, 친화성 그리고 확산속도에 영향을 받는다. 고정 전하가 많을수록, 이온강도는 낮아질수록 높은 pH 농도에서 팽윤성이 증가된다. 생체적합성 하이드로젤 성분 고분자가 적용되는 마이크로 액츄에이터, 마이크로 밸브, 화학적 센서, 마이크로 유체유동, 여과분리 그리고 생체조직 등의 다양한 장치에서 성능의 향상을 기대할 수 있다. 50년 전 편리성과 함께 오랜 시간 착용이 가능하고 지속적인 약물 방출제어의 가능성을 전 세계 인구의 1억 4천명 이상이 사용하는 콘택트렌즈의 생체재료에서 찾았고, 약물과 결합된 형태로 히알루론산 약물이 침지된 콘택트렌즈가 보고되었다. 약물 전달 콘택트렌즈는 단기부터 장기적 관점에서 연장 사용이 가능한 편리성과 기존 투약방식을 대체할 수 있는 상업적으로 우수한 대안으로 약물렌즈를 이용한 치료와 예방에 관심이 증가하였다. 하지만 기존의 안약에 비해 생체이용률이 증가하였으나 짧은 약물 방출시간과 약물 로딩 시간이 길어지는 등의 단점으로 여전히 안약이 높은 시장 점유율을 차지하고 있다.Due to the morphological change of the hydrogel network binding structure in response to external pH, drug particles in the gel are affected by release, stability, affinity and diffusion rate. The more fixed charge, the lower the ionic strength, the higher the swelling ability at high pH concentrations. Improved performance can be expected in various devices such as micro actuators, micro valves, chemical sensors, microfluidic flow, filtration separation, and biological tissues to which biocompatible hydrogel component polymers are applied. 50 years ago, with the convenience, long-wearing and the possibility of continuous drug release was found in the biomaterials of contact lenses used by more than 140 million people worldwide, and hyaluronic acid immersed in combination with drugs Contact lenses have been reported. Drug delivery contact lenses have increased interest in the treatment and prevention of drug lenses as a convenience that can be extended from a short term to a long term, and a commercially superior alternative to the existing dosage forms. However, the bioavailability increased compared to the conventional eye drops, but due to the shortcomings such as short drug release time and long drug loading time, eye drops still occupy a high market share.

약을 적게 사용하여 효율성을 높이고 치료효과는 증대하여 환자가 시력 보정과 동시에 편리하고 안전하게 사용이 가능한 약물과 콘택트렌즈의 치료시스템이 질환을 제어할 수 있는 대안으로 개발되고 있다. 콘택트렌즈 재질의 매트릭스와 친수성, 소수성 등의 약물 본성에 의해 약물 입자는 안구의 표면과 조직에 지속적으로 전달이 가능하여 치료의 극대화와 환자의 적응성을 높여주는 시스템으로서 장점이 있다. 하이드로젤 콘택트렌즈는 각막 상피세포에 산소의 전달, 누액층의 눈물 증발과 억제 그리고 낮은 비용으로 생산이 가능한 재료로서 약물 전달을 효과적으로 제어할 수 있는 가장 중요한 고분자 중의 하나로 팽윤성과 자극 반응 등에 따라 네트워크의 구조적 변화가 발생하여 다양한 방식으로 약물 제어가 가능하다.The use of fewer drugs improves efficiency and improves the therapeutic effect, and the treatment system of drugs and contact lenses that can be used conveniently and safely at the same time as the vision correction is being developed as an alternative to control the disease. Because of the nature of the contact lens matrix and drug nature such as hydrophilicity and hydrophobicity, the drug particles can be continuously delivered to the surface and tissue of the eye, which is advantageous as a system for maximizing treatment and improving patient adaptability. Hydrogel contact lens is a material that can deliver oxygen to corneal epithelial cells, tear evaporation and suppression of tear layer and low cost production and is one of the most important polymers that can effectively control drug delivery. Structural changes occur that allow drug control in a variety of ways.

따라서, 약물 방출 제어 하이드로젤 네트워크 디자인은 폴리머 화합물과 가교밀도가 성능에 영향을 주며, 방출되는 약물 분자 조성물과 특정 사이즈의 결합 매칭이 필요하며 하이드로젤 자체 특성이 용질의 확산과 흡착 또는 투과를 결정한다.Therefore, the drug release control hydrogel network design has the effect of polymer compound and crosslinking density on performance, and requires matching of the drug molecule composition to be released with specific size, and the hydrogel itself determines the diffusion and adsorption or permeation of the solute. do.

이러한 인체 내의 다양한 장소 중 안구에 적합한 치료용 콘택트렌즈는 약물과 중합된 하이드로젤의 특성에 따라 약물의 방출 패턴, 방출량 그리고 방출메커니즘에 어떠한 관계가 있는지 이번 발명의 중점을 두었다. Among the various places in the human body, the therapeutic contact lens suitable for the eye focuses on the present invention how the relationship between the drug release pattern, the release amount and the release mechanism according to the properties of the drug and the polymerized hydrogel.

기존 콘택트렌즈를 이용한 약물 전달 렌즈는 폐쇄각 녹내장, 전염병 그리고 염증 등의 치료효과가 콘택트렌즈와 결합된 연구가 시행되었고, 약물 저장과 방출 효율, 렌즈의 두께, 함수율 그리고 약물 방출 속도 등으로 관심이 이어졌다.  Drug delivery lenses using conventional contact lenses have been studied in which the therapeutic effects of closed-angle glaucoma, infectious diseases, and inflammation are combined with contact lenses, and are interested in drug storage and release efficiency, lens thickness, moisture content, and drug release rate. Followed.

최근에는 약물이 불안정 결합을 통하여 고정되는 방법, 콜로이달 분산 시스템 활용, 화학적으로 변형된 렌즈 제작방법, 약물 분자를 렌즈에 각인하는 방법 등으로 연구 범위가 확대되고 있다. Recently, the scope of research has been expanded to a method in which a drug is fixed through an unstable bond, a colloidal dispersion system, a chemically modified lens manufacturing method, and a method of imprinting drug molecules on a lens.

HPMC 약물 분자를 상업용 실리콘 하이드로젤 렌즈에 각인한 발명은 방출속도는 느리지만 방출시간이 최대 60일까지 연장되었고, 콘택트렌즈에 약물을 코팅하여 약물을 30일까지 지속가능성을 증가시킨 연구 결과도 보고되었다. The invention of HPMC drug molecules imprinted on commercial silicone hydrogel lenses reported a slow release but prolonged release time of up to 60 days, and a study that increased the sustainability of the drug by 30 days by coating the drug on contact lenses. It became.

한편, 기존의 약물전달 콘택트렌즈의 문제점을 해결하기 위해서 종래기술로서 등록특허공보 제10-1427392호에 안구에 착용할 수 있도록 구면을 갖는 렌즈본체와; 안구에 접촉하는 상기 렌즈본체의 내측면에 외측을 향해 인입된 인입홈 형태로 형성된 수용부와; 상기 렌즈본체의 착용시 안구에 약재성분을 전달할 수 있도록 상기 수용부에 수용되며 연고 또는 겔 형태의 약물로 형성된 약재부;를 구비하는 것을 특징으로 하는 치료용 콘택트렌즈가 기재되어 있다. On the other hand, the lens body having a spherical surface to be worn on the eye in the prior art Patent No. 10-1427392 as a prior art to solve the problems of the conventional drug delivery contact lens; An accommodating part formed in an inlet groove shape toward the outside of the lens body in contact with the eye; A therapeutic contact lens is described, which includes; a medicine part accommodated in the accommodating part and formed of an ointment or a gel-type drug so as to deliver a medicine component to the eye when the lens body is worn.

또한, 등록특허공보 등록번호 제10-1572973호에 기재된 바에 의하면, 모노머로서 i) 2-하이드록시에틸메타크릴레이트(HEMA), ⅱ) 메틸메타크릴레이트(MMA), 및 ⅲ) N-비닐-2-피롤리돈(NVP); 가교제로서 제1항의 화학식 1의 이작용기 가교제 화합물; 개시제로서 아조비스이소부티로니트릴(AIBN) 포함하는 원료를 교반하는 제1단계; 교반된 원료를 소프트 콘택트렌즈 성형용 몰드에 주입하고, 원료가 주입된 몰드를 오븐에 넣은 후, 오븐 온도를 35~50℃로 하여 20~40분간 유지하고, 이어서 100~140℃로 하여 80~100분간 유지함으로써 중합반응시켜 하이드로젤 소프트 콘택트렌즈를 제조하는 제2단계; 및 상기 하이드로젤 소프트 콘택트렌즈에 약물을 담지시키는 제3단계;를 포함하는 약물 방출용 하이드로젤 소프트 콘택트렌즈의 제조 방법이 등록공개되어 있다. Furthermore, as described in Korean Patent Publication No. 10-1572973, i) 2-hydroxyethyl methacrylate (HEMA), ii) methyl methacrylate (MMA), and iii) N-vinyl- as monomers. 2-pyrrolidone (NVP); A bifunctional crosslinker compound of formula (1) as claimed in claim 1; A first step of stirring the raw material containing azobisisobutyronitrile (AIBN) as an initiator; The stirred raw material is poured into a mold for soft contact lens molding, the mold into which the raw material is injected is placed in an oven, the oven temperature is maintained at 35 to 50 ° C. for 20 to 40 minutes, and then the temperature is set to 100 to 140 ° C., 80 to A second step of preparing a hydrogel soft contact lens by polymerization by maintaining for 100 minutes; And a third step of supporting a drug in the hydrogel soft contact lens. The method of manufacturing a hydrogel soft contact lens for drug release is disclosed.

그러나 상기와 같은 종래의 약물전달 콘택트렌즈는 짧은 약물 방출시간으로 만성적 안구질환의 치료에 적합하지 못하며, 약물을 오랫동안 담지 또는 침지하여야 하므로 약물 로딩 시간이 길어지는 등의 문제점이 있었다.However, the conventional drug delivery contact lenses as described above are not suitable for the treatment of chronic eye disease with a short drug release time, and the drug loading time is long because the drug must be immersed or immersed for a long time.

상기와 같은 문제점을 해결하기 위하여, 본 발명은 상분리 방법으로 제작된 약물(리도케인, 비타민 E)이 HEMA와 중합된 콘택트렌즈의 제조방법을 통하여 약물전달체를 제공한다.      In order to solve the above problems, the present invention provides a drug carrier through a method for producing a contact lens polymerized with HEMA (lidocaine, vitamin E) produced by the phase separation method.

본 발명은 안구수술시 사용되는 리도케인과 녹내장 및 백내장의 질환 치료 및 예방에 효과가 있는 비타민 E 약물전달체를 제공한다      The present invention provides a vitamin E drug carrier that is effective in treating and preventing diseases of lidocaine and glaucoma and cataracts used in eye surgery.

그리고 본 발명은 난용성과 지용성의 약물을 통하여 안구 질환에 따른 콘택트렌즈를 적용하여 약물 전달의 지속성을 크게 할 수 있는 약물 전달 콘택트렌즈의 제조방법을 제공하고자 하는 것이다.      In another aspect, the present invention is to provide a method for producing a drug delivery contact lens that can increase the duration of drug delivery by applying a contact lens according to eye diseases through poorly soluble and fat-soluble drugs.

본 발명의 실시 예들에 따른 상분리 방법으로 제조된 약물을 중합한 하이드로젤 약물전달체는, 하이드로젤 고분자 및 상기 하이드로젤 고분자에 결합되는 약물 입자를 포함하는 고분자 구조체를 포함하고, 상기 고분자 구조체에는 약물이 저장되며, 상기 고분자 구조체의 외부 용매에서 상기 약물이 방출된다. The hydrogel drug carrier polymerized with the drug prepared by the phase separation method according to the embodiments of the present invention includes a polymer structure including a hydrogel polymer and drug particles bonded to the hydrogel polymer, The drug is stored in the polymer structure, and the drug is released from an external solvent of the polymer structure.

상기 하이드로젤 고분자는 하이드록시에틸 메타크릴레이트를 포함할 수 있다. The hydrogel polymer may include hydroxyethyl methacrylate.

상기 고분자 구조체는 상기 하이드로젤 고분자 99 중량%를 포함할 수 있다. The polymer structure may include 99% by weight of the hydrogel polymer.

상기 상분리 방법으로 제조된 약물을 함유한 하이드로젤 약물전달체는 콘택트렌즈일 수 있다. The hydrogel drug carrier containing the drug prepared by the phase separation method may be a contact lens.

본 발명의 실시예들에 따른 상분리 방법으로 제조된 약물을 함유한 하이드로젤 약물전달체는, 하이드로젤 고분자 및 상기 약물(리도케인, 비타민 E)이 결합되는 고분자 구조체에 저장되고, 상기 고분자 구조체의 외부 용매 변화에 따라 상기 약물의 방출이 조절된다. The hydrogel drug carrier containing a drug prepared by the phase separation method according to the embodiments of the present invention is stored in a polymer structure to which a hydrogel polymer and the drug (lidocaine, vitamin E) are combined, and an external solvent of the polymer structure. The change is controlled by the release of the drug.

본 발명의 실시 예들에 따른 상분리 방법으로 제조된 약물을 함유한 하이드로젤 약물전달체의 제조방법은, 약물을 계면활성제와 결합시켜, 약물의 안정성을 형성하는 단계, 상기 용액에 maltodextrin 수용액에 첨가하여 교반하는 단계, 그리고 상기 혼합된 용액이 상분리가 일어나도록 80도의 고온에서 가열 반응시키는 단계를 포함한다.In the method for preparing a hydrogel drug carrier containing a drug prepared by a phase separation method according to embodiments of the present invention, combining the drug with a surfactant to form a drug stability, adding to the aqueous solution of maltodextrin and stirring And heat-reacting the mixed solution at a high temperature of 80 degrees such that phase separation occurs.

본 발명에 따른 상분리 방법으로 제조된 약물을 함유한 하이드로젤 약물전달체의 제조방법은 생체적 합성과 생분해성이 우수하여 약물 전달매체에 응용되며, 상분리 방법으로 제조된 약물의 중합비율을 다르게 하여 질환 치료 주기 변화에 맞춘 콘택트렌즈를 제조할 수 있으므로 사람마다 다른 눈의 상태에 맞는 콘택트렌즈를 적용하여 약물 전달 효과를 크게 할 수 있는 등의 현저한 효과가 있다.The method for preparing a hydrogel drug carrier containing a drug prepared by the phase separation method according to the present invention is applied to a drug delivery medium with excellent biosynthesis and biodegradability, and by varying the polymerization ratio of the drug prepared by the phase separation method. Since the contact lens can be manufactured according to the treatment cycle change, there is a remarkable effect such that the drug delivery effect can be increased by applying a contact lens suitable for different eye conditions for each person.

테이블 1은 본 발명의 비교예 및 실시 예들에 따른 약물 전달 콘택트렌즈의 함수율이다.
테이블 2는 본 발명의 비교예 및 실시 예로써 하이드로젤에 약물(리도케인, 비타민 E)을 직접 주입하였을 때와 상분리 방법으로 제조된 약물(리도케인, 비타민 E) 전달 콘택트렌즈의 확장 지수 및 확산 계수를 나타내었다.
도 1는 비교 예로써 약물(리도케인(a))과 P 124, matodextrin을 혼합하여 80도의 고온에서 30분간 가열하여 정적상태의 시간 변화에 따른 용액의 상태를 나타낸 그림이다.
도 2는 비교 예로써 약물(비타민 E(b))과 P 124, matodextrin을 혼합하여 80도의 고온에서 30분간 가열하여 정적상태의 시간 변화에 따른 용액의 상태를 나타낸 그림이다.
도 3는 본 발명의 실시예에 따른 상분리 방법으로 제조된 약물(리도케인(a))을 입도분석기를 이용하여 약물입자를 측정한 그래프이다.
도 4는 본 발명의 실시예에 따른 상분리 방법으로 제조된 약물(비타민 E(b))을 입도분석기를 이용하여 약물입자를 측정한 그래프이다.
도 5은 본 발명의 실시예에 따른 상분리 방법으로 제조된 약물(리도케인)의 안정된 상태를 확인하기 위하여 광학현미경으로 촬영한 약물 입자와 약물 전달 콘택트렌즈의 표면을 나타낸 그림이다.
도 6는 본 발명의 실시예에 따른 상분리 방법으로 제조된 약물(비타민 E)의 안정된 상태를 확인하기 위하여 광학현미경으로 촬영한 약물 입자와 약물 전달 콘택트렌즈의 표면을 나타낸 그림이다.
도 7는 본 발명의 또 다른 실시예 및 비교예에 따른 하이드로젤 약물 전달 콘택트렌즈의 PBS pH 7.4 환경에서의 약물 방출 패턴을 나타내는 그래프이다.
Table 1 shows the water content of drug delivery contact lenses according to Comparative Examples and Examples of the present invention.
Table 2 shows the expansion index and diffusion coefficient of the drug (lidocaine, vitamin E) delivery contact lens prepared by the phase separation method and when the drug (lidocaine, vitamin E) was directly injected into the hydrogel as a comparative example and the embodiment of the present invention. Indicated.
1 is a diagram showing the state of the solution according to the time change of the static state by mixing the drug (lidokane (a)) with P 124, matodextrin and heated at a high temperature of 80 degrees for 30 minutes.
Figure 2 is a comparative example of the drug (vitamin E (b)), P 124, matodextrin is mixed and heated for 30 minutes at a high temperature of 80 degrees is a diagram showing the state of the solution according to the time change of the static state.
3 is a graph measuring drug particles using a particle size analyzer of a drug (lidocaine (a)) prepared by a phase separation method according to an embodiment of the present invention.
4 is a graph measuring drug particles using a particle size analyzer of a drug (vitamin E (b)) prepared by a phase separation method according to an embodiment of the present invention.
5 is a view showing the surface of the drug particles and drug delivery contact lens photographed with an optical microscope to confirm the stable state of the drug (lidocaine) prepared by the phase separation method according to an embodiment of the present invention.
6 is a view showing the surface of the drug particles and drug delivery contact lens taken by optical microscope to confirm the stable state of the drug (vitamin E) prepared by the phase separation method according to an embodiment of the present invention.
7 is a graph showing a drug release pattern in a PBS pH 7.4 environment of a hydrogel drug delivery contact lens according to another embodiment and comparative example of the present invention.

p-HEMA 100 wt% 콘택트렌즈와 코아세르베이션 약물(Lidocaine, Vitamin E)함유 콘택트렌즈는 90 ㎛ 두께로 제작되었고, 렌즈를 PBS에 침지하여 수화시킨 결과는 아래에 나타냈다. Lidocaine 약물렌즈는 41.71±2.82%, Vitamin E 약물렌즈는 41.23±0.97%로, 약물을 함유하지 않은 p-HEMA 100 wt% 콘택트렌즈의 함수율과 비교하여 각각 10.90%, 9.62% 더 높게 나타났다. The contact lenses containing p-HEMA 100 wt% contact lens and coacervation drug (Lidocaine, Vitamin E) were manufactured to a thickness of 90 μm, and the results of the lens being immersed in PBS and hydrated are shown below. Lidocaine drug lens was 41.71 ± 2.82% and Vitamin E drug lens was 41.23 ± 0.97%, which was 10.90% and 9.62% higher than that of p-HEMA 100 wt% contact lens without drug.

함수율(%)=s-d/s*100Moisture content (%) = s-d / s * 100

여기서 s는 팽윤된 렌즈의 무게, d는 건조시킨 렌즈의 무게이다. 약물(lidocaine, Vitamin E)이 코아세르베이션 방법으로 제조되어 HEMA 고분자와 중합되었을 때, 콘택트렌즈의 함수율은 증가하였다. 이는 모노머 중합시 코아세르베이션 포집을 위해 사용된 계면활성제가 일부 포함되어 HEMA 고분자 말단의 하이드록시 그룹(-OH)과 물분자와의 결합력이 증가된 것으로 보여진다. Where s is the weight of the swollen lens and d is the weight of the dried lens. When drugs (lidocaine, Vitamin E) were prepared by coacervation and polymerized with HEMA polymers, the water content of contact lenses increased. This is because some of the surfactants used for the coacervation capture during the monomer polymerization is shown to increase the binding strength of the hydroxy group (-OH) and water molecules at the terminal of the HEMA polymer.

계면활성제인 P 124과 maltodextrin 수용액과 함께 약물(lidocaine, Vitamin E)을 혼합한 용액을 80 ℃ 온도에서 30분 동안 교반한 후 용액의 상 분리 현상을 시간에 따라 나타낸 것이다.(도 1, 도2) 약물과 maltodextrin을 포함하는 수용액을 교반한 후, 정적 상태의 환경에서 일정 시간이 경과 후, P 124가 다량으로 존재하는 코아세르베이트 상과 미량으로 존재하는 희석 상의 상 분리가 나타났다. 교반 직후 maltodextrin과 P 124가 용해되어 투명한 액체가 형성되었고, 약물의 용해성에 따라 lidocaine 시험관은 약간 희미하게 나타났고, Vitamin E 시험관에서는 노란 빛을 나타냈다. 정적 조건 하에서 3시간까지는 불투명한 양상으로 나타나며, 8시간 이후 반투명 한 하부 층과 불투명 한 상부 층을 포함하여 3단계의 층으로 형성되었다. 코아세르베이션 약물 층은 각각 전체 부피의 약 43%, 약 36%이며, 약물의 침전 현상은 관찰되지 않았다.After stirring a solution of a drug (lidocaine, Vitamin E) with P 124, which is a surfactant, and an aqueous solution of maltodextrin, at 80 ° C. for 30 minutes, phase separation of the solution is shown with time. (FIGS. 1 and 2). ) After stirring the aqueous solution containing the drug and maltodextrin, after a certain period of time in a static environment, a phase separation of the coacervate phase in which P 124 is present in a large amount and the dilution phase in which a small amount is present. Immediately after stirring, maltodextrin and P 124 were dissolved to form a transparent liquid. The lidocaine test tube was slightly faint due to the solubility of the drug, and yellow light was observed in the Vitamin E test tube. Up to 3 hours under static conditions appeared opaque, and after 8 hours it was formed into three layers including the translucent lower layer and the opaque upper layer. The coacervation drug layer was about 43% and about 36% of the total volume, respectively, and no precipitation of the drug was observed.

도 3과 도4는 코아세르베이션(Lidocaine, Vitamin E) 약물 입자의 평균 크기 분포를 나타낸 것이다. 코아세르베이션lidocaine 입자는 19.77±3.48 ㎛로 나타났고, Vitamin E 코아세르베이션 입자 크기는 14.50±3.51 ㎛로 측정되었다. 코아세르베이션 lidocaine 입자의 크기가 더 크게 나타났는데 이는, 리도케인과 Vitamin E 각각의 분자 크기의 차 (0.25~0.85 ㎛, 0.20~1.46 ㎛)에 의한 것으로 사료된다.3 and 4 show the mean size distribution of coacervation (Lidocaine, Vitamin E) drug particles. The coacervation lidocaine particles were found to be 19.77 ± 3.48 μm and the vitamin E coacervation particle size was 14.50 ± 3.51 μm. The size of coacervation lidocaine particles was larger due to the difference in the molecular size of Lidocaine and Vitamin E (0.25 ~ 0.85 ㎛, 0.20 ~ 1.46 ㎛).

제조된 약물 콘택트렌즈에 함유된 코아세르베이션 약물의 온도에 대한 안정성을 관찰하였다.(도 5, 도6) 중합 전일정한 온도에서 두 종류의 코아세르베이션 약물 입자 모두 구형의 안정적인 마이크로캡슐 형태로서 자유롭게 유동하는 모습을 확인할 수 있었다. 코아세르베이션 약물은 상온과 고온에서 모두 안정적으로 구형의 형태로 변형이 생기지 않았고, lidocaine과 비교해 Vitamin E의 입자들이 상대적으로 작고 넓게 분포되어 있었다. 코아세르베이션 약물 입자와 HEMA 고분자와의 중합 후, 건조된 렌즈의 표면을 분석한 결과 구형의 입자가 유지되었다.The stability of the coacervation drug contained in the prepared drug contact lens was observed. (FIG. 5, FIG. 6) Both kinds of coacervation drug particles at a constant temperature before polymerization were freely formed as spherical stable microcapsules. I could see the flow. Coacervation drug was stable at both room temperature and high temperature, and did not transform into spherical shape. Compared with lidocaine, vitamin E particles were relatively small and widely distributed. After polymerization of the coacervation drug particles with the HEMA polymer, the surface of the dried lens was analyzed and spherical particles were retained.

콘택트렌즈는 약물(lidocaine, Vitamin E)을 HEMA 고분자와 혼합하거나 코아세르베이션된 약물을 혼합하여 제조하었다. 각각 혼합된 고분자용액을 광 중합한 후, PBS용액(pH 7.4)에 침지하여 나타난 약물 방출량을 나타내었다.(Figure 5) Lidocaine과 Vitamin E 약물이 포함된 p-HEMA 콘택트렌즈는 각각 2일, 5일 동안 약물이 방출되었다. 친유성인 Vitamin E 약물을 포함한 렌즈가 난용성 Lidocaine 렌즈와 비교하여 누적 방출량은 25.35% 더 많았고, 방출시간은 3일 동안 더 지속되었다. Vitamin E 렌즈의 확산계수는 Lidocaine 렌즈 계수보다 1.38배 더 크게 나타났다.(Table 2) 반면, 전체 방출량을 기준으로 하루 동안 약물의 방출 비율은 각각 약 85%, 67%로, 두 약물 모델 모두 초기에 각 약물의 방출이 집중되었다. 약물을 용액상태에서 중합한 약물 모형은 난용성 약물의 효과적인 포집이 어렵고, 안정적인 서방형 약물 시스템으로 사용되기에는 보완이 필요해 보인다. Contact lenses were prepared by mixing drugs (lidocaine, Vitamin E) with HEMA polymers or with coacervated drugs. After the photopolymerization of the mixed polymer solution, the amount of drug released was immersed in PBS solution (pH 7.4). (Figure 5) The p-HEMA contact lenses containing Lidocaine and Vitamin E were 2 days and 5 days, respectively. The drug was released for days. The lens containing the lipophilic Vitamin E drug had 25.35% more cumulative release compared to poorly soluble Lidocaine lens, and the release time lasted for 3 more days. The diffusion coefficient of the Vitamin E lens was 1.38 times larger than that of the Lidocaine lens (Table 2). On the other hand, the rate of drug release during the day was approximately 85% and 67%, respectively, based on the total release rate. The release of each drug was concentrated. Drug model of polymerized drug in solution state is difficult to effectively collect poorly soluble drugs and needs to be supplemented to be used as stable sustained release drug system.

코아세르베이션을 이용한 약물 전달 렌즈는, lidocaine은 19일, Vitamin E는 총 17일 동안 방출되었다. 용액상태의 약물과 중합한 렌즈의 누적 방출량과 비교하여, 코아세르베이션 약물 렌즈(lidocaine, Vitamin E)의 누적 방출량은 각각 10%, 43% 증가하였고, 방출 기간도 9.5배, 3.4배 증가하었다. 약물 확산 계수(D)의 분석 결과(Table 2) Lidocaine은 하루 평균 0.04 mg, 시간당 약 1.67 ㎍방출되었고, Vitamin E는 하루에 0.07 mg, 시간당 2.92 ㎍ 방출되었다. 10일 동안의 lidocaine과 6일 동안의 Vitamin E의 누적 방출량은 전체 약물 방출량의 50% 이하 비율로 방출되어 과다한 초기 방출 없이 안정적인 약물 전달이 가능함을 확인하였다. 코아세르베이션(상분리)으로 제조된 안정적인 약물구조와 HEMA 고분자와의 중합으로 약물이 일정속도로 방출될 수 있는 구조적 역할을 한 것으로 판단된다. The drug delivery lens using coacervation was released for 17 days with lidocaine and 17 days with Vitamin E. Compared with the cumulative release of the drug in the solution state and the polymerized lens, the cumulative release of the coacervation drug lens (lidocaine, Vitamin E) increased by 10% and 43%, respectively, and the release period also increased by 9.5 times and 3.4 times. . Analysis of drug diffusion coefficient (D) (Table 2) Lidocaine was released at an average of 0.04 mg per day, about 1.67 μg per hour, and Vitamin E was released at 0.07 mg per day, 2.92 μg per hour. The cumulative release of lidocaine for 10 days and vitamin E for 6 days was released at a rate of 50% or less of the total drug release, and it was confirmed that stable drug delivery was possible without excessive initial release. The stable drug structure prepared by coacervation (phase separation) and the polymerization of HEMA polymers seem to play a structural role in releasing the drug at a constant rate.

p-HEMA와 약물(lidocaine, Vitamin E)을 용액상태에서 중합한 콘택트렌즈는 Korsmeyer-Peppas에 따라 Fick의 확산에 의한 약물이 방출됨을 보였다.(Table 2) 반면, 코아세르베이션된 약물(lidocaine, Vitamin E) 콘택트렌즈는 확산 지수(n)값이 0.5와 1.0 사이로, 약물 방출 매커니즘은 렌즈에 저장된 약물 입자의 확산과 렌즈 재질 자체의 팽창에 의한 변칙적인 확산 현상으로 나타났으며 이로 인해 방출 기간이 연장되고 방출량이 증가한 것으로 사료된다.Contact lenses polymerized with p-HEMA and drug (lidocaine, Vitamin E) in solution showed that the drug was released by diffusion of Fick according to Korsmeyer-Peppas (Table 2). Vitamin E) The contact index has a diffusion index (n) between 0.5 and 1.0, and the drug release mechanism is anomalous diffusion due to the diffusion of drug particles stored in the lens and the expansion of the lens material itself. Prolonged and increased release.

Claims (1)

HEMA와 상분리 방법으로 제작된 약물(리도케인, 비타민 E)을 중합한 약물 전달 콘택트렌즈의 제조시 외부에 약물이 전달되는 지속기간을 증가시키는 약물 콘택트렌즈의 제조방법
Method for manufacturing drug contact lenses that increases the duration of drug delivery to the outside of a drug delivery contact lens prepared by polymerizing drugs (lidocaine, vitamin E) prepared by HEMA and phase separation method
KR1020180041381A 2018-04-10 2018-04-10 A method for manufacturing a hydrogel drug contact lens containing a drug (lidocaine, vitamin E) manufactured by a phase separation method KR20190118254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180041381A KR20190118254A (en) 2018-04-10 2018-04-10 A method for manufacturing a hydrogel drug contact lens containing a drug (lidocaine, vitamin E) manufactured by a phase separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180041381A KR20190118254A (en) 2018-04-10 2018-04-10 A method for manufacturing a hydrogel drug contact lens containing a drug (lidocaine, vitamin E) manufactured by a phase separation method

Publications (1)

Publication Number Publication Date
KR20190118254A true KR20190118254A (en) 2019-10-18

Family

ID=68462709

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180041381A KR20190118254A (en) 2018-04-10 2018-04-10 A method for manufacturing a hydrogel drug contact lens containing a drug (lidocaine, vitamin E) manufactured by a phase separation method

Country Status (1)

Country Link
KR (1) KR20190118254A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220096403A (en) 2020-12-31 2022-07-07 (주)네오비젼 Contact lens with sustained drug release ability and manufacturing method thereof
KR20230080701A (en) 2021-11-30 2023-06-07 (주)네오비젼 Contact lens for drug delivery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220096403A (en) 2020-12-31 2022-07-07 (주)네오비젼 Contact lens with sustained drug release ability and manufacturing method thereof
KR20230080701A (en) 2021-11-30 2023-06-07 (주)네오비젼 Contact lens for drug delivery
KR20230081995A (en) 2021-11-30 2023-06-08 (주)네오비젼 Manufacturing method contact lens for drug delivery

Similar Documents

Publication Publication Date Title
García-Millán et al. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications
Alvarez-Lorenzo et al. Soft contact lenses capable of sustained delivery of timolol
Ravaine et al. Chemically controlled closed-loop insulin delivery
Ullah et al. Classification, processing and application of hydrogels: A review
Amin et al. Hydrogels as potential drug delivery systems
Ribeiro et al. Bioinspired imprinted PHEMA-hydrogels for ocular delivery of carbonic anhydrase inhibitor drugs
RU2395276C2 (en) Method of obtaining form-preserving aggregates of gel particles and their application
US3931123A (en) Hydrophilic nitrite copolymers
EP2543358B1 (en) Drug carrying contact lens
Anirudhan et al. Extended wear therapeutic contact lens fabricated from timolol imprinted carboxymethyl chitosan-g-hydroxy ethyl methacrylate-g-poly acrylamide as a onetime medication for glaucoma
US10617559B2 (en) High-precision drug delivery by dual-domain ocular device
JP2008529606A (en) Contact drug delivery system
NO167360B (en) CIRCUIT POROUS POLYMERS FOR REGULATED PHARMACEUTICAL DELIVERY.
CN103800949B (en) Corneal contact lens drug carrier with bionic characteristics, and preparation method thereof
JP4783285B2 (en) Therapeutic thermosensitive polymers and methods of preparation
KR20190118254A (en) A method for manufacturing a hydrogel drug contact lens containing a drug (lidocaine, vitamin E) manufactured by a phase separation method
Zhao et al. The relationship between the hydrophilicity and surface chemical composition microphase separation structure of multicomponent silicone hydrogels
JP4183623B2 (en) Method for producing a hydrogel material capable of sustained drug release with a large amount of drug uptake
Wei et al. Design of circular-ring film embedded contact lens for improved compatibility and sustained ocular drug delivery
JP2008509240A (en) Polymers and methods having continuous pores for drug delivery
Lai et al. Enhanced and extended Ophthalmic Drug Delivery by pH-Triggered drug-eluting contact lenses with large-pore mesoporous silica nanoparticles
CN111419851B (en) Preparation method of sustained-release drug delivery brinzolamide imprinted hydrogel contact lens
Chauhan Ocular drug delivery role of contact lenses
Liu et al. Thermal-/light-tunable hydrogels showing reversible widening and closing actuations based on predesigned interpenetrated networks
JP2005507866A (en) Drug release system for management therapy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application