KR20190117178A - 마이크로 led 흡착체 및 이를 이용한 마이크로 led 검사시스템 - Google Patents

마이크로 led 흡착체 및 이를 이용한 마이크로 led 검사시스템 Download PDF

Info

Publication number
KR20190117178A
KR20190117178A KR1020180040375A KR20180040375A KR20190117178A KR 20190117178 A KR20190117178 A KR 20190117178A KR 1020180040375 A KR1020180040375 A KR 1020180040375A KR 20180040375 A KR20180040375 A KR 20180040375A KR 20190117178 A KR20190117178 A KR 20190117178A
Authority
KR
South Korea
Prior art keywords
micro led
porous member
pores
vacuum
layer
Prior art date
Application number
KR1020180040375A
Other languages
English (en)
Other versions
KR102471585B1 (ko
Inventor
안범모
박승호
송태환
Original Assignee
(주)포인트엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포인트엔지니어링 filed Critical (주)포인트엔지니어링
Priority to KR1020180040375A priority Critical patent/KR102471585B1/ko
Priority to TW108111792A priority patent/TW201944086A/zh
Priority to CN201910264850.5A priority patent/CN110349899A/zh
Priority to US16/377,083 priority patent/US11548170B2/en
Publication of KR20190117178A publication Critical patent/KR20190117178A/ko
Application granted granted Critical
Publication of KR102471585B1 publication Critical patent/KR102471585B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 현재까지 제안된 마이크로 LED의 전사헤드의 문제점을 해결하고 마이크로 LED 전사에 이용될 수 있는 진공 흡착의 구조를 채택한 마이크로 LED 흡착체 및 이를 이용한 마이크로 LED 검사 시스템에 관한 것이다.

Description

마이크로 LED 흡착체 및 이를 이용한 마이크로 LED 검사시스템{MICRO LED ADSORPTION BODY AND MICRO LED INSPECTION SYSTEM USING THE SAME}
본 발명은 마이크로 LED를 흡착하는 흡착체 및 이를 이용한 마이크로 LED 검사시스템에 관한 것이다.
현재 디스플레이 시장은 아직은 LCD가 주류를 이루고 있는 가운데 OLED가 LCD를 빠르게 대체하며 주류로 부상하고 있는 상황이다. 디스플레이 업체들의 OLED 시장 참여가 러시를 이루고 있는 상황에서 최근 Micro LED(이하,‘마이크로 LED’라 함) 디스플레이가 또 하나의 차세대 디스플레이로 부상하고 있다. LCD와 OLED의 핵심소재가 각각 액정(Liquid Crystal), 유기재료인데 반해 마이크로 LED 디스플레이는 1~100마이크로미터(㎛) 단위의 LED 칩 자체를 발광재료로 사용하는 디스플레이다.
Cree사가 1999년에 "광 적출을 향상시킨 마이크로-발광 다이오드 어레이"에 관한 특허를 출원하면서(등록특허공보 등록번호 제0731673호), 마이크로 LED 라는 용어가 등장한 이래 관련 연구 논문들이 잇달아 발표되면서 연구개발이 이루어지고 있다. 마이크로 LED를 디스플레이에 응용하기 위해 해결해야 할 과제로 마이크로 LED 소자를 Flexible 소재/소자를 기반으로 하는 맞춤형 마이크로 칩 개발이 필요하고, 마이크로 미터 사이즈의 LED 칩의 전사(transfer)와 디스플레이 픽셀 전극에 정확한 실장(Mounting)을 위한 기술이 필요하다.
특히, 마이크로 LED 소자를 표시 기판에 이송하는 전사(transfer)와 관련하여, LED 크기가 1~100 마이크로미터(㎛) 단위까지 작아짐에 따라 기존의 픽앤플레이스(pick & place) 장비를 사용할 수 없고, 보다 고정밀도로 이송하는 전사 헤드기술이 필요하게 되었다. 이러한 전사 헤드 기술과 관련하여, 이하에서 살펴보는 바와 같은 몇 가지의 구조들이 제안되고 있으나 각 제안 기술은 몇 가지의 단점들을 가지고 있다.
미국의 Luxvue사는 정전헤드(electrostatic head)를 이용하여 마이크로 LED를 전사하는 방법을 제안하였다(공개특허공보 공개번호 제2014-0112486호, 이하 ‘선행발명1’이라 함). 선행발명1의 전사원리는 실리콘 재질로 만들어진 헤드 부분에 전압을 인가함으로써 대전현상에 의해 마이크로 LED와 밀착력이 발생하게 하는 원리이다. 이 방법은 정전 유도시 헤드에 인가된 전압에 의해 대전 현상에 의한 마이크로 LED 손상에 대한 문제가 발생할 수 있다.
미국의 X-Celeprint사는 전사 헤드를 탄성이 있는 고분자 물질로 적용하여 웨이퍼 상의 마이크로 LED를 원하는 기판에 이송시키는 방법을 제안하였다(공개특허공보 공개번호 제2017-0019415호, 이하 ‘선행발명2’라 함). 이 방법은 정전헤드 방식에 비해 LED 손상에 대한 문제점은 없으나, 전사 과정에서 목표기판의 접착력 대비 탄성 전사 헤드의 접착력이 더 커야 안정적으로 마이크로 LED를 이송시킬 수 있으며, 전극 형성을 위한 추가 공정이 필요한 단점이 있다. 또한, 탄성 고분자 물질의 접착력을 지속적으로 유지하는 것도 매우 중요한 요소로 작용하게 된다.
한국광기술원은 섬모 접착구조 헤드를 이용하여 마이크로 LED를 전사하는 방법을 제안하였다(등록특허공보 등록번호 제1754528호, 이하 ‘선행발명3’이라 함). 그러나 선행발명3은 섬모의 접착구조를 제작하는 것이 어렵다는 단점이 있다.
한국기계연구원은 롤러에 접착제를 코팅하여 마이크로 LED를 전사하는 방법을 제안하였다(등록특허공보 등록번호 제1757404호, 이하 ‘선행발명4’라 함). 그러나 선행발명4는 접착제의 지속적인 사용이 필요하고, 롤러 가압 시 마이크로 LED가 손상될 수도 있는 단점이 있다.
삼성디스플레이는 어레이 기판이 용액에 담겨 있는 상태에서 어레이 기판의 제1,2전극에 마이너스 전압을 인가하여 정전기 유도 현상에 의해 마이크로 LED를 어레이 기판에 전사하는 방법을 제안하였다(공개특허공보 제10-2017-0026959호, 이하 ‘선행발명5’라 함). 그러나 선행발명 5는 마이크로 LED를 용액에 담가 어레이 기판에 전사한다는 점에서 별도의 용액이 필요하고 이후 건조공정이 필요하다는 단점이 있다.
엘지전자는 헤드홀더를 복수의 픽업헤드들과 기판 사이에 배치하고 복수의 픽업 헤드의 움직임에 의해 그 형상이 변형되어 복수의 픽업 헤드들에게 자유도를 제공하는 방법을 제안하였다(공개특허공보 제10-2017-0024906호, 이하 ‘선행발명6’이라 함). 그러나 선행발명 6은 복수의 픽업헤드들의 접착면에 접착력을 가지는 본딩물질을 도포하여 마이크로 LED를 전사하는 방식이라는 점에서, 픽업헤드에 본딩물질을 도포하는 별도의 공정이 필요하다는 단점이 있다.
위와 같은 선행발명들의 문제점을 해결하기 위해서는 선행발명들이 채택하고 있는 기본 원리를 그대로 채용하면서 전술한 단점들을 개선해야 하는데, 이와 같은 단점들은 선행발명들이 채용하고 있는 기본 원리로부터 파생된 것이어서 기본 원리를 유지하면서 단점들을 개선하는 데에는 한계가 있다. 이에 본 발명의 출원인은 이러한 종래기술의 단점들을 개선하는데 그치지 않고, 선행 발명들에서는 전혀 고려하지 않았던 새로운 방식을 제안하고자 한다.
등록특허공보 등록번호 제0731673호 공개특허공보 공개번호 제2014-0112486호 공개특허공보 공개번호 제2017-0019415호 등록특허공보 등록번호 제1754528호 등록특허공보 등록번호 제1757404호 공개특허공보 제10-2017-0026959호 공개특허공보 제10-2017-0024906호
이에 본 발명은 현재까지 제안된 마이크로 LED의 전사헤드의 문제점을 해결하고 마이크로 LED 전사에 이용될 수 있는 진공 흡착의 구조를 채택한 마이크로 LED 흡착체 및 이를 이용한 마이크로 LED 검사 시스템을 제공하는 것을 그 목적으로 한다.
이러한 본 발명의 목적을 달성하기 위해서, 본 발명에 따른 마이크로 LED 흡착체는 기공을 갖는 다공성 부재; 및 상기 다공성 부재의 표면에 형성된 전도층을 포함한다.
또한, 상기 전도층은 상기 기공을 막지 않는 것을 특징으로 한다.
또한, 상기 전도층의 표면에 밀착된 마이크로 LED는 상기 기공에 가해진 진공에 의해 상기 전사헤드에 흡착되는 것을 특징으로 한다.
또한, 상기 다공성 부재는 양극산화막을 포함한다.
또한, 상기 다공성 부재는 다공성 세라믹을 포함한다.
한편, 본 발명에 따른 마이크로 LED 흡착체를 이용한 검사시스템은, 기공을 갖는 다공성 부재 및 상기 다공성 부재의 표면에 형성된 제1전도층을 포함하는 마이크로 LED 흡착체; 및 표면에 제2전도층이 구비된 검사장치를 포함하되, 상기 흡착체의 제1전도층과 상기 검사장치의 제2전도층 사이에 마이크로 LED를 위치시켜 마이크로 LED를 검사하는 것을 특징으로 한다.
또한, 상기 흡착체가 상기 마이크로 LED를 흡착한 상태에서 상기 마이크로 LED를 검사하는 것을 특징으로 한다.
이상에서 살펴본 바와 같이, 본 발명에 의한 마이크로 LED 흡착체는 전사 대상이 되는 마이크로 LED를 진공 흡착할 수 있고, 진공 흡착에 의해 마이크로 LED를 제1기판에서 제2기판으로 이송할 수 있게 된다.
또한 본 발명에 의한 마이크로 LED 흡착체는 전도층에 구비되어 마이크로 LED에 발생한 정전기를 제거할 수 있다.
또한 본 발명에 의한 마이크로 LED 흡착체는 전도층이 구비되어, 표면에 전도층을 구비하는 검사장치를 이용하여 마이크로 LED의 불량여부를 검사할 수 있게 된다.
도 1은 본 발명의 실시예의 흡착 대상이 되는 마이크로 LED를 도시한 도면.
도 2는 본 발명의 실시예에 의해 표시기판에 이송되어 실장된 마이크로 LED 구조체의 도면.
도 3은 본 발명의 제1실시예에 따른 마이크로 LED 흡착체의 도면.
도 4는 본 발명의 제2실시예에 따른 마이크로 LED 흡착체의 도면.
도 5는 도 4의 'A'부분의 확대도.
도 6은 도 4의 마이크로 LED 흡착체가 마이크로 LED를 흡착한 상태를 도시한 도면.
도 7 및 도 8a,b는 제2실시예의 변형례를 도시한 도면.
도 9는 본 발명의 제3실시예의 마이크로 LED 흡착체의 도면.
도 10은 제3실시예의 변형례를 도시한 도면.
도 11은 본 발명의 제4실시예에 따른 마이크로 LED 흡착체의 도면.
도 12는 본 발명의 제1 내지 제4실시예 중 어느 하나의 실시예에 따른 마이크로 LED 흡착체가 전사헤드로 구비되어 마이크로 LED를 검사하는 도면.
도 13은 본 발명의 제1 내지 제4실시예 중 어느 하나의 실시예에 따른 마이크로 LED 흡착체가 임시 지지기판으로 구비되어 마이크로 LED를 검사하는 도면.
이하의 내용은 단지 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 발명의 원리를 구현하고 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이며, 그에 따라 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.
본 명세서에서 기술하는 실시 예들은 본 발명의 이상적인 예시 도인 단면도 및/또는 사시도들을 참고하여 설명될 것이다. 이러한 도면들에 도시된 막 및 영역들의 두께 및 구멍들의 지름 등은 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 또한 도면에 도시된 마이크로 LED의 개수는 예시적으로 일부만을 도면에 도시한 것이다. 따라서, 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다.
다양한 실시예들을 설명함에 있어서, 동일한 기능을 수행하는 구성요소에 대해서는 실시예가 다르더라도 편의상 동일한 명칭 및 동일한 참조번호를 부여하기로 한다. 또한, 이미 다른 실시예에서 설명된 구성 및 작동에 대해서는 편의상 생략하기로 한다.
이하, 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 상세히 설명하면 다음과 같다.
도 1은 본 발명의 바람직한 실시예에 따른 마이크로 LED 흡착체의 흡착 대상이 되는 복수의 마이크로 LED(100)를 도시한 도면이다. 마이크로 LED(100)는 성장 기판(101) 위에서 제작되어 위치한다.
성장 기판(101)은 전도성 기판 또는 절연성 기판으로 이루어질 수 있다. 예를 들어, 성장 기판(101)은 사파이어, SiC, Si, GaAs, GaN, ZnO, Si, GaP, InP, Ge, 및 Ga203 중 적어도 어느 하나로 형성될 수 있다.
마이크로 LED(100)는 제1 반도체층(102), 제2 반도체층(104), 제1 반도체층(102)과 제2 반도체층(104) 사이에 형성된 활성층(103), 제1 컨택전극(106) 및 제2 컨택전극(107)을 포함할 수 있다.
제1 반도체층(102), 활성층(103), 및 제2 반도체층(104)은 유기금속 화학 증착법(MOCVD; Metal Organic Chemical Vapor Deposition), 화학 증착법(CVD; Chemical Vapor Deposition), 플라즈마 화학 증착법(PECVD; Plasma-Enhanced Chemical Vapor Deposition), 분자선 성장법(MBE; Molecular Beam Epitaxy), 수소화물 기상 성장법(HVPE; Hydride Vapor Phase Epitaxy) 등의 방법을 이용하여 형성할 수 있다.
제1 반도체층(102)은 예를 들어, p형 반도체층으로 구현될 수 있다. p형 반도체층은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등에서 선택될 수 있으며, Mg, Zn, Ca, Sr, Ba 등의 p형 도펀트가 도핑될 수 있다. 제2 반도체층(104)은 예를 들어, n형 반도체층을 포함하여 형성될 수 있다. n형 반도체층은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlN, AlGaN, InGaN, InNInAlGaN, AlInN 등에서 선택될 수 있으며, Si, Ge, Sn 등의 n형 도펀트가 도핑될 수 있다.
다만, 본 발명은 이에 한하지 않으며, 제1 반도체층(102)이 n형 반도체층을 포함하고, 제2 반도체층(104)이 p형 반도체층을 포함할 수도 있다.
활성층(103)은 전자와 정공이 재결합되는 영역으로, 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 그에 상응하는 파장을 가지는 빛을 생성할 수 있다. 활성층(103)은 예를 들어, InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 가지는 반도체 재료를 포함하여 형성할 수 있으며, 단일 양자 우물 구조 또는 다중 양자 우물 구조(MQW: Multi Quantum Well)로 형성될 수 있다. 또한, 양자선(Quantum wire)구조 또는 양자점(Quantum dot)구조를 포함할 수도 있다.
제1 반도체층(102)에는 제1 컨택전극(106)이 형성되고, 제2 반도체층(104)에는 제2 컨택전극(107)이 형성될 수 있다. 제1 컨택 전극(106) 및/또는 제2 컨택 전극(107)은 하나 이상의 층을 포함할 수 있으며, 금속, 전도성 산화물 및 전도성 중합체들을 포함한 다양한 전도성 재료로 형성될 수 있다.
성장 기판(101) 위에 형성된 복수의 마이크로 LED(100)를 커팅 라인을 따라 레이저 등을 이용하여 커팅하거나 에칭 공정을 통해 낱개로 분리하고, 레이저 리프트 오프 공정으로 복수의 마이크로 LED(100)를 성장 기판(101)으로부터 분리 가능한 상태가 되도록 할 수 있다.
도 1에서 ‘p’는 마이크로 LED(100)간의 피치간격을 의미하고, ‘s’는 마이크로 LED(100)간의 이격 거리를 의미하며, ‘w’는 마이크로 LED(100)의 폭을 의미한다.
도 2는 본 발명의 바람직한 실시예에 따른 마이크로 LED 흡착체에 의해 표시 기판으로 이송되어 실장됨에 따라 형성된 마이크로 LED 구조체를 도시한 도면이다.
표시 기판(300)은 다양한 소재를 포함할 수 있다. 예를 들어, 표시 기판(300)은 SiO2를 주성분으로 하는 투명한 유리 재질로 이루어질 수 있다. 그러나, 표시 기판(300)은 반드시 이에 한정되는 것은 아니며, 투명한 플라스틱 재질로 형성되어 가용성을 가질 수 있다. 플라스틱 재질은 절연성 유기물인 폴리에테르술폰(PES, polyethersulphone), 폴리아크릴레이트(PAR, polyacrylate), 폴리에테르 이미드(PEI, polyetherimide), 폴리에틸렌 나프탈레이트(PEN, polyethyelenen napthalate), 폴리에틸렌 테레프탈레이드(PET, polyethyeleneterepthalate), 폴리페닐렌 설파이드(polyphenylene sulfide: PPS), 폴리아릴레이트(polyallylate), 폴리이미드(polyimide), 폴리카보네이트(PC), 셀룰로오스 트리 아세테이트(TAC), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate: CAP)로 이루어진 그룹으로부터 선택되는 유기물일 수 있다.
화상이 표시 기판(300)방향으로 구현되는 배면 발광형인 경우에 표시 기판(300)은 투명한 재질로 형성해야 한다. 그러나 화상이 표시 기판(300)의 반대 방향으로 구현되는 전면 발광형인 경우에 표시 기판(300)은 반드시 투명한 재질로 형성할 필요는 없다. 이 경우 금속으로 표시 기판(300)을 형성할 수 있다.
금속으로 표시 기판(300)을 형성할 경우 표시 기판(300)은 철, 크롬, 망간, 니켈, 티타늄, 몰리브덴, 스테인레스 스틸(SUS), Invar 합금, Inconel 합금 및 Kovar 합금으로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.
표시 기판(300)은 버퍼층(311)을 포함할 수 있다. 버퍼층(311)은 평탄면을 제공할 수 있고, 이물 또는 습기가 침투하는 것을 차단할 수 있다. 예를 들어, 버퍼층(311)은 실리콘 옥사이드, 실리콘 나이트라이드, 실리콘 옥시나이트라이드, 알루미늄옥사이드, 알루미늄나이트라이드, 티타늄옥사이드 또는 티타늄나이트라이드 등의 무기물이나, 폴리이미드, 폴리에스테르, 아크릴 등의 유기물을 함유할 수 있고, 예시한 재료들 중 복수의 적층체로 형성될 수 있다.
박막 트랜지스터(TFT)는 활성층(310), 게이트 전극(320), 소스 전극(330a) 및 드레인 전극(330b)을 포함할 수 있다.
이하에서는 박막 트랜지스터(TFT)가 활성층(310), 게이트 전극(320), 소스 전극(330a) 및 드레인 전극(330b)이 순차적으로 형성된 탑 게이트 타입(top gate type)인 경우를 설명한다. 그러나 본 실시예는 이에 한정되지 않고 바텀 게이트 타입(bottom gate type) 등 다양한 타입의 박막 트랜지스터(TFT)가 채용될 수 있다.
활성층(310)은 반도체 물질, 예컨대 비정질 실리콘(amorphous silicon) 또는 다결정 실리콘(poly crystalline silicon)을 포함할 수 있다. 그러나 본 실시예는 이에 한정되지 않고 활성층(310)은 다양한 물질을 함유할 수 있다. 선택적 실시예로서 활성층(310)은 유기 반도체 물질 등을 함유할 수 있다.
또 다른 선택적 실시예로서, 활성층(310)은 산화물 반도체 물질을 함유할 수 있다. 예컨대, 활성층(310)은 아연(Zn), 인듐(In), 갈륨(Ga), 주석(Sn) 카드뮴(Cd), 게르마늄(Ge) 등과 같은 12, 13, 14족 금속 원소 및 이들의 조합에서 선택된 물질의 산화물을 포함할 수 있다.
게이트 절연막(313:gate insulating layer)은 활성층(310) 상에 형성된다. 게이트 절연막(313)은 활성층(310)과 게이트 전극(320)을 절연하는 역할을 한다. 게이트 절연막(313)은 실리콘산화물 및/또는 실리콘질화물 등의 무기 물질로 이루어진 막이 다층 또는 단층으로 형성될 수 있다.
게이트 전극(320)은 게이트 절연막(313)의 상부에 형성된다. 게이트 전극(320)은 박막 트랜지스터(TFT)에 온/오프 신호를 인가하는 게이트 라인(미도시)과 연결될 수 있다.
게이트 전극(320)은 저저항 금속 물질로 이루어질 수 있다. 게이트 전극(320)은 인접층과의 밀착성, 적층되는 층의 표면 평탄성 그리고 가공성 등을 고려하여, 예컨대 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 은(Ag), 마그네슘(Mg), 금(Au), 니켈(Ni), 네오디뮴(Nd), 이리듐(Ir), 크롬(Cr), 리튬(Li), 칼슘(Ca), 몰리브덴(Mo), 티타늄(Ti), 텅스텐(W), 구리(Cu) 중 하나 이상의 물질로 단층 또는 다층으로 형성될 수 있다.
게이트 전극(320)상에는 층간 절연막(315)이 형성된다. 층간 절연막(315)은 소스 전극(330a) 및 드레인 전극(330b)과 게이트 전극(320)을 절연한다. 층간 절연막(315)은 무기 물질로 이루어진 막이 다층 또는 단층으로 형성될 수 있다. 예컨대 무기 물질은 금속 산화물 또는 금속 질화물일 수 있으며, 구체적으로 무기 물질은 실리콘 산화물(SiO2), 실리콘질화물(SiNx), 실리콘산질화물(SiON), 알루미늄산화물(Al2O3), 티타늄산화물(TiO2), 탄탈산화물(Ta2O5), 하프늄산화물(HfO2), 또는 아연산화물(ZrO2) 등을 포함할 수 있다.
층간 절연막(315) 상에 소스 전극(330a) 및 드레인 전극(330b)이 형성된다. 소스 전극(330a) 및 드레인 전극(330b)은 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 은(Ag), 마그네슘(Mg), 금(Au), 니켈(Ni), 네오디뮴(Nd), 이리듐(Ir), 크롬(Cr), 리튬(Li), 칼슘(Ca), 몰리브덴(Mo), 티타늄(Ti), 텅스텐(W), 구리(Cu) 중 하나 이상의 물질로 단층 또는 다층으로 형성될 수 있다. 소스 전극(330a) 및 드레인 전극(330b)은 활성층(310)의 소스 영역과 드레인 영역에 각각 전기적으로 연결된다.
평탄화층(317)은 박막 트랜지스터(TFT) 상에 형성된다. 평탄화층(317)은 박막 트랜지스터(TFT)를 덮도록 형성되어, 박막 트랜지스터(TFT)로부터 비롯된 단차를 해소하고 상면을 평탄하게 한다. 평탄화층(317)은 유기 물질로 이루어진 막이 단층 또는 다층으로 형성될 수 있다. 유기 물질은 Polymethylmethacrylate(PMMA)나, Polystylene(PS)과 같은 일반 범용고분자, 페놀계 그룹을 갖는 고분자 유도체, 아크릴계 고분자, 이미드계 고분자, 아릴에테르계 고분자, 아마이드계 고분자, 불소계고분자, p-자일렌계 고분자, 비닐알콜계 고분자 및 이들의 블렌드 등을 포함할 수 있다. 또한, 평탄화층(317)은 무기 절연막과 유기절연막의 복합 적층체로 형성될 수도 있다.
평탄화층(317)상에는 제1 전극(510)이 위치한다. 제1 전극(510)은 박막 트랜지스터(TFT)와 전기적으로 연결될 수 있다. 구체적으로, 제1 전극(510)은 평탄화층(317)에 형성된 컨택홀을 통하여 드레인 전극(330b)과 전기적으로 연결될 수 있다. 제1 전극(510)은 다양한 형태를 가질 수 있는데, 예를 들면 아일랜드 형태로 패터닝되어 형성될 수 있다. 평탄화층(317)상에는 픽셀 영역을 정의하는 뱅크층(400)이 배치될 수 있다. 뱅크층(400)은 마이크로 LED(100)가 수용될 오목부를 포함할 수 있다. 뱅크층(400)은 일 예로, 오목부를 형성하는 제1 뱅크층(410)를 포함할 수 있다. 제1 뱅크층(410)의 높이는 마이크로 LED(100)의 높이 및 시야각에 의해 결정될 수 있다. 오목부의 크기(폭)는 표시 장치의 해상도, 픽셀 밀도 등에 의해 결정될 수 있다. 일 실시예에서, 제1 뱅크층(410)의 높이보다 마이크로 LED(100)의 높이가 더 클 수 있다. 오목부는 사각 단면 형상일 수 있으나, 본 발명의 실시예들은 이에 한정되지 않고, 오목부는 다각형, 직사각형, 원형, 원뿔형, 타원형, 삼각형 등 다양한 단면 형상을 가질 수 있다.
뱅크층(400)은 제1 뱅크층(410) 상부의 제2 뱅크층(420)를 더 포함할 수 있다. 제1 뱅크층(410)와 제2 뱅크층(420)는 단차를 가지며, 제2 뱅크층(420)의 폭이 제1 뱅크층(410)의 폭보다 작을 수 있다. 제2 뱅크층(420)의 상부에는 전도층(550)이 배치될 수 있다. 전도층(550)은 데이터선 또는 스캔선과 평행한 방향으로 배치될 수 있고, 제2 전극(530)과 전기적으로 연결된다. 다만, 본 발명은 이에 한정되지 않으며, 제2 뱅크층(420)는 생략되고, 제1 뱅크층(410) 상에 전도층(550)이 배치될 수 있다. 또는, 제2 뱅크층(420) 및 전도층(500)을 생략하고, 제2 전극(530)을 픽셀(P)들에 공통인 공통전극으로서 기판(301) 전체에 형성할 수도 있다. 제1 뱅크층(410) 및 제2 뱅크층(420)는 광의 적어도 일부를 흡수하는 물질, 또는 광 반사 물질, 또는 광 산란물질을 포함할 수 있다. 제1 뱅크층(410) 및 제2 뱅크층(420)는 가시광(예를 들어, 380nm 내지 750nm 파장 범위의 광)에 대해 반투명 또는 불투명한 절연 물질을 포함할 수 있다.
일 예로, 제1 뱅크층(410) 및 제2 뱅크층(420)는 폴리카보네이트(PC), 폴리에틸렌테레프탈레이트(PET), 폴리에테르설폰, 폴리비닐부티랄, 폴리페닐렌에테르, 폴리아미드, 폴리에테르이미드, 노보넨계(norbornene system) 수지, 메타크릴 수지, 환상 폴리올레핀계 등의 열가소성 수지, 에폭시 수지, 페놀 수지, 우레탄 수지, 아크릴수지, 비닐 에스테르 수지, 이미드계 수지, 우레탄계 수지, 우레아(urea)수지, 멜라민(melamine) 수지 등의 열경화성 수지, 혹은 폴리스티렌, 폴리아크릴로니트릴, 폴리카보네이트 등의 유기 절연 물질로 형성될 수 있으나, 이에 한정되는 것은 아니다.
다른 예로, 제1 뱅크층(410) 및 제2 뱅크층(420)는 SiOx, SiNx, SiNxOy, AlOx, TiOx, TaOx, ZnOx 등의 무기산화물, 무기질화물 등의 무기 절연 물질로 형성될 수 있으나, 이에 한정되는 것은 아니다. 일 실시예에서, 제1뱅크층(410) 및 제2 뱅크층(420)는 블랙 매트릭스(black matrix) 재료와 같은 불투명 재료로 형성될 수 있다. 절연성 블랙 매트릭스 재료로는 유기 수지, 글래스 페이스트(glass paste) 및 흑색 안료를 포함하는 수지 또는 페이스트, 금속 입자, 예컨대 니켈, 알루미늄, 몰리브덴 및 그의 합금, 금속 산화물 입자(예를 들어, 크롬 산화물), 또는 금속 질화물 입자(예를 들어, 크롬 질화물) 등을 포함할 수 있다. 변형례에서 제1 뱅크층(410) 및 제2 뱅크층(420)는 고반사율을 갖는 분산된 브래그 반사체(DBR) 또는 금속으로 형성된 미러 반사체일 수 있다.
오목부에는 마이크로 LED(100)가 배치된다. 마이크로 LED(100)는 오목부에서 제1 전극(510)과 전기적으로 연결될 수 있다.
마이크로 LED(100)는 적색, 녹색, 청색, 백색 등의 파장을 가지는 빛을 방출하며, 형광 물질을 이용하거나 색을 조합함으로써 백색광도 구현이 가능하다. 마이크로 LED(100)는 1 ㎛ 내지 100 ㎛ 의 크기를 갖는다. 마이크로 LED(100)는 개별적으로 또는 복수 개가 본 발명의 실시예에 따른 전사헤드에 의해 성장 기판(101) 상에서 픽업(pick up)되어 표시 기판(300)에 전사됨으로써 표시 기판(300)의 오목부에 수용될 수 있다.
마이크로 LED(100)는 p-n 다이오드, p-n 다이오드의 일측에 배치된 제1 컨택 전극(106) 및 제1 컨택 전극(106)과 반대측에 위치한 제2 컨택 전극(107)을 포함한다. 제1 컨택 전극(106)은 제1 전극(510)과 접속하고, 제2 컨택 전극(107)은 제2 전극(530)과 접속할 수 있다.
제1 전극(510)은 Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr 및 이들의 화합물 등으로 형성된 반사막과, 반사막상에 형성된 투명 또는 반투명 전극층을 구비할 수 있다. 투명 또는 반투명 전극층은 인듐틴옥사이드(ITO; indium tin oxide), 인듐징크옥사이드(IZO; indium zinc oxide), 징크옥사이드(ZnO; zinc oxide), 인듐옥사이드(In2O3; indium oxide), 인듐갈륨옥사이드(IGO; indium gallium oxide) 및 알루미늄징크옥사이드(AZO;aluminum zinc oxide)를 포함하는 그룹에서 선택된 적어도 하나 이상을 구비할 수 있다.
패시베이션층(520)은 오목부 내의 마이크로 LED(100)를 둘러싼다. 패시베이션층(520)은 뱅크층(400)과 마이크로 LED(100) 사이의 공간을 채움으로써, 오목부 및 제1 전극(510)을 커버한다. 패시베이션층(520)은 유기 절연물질로 형성될 수 있다. 예를 들어, 패시베이션층(520)은 아크릴, 폴리(메틸 메타크릴레이트)(PMMA), 벤조사이클로부텐(BCB), 폴리이미드, 아크릴레이트, 에폭시 및 폴리에스테르 등으로 형성될 수 있으나, 이에 한정되는 것은 아니다.
패시베이션층(520)은 마이크로 LED(100)의 상부, 예컨대 제2 컨택 전극(107)은 커버하지 않는 높이로 형성되어, 제2 컨택 전극(107)은 노출된다. 패시베이션층(520) 상부에는 마이크로 LED(100)의 노출된 제2 컨택 전극(107)과 전기적으로 연결되는 제2 전극(530)이 형성될 수 있다.
제2 전극(530)은 마이크로 LED(100)와 패시베이션층(520)상에 배치될 수 있다. 제2 전극(530)은 ITO, IZO, ZnO 또는 In2O3 등의 투명 전도성 물질로 형성될 수 있다.
제1실시예
도 3은 본 발명의 바람직한 제1실시예에 따른 마이크로 LED 흡착체(1000))가 마이크로 LED(100)를 진공으로 흡착한 상태를 도시한 도면이다. 본 발명의 제1실시예에 따른 마이크로 LED 흡착체(1000)는, 기공을 갖는 다공성 부재(1100) 및 다공성 부재(1100)의 표면에 형성된 전도층(1001)을 포함한다.
다공성 부재(1100)의 하부에는 전도층(1001)이 구비된다. 전도층(1001)은 전기 전도성 재질이면 그 재질에는 한정이 없다. 전도층(1001)은 다공성 부재(1100)의 표면에 스퍼터링(sputtering)공정을 통해 증착되어 형성될 수 있다.
전도층(1001)은 다공성 부재(1100)의 하면 전체에 형성되거나 하면 전체 중 일부에만 형성될 수 있다. 또한 전도층(1001)은 다공성 부재(1100)의 하면에 형성된 기공을 막을 수 있거나 다공성 부재(1100)의 기공을 막지 않는 구성으로 형성될 수 있다. 또한 이들의 조합 구성을 통해 전도층(1001)이 형성될 수 있다.
정전기력을 이용하여 마이크로 LED(100)를 흡착하는 경우에 있어서는 정전기가 적극적으로 유도되어야 하지만, 정전기력을 이용하지 않는 경우에는 정전기력은 마이크로 LED(100)를 흡착함에 있어서는 제거되어야할 부정적인 것이다. 본 발명의 제1실시예에 따른 마이크로 LED 흡착체는 기공을 갖는 다공성 부재(1100)를 이용하여 흡입력에 의해 마이크로 LED를 흡착 및 탈착하는 것이므로, 마이크로 LED 흡착체는 정전기가 제거되어야만 하는 부정적인 요소가 된다.
전도층(1001)이 다공성 부재(1100)의 표면에 구비됨에 따라, 마이크로 LED 흡착체(1000)의 표면에 정전기가 발생하는 것을 방지할 수 있고, 정전기가 발생하였더라도 발생한 정전기의 제거가 가능하게 된다. 이를 통해 흡입력에 의해 마이크로 LED(100)를 흡착하거나 탈착시킬 때의 흡착 및 탈착의 오작동을 방지할 수 있게 된다.
전도층(1001)이 다공성 부재(1100)의 표면에서 다공성 부재(1100)의 표면에 형성되는 기공을 막지 않으면서 형성되는 구성에 따르면, 마이크로 LED(100)와 접촉되는 진공흡착체(1000)의 접착면에는 다공성 부재(1100)의 기공과 연통되는 구멍이 전도층(1001)에도 구비되므로, 다공성 부재(1100)의 기공에 진공을 가하거나 기공에 가하진 진공을 해제하여 마이크로 LED(100)를 흡착하거나 흡착을 해제할 수 있다.
또한 전도층(1001)은 마이크로 LED(100)를 흡착하는 흡착면에 형성되므로 마이크로 LED(100)를 흡착한 상태에서 전도층(1001)에 전기를 인가하여 마이크로 LED(100)를 검사할 수 있다. 마이크로 LED(100)는 그 종류에 따라 전극 단자(제1,2컨택전극(106,107)가 상, 하면에 각각 형성되거나 전극 단자(제1,2컨택전극(106,107)가 일면에 모두 구비될 수 있다. 예건대 전극 단자(제1,2컨택전극(106,107)가 마이크로 LED(100)의 일면에 모두 구비되는 경우에는, 전도층(1001)의 패터닝 구성을 통해 마이크로 LED(100)의 일면에 구비된 단자에 각각 전기 접속이 가능하게 할 수 있고, 이를 통해 마이크로 LED(100)의 이상 유무를 검사할 수 있다. 이와는 다르게 전극 단자(제1,2컨택전극(106,107)가 상, 하면에 각각 형성되는 경우에는, 전도층(1001)과 별도의 검사장치(후술하는 검사장치(3000))를 이용하여 마이크로 LED(100)의 이상 유무를 검사할 수 있다.
한편, 상술한 전도층(1001)의 기능을 갖도록 하는 구성 이외에, 전도층(1001)은 마이크로 LED 흡착체(1000)가 마이크로 LED(100)를 흡착하거나 전사할 때에 필요한 적절한 기능을 부여하거나 부정적인 요인들을 제거하는데 기능할 수 있도록 구성될 수 있다.
바람직한 제1실시예에 따른 마이크로 LED 흡착체(1000)는 제1기판(예를 들어, 성장기판(101))에서 제2기판(예를 들어, 표시 기판(300))으로 이송하는 전사헤드일 수 있다.
다공성 부재(1100)의 상부에는 진공 챔버(1200)가 구비된다. 진공 챔버(1200)는 진공을 공급하거나 진공을 해제하는 진공포트에 연결된다. 진공 챔버(1200)는 진공포트의 작동에 따라 다공성 부재(1100)의 다수의 기공에 진공을 가하거나 기공에 가하진 진공을 해제하는 기능을 한다. 진공 챔버(1200)를 다공성 부재(1100)에 결합하는 구조는 다공성 부재(1100)에 진공을 가하거나 가해진 진공을 해제함에 있어서 다른 부위로의 진공의 누설을 방지하는데 적절한 구조라면 이에 대한 한정은 없다.
마이크로 LED(100)의 진공 흡착 시, 진공 챔버(1200)에 가해진 진공은 다공성 부재(1100)의 다수의 기공에 전달되어 마이크로 LED(100)에 대한 진공 흡착력이 발생한다. 한편, 마이크로 LED(100)의 탈착 시에는, 진공 챔버(1200)에 가해진 진공이 해제됨에 따라 다공성 부재(1100)의 다수의 기공에도 진공이 해제되어 마이크로 LED(100)에 대한 진공 흡착력이 제거된다.
다공성 부재(1100)는 내부에 기공이 다수 함유되어 있는 물질을 포함하여 구성되며, 일정 배열 또는 무질서한 기공구조로 0.2~0.95 정도의 기공도를 가지는 분말, 박막/후막 및 벌크 형태로 구성될 수 있다. 다공성 부재(1100)의 기공은 그 크기에 따라 직경 2 nm 이하의 마이크로(micro)기공, 2~50 nm 메조(meso)기공, 50 nm 이상의 마크로(macro)기공으로 구분할 수 있는데, 이들의 기공들을 적어도 일부를 포함한다. 다공성 부재(1100)는 그 구성 성분에 따라서 유기, 무기(세라믹), 금속, 하이브리드형 다공성 소재로 구분이 가능하다. 다공성 부재(1100)는 기공이 일정 배열로 형성되는 양극산화막을 포함한다. 다공성 부재(1100)는 형상의 측면에서 분말, 코팅막, 벌크가 가능하고, 분말의 경우 구형, 중공구형, 화이버, 튜브형등 다양한 형상이 가능하며, 분말을 그대로 사용하는 경우도 있지만, 이를 출발물질로 코팅막, 벌크 형상을 제조하여 사용하는 것도 가능하다.
다공성 부재(1100)의 기공이 무질서한 기공구조를 갖는 경우에는, 다공성 부재(1100)의 내부는 다수의 기공들이 서로 연결되면서 다공성 부재(1100)의 상, 하를 연결하는 공기 유로를 형성하게 된다. 한편, 다공성 부재(1100)의 기공이 수직 형상의 기공구조를 갖는 경우에는, 다공성 부재(1100)의 내부는 수직 형상의 기공에 의해 다공성 부재(1100)의 상, 하로 관통되면서 공기 유로를 형성할 수 있도록 한다.
다공성 부재(1100)는 마이크로 LED(100)를 흡착하는 흡착영역(1310)과 마이크로 LED(100)를 흡착하지 않는 비흡착영역(1330)을 포함한다. 흡착영역(1310)은 진공 챔버(1200)의 진공이 전달되어 마이크로 LED(100)를 흡착하는 영역이고, 비흡착영역(1330)은 진공 챔버(1200)의 진공이 전달되지 않음에 따라 마이크로 LED(100)를 흡착하지 않는 영역이다.
비흡착영역(1330)은 다공성 부재(1100)의 적어도 일부 표면에 차폐부가 형성함으로써 구현될 수 있다. 위와 같은 차폐부는 다공성 부재(1100)의 적어도 일부 표면에 형성된 기공을 막도록 형성된다. 차폐부는 다공성 부재(1100)의 상, 하 표면 중에서 적어도 일부 표면에 형성될 수 있고, 특히 다공성 부재(1100)의 기공 구조가 무질서한 기공 구조인 경우에는 다공성 부재(1100)의 상, 하 표면 모두에 형성될 수 있다.
차폐부는 다공성 부재(1100)의 표면의 기공을 막는 기능을 수행할 수 있는 것이라면 그 재질, 형상, 두께에는 한정이 없다. 바람직하게는 포토레지스트(PR, Dry Film PR포함) 또는 금속 재질로 추가로 형성될 수 있고, 다공성 부재(1100)를 이루는 자체 구성에 의해서도 형성 가능하다. 여기서 다공성 부재(1100)를 이루는 자체 구성으로는, 예를 들어 후술하는 다공성 부재(1100)가 양극산화막으로 구성될 경우에는, 차폐부는 배리어층 또는 금속 모재일 수 있다.
진공흡착체(1000)는 진공 챔버(1200)의 진공도를 모니터링하는 모니터링부가 구비될 수 있다. 모니터링부는 진공 챔버(1200)에 형성되는 진공도를 모니터링하하며, 제어부는 진공 챔버(1200)의 진공도의 정도에 따라 진공 챔버(1200)의 진공도를 제어할 수 있다. 모니터링부에서 진공 챔버(1200)의 진공도가 기 설정된 진공도의 범위보다 낮은 진공도로 형성될 경우에는, 제어부는 다공성 부재(1100)에 진공 흡착되어야 하는 마이크로 LED(100) 중 일부가 진공 흡착되지 않은 경우로 판단하거나 일부에서 진공의 누설이 있는 것으로 판단하여 진공흡착체(1000)의 재작동을 명령할 수 있다. 이처럼 진공 챔버(1200) 내부의 진공도의 정도에 따라 진공흡착체(1000)가 마이크로 LED(100)를 오류 없이 이송하도록 한다.
또한 진공흡착체(1000)에는 다공성 부재(1100)와 마이크로 LED(100)간의 접촉을 완충시키기 위하여 완충 부재가 구비될 수 있다. 이러한 완충 부재는 다공성 부재(1100)와 마이크로 LED(100)간의 접촉을 완충하면서 탄성 복원력을 갖는 것이라면 그 재질에는 제한이 없다. 완충 부재는 다공성 부재(1100)와 진공 챔버(1200)의 사이에 형성될 수 있으나, 완충 부재의 설치 위치는 이에 한정되는 것은 아니다. 다공성 부재(1100)와 마이크로 LED(100)간의 접촉을 완충시킬 수 있는 위치라면, 완충 부재는 진공흡착체(1000)의 어느 위치에 설치되어도 무관하다.
제2실시예
이하, 본 발명의 제2실시예에 대해 살펴본다. 단, 이하 설명되는 실시예는 제1실시예와 비교하여 특징적인 구성요소들을 중심으로 설명하겠으며, 제1실시예와 동일하거나 유사한 구성요소들에 대한 설명들은 생략한다.
도 4는 본 발명의 바람직한 제2실시예에 따른 마이크로 LED 흡착체(1000)를 도시한 도면이고, 도 5은 도 4의 ‘A’부분을 확대한 도면이고, 도 6은 제2실시예에 따른 마이크로 LED 흡착체(1000)가 마이크로 LED(100)를 진공 흡착한 상태를 도시한 도면이다.
제2실시예에 따른 마이크로 LED 흡착체(1000)는, 금속을 양극산화하여 형성된 기공을 갖는 양극산화막(1300)을 포함하여 구성된다는 것을 특징으로 한다.
양극산화막(1300)의 하부에는 전도층(1001)이 구비된다. 전도층(1001)은 전기 전도성 재질이면 그 재질에는 한정이 없다. 전도층(1001)은 다공성 부재(1100)의 표면에 스퍼터링(sputtering)공정을 통해 증착되어 형성될 수 있다.
전도층(1001)은 양극산화막(1300)의 하면 전체에 형성되거나 하면 전체 중 일부에만 형성될 수 있다. 또한 전도층(1001)은 양극산화막(1300)의 하면에 형성된 기공을 막을 수 있거나 양극산화막(1300)의 기공을 막지 않는 구성으로 형성될 수 있다. 또한 이들의 조합 구성을 통해 전도층(1001)이 형성될 수 있다.
정전기력을 이용하여 마이크로 LED(100)를 흡착하는 경우에 있어서는 정전기가 적극적으로 유도되어야 하지만, 정전기력을 이용하지 않는 경우에는 정전기력은 마이크로 LED(100)를 흡착함에 있어서는 제거되어야할 부정적인 것이다. 본 발명의 제2실시예에 따른 마이크로 LED 흡착체는 기공을 갖는 양극산화막(1300)을 이용하여 흡입력에 의해 마이크로 LED를 흡착 및 탈착하는 것이므로, 마이크로 LED 흡착체는 정전기가 제거되어야만 하는 부정적인 요소가 된다.
전도층(1001)이 양극산화막(1300)의 표면에 구비됨에 따라, 마이크로 LED 흡착체(1000)의 표면에 정전기가 발생하는 것을 방지할 수 있고, 정전기가 발생하였더라도 발생한 정전기의 제거가 가능하게 된다. 이를 통해 흡입력에 의해 마이크로 LED(10000)를 흡착하거나 탈착시킬 때의 흡착 및 탈착의 오작동을 방지할 수 있게 된다.
전도층(1001)이 양극산화막(1300)의 표면에서 양극산화막(1300)의 표면에 형성되는 기공을 막지 않으면서 형성되는 구성에 따르면, 마이크로 LED(100)와 접촉되는 진공흡착체(1000)의 접착면에는 양극산화막(1300)의 기공과 연통되는 구멍이 전도층(1001)에도 구비되므로, 양극산화막(1300)의 기공에 진공을 가하거나 기공에 가하진 진공을 해제하여 마이크로 LED(100)를 흡착하거나 흡착을 해제할 수 있다.
또한 전도층(1001)은 마이크로 LED(100)를 흡착하는 흡착면에 형성되므로 마이크로 LED(100)를 흡착한 상태에서 전도층(1001)에 전기를 인가하여 마이크로 LED(100)를 검사할 수 있다. 마이크로 LED(100)는 그 종류에 따라 전극 단자(제1,2컨택전극(106,107))가 상, 하면에 각각 형성되거나 전극 단자(제1,2컨택전극(106,107))가 일면에 모두 구비될 수 있다. 예건대 전극 단자(제1,2컨택전극(106,107))가 마이크로 LED(100)의 일면에 모두 구비되는 경우에는, 전도층(1001)의 패터닝 구성을 통해 마이크로 LED(100)의 일면에 구비된 단자에 각각 전기 접속이 가능하게 할 수 있고, 이를 통해 마이크로 LED(100)의 이상 유무를 검사할 수 있다. 이와는 다르게 전극 단자(제1,2컨택전극(106,107))가 상, 하면에 각각 형성되는 경우에는, 전도층(1001)과 별도의 검사장치(후술하는 검사장치(3000))를 이용하여 마이크로 LED(100)의 이상 유무를 검사할 수 있다.
한편, 상술한 전도층(1001)의 기능을 갖도록 하는 구성 이외에, 전도층(1001)은 마이크로 LED 흡착체(1000)가 마이크로 LED(100)를 흡착하거나 전사할 때에 필요한 적절한 기능을 부여하거나 부정적인 요인들을 제거하는데 기능할 수 있도록 구성될 수 있다.
양극산화막(1300)은 모재인 금속을 양극산화하여 형성된 막을 의미하고, 기공(1303)은 금속을 양극산화하여 양극산화막(1300)을 형성하는 과정에서 형성되는 구멍을 의미한다. 예컨대, 모재인 금속이 알루미늄(Al) 또는 알루미늄 합금인 경우, 모재를 양극산화하면 모재의 표면에 양극산화알루미늄(Al2O3) 재질의 양극산화막(1300)이 형성된다. 위와 같이, 형성된 양극산화막(1300)은 내부에 기공(1303)이 형성되지 않은 배리어층(1301)과, 내부에 기공(1303)이 형성된 다공층(1305)으로 구분된다. 배리어층(1301)은 모재의 상부에 위치하고, 다공층(1305)은 배리어층(1301)의 상부에 위치한다. 이처럼, 배리어층(1301)과 다공층(1305)을 갖는 양극산화막(1300)이 표면에 형성된 모재에서, 모재를 제거하게 되면, 양극산화알루미늄(Al2O3) 재질의 양극산화막(1300)만이 남게 된다.
양극산화막(1300)은, 지름이 균일하고, 수직한 형태로 형성되면서 규칙적인 배열을 갖는 기공(1303)을 갖게 된다. 따라서, 배리어층(1301)을 제거하면, 기공(1303)은 상, 하로 수직하게 관통된 구조를 갖게 되며, 이를 통해 수직한 방향으로 진공압을 형성하는 것이 용이하게 된다.
양극산화막(1300)의 내부는 수직 형상의 기공(1303)에 의해 수직한 형태로의 공기 유로를 형성할 수 있게 된다. 기공(1303)의 내부 폭은 수 nm 내지 수 백nm의 크기를 갖는다. 예를 들어, 진공 흡착하고자 하는 마이크로 LED의 사이즈가 30㎛ x 30㎛인 경우이고 기공(1303)의 내부 폭이 수 nm인 경우에는 대략 수 천만개의 기공(1303)을 이용하여 마이크로 LED(100)를 진공 흡착할 수 있게 된다. 한편, 진공 흡착하고자 하는 마이크로 LED의 사이즈가 30㎛ x 30㎛인 경우이고 기공(1303)의 내부 폭이 수 백 nm인 경우에는 대략 수 만개의 기공(1303)을 이용하여 마이크로 LED(100)를 진공 흡착할 수 있게 된다. 마이크로 LED(100)의 경우에는 기본적으로 제1 반도체층(102), 제2 반도체층(104), 제1 반도체층(102)과 제2 반도체층(104) 사이에 형성된 활성층(103), 제1 컨택전극(106) 및 제2 컨택전극(107)만으로 구성됨에 따라 상대적으로 가벼운 편이므로 양극산화막(1300)의 수만 내지 수 천만개의 기공(1303)을 이용하여 진공 흡착하는 것이 가능한 것이다.
양극산화막(1300)의 상부에는 진공 챔버(1200)가 구비된다. 진공 챔버(1200)는 진공을 공급하는 진공포트에 연결된다. 진공 챔버(1200)는 진공포트의 작동에 따라 양극산화막(1300)의 다수의 수직 형상의 기공에 진공을 가하거나 진공을 해제하는 기능을 한다.
마이크로 LED(100)의 흡착 시, 진공 챔버(1200)에 가해진 진공은 양극산화막(1300)의 다수의 기공(1303)에 전달되어 마이크로 LED(100)에 대한 진공 흡착력을 제공한다. 한편, 마이크로 LED(100)의 탈착 시에는, 진공 챔버(1200)에 가해진 진공이 해제됨에 따라 양극산화막(1300)의 다수의 기공(1303)에도 진공이 해제되어 마이크로 LED(100)에 대한 진공 흡착력이 제거된다.
양극산화막(1300)은 마이크로 LED(100)를 진공 흡착하는 흡착영역(1310)과 마이크로 LED(100)를 흡착하지 않는 비흡착영역(1330)을 포함한다. 흡착영역(1310)은 진공 챔버(1200)의 진공이 전달되어 마이크로 LED(100)를 진공 흡착하는 영역이고, 비흡착영역(1330)은 진공 챔버(1200)의 진공이 전달되지 않음에 따라 마이크로 LED(100)를 흡착하지 않는 영역이다.
바람직하게는, 흡착영역(1310)은 기공(1303)의 상, 하가 관통되는 영역이고, 비흡착영역(1330)은 기공(1303)의 상, 하 중 적어도 어느 한 부분이 폐쇄된 영역일 수 있다.
비흡착영역(1330)은 양극산화막(1300)의 적어도 일부 표면에 차폐부가 형성함으로써 구현될 수 있다. 위와 같은 차폐부는 양극산화막(1100)의 적어도 일부 표면으로 노출되는 기공(1303)의 입구를 막도록 형성된다. 차폐부는 양극산화막(1300)의 상, 하 표면 중에서 적어도 일부 표면에 형성될 수 있다. 차폐부는 다공성 부재(1100)의 표면으로 노출되는 기공(1303)의 입구를 막는 기능을 수행할 수 있는 것이라면 그 재질, 형상, 두께에는 한정이 없다. 바람직하게 차례부는 포토레지스트(PR, Dry Film PR포함) 또는 금속 재질로 추가로 형성될 수 있고, 배리어층(1301)일 수 있다.
비흡착영역(1330)은 양극산화막(1310)의 제조 시 형성된 배리어층(1301)에 의해 수직 형상의 기공(1303)의 상, 하 중 어느 한 부분이 폐쇄되도록 하여 형성될 수 있고, 흡착영역(1310)은 에칭 등의 방법으로 배리어층(1301)이 제거되어 수직 형상의 기공(1303)의 상, 하가 서로 관통되도록 형성될 수 있다.
또한 상, 하로 관통하는 기공(1303)은 배리어층(1301)의 일부가 제거됨에 따라 형성되므로, 흡착영역(1310)의 양극산화막(1300)의 두께는 비흡착영역(1330)의 양극산화막(1300)의 두께보다 작다.
도 5에는, 배리어층(1301)이 양극산화막(1300)의 상부에 위치하고 기공(1303)이 있는 다공층(1305)이 하부에 위치하는 것으로 도시되어 있으나, 배리어층(1301)이 양극산화막(1300)의 하부에 위치하도록 도 5에 도시된 양극산화막(1300)이 상, 하 반전되어 비흡착영역(1330)을 구성할 수 있다.
한편, 비흡착영역(1330)이 배리어층(1301)에 의해 기공(1303)의 상, 하 중 어느 한 부분이 폐쇄된 것으로 설명하였으나, 배리어층(1301)에 의해 폐쇄되지 않은 반대면은 별도의 코팅층이 추가되어 상, 하가 모두 폐쇄되도록 구성될 수 있다. 비흡착영역(1330)을 구성함에 있어서 양극산화막(1300)의 상, 하면이 모두 폐쇄되는 구성은, 양극산화막(1300)의 상, 하면 중 적어도 하나가 폐쇄되는 구성에 비해, 비흡착영역(1330)의 기공(1303)에 이물질이 잔존할 우려를 줄일 수 있다는 점에서 유리하다.
도 7에는 도 6에 도시된 마이크로 LED 흡착체(1000)의 변형례가 도시되어 있다. 도 7에 도시된 흡착체(1000)는, 비흡착영역(1330)의 상부에는 양극산화막(1300)의 강도를 보강하기 위한 지지부(1307)가 추가로 형성된다. 일례로, 지지부(1307)는 금속 재질의 모재가 될 수 있다. 양극산화 시 사용된 금속 재질의 모재가 제거되지 않고 배리어층(1301)의 상부에 구비되면서 금속 재질(예건대, 알루미늄 또는 알루미늄 합금)의 모재가 지지부(1307)가 될 수 있다.
도 7를 참조하면, 비흡착영역(1330)에서는 금속 재질의 모재(1307), 배리어층(1301) 및 기공(1303)이 형성된 다공층(1305)이 모두 구비된 채로 형성되고, 흡착영역(1310)은 금속 재질의 모재(1307) 및 배리어층(1301)이 제거됨에 따라 기공(1303)의 상, 하가 관통되도록 형성된다. 금속 재질의 모재(1307)가 비흡착영역(1330)에 구비되어 양극산화막(1300)의 강성을 확보할 수 있게 된다. 위와 같은 지지부(1307)의 구성에 의하여, 상대적으로 강도가 약한 양극산화막(1300)의 강도를 높일 수 있게 됨에 따라 양극산화막(1300)으로 구성되는 진공흡착체(1000)의 크기를 대면적화 할 수 있다.
도 8(a)에는, 도 6에 도시된 흡착체(1000)의 변형례가 도시되어 있다. 도 8(a)에 도시된 흡착체(1000)는, 양극산화막(1300)의 흡착영역(1310)에는 양극산화막(1300)의 자연발생적으로 형성되는 기공(1303) 이외에 투과홀(1309)이 추가로 형성된다. 투과홀(1309)은 양극산화막(1300)의 상면과 하면을 관통하도록 형성된다. 투과홀(1309)의 직경은 기공(1303)의 직경보다 더 크게 형성된다. 기공(1303)의 직경보다 더 큰 직경을 갖는 투과홀(1309)이 형성되는 구성에 의하여, 기공(1303)만으로 마이크로 LED(100)를 진공 흡착하는 구성에 비해, 마이크로 LED(100)에 대한 진공 흡착면적을 키울 수 있게 된다.
이러한 투과홀(1309)은 전술한 양극산화막(1300) 및 기공(1303)이 형성된 후, 양극산화막(1300)을 수직방향으로 에칭함으로써 형성될 수 있다. 투과홀(1309)이 에칭에 의해 형성됨으로써, 단순히 기공(1303)을 확공하여 투과홀(1309)을 형성하는 것보다 더욱 안정적으로 투과홀(1309)을 형성시킬 수 있다. 다시 말해, 기공(1303)을 확공하여 투과홀(1309)을 형성할 경우, 기공(1303)의 측면이 무너지게 됨으로써, 투과홀(1309)의 형상이 어그러질 수 있는 등, 투과홀(1309)의 손상이 발생할 수 있다. 그러나, 에칭에 의해 투과홀(1309)을 형성시킴에 따라, 기공(1303)의 측면의 손상없이 용이하게 투과홀(1309)을 형성할 수 있으며, 이를 통해, 투과홀(1309)의 손상이 발생하는 것을 방지할 수 있는 것이다. 흡착영역(1310)에서의 진공 누설을 방지한다는 측면에서 투과홀(1309)은 흡착영역(1310)의 중심에 분포하는 것이 바람직하다.
한편, 흡착체(1000) 전체적인 관점에서 살펴보면, 투과홀(1309)은 각각의 흡착영역(1310)의 위치에 따라 그 크기 및 개수를 달리할 수 있다. 진공포트가 진공흡착체(1000)의 중심에 위치하는 경우에는, 진공흡착체(1000)의 가장자리 측으로 갈수록 진공압이 감소되어 흡착영역(1310)간의 진공압의 불균일이 초래될 수 있다. 이런 경우에는 진공흡착체(1000)의 가장자리 측으로 위치하는 흡착영역(1310) 내의 투과홀(1309)에 의해 형성되는 흡착 면적의 크기를, 진공흡착체(1000)의 중심 측으로 위치하는 흡착영역(1310) 내의 투과홀(1309)에 의해 형성되는 흡착 면적의 크기보다 더 크게 형성할 수 있다. 이처럼 흡착영역(1310)의 위치에 따라 투과홀(1309)의 흡착면적의 크기에 변화를 줌으로써, 흡착영역(1310) 간에 발생하는 진공압의 불균일을 해소하여 균일한 진공 흡착력을 제공할 수 있다.
도 8(b)에는, 도 6에 도시된 흡착체(1000)의 변형례가 도시되어 있다. 도 8(b)에 도시된 흡착체(1000)는, 양극산화막(1300)의 흡착영역(1310)의 하부에는 흡착홈(1310)이 추가로 형성된다. 흡착홈(1310)은 전술한 기공(1303) 또는 투과홀(1309)보다 더 큰 수평 면적을 갖으면서도 마이크로 LED(100)의 상면의 수평 면적보다 작은 면적을 갖는다. 이를 통해 마이크로 LED(100)에 대한 진공 흡착 면적을 더 키울 수 있게 되고, 흡착홈(1310)을 통해 마이크로 LED(100)에 대한 균일한 진공 흡착 면적을 제공할 수 있게 된다. 흡착홈(1310)은 전술한 양극산화막(1300) 및 기공(1303)이 형성된 후, 양극산화막(1300)의 일부를 소정의 깊이로 에칭 함으로써 형성될 수 있다.
제3실시예
이하, 본 발명의 제3실시예에 대해 살펴본다. 단, 이하 설명되는 실시예는 제1실시예와 비교하여 특징적인 구성요소들을 중심으로 설명하겠으며, 제1실시예와 동일하거나 유사한 구성요소들에 대한 설명들은 생략한다.
도 9는 본 발명의 바람직한 제3실시예에 따른 마이크로 LED 흡착체(1000)를 도시한 도면이다.
제3실시예에 따른 마이크로 LED 흡착체(1000)는, 제1,2다공성부재(1500, 1600)의 이중 구조를 포함하여 구성된다는 것을 특징으로 한다.
제1다공성 부재(1500)의 하부에는 전도층(1001)이 구비된다. 제1다공성 부재(1500)의 표면에 형성되는 전도층(1001)은 다공성 부재(1100)의 표면에 형성되는 기공을 막지 않는 형태로 구성된다.
제1다공성 부재(1500)의 상부에는 제2다공성 부재(1600)가 구비된다. 제1다공성 부재(1500)는 마이크로 LED(100)를 진공 흡착하는 기능을 수행하는 구성이고, 제2다공성 부재(1600)는 진공 챔버(1200)와 제1다공성 부재(1500) 사이에 위치하여 진공 챔버(1200)의 진공압을 제1다공성 부재(1500)에 전달하는 기능을 수행한다.
제1,2다공성 부재(1500, 1600)은 서로 다른 다공성의 특성을 가질 수 있다. 예를 들어, 제1,2다공성 부재(1500, 1600)는 기공의 배열 및 크기, 다공성 부재의 소재, 형상 등에서 서로 다른 특성을 가진다.
기공의 배열 측면에서 살펴보면, 제1,2다공성 부재(1500, 1600) 중 하나는 기공이 일정한 배열을 갖는 것이고 다른 하나는 기공이 무질서한 배열을 갖는 것일 수 있다. 기공의 크기 측면에서 살펴보면, 제1,2다공성 부재(1500,1600) 중 어느 하나는 기공의 크기가 다른 하나에 비해 큰 것일 수 있다. 여기서 기공의 크기는 기공의 평균 크기일 수 있고, 기공 중에서의 최대 크기일 수 있다. 다공성 부재의 소재 측면에서 살펴보면, 어느 하나가 유기, 무기(세라믹), 금속, 하이브리드형 다공성 소재 중 하나의 소재로 구성되면 다른 하나는 어느 하나의 소재와는 다른 소재로서 유기, 무기(세라믹), 금속, 하이브리드형 다공성 소재 중에서 선택될 수 있다. 다공성 부재의 형상 측면에서 살펴보면, 제1,2다공성 부재(1500, 1600)의 형상은 서로 상이하게 구성될 수 있다.
이처럼 제1,2다공성 부재(1500,1600)의 기공의 배열 및 크기, 소재 및 형상 등을 서로 달리함으로써 진공흡착체(1000)의 기능을 다양하게 할 수 있고, 제1,2다공성 부재(1500, 1600)의 각각에 대한 상보적인 기능을 수행할 수 있게 할 수 있다. 다공성 부재의 개수는 제1,2다공성 부재처럼 2개로 한정되는 것은 아니며 각각의 다공성 부재가 서로 상보적인 기능을 갖는 것이라면 그 이상으로 구비되는 것도 제3실시예의 범위에 포함된다.
도 10를 참조하면, 제1다공성 부재(1500)는 전술한 제2실시예 및 그 변형례의 구성으로 구비될 수 있다. 제1다공성 부재(1500)의 하부에는 전도층(1001)이 구비된다. 전도층(1001)은 제1다공성 부재(1500)의 하부 표면에 형성된 기공을 막지 않으면서 소정의 두께를 가지면서 형성된다.
제2다공성 부재(1600)은 제1다공성 부재(1500)를 지지하는 기능을 갖는 다공성 지지체로 구성될 수 있다. 제2다공성 부재(1600)가 제1다공성 부재(1500)를 지지하는 기능을 달성할 수 있는 구성이라면 그 재료에는 한정이 없으며, 전술한 제1실시예의 다공성 부재(1100)의 구성이 포함될 수 있다. 제2다공성 부재(1600)는 제1다공성 부재(1500)의 중앙 처짐 현상 방지에 효과를 갖는 경질의 다공성 지지체로 구성될 수 있다. 예컨대, 제2다공성 부재(1600)는 다공성 세라믹 소재일 수 있다.
다공성 세라믹 소재의 경우, 다공성 기공의 크기가 불균일하고, 여러 방향에서 기공이 형성되어 있어 위치에 따른 진공압이 불균일하게 형성될 수 있다. 이와 달리, 양극산화막은 크기가 균일하고, 기공의 방향이 일방향(예컨데, 상하 방향)으로 형성되어 있으므로, 위치가 다르더라도 진공압이 균일하게 형성된다. 따라서, 전술한 바와 같이, 제1다공성부재(1500)가 기공을 갖는 양극산화막으로 구성되고, 제2다공성 부재(1600)가 다공성 세라믹 소재로 구성되면, 흡착체(1000)의 다공성을 유지하면서 강성을 확보할 수 있을 뿐만 아니라, 진공압의 균일성을 확보할 수 있게 된다.
한편, 제1다공성 부재(1500)는 전술한 제2실시예 및 그 변형례의 구성으로 구비되면서, 제2다공성 부재(1600)는 제1다공성 부재(1500)와 마이크로 LED(100)간의 접촉시 이를 완충하기 위한 다공성 완충체로 구성될 수 있다. 제2다공성 부재(1600)가 제1다공성 부재(1500)를 완충하는 기능을 달성할 수 있는 구성이라면 그 재료에는 한정이 없으며, 전술한 제1실시예의 다공성 부재(1100)의 구성이 포함될 수 있다. 제2다공성 부재(1600)는 제1다공성 부재(1500)가 마이크로 LED(100)와 접촉되어 진공으로 마이크로 LED(100)를 흡착하는 경우에 제1다공성 부재(1500)가 마이크로 LED(100)에 맞닿아 마이크로 LED(100)를 손상시키는 것을 방지하는데 도움이 되는 연질의 다공성 완충체로 구성될 수 있다. 예컨대, 제2다공성 부재(1600)는 스펀지 등과 같은 다공성 탄성 재질일 수 있다.
제4실시예
이하, 본 발명의 제4실시예에 대해 살펴본다. 단, 이하 설명되는 실시예는 제1실시예와 비교하여 특징적인 구성요소들을 중심으로 설명하겠으며, 제1실시예와 동일하거나 유사한 구성요소들에 대한 설명들은 생략한다.
도 11은 본 발명의 바람직한 제4실시예에 따른 마이크로 LED 흡착체(1000)를 도시한 도면이다.
제4실시예에 따른 마이크로 LED 흡착체(1000)는, 제1,2,3다공성부재(1700, 1800, 1900)의 삼중 구조를 포함하여 구성된다는 것을 특징으로 한다.
제1다공성 부재(1500)의 하부에는 전도층(1001)이 구비된다. 전도층(1001)은 제1다공성 부재(1500)의 하부 표면에 형성된 기공을 막지 않으면서 소정의 두께를 가지면서 형성된다.
제1다공성 부재(1700)의 상부에는 제2다공성 부재(1800)가 구비되고, 제2다공성 부재(1800)의 상부에는 제3다공성 부재(1900)가 구비된다. 제1다공성 부재(1700)는 마이크로 LED(100)를 진공 흡착하는 기능을 수행하는 구성이다. 제2다공성 부재(1800) 및 제3다공성 부재(1900) 중 적어도 하는 경질의 다공성 지지체이고 다른 하나는 연질의 다공성 완충체로 구성될 수 있다.
제1다공성 부재(1700)은 제2실시예 및 그변형례의 구성으로 구비될 수 있고, 제2다공성 부재(1800)은 제1다공성 부재(1500)의 중앙 처짐 현상 방지에 효과를 갖는 경질의 다공성 지지체로 구성될 수 있으며(예컨대, 다공성 세라믹 소재), 제3다공성 부재(1900)는 연질의 다공성 완충체(예컨대, 스펀지 소재등과 같이 탄력이 높으면서 다공성인 소재)로 구성될 수 있다.
위와 같은 구성에 의하여, 다수의 마이크로 LED(100)에 대해 균일하게 진공 흡착할 수 있고, 제1다공성 부재(1700)의 중앙 처짐 현상을 방지할 수 있을 뿐만 아니라 마이크로 LED(100)의 손상을 방지할 수 있는 효과를 갖는다.
본 발명의 바람직한 실시예에 따른 마이크로 LED 흡착체를 이용한 검사시스템은, 기공을 갖는 다공성 부재 및 상기 다공성 부재의 표면에 형성된 제1전도층을 포함하는 마이크로 LED 흡착체; 및 표면에 제2전도층이 구비된 검사장치를 포함하되, 상기 흡착체의 제1전도층과 상기 검사장치의 제2전도층 사이에 마이크로 LED를 위치시켜 마이크로 LED를 검사한다. 제1전도층은 다공성 부재의 하부 표면에 형성된 기공을 막지 않으면서 소정의 두께를 가지면서 형성된다.
도 12 및 도 13을 참조하여, 이하에서 본 발명의 바람직한 실시예에 따른 마이크로 LED 흡착체를 이용한 검사시스템을 설명한다.
도 12는 본 발명의 제1 내지 4실시예 중 어느 하나의 실시예에 따른 마이크로 LED 흡착체가 진공흡착체(1000)로 구비되어 마이크로 LED(100)를 제1기판(101)에서 제2기판(300)으로 전사하는 것을 도시한 도면이다.
도 12를 참조하면, 진공흡착체(1000)는 하강하여 제1기판(101)에서 마이크로 LED(100)를 흡착하고, 상승하여 제2기판(300)측으로 이동하게 된다. 진공흡착체(1000)가 이동하는 도중에, 진공흡착체(1000)의 하부측으로 검사장치(3000)가 위치하게된다. 검사장치(300)는 그 표면에 제2전도층을 구비하고 있고, 진공흡착체(1000)는 그 표면에 제1전도층을 구비하고 있다. 제1전도층은 진공흡착체(1000)의 다공성 부재의 기공을 막지 않으면서 다공성 부재의 표면에 형성되므로, 검사장치(300)의 제2전도층과 마이크로 LED(100)가 서로 접촉하게 되면, 마이크로 LED(100)의 상,하부에 각각 구비된 단자(제1,2컨택전극(106,107))에 전기를 인가함으로써 마이크로 LED(100)를 검사할 수 있게 된다. 다시 말해 진공흡착체(1000)의 제1전도층과 검사장치의 제2전도층 사이에 마이크로 LED(100)를 위치시켜 마이크로 LED(100)의 불량 여부를 검사할 수 있게 된다.
도 13은 본 발명의 바람직한 제1 내지 제4실시예 중 어느 하나의 실시예에 따른 마이크로 LED 흡착체가 임시 지지기판(4000)으로 구비되어 마이크로 LED(100)를 전사헤드(1000')로부터 전달받는 것을 도시한 도면이다. 여기서 전사헤드(1000')는 마이크로 LED(100)를 흡착력에 의해 흡착하여 전사하는 전사기구로서, 흡착력은 정전기력, 전자기력, 흡입력 등 포함할 수 있다.
도 13을 참조하면, 전사헤드(1000')가 마이크로 LED(100)를 제1기판(101)에서 흡착하여 임시 지지기판(4000)에 전사한다. 임시 지지기판(4000)은 기공에 흡입력을 가하여 마이크로 LED(100)를 흡착한다. 임시 지지기판(4000)이 마이크로 LED(100)를 흡착하고 있는 동안, 검사장치(3000)는 임시 지지기판(4000)의 상부로 이동한다. 검사장치(3000)는 그 표면에 제2전도층을 구비하고 있고, 임시 지지기판(4000)은 그 표면에 제1전도층을 구비하고 있다. 제1전도층은 임시 지지기판(4000)의 다공성 부재의 기공을 막지 않으면서 다공성 부재의 표면에 형성되므로, 마이크로 LED(100)의 상, 하부에 각각 구비된 단자(제1,2컨택전극(106,107))에 전기를 인가함으로써 마이크로 LED(100)를 검사할 수 있다. 다시 말해 임시 지지기판(4000)의 제1전도층과 검사장치의 제2전도층 사이에 마이크로 LED(100)를 위치시켜 마이크로 LED(100)의 불량 여부를 검사할 수 있게 된다.
전술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.
100: 마이크로 LED 101: 성장기판
300: 표시기판 1000: 전사헤드
1100:마이크로 LED 흡착체 1110: 흡착영역
1130:비흡착영역 1300:양극산화막

Claims (7)

  1. 기공을 갖는 다공성 부재; 및
    상기 다공성 부재의 표면에 형성된 전도층을 포함하는 마이크로 LED 흡착체.
  2. 제1항에 있어서,
    상기 전도층은 상기 기공을 막지 않는 것을 특징으로 하는 마이크로 LED 흡착체.
  3. 제1항에 있어서,
    상기 전도층의 표면에 밀착된 마이크로 LED는 상기 기공에 가해진 진공에 의해 상기 전사헤드에 흡착되는 것을 특징으로 하는 마이크로 LED 흡착체.
  4. 제1항에 있어서,
    상기 다공성 부재는 양극산화막을 포함하는 것을 특징으로 하는 마이크로 LED 흡착체.
  5. 제1항에 있어서,
    상기 다공성 부재는 다공성 세라믹을 포함하는 것을 특징으로 하는 마이크로 LED 흡착체.
  6. 기공을 갖는 다공성 부재 및 상기 다공성 부재의 표면에 형성된 제1전도층을 포함하는 마이크로 LED 흡착체; 및
    표면에 제2전도층이 구비된 검사장치를 포함하되,
    상기 흡착체의 제1전도층과 상기 검사장치의 제2전도층 사이에 마이크로 LED를 위치시켜 마이크로 LED를 검사하는 것을 특징으로 하는 마이크로 LED 검사시스템.
  7. 제6항에 있어서,
    상기 흡착체가 상기 마이크로 LED를 흡착한 상태에서 상기 마이크로 LED를 검사하는 것을 특징으로 하는 마이크로 LED 검사시스템.

KR1020180040375A 2018-04-06 2018-04-06 마이크로 led 흡착체 및 이를 이용한 마이크로 led 검사시스템 KR102471585B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020180040375A KR102471585B1 (ko) 2018-04-06 2018-04-06 마이크로 led 흡착체 및 이를 이용한 마이크로 led 검사시스템
TW108111792A TW201944086A (zh) 2018-04-06 2019-04-03 微發光二極體吸附體
CN201910264850.5A CN110349899A (zh) 2018-04-06 2019-04-03 微发光二极管吸附体
US16/377,083 US11548170B2 (en) 2018-04-06 2019-04-05 Micro LED grip body and system having same for inspecting micro LED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180040375A KR102471585B1 (ko) 2018-04-06 2018-04-06 마이크로 led 흡착체 및 이를 이용한 마이크로 led 검사시스템

Publications (2)

Publication Number Publication Date
KR20190117178A true KR20190117178A (ko) 2019-10-16
KR102471585B1 KR102471585B1 (ko) 2022-11-28

Family

ID=68421702

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180040375A KR102471585B1 (ko) 2018-04-06 2018-04-06 마이크로 led 흡착체 및 이를 이용한 마이크로 led 검사시스템

Country Status (1)

Country Link
KR (1) KR102471585B1 (ko)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731673B1 (ko) 1999-12-03 2007-06-25 크리, 인코포레이티드 광 적출을 향상시킨 마이크로-발광 다이오드 어레이
JP2011049291A (ja) * 2009-08-26 2011-03-10 Yamatake Corp 陽極接合用電極部材及びこれを備えた陽極接合装置
KR20120137859A (ko) * 2011-06-13 2012-12-24 삼성전자주식회사 반도체 제조 장치 및 이를 이용한 반도체 패키지 방법
KR20140112486A (ko) 2011-11-18 2014-09-23 럭스뷰 테크놀로지 코포레이션 전기 절연 층을 갖는 마이크로 led 구조체 및 마이크로 led 구조체들의 어레이를 형성하는 방법
JP2016092240A (ja) * 2014-11-05 2016-05-23 株式会社タンケンシールセーコウ 真空吸着パッドおよび真空吸着装置
KR20170019415A (ko) 2014-06-18 2017-02-21 엑스-셀레프린트 리미티드 트랜스퍼가능한 반도체 구조체들의 방출을 제어하기 위한 시스템들 및 방법들
KR20170024906A (ko) 2015-08-26 2017-03-08 엘지전자 주식회사 마이크로 디바이스의 픽업 헤드유닛
KR20170026959A (ko) 2015-08-31 2017-03-09 삼성디스플레이 주식회사 표시장치 및 표시장치의 제조방법
KR101754528B1 (ko) 2016-03-23 2017-07-06 한국광기술원 건식 접착구조를 갖는 led 구조체 어레이의 전사체와 이를 이용한 led 구조체 어레이의 이송방법 및 led 구조체
KR101757404B1 (ko) 2015-07-24 2017-07-12 한국기계연구원 점착력 제어 필름 기반 선택적 연속 전사 장치
US20190066571A1 (en) * 2017-08-23 2019-02-28 Facebook Technologies, Llc Interposer for multi-layer display architecture

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731673B1 (ko) 1999-12-03 2007-06-25 크리, 인코포레이티드 광 적출을 향상시킨 마이크로-발광 다이오드 어레이
JP2011049291A (ja) * 2009-08-26 2011-03-10 Yamatake Corp 陽極接合用電極部材及びこれを備えた陽極接合装置
KR20120137859A (ko) * 2011-06-13 2012-12-24 삼성전자주식회사 반도체 제조 장치 및 이를 이용한 반도체 패키지 방법
KR20140112486A (ko) 2011-11-18 2014-09-23 럭스뷰 테크놀로지 코포레이션 전기 절연 층을 갖는 마이크로 led 구조체 및 마이크로 led 구조체들의 어레이를 형성하는 방법
KR20170019415A (ko) 2014-06-18 2017-02-21 엑스-셀레프린트 리미티드 트랜스퍼가능한 반도체 구조체들의 방출을 제어하기 위한 시스템들 및 방법들
JP2016092240A (ja) * 2014-11-05 2016-05-23 株式会社タンケンシールセーコウ 真空吸着パッドおよび真空吸着装置
KR101757404B1 (ko) 2015-07-24 2017-07-12 한국기계연구원 점착력 제어 필름 기반 선택적 연속 전사 장치
KR20170024906A (ko) 2015-08-26 2017-03-08 엘지전자 주식회사 마이크로 디바이스의 픽업 헤드유닛
KR20170026959A (ko) 2015-08-31 2017-03-09 삼성디스플레이 주식회사 표시장치 및 표시장치의 제조방법
KR101754528B1 (ko) 2016-03-23 2017-07-06 한국광기술원 건식 접착구조를 갖는 led 구조체 어레이의 전사체와 이를 이용한 led 구조체 어레이의 이송방법 및 led 구조체
US20190066571A1 (en) * 2017-08-23 2019-02-28 Facebook Technologies, Llc Interposer for multi-layer display architecture

Also Published As

Publication number Publication date
KR102471585B1 (ko) 2022-11-28

Similar Documents

Publication Publication Date Title
KR102471582B1 (ko) 마이크로 led 전사헤드
KR20190114372A (ko) 마이크로 led 전사 시스템
KR20190114330A (ko) 마이크로 led 전사헤드
KR102424246B1 (ko) 전사헤드를 구비한 마이크로 led 전사 시스템
KR20190131312A (ko) 마이크로 led 흡착체
KR20190131305A (ko) 마이크로 led 전사 시스템
KR20200025079A (ko) 전사헤드
US11548170B2 (en) Micro LED grip body and system having same for inspecting micro LED
KR102498112B1 (ko) 마이크로 led 전사 헤드
KR20210020425A (ko) 마이크로 led 전사헤드
KR20190131309A (ko) 마이크로 led 전사 시스템
KR20200001323A (ko) 마이크로 led 전사헤드
KR20190117180A (ko) 마이크로 led 흡착체 및 이를 이용한 마이크로 led 검사시스템
KR102498109B1 (ko) 마이크로 led 전사 시스템
KR102643764B1 (ko) 마이크로 led 전사헤드
KR20190114371A (ko) 전사헤드 및 이를 이용한 마이크로 led 흡착방법
KR102471585B1 (ko) 마이크로 led 흡착체 및 이를 이용한 마이크로 led 검사시스템
KR20190135862A (ko) 마이크로 led 전사 시스템
KR102498037B1 (ko) 마이크로 led 흡착체
KR20190141887A (ko) 마이크로 led 전사헤드 및 마이크로 led 전사 스테이지
KR102457193B1 (ko) 마이크로 led 흡착체
KR20200001329A (ko) 마이크로 led 전사 시스템
KR102471583B1 (ko) 마이크로 led 흡착체를 포함하는 마이크로 led 전사 시스템
KR20190135858A (ko) 마이크로 led 전사헤드 및 이를 이용한 마이크로 led 전사 시스템
KR20200099019A (ko) 마이크로 led 흡착체

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant