KR20190103631A - Fluorescence compounds, complex nanoparticles comprising the same, and preparation method thereof - Google Patents

Fluorescence compounds, complex nanoparticles comprising the same, and preparation method thereof Download PDF

Info

Publication number
KR20190103631A
KR20190103631A KR1020180024289A KR20180024289A KR20190103631A KR 20190103631 A KR20190103631 A KR 20190103631A KR 1020180024289 A KR1020180024289 A KR 1020180024289A KR 20180024289 A KR20180024289 A KR 20180024289A KR 20190103631 A KR20190103631 A KR 20190103631A
Authority
KR
South Korea
Prior art keywords
fluorescent compound
compound
bile acid
chitosan
solution
Prior art date
Application number
KR1020180024289A
Other languages
Korean (ko)
Other versions
KR102121965B1 (en
Inventor
박진우
정은애
장수정
윤형준
Original Assignee
(주)바이오액츠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오액츠 filed Critical (주)바이오액츠
Priority to KR1020180024289A priority Critical patent/KR102121965B1/en
Publication of KR20190103631A publication Critical patent/KR20190103631A/en
Application granted granted Critical
Publication of KR102121965B1 publication Critical patent/KR102121965B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • A61K49/0034Indocyanine green, i.e. ICG, cardiogreen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention relates to a fluorescent compound, a composite nanoparticle comprising the same, and a production method thereof. The fluorescent compound according to the present invention is not accumulated when administrating the fluorescent compound into the body, has excellent fluorescence intensity, is easy to dye and image in the body even in a small amount of use compared to conventional dyes, and thus is economically available. The fluorescent compound-bile acid-chitosan nanoparticles according to the present invention show excellent cancer targeting ability.

Description

형광 화합물, 이를 포함하는 복합체 나노입자, 및 이의 제조방법{Fluorescence compounds, complex nanoparticles comprising the same, and preparation method thereof} Fluorescent compounds, complex nanoparticles comprising the same, and a method for preparing the same {Fluorescence compounds, complex nanoparticles comprising the same, and preparation method etc}

본 발명은 형광 화합물, 이를 포함하는 복합체 나노입자, 및 이의 제조방법에 관한 것이다. The present invention relates to a fluorescent compound, a composite nanoparticle comprising the same, and a preparation method thereof.

생체 물질 자체는 가시광 및 근적외 영역의 형광이 미약하거나 없으므로 바이오 분야에서는 생체 내/외에서 세포 및 세포 이하 단계에서의 생물학적인 현상을 관찰하거나 생체 내로 투영되어 조영 및 질환부위의 광학 영상을 얻기 위하여 생체 물질에 형광 염료 또는 형광 염료가 미리 표지된 특정 생체 물질을 광학장비와 함께 활용하는 다양한 기법을 통해 영상화한 자료를 얻고 있다. Since the biological material itself has low or no fluorescence in the visible and near-infrared regions, in the biological field, the biological material is used to observe biological phenomena at the cellular and subcellular level in or out of the living body or to project it in vivo to obtain optical images of contrast and diseased areas. Imaging data have been obtained through various techniques that utilize fluorescent dyes or specific biological materials that are pre-labeled with the optical device together with optical equipment.

바이오 분야에서 사용되는 다양한 광학 분석(optical anylsis) 장비들은 내장된 광원 및 필터에 따라 형광을 관찰하기에 적합한 여기 파장(excitation wavelength) 및 형광 파장(emission wavelength)를 가진 형광 염료를 기본 소재나 시약으로 선택하게 된다. Various optical anylsis instruments used in the biotechnologies use fluorescent dyes with excitation and emission wavelengths suitable for fluorescence observation based on built-in light sources and filters as base materials or reagents. Will be chosen.

주로 사용되는 광학 분석 장비로는 세포 관찰을 위한 형광현미경(fluorescece microscope), 공초점현미경(confocal microscope), 유세포분석기(flowcytometer), 마이크로어레이(microarray), 정량 중합효소연쇄반응 장치(qualitative PCR system), 핵산 및 단백질 분리, 분석을 위한 전기영동(electrophoresis) 장치, 실시간 생체내 영상 장비(in vivo imaging system) 등 연구 목적의 장비 외에도, 면역 분석 기법(immnuno assay)이나 PCR 분석 및 통계 기술이 접목된 핵산 및 단백질 진단 키트(또는 바이오칩) 기반 체외 진단(in vitro diagnosis) 장비와 의료 영상 수술(image-guided surgery)을 위한 수술대 및 내시경 장비 등의 진단 및 치료를 위한 것들이 알려져 있으며, 지속적으로 새로운 응용 분야 및 더 높은 수준의 해상도 및 데이터 처리 능력을 가진 장비가 개발되고 있다. Commonly used optical analysis equipment includes a fluoresce microscope, a confocal microscope, a flowcytometer, a microarray, a quantitative PCR system for cell observation. In addition to research equipment such as nucleic acid and protein separations, electrophoresis devices for analysis, and real-time in vivo imaging systems, the combination of immunoassay, PCR, and statistical techniques Nucleic acid and protein diagnostic kits (or biochips) based in vitro diagnostic equipment, as well as operating tables and endoscopic equipment for image-guided surgery, are known for their diagnosis and treatment. And equipment with higher levels of resolution and data processing capabilities are being developed.

일반적으로 단백질 또는 펩타이드 등 생체 분자의 표지를 위해 사용되는 형광염료(fluorescent dye)는 대부분 안트라닐레이트(anthranilate), 1-알킬틱 이소인돌(1-alkylthic isoindoles), 피롤리논(pyrrolinones), 비메인(bimanes), 벤즈옥사졸(benzoxazole), 벤즈이미다졸(benzimidazole), 벤조퓨란(benzofurazan), 나프탈렌(naphthalenes), 쿠마린(coumarins), 시아닌(cyanine), 스틸벤(stilbenes), 카바졸(carbazoles), 페난트리딘(phenanthridine), 안트라센(anthracenes), 보디피(bodipy), 플로세인(fluoresceins), 에오신(eosins), 로다민(rhodamines), 피렌(pyrenes), 크리센(chrysenes) 및 아크리딘(acridines) 등의 구조가 포함되어 있다. In general, fluorescent dyes used for labeling biological molecules such as proteins or peptides are mostly anthranilate, 1-alkylthic isoindoles, pyrrolinones, and Bimanes, benzoxazole, benzimidazole, benzofuran, benzofurazan, naphthalenes, coumarins, cyanine, stilbenes, carbazoles ), Phenanthridine, anthracenes, bodipy, fluoresceins, eosins, rhodamines, pyrenes, chrysenes and acriri Structures such as acridines are included.

상기에서 예시한 다수의 형광 발색단 중에서 바이오 분야에서 이용 가능한 형광 염료 구조를 선별하는 경우, 일반적으로는 대부분의 생체 분자들이 존재하는 매질, 즉, 수용액 및 수용성 버퍼 내에 존재할 때 강한 형광을 내는 것과 형광 장비에 맞는 여기 및 형광 파장을 갖는 것이 중요하다. When screening fluorescent dye structures available in the biotechnologies among the many fluorophores exemplified above, fluorescence equipment and fluorescence equipment are generally used when most biomolecules are present in the medium in which they are present, ie, in aqueous and aqueous buffers. It is important to have an excitation and fluorescence wavelength that fits.

바이오 분야에서 주로 적용될 수 있는 염료는 가급적 수용액이나 친수성 조건에서 광표백(photobleaching) 및 소광(quenching) 현상이 적고, 다량의 빛을 흡수할 수 있도록 몰흡광계수(molecular extinction coefficient)가 커야 하며, 생체 분자 자체의 형광 범위와 멀리 떨어진 500 nm 이상의 가시광선 영역이나 근적외선 영역에 있어야 하고, 다양한 pH 조건에서 안정하여야 하나, 상기 제한 사항을 만족할 수 있는 생체 분자 표지용으로 사용 가능한 염료의 구조는 한정되어 있다. The dyes that can be applied mainly in the bio field should have low photobleaching and quenching in aqueous solutions or hydrophilic conditions, and have a large molecular extinction coefficient to absorb large amounts of light. It should be in the visible or near infrared region of 500 nm or more away from its fluorescence range and stable under various pH conditions, but the structure of the dye which can be used for biomolecular labeling which can satisfy the above limitations is limited.

이러한 요구 조건에 부합하는 형광 색원체로는 시아닌, 로다민, 플로세인, 보디피, 쿠마린, 아크리딘, 피렌 유도체들이 있는데, 염료 단독 또는 생체 분자 구조 내의 특정 치환기와 결합이 가능하도록 반응기를 도입시키기도 하며, 그 중 잔텐(xanthane) 계열의 플로세인 및 로다민과, 폴리메틴(polymethine) 계열의 시아닌 유도체 염료 화합물들이 주로 상품화되어 있다. Fluorescent chromogens that meet these requirements include cyanine, rhodamine, florcein, bodiphy, coumarin, acridine, and pyrene derivatives. The reactor is introduced to allow dyes to be combined with specific substituents in the biomolecular structure. Among them, xanthane-based florcene and rhodamine, and polymethine-based cyanine derivative dye compounds are mainly commercialized.

특히 시아닌 발색단을 가진 염료 화합물은 다양한 흡수/여기 파장의 화합물을 합성하기 용이하다는 장점 외에도, 일반적으로 광학 및 pH 안정성이 탁월하고, 좁은 흡수 및 발광 파장 범위를 가지며, 500 내지 800 nm의 형광 영역을 갖기 때문에 생체 분자의 자체 형광 영역과 중첩되지 않아 분석이 용이하며, 용매 및 용해도 특성에 따라 다소 차이는 있지만, 높은 몰흡광계수를 나타내는 등 많은 장점이 있어 생물학적 응용에 많이 이용된다. In particular, dye compounds with cyanine chromophores are generally excellent in optical and pH stability, have a narrow absorption and emission wavelength range, and have a fluorescence region of 500 to 800 nm, in addition to the advantages of being easy to synthesize compounds of various absorption / excitation wavelengths. Since it does not overlap with its own fluorescent region of the biomolecule, it is easy to analyze. Although it varies slightly depending on the solvent and solubility characteristics, it has many advantages such as high molar extinction coefficient and is widely used for biological applications.

그 이외에도, 시아닌 발색단을 가진 염료 화합물은 화상표시장치용 광학필터나 레이저 용착용 수지 조성물의 용도로 유용하게 이용될 수도 있다. 특정한 광에 강도가 큰 흡수를 가지는 화합물은 액정표시장치, 플라즈마 디스플레이 패널, 전계발광디스플레이, 음극관 표시장치, 형광 표시관 등의 화상표시장치용 광학필터나 DVDㅁR 등의 광학 기록 매체의 광학 요소로서 널리 이용되고 있다. 광학 필터에는 불필요한 파장의 광들을 선택적으로 흡수하는 기능이 요구되는데, 동시에 형광등 등의 외광의 반사나 글레어를 방지하기 위해서는 480~500 nm 및 540~560 nm의 파장광 흡수가 요구되며, 화상품질을 높이기 위해서는 근적외선의 파장을 선택적으로 흡수하는 기능이 요구되고 있다. In addition, the dye compound having a cyanine chromophore may be usefully used in the use of an optical filter for an image display device or a resin composition for laser welding. Compounds having a high intensity absorption to a specific light include optical filters for image display devices such as liquid crystal displays, plasma display panels, electroluminescent displays, cathode ray tube displays, fluorescent display tubes, and optical elements of optical recording media such as DVD.R. It is widely used as. Optical filters require a function of selectively absorbing light of unnecessary wavelengths, and at the same time, wavelength light absorption of 480 to 500 nm and 540 to 560 nm is required to prevent reflection or glare of external light such as fluorescent lamps. In order to increase, the function which selectively absorbs the wavelength of a near infrared ray is calculated | required.

상기와 같이, 산업적으로 유용하게 적용하기 위해서는 광학 및 pH 안정성이 우수하면서도 특정 파장 범위에서 좁은 흡수/발광 파장 범위를 가지면서도 높은 몰흡광계수를 나타내는 신규한 염료의 개발이 지속적으로 요구되는 바이다. As described above, in order to apply industrially usefully, there is a continuous demand for the development of a novel dye having excellent optical and pH stability, but having a narrow absorption / luminescence wavelength range in a specific wavelength range and showing a high molar absorption coefficient.

1. 한국 공개특허 제10-2010-0094034호1. Korean Patent Publication No. 10-2010-0094034 2. 한국 공개특허 제10-2013-0005381호2. Korean Patent Publication No. 10-2013-0005381 3. 한국 공개특허 제10-2011-0136367호3. Korean Patent Publication No. 10-2011-0136367 4. 한국 공개특허 제10-2011-0122314호4. Korean Patent Publication No. 10-2011-0122314

본 발명은 형광강도, 상대양자효율, 표지율 면에서 우수하여 조영제 조성물로도 이용될 수 있는 형광 화합물, 이를 이용한 표지방법 등을 제공하고자 한다. The present invention is to provide a fluorescent compound, a labeling method using the same, etc. which can be used as a contrast agent composition in terms of fluorescence intensity, relative quantum efficiency, labeling rate.

또한, 본 발명은 우수한 암 타겟능을 갖는 형광화합물-담즙산-키토산 나노입자 및 이의 제조방법을 제공하고자 한다. In addition, the present invention is to provide a fluorescent compound-bile acid-chitosan nanoparticles having excellent cancer target ability and a method for preparing the same.

본 발명의 일 측면은 하기 화학식 1로 표시되는 형광 화합물이다. One aspect of the present invention is a fluorescent compound represented by the following formula (1).

[화학식 1] [Formula 1]

Figure pat00001
Figure pat00001

본 발명의 다른 측면은 본 발명의 여러 구현예에 따른 형광 화합물을 유효성분으로 포함하는 조영제 조성물에 관한 것이다. Another aspect of the invention relates to a contrast agent composition comprising a fluorescent compound according to various embodiments of the present invention as an active ingredient.

본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 형광 화합물을 유효성분으로 포함하는 조영제 주사제에 관한 것이다. Another aspect of the present invention relates to a contrast agent injection comprising a fluorescent compound according to various embodiments of the present invention as an active ingredient.

본 발명의 또 다른 측면은 (a) 담즙산-키토산 복합체 나노입자, (b) 담즙산-키토산 복합체 나노입자에 봉입된, 본 발명의 여러 구현예에 따른 형광 화합물을 포함하는 형광화합물-담즙산-키토산 나노입에 관한 것이다. Another aspect of the invention is a fluorescent compound-bile acid-chitosan nano comprising a fluorescent compound according to various embodiments of the present invention, (a) bile acid-chitosan complex nanoparticles, (b) encapsulated in a bile acid-chitosan complex nanoparticles It's about the mouth.

본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 형광화합물-담즙산-키토산 나노입자를 포함하는 조영제 조성물에 관한 것이다. Another aspect of the invention relates to a contrast agent composition comprising a fluorescent compound-bile acid-chitosan nanoparticles according to various embodiments of the present invention.

본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 형광화합물-담즙산-키토산 나노입자를 포함하는 조영제 주사제에 관한 것이다. Another aspect of the invention relates to a contrast agent injection comprising fluorescent compound-bile acid-chitosan nanoparticles according to various embodiments of the invention.

본 발명의 또 다른 측면은 (A) 담즙산과 메탄올 등의 제1 용매를 혼합하고 NHS 등을 투입하여 담즙산 용액을 제조하는 단계, (B) 글라이콜 키토산과 메탄올 등의 제2 용매를 포함하는 수용액에 EDC 등을 투입하여 키토산 용액을 제조하는 단계, (C) 상기 키토산 용액을 상기 담즙산 용액에 투입한 후, 투석하고 분산시키고 나서 동결건조하는 단계를 포함하는 담즙산-키토산 복합체 나노입자 제조방법에 관한 것이다. Another aspect of the present invention is to prepare a bile acid solution by (A) mixing the first solvent, such as bile acid and methanol, NHS and the like, (B) a second solvent, such as glycol chitosan and methanol Preparing a chitosan solution by adding EDC to an aqueous solution, (C) adding the chitosan solution to the bile acid solution, dialysis and dispersing it, and then lyophilizing the bile acid-chitosan composite nanoparticle manufacturing method It is about.

본 발명의 또 다른 측면은 (A) 담즙산-키토산 복합체 나노입자를 카보네이트 버퍼 용액 등의 제1 용매에 용해하여 담즙산-키토산 복합체 나노입자 용액을 제조하는 단계, (B) 본 발명의 여러 구현예에 따른 형광 화합물을 DMSO 등의 제2 용매에 용해하여 형광 화합물 용액을 제조하는 단계, (C) 상기 형광 화합물 용액을 상기 담즙산-키토산 복합체 나노입자 용액에 투입하고, 투석 동결건조하는 단계를 포함하는 형광화합물-담즙산-키토산 나노입자 제조방법에 관한 것이다. Another aspect of the present invention is to prepare a bile acid-chitosan composite nanoparticle solution by (A) dissolving bile acid-chitosan composite nanoparticles in a first solvent such as a carbonate buffer solution, (B) in various embodiments of the present invention Preparing a fluorescent compound solution by dissolving the fluorescent compound in a second solvent such as DMSO, (C) the fluorescent compound solution into the bile acid-chitosan composite nanoparticle solution, and dialysis lyophilization. The present invention relates to a method for preparing a compound-bile acid-chitosan nanoparticle.

본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 형광 화합물을 표지대상 물질과 결합시키는 단계를 포함하는 형광 화합물 표지방법에 관한 것이다. Another aspect of the present invention relates to a fluorescent compound labeling method comprising the step of binding a fluorescent compound according to various embodiments of the present invention with a labeling substance.

본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 형광화합물-담즙산-키토산 나노입자를 표지대상 물질과 결합시키는 단계를 포함하는 형광 화합물 표지방법에 관한 것이다. Another aspect of the present invention relates to a fluorescent compound labeling method comprising the step of binding a fluorescent compound-bile acid-chitosan nanoparticle with a labeling material according to various embodiments of the present invention.

본 발명에 따른 형광 화합물은 형광강도, 상대양자효율, 표지율 면에서 우수하여 타겟 물질의 표지 및 염색에 보다 효과적으로 활용될 수 있다. 또한, 광학 안정성이 우수하여 장시간의 염색에도 안정적 형광을 나타내며, 체내에 투여 시 축적되지 않으면서도 형광 강도가 우수하여 종래의 염료에 비하여 소량의 사용에도 염색 및 체내 영상화가 용이하여 경제적으로 이용이 가능하다. 뿐만 아니라, 본 발명에 따른 형광화합물-담즙산-키토산 나노입자는 우수한 암 타겟능을 보인다. The fluorescent compound according to the present invention is excellent in fluorescence intensity, relative quantum efficiency and labeling rate, and thus can be more effectively used for labeling and dyeing target materials. In addition, it has excellent optical stability and shows stable fluorescence even for long time dyeing, and it does not accumulate when administered to the body, and has excellent fluorescence intensity, so that dyeing and imaging in the body can be used economically even with a small amount of use compared to conventional dyes. Do. In addition, the fluorescent compound-bile acid-chitosan nanoparticles according to the present invention show excellent cancer targeting ability.

도 1 및 도 2는 화합물 1의 광학분석 결과를 보여주는 그래프이다.
도 3 및 도 4는 화합물 2의 광학분석 결과를 보여주는 그래프이다.
도 5는 화합물 1의 형광 스펙트럼이다.
도 6은 화합물 2의 형광 스펙트럼이다.
도 7은 화합물 1과 화합물 2의 마우스 체내 분포양상을 보여주는 in vivo 이미징 결과이다.
도 8은 화합물 1과 화합물 2의 마우스 체내 분포양상을 보여주는 ex vivo 이미징 결과이다.
도 9는 ex vivo 이미징 이후 각 장기 별 형광 강도 값을 보여주는 그래프이다.
도 10은 화합물1-HGC 나노입자의 암 타겟능을 보여주는 in vivo 이미징 결과이다.
도 11은 화합물1-HGC 나노입자의 암 타겟능을 보여주는 ex vivo 이미징 결과이다.
1 and 2 are graphs showing the optical analysis results of Compound 1.
3 and 4 are graphs showing the results of optical analysis of compound 2.
5 is a fluorescence spectrum of Compound 1. FIG.
6 is a fluorescence spectrum of Compound 2. FIG.
7 is a result of in vivo imaging showing the distribution patterns of mouse 1 and compound 2 in the mouse.
8 is an ex vivo imaging result showing the distribution in the mouse body of Compound 1 and Compound 2.
9 is a graph showing fluorescence intensity values for each organ after ex vivo imaging.
10 is a result of in vivo imaging showing cancer targeting ability of Compound 1-HGC nanoparticles.
FIG. 11 is an ex vivo imaging result showing cancer targeting ability of Compound 1-HGC nanoparticles. FIG.

이하에서, 본 발명의 여러 측면 및 다양한 구현예에 대해 더욱 구체적으로 살펴보도록 한다. Hereinafter, various aspects and various embodiments of the present invention will be described in more detail.

본 발명의 일 측면은 하기 화학식 1로 표시되는 형광 화합물이다. One aspect of the present invention is a fluorescent compound represented by the following formula (1).

Figure pat00002
Figure pat00002

상기 X1, X2, X3, X4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, SO3H, SO3 - 중에서 선택되며,Is selected from, wherein X 1, X 2, X 3 , X 4 are the same or different and each independently represent hydrogen, SO 3 H, SO 3 together

상기 X5는 SO3H 또는 SO3 -이고,X 5 is SO 3 H or SO 3 ,

(i) 상기 Y1은 하기 화학식 1a의 구조를 가지고 상기 Y2는 SO3H 또는 SO3 -이거나, 또는 (ii) 상기 Y1은 SO3H 또는 SO3 -이고 상기 Y2는 하기 화학식 1a의 구조를 가지며,(i) wherein Y 1 has a structure of Formula 1a and Y 2 is SO 3 H or SO 3 , or (ii) Y 1 is SO 3 H or SO 3 and Y 2 is Has the structure of

[화학식 1a] [Formula 1a]

Figure pat00003
Figure pat00003

상기 n1은 2 내지 7의 자연수이고, N1 is a natural number of 2 to 7,

상기 n3은 2 내지 7의 자연수이고, N3 is a natural number of 2 to 7,

상기 n2는 1 내지 5의 자연수이고, N2 is a natural number of 1 to 5,

상기 m1은 3 내지 7의 자연수이고, M1 is a natural number of 3 to 7,

상기 m2는 2내지 5의 자연수이고, M2 is a natural number of 2 to 5,

상기 m3은 3 내지 7의 자연수이고, M3 is a natural number of 3 to 7,

상기 Z는 Cl이다. Z is Cl.

본 발명에 따른 형광 화합물은 기존 상용 형광 염료(cy 5.5, cy 7.5)에 비해 더욱 강한 형광 강도를 보임을 확인하였다. It was confirmed that the fluorescent compound according to the present invention showed stronger fluorescence intensity than conventional commercial fluorescent dyes (cy 5.5, cy 7.5).

일 구현예에 따르면, 상기 X1, X2, X3, X4는 (i) 모두 수소이거나 또는 (ii) 각각 독립적으로 SO3H 및 SO3 - 중에서 선택되고,According to one embodiment, the X 1, X 2, X 3 , X 4 are each independently selected from SO 3 H and SO 3, or both (i) hydrogen or (ii) - is selected from,

상기 n1은 3이거나 4이고, N1 is 3 or 4,

상기 n3은 3이거나 4이고, N3 is 3 or 4,

상기 n2는 2 또는 3이고, N2 is 2 or 3,

상기 m1은 5이고, M1 is 5,

상기 m2는 3이고, M2 is 3,

상기 m3은 5이다. M3 is 5.

다른 구현예에 따르면, 상기 X1, X2, X3, X4는 (i) 모두 수소이거나 또는 (ii) 이들 중 하나만 SO3 -이고 나머지는 SO3H이다.According to another embodiment, X 1 , X 2 , X 3 , X 4 are (i) all hydrogen or (ii) only one of them is SO 3 and the others are SO 3 H.

또 다른 구현예에 따르면, 상기 형광 화합물은 하기 화학식 2a 또는 화학식 2b의 구조를 갖는다. According to another embodiment, the fluorescent compound has the structure of Formula 2a or Formula 2b.

[화학식 2a] [Formula 2a]

Figure pat00004
Figure pat00004

[화학식 2b] [Formula 2b]

Figure pat00005
Figure pat00005

화합물 1과 화합물 2에 대한 체내 분포 양상을 관찰한 결과, 화합물 1과 화합물 2는 각각 신장과 간에 상대적으로 많은 양이 잔류하는 것으로 확인되었다. As a result of observing the distribution patterns of Compound 1 and Compound 2, it was confirmed that Compound 1 and Compound 2 remained relatively large in kidney and liver, respectively.

본 발명의 다른 측면은 본 발명의 여러 구현예에 따른 형광 화합물을 유효성분으로 포함하는 조영제 조성물에 관한 것이다. Another aspect of the invention relates to a contrast agent composition comprising a fluorescent compound according to various embodiments of the present invention as an active ingredient.

본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 형광 화합물을 유효성분으로 포함하는 조영제 주사제에 관한 것이다. Another aspect of the present invention relates to a contrast agent injection comprising a fluorescent compound according to various embodiments of the present invention as an active ingredient.

본 발명의 또 다른 측면은 (a) 담즙산-키토산 복합체 나노입자, (b) 담즙산-키토산 복합체 나노입자에 봉입된, 본 발명의 여러 구현예에 따른 형광 화합물을 포함하는 형광화합물-담즙산-키토산 나노입자에 관한 것이다. Another aspect of the invention is a fluorescent compound-bile acid-chitosan nano comprising a fluorescent compound according to various embodiments of the present invention, (a) bile acid-chitosan complex nanoparticles, (b) encapsulated in a bile acid-chitosan complex nanoparticles It is about particles.

본 발명에 따른 형광화합물-담즙산-키토산 나노입자는 우수한 암 타겟능을 갖는 것을 확인하였다. It was confirmed that the fluorescent compound-bile acid-chitosan nanoparticles according to the present invention had excellent cancer targeting ability.

본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 형광화합물-담즙산-키토산 나노입자를 포함하는 조영제 조성물에 관한 것이다. Another aspect of the invention relates to a contrast agent composition comprising a fluorescent compound-bile acid-chitosan nanoparticles according to various embodiments of the present invention.

본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 형광화합물-담즙산-키토산 나노입자를 포함하는 조영제 주사제에 관한 것이다. Another aspect of the invention relates to a contrast agent injection comprising fluorescent compound-bile acid-chitosan nanoparticles according to various embodiments of the invention.

본 발명의 또 다른 측면은 (A) 담즙산과 메탄올을 혼합하고 NHS을 투입하여 담즙산 용액을 제조하는 단계, (B) 글라이콜 키토산과 메탄올을 포함하는 수용액에 EDC를 투입하여 키토산 용액을 제조하는 단계, (C) 상기 키토산 용액을 상기 담즙산 용액에 투입한 후, 투석하고 분산시키고 나서 동결건조하는 단계를 포함하는 담즙산-키토산 복합체 나노입자 제조방법에 관한 것이다. Another aspect of the present invention is to prepare a bile acid solution by (B) mixing the bile acid and methanol and NHS, (B) to prepare a chitosan solution by adding EDC to an aqueous solution containing glycol chitosan and methanol Step, (C) after the chitosan solution is added to the bile acid solution, dialysis and dispersion and lyophilized relates to a method for producing bile acid-chitosan composite nanoparticles.

본 발명의 또 다른 측면은 (A) 담즙산-키토산 복합체 나노입자를 카보네이트 버퍼 용액에 용해하여 담즙산-키토산 복합체 나노입자 용액을 제조하는 단계, (B) 본 발명의 여러 구현예에 따른 형광 화합물을 DMSO에 용해하여 형광 화합물 용액을 제조하는 단계, (C) 상기 형광 화합물 용액을 상기 담즙산-키토산 복합체 나노입자 용액에 투입하고, 투석 동결건조하는 단계를 포함하는 형광화합물-담즙산-키토산 나노입자 제조방법에 관한 것이다. Another aspect of the present invention is to prepare a bile acid-chitosan composite nanoparticles solution by dissolving bile acid-chitosan composite nanoparticles in a carbonate buffer solution, (B) a fluorescent compound according to various embodiments of the present invention DMSO Preparing a fluorescent compound solution by dissolving in (C) adding the fluorescent compound solution to the bile acid-chitosan composite nanoparticle solution, and lyophilizing the dialysis compound to the method of preparing a fluorescent compound-bile acid-chitosan nanoparticle. It is about.

본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 형광 화합물을 표지대상 물질과 결합시키는 단계를 포함하는 형광 화합물 표지방법에 관한 것이다. Another aspect of the present invention relates to a fluorescent compound labeling method comprising the step of binding a fluorescent compound according to various embodiments of the present invention with a labeling substance.

본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 형광화합물-담즙산-키토산 나노입자를 표지대상 물질과 결합시키는 단계를 포함하는 형광 화합물 표지방법에 관한 것이다. Another aspect of the present invention relates to a fluorescent compound labeling method comprising the step of binding a fluorescent compound-bile acid-chitosan nanoparticle with a labeling material according to various embodiments of the present invention.

이때, 상기 표지대상 물질은 섬유, 생체분자, 나노입자 및 유기화합물 중에서 선택된 1종 이상이며, 상기 표지대상 물질은 아민기, 수산화기 및 티올기 중에서 선택된 적어도 1개의 기능기를 포함하며, 상기 기능기에 상기 형광 화합물이 결합할 수 있다. In this case, the labeling material is at least one selected from fibers, biomolecules, nanoparticles and organic compounds, the labeling material comprises at least one functional group selected from amine groups, hydroxyl groups and thiol groups, Fluorescent compounds may bind.

또한, 상기 생체분자는 단백질, 펩타이드, 탄수화물, 당, 지방, 항체, 프로테오글라이칸, 글라이코프로틴 및 siRNA으로 이루어진 군 중에서 선택될 수 있다.
In addition, the biomolecule may be selected from the group consisting of proteins, peptides, carbohydrates, sugars, fats, antibodies, proteoglycans, glycoproteins and siRNAs.

이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다. Hereinafter, the present invention will be described in more detail with reference to examples and the like, but the scope and contents of the present invention are not limited or interpreted by the following examples. In addition, if it is based on the disclosure of the present invention including the following examples, it will be apparent that those skilled in the art can easily carry out the present invention, the results of which are not specifically presented experimental results, these modifications and modifications are attached to the patent It goes without saying that it belongs to the claims.

또한 이하에서 제시되는 실험 결과는 상기 실시예 및 비교예의 대표적인 실험 결과만을 기재한 것이며, 아래에서 명시적으로 제시하지 않은 본 발명의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다. In addition, the experimental results presented below are only representative of the experimental results of the Examples and Comparative Examples, and the effects of each of the various embodiments of the present invention not explicitly set forth below will be described in detail in the corresponding sections.

실시예Example

제조예 1: 화합물 A의 제조Preparation Example 1 Preparation of Compound A

(1) 화합물 a의 합성 (1) Synthesis of Compound a

Figure pat00006
Figure pat00006

6-아미노-1,3-나프탈렌디설폰산 모노소듐 염 수화물) (TCI) (15 g)을 증류수 200 mL에 가한 후 12 시간 동안 이온교환수지를 이용하여 이온교환 후 감압 건조시켰다(15 g, 100%). 6-amino-1,3-naphthalenedisulfonic acid monosodium salt hydrate) (TCI) (15 g) was added to 200 mL of distilled water and dried under reduced pressure after ion exchange using an ion exchange resin for 12 hours (15 g, 100 %).

염화제일주석(tin(II) chloride)에 증류수 40 mL, 염산(HCl) 8 mL을 혼합하고 냉각시켰다. 앞에서 얻은 고체 물질(15 g, 49.5 mmol, 1eq)에 증류수 120 mL, 염산(HCl) 25 mL을 가한 후 5분 동안 0℃에서 반응시켰다. 아질산나트륨(sodium nitrite) (3.4 g, 49.5 mmol, 1 eq)에 증류수 50 mL 가하고 나서, 상기 용매에 적가 후 30분 동안 반응시켰다. 상기 냉각시킨 용액을 혼합액에 적가 후 12 시간 동안 상온에서 반응시키고 나서, 회전농축기(evaporator)로 용매를 건조 후 다이에틸 이터로 입자를 잡은 뒤 2, 3회 세정한 후 감압 건조시켰다(18 g, 114%). To tin (II) chloride, 40 mL of distilled water and 8 mL of hydrochloric acid (HCl) were mixed and cooled. 120 mL of distilled water and 25 mL of hydrochloric acid (HCl) were added to the solid material (15 g, 49.5 mmol, 1eq), and the reaction was carried out at 0 ° C. for 5 minutes. 50 mL of distilled water was added to sodium nitrite (3.4 g, 49.5 mmol, 1 eq), and the reaction product was added drop wise to the solvent for 30 minutes. After the cooled solution was added dropwise to the mixed solution and reacted at room temperature for 12 hours, the solvent was dried with a rotary evaporator and the particles were caught with diethyl ether, washed two or three times, and dried under reduced pressure (18 g, 114%).

(2) 화합물 b의 합성 (2) Synthesis of Compound b

Figure pat00007
Figure pat00007

화합물 a (6 g, 18.8 mmol, 1 eq,) 및 3-메틸-2-부탄온(6.05 mL, 56.4 mmol, 3.02 eq, TCI), 포타슘 아세테이트(3.7 g, 37.6 mmol, 2 eq, 덕산)를 아세트산 50 mL에 가한 후, 12 시간 동안 140℃에서 가열 환류하며 반응시켰다. 상온으로 냉각시키고 용매를 감압 건조 후 에틸아세테이트로 2, 3회 세정한 후 감압 건조시켰다(7.4 g, 107%). Compound a (6 g, 18.8 mmol, 1 eq,) and 3-methyl-2-butanone (6.05 mL, 56.4 mmol, 3.02 eq, TCI), potassium acetate (3.7 g, 37.6 mmol, 2 eq, Duksan) After addition to 50 mL of acetic acid, the mixture was reacted with heating under reflux at 140 ° C. for 12 hours. After cooling to room temperature, the solvent was dried under reduced pressure, washed with ethyl acetate two or three times, and dried under reduced pressure (7.4 g, 107%).

Rf = 0.57 (정상, 실리카겔, 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v)R f = 0.57 (normal, silica gel, isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v)

(3) 화합물 c의 합성 (3) Synthesis of Compound c

Figure pat00008
Figure pat00008

화합물 b (7.4 g, 20.3 mmol, 1 eq) 및 1,3-프로판설톤(7.9 mL, 90.5 mmol, 4.46 eq, TCI), 아세트산 나트륨(sodium acetate) (2 g, 40.6 mmol, 2 eq)을 아세토나이트릴 20 mL에 가한 후, 12 시간 동안 120℃에서 가열 환류하며 반응시켰다. 상온으로 냉각시키고, 감압 건조하였다(15 g, 153%). Compound b (7.4 g, 20.3 mmol, 1 eq) and 1,3-propanesultone (7.9 mL, 90.5 mmol, 4.46 eq, TCI), sodium acetate (2 g, 40.6 mmol, 2 eq) After addition to 20 mL of nitrile, the reaction was heated to reflux at 120 ° C. for 12 hours. Cooled to room temperature and dried under reduced pressure (15 g, 153%).

(4) 화합물 d의 합성 (4) Synthesis of Compound d

Figure pat00009
Figure pat00009

화합물 c (15 g, 30.4 mmol, 1 eq) 및 말론알데하이드 다이아닐리드 하이드로클로라이드(7.8 g, 30.4 mmol, 1 eq, TCI), 트리에틸아민(4.2 mL, 30.4 mmol, 1 eq, TCI)를 아세트산 100 mL에 가한 후 4 시간 동안 140℃에서 가열 환류하며 반응시켰다. 상온으로 냉각시키고, 에틸아세테이트로 2, 3회 세정한 후 감압 건조시켰다. 그 후 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v의 전개액으로 Silica gel 60 정상 크로마토그래피로 정제하였다(12 g, 60 %). Compound c (15 g, 30.4 mmol, 1 eq) and malonaldehyde dianilide hydrochloride (7.8 g, 30.4 mmol, 1 eq, TCI), triethylamine (4.2 mL, 30.4 mmol, 1 eq, TCI) were added to acetic acid 100 After addition to the mL and reacted by heating to reflux at 140 ℃ for 4 hours. After cooling to room temperature, the mixture was washed two or three times with ethyl acetate and dried under reduced pressure. Thereafter, the mixture was purified by silica gel 60 normal chromatography with a developing solution of isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v (12 g, 60%).

Rf = 0.5 (정상, 실리카겔, 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v)R f = 0.5 (normal, silica gel, isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v)

(5) 화합물 e의 합성 (5) Synthesis of Compound e

Figure pat00010
Figure pat00010

에틸 2-메틸아세토아세테이트(24.2 mL, 0.16 mol, 1 eq, TCI) 및 에틸-6-브로모헥사노에이트(34 mL, 0.17 mol, 1.1 eq, TCI), 소듐 에톡사이드(64 mL, 0.77 mol, 4.8 eq, TCI)에 에탄올 200 mL을 가한 후 12 시간 동안 120℃에서 가열 환류하며 반응시켰다. 상온으로 냉각시키고, 1 M 염산을 소량 적가 후 pH를 중성으로 만들었다(pH = 7). 클로로포름과 증류수를 이용하여 추출 후 용매를 감압 건조하였다. 그 후 핵산과 에틸아세테이트를 전개액으로 Silica gel 60 정상 크로마토그래피로 정제하였다(48 g, 106.6%). Ethyl 2-methylacetoacetate (24.2 mL, 0.16 mol, 1 eq, TCI) and ethyl-6-bromohexanoate (34 mL, 0.17 mol, 1.1 eq, TCI), sodium ethoxide (64 mL, 0.77 mol , 4.8 eq, TCI) was added 200 mL of ethanol and reacted by heating under reflux at 120 ° C. for 12 hours. After cooling to room temperature, a small amount of 1 M hydrochloric acid was added dropwise to make the pH neutral (pH = 7). After extraction with chloroform and distilled water, the solvent was dried under reduced pressure. Thereafter, the nucleic acid and ethyl acetate were purified by silica gel 60 normal chromatography with a developing solution (48 g, 106.6%).

Rf = 0.4 (정상, 실리카겔, 핵산 : 에틸아세테이트 = 9 : 1 v/v)R f = 0.4 (normal, silica gel, nucleic acid: ethyl acetate = 9: 1 v / v)

(6) 화합물 f의 합성 (6) Synthesis of Compound f

Figure pat00011
Figure pat00011

화합물 e (48 g, 0.16 mol, 1 eq) 및 수산화나트륨(21.4 g, 0.51 mol, 3.2 eq, 덕산)에 메탄올(165 mL, 3.9 mol, 24.4 eq) 및 증류수(54.6 mL, 2.89 mol, 18.1 eq)를 가한 후 12 시간 동안 50℃에서 가열하며 반응시켰다. 감압 건조 후 1M 염산을 200mL 적가하여 pH를 산성로 만들었다(pH = 1). 에틸아세테이트와 증류수로 추출 후 용매를 감압 건조하였다(30 g, 95.2%). To compound e (48 g, 0.16 mol, 1 eq) and sodium hydroxide (21.4 g, 0.51 mol, 3.2 eq, Deoksan) in methanol (165 mL, 3.9 mol, 24.4 eq) and distilled water (54.6 mL, 2.89 mol, 18.1 eq ) Was added and reacted with heating at 50 ° C. for 12 hours. After drying under reduced pressure, 200 mL of 1M hydrochloric acid was added dropwise to make the pH acidic (pH = 1). After extraction with ethyl acetate and distilled water, the solvent was dried under reduced pressure (30 g, 95.2%).

Rf = 0.0 (정상, 실리카겔, 핵산 : 에틸아세테이트 = 9 : 1 v/v)R f = 0.0 (normal, silica gel, nucleic acid: ethyl acetate = 9: 1 v / v)

(7) 화합물 g의 합성 (7) Synthesis of Compound g

Figure pat00012
Figure pat00012

화합물 f (15.8 g, 84.8 mmol, 1.5 eq) 및 화합물 5-1 (18 g, 56.5 mmol, 1 eq)에 아세트산 87mL을 가한 후 5시간 동안 120℃에서 가열 환류하며 반응시켰다. 상온으로 냉각시키고 생성된 고체를 제거하기 위해 여과하였으며 여액을 감압 건조시켰다. 그 후 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v의 전개액으로 Silica gel 60 정상 크로마토그래피로 정제하였다(30 g, 115.3%). 87 mL of acetic acid was added to compound f (15.8 g, 84.8 mmol, 1.5 eq) and compound 5-1 (18 g, 56.5 mmol, 1 eq), followed by reaction under heating and reflux at 120 ° C. for 5 hours. It was cooled to room temperature and filtered to remove the solid formed, and the filtrate was dried under reduced pressure. Thereafter, the mixture was purified by silica gel 60 normal chromatography using isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v (30 g, 115.3%).

Rf = 0.45 (정상, 실리카겔, 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v)R f = 0.45 (normal, silica gel, isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v)

(8) 화합물 h의 합성 (8) Synthesis of Compound h

Figure pat00013
Figure pat00013

화합물 g (30 g, 63.9 mmol, 1 eq) 및 1,3-프로판설톤(37.5 mL, 428.1 mmol, 6.7 eq, TCI), 아세트산 나트륨(7.2 g, 105.4 mmol, 1,65 eq)을 아세토나이트릴 45 mL에 가한 후, 5 시간 동안 120℃에서 가열 환류하며 반응시켰다. 상온으로 냉각시키고, 감압 건조하였다. 그 후 아세토니트릴 수용액을 전개액으로 RP-C18 역상 크로마토그래피로 정제하였다(52 g, 140%). Compound g (30 g, 63.9 mmol, 1 eq) and 1,3-propanesultone (37.5 mL, 428.1 mmol, 6.7 eq, TCI), sodium acetate (7.2 g, 105.4 mmol, 1,65 eq) were acetonitrile After addition to 45 mL, the reaction was heated at reflux at 120 ° C. for 5 hours. Cooled to room temperature and dried under reduced pressure. The aqueous acetonitrile solution was then purified by RP-C18 reverse phase chromatography as a developing solution (52 g, 140%).

(9) 화합물 A의 합성 (9) Synthesis of Compound A

Figure pat00014
Figure pat00014

화합물 h (15 g, 25.9 mmol, 1.5 eq) 및 화합물 d (11.5 g, 17.3 mmol, 1 eq)를 디메틸포름아마이드에 완용하였다. 상기 용액에 트리에틸아민(20.5 mL, 147 mmol, 8.5 eq, TCI)를 아세트산무수물(9 mL, 95.1 mmol, 5.5 eq, 덕산)을 가한 후 1 시간 동안 상온에서 반응시켰다. 에틸아세테이트로 2, 3회 세정한 후 감압 건조시켰다. 그 후 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v의 전개액으로 Silica gel 60 정상 크로마토그래피로 정제하였다(12 g, 60 %). Compound h (15 g, 25.9 mmol, 1.5 eq) and compound d (11.5 g, 17.3 mmol, 1 eq) were completed in dimethylformamide. Triethylamine (20.5 mL, 147 mmol, 8.5 eq, TCI) was added to the solution, followed by addition of acetic anhydride (9 mL, 95.1 mmol, 5.5 eq, Duksan), followed by reaction at room temperature for 1 hour. After washing 2-3 times with ethyl acetate, the mixture was dried under reduced pressure. Thereafter, the mixture was purified by silica gel 60 normal chromatography with a developing solution of isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v (12 g, 60%).

Rf = 0.5 (정상, 실리카겔, 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v)R f = 0.5 (normal, silica gel, isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v)

실시예 1: 화합물 1의 제조Example 1 Preparation of Compound 1

(1) 화합물 A-1의 합성 (1) Synthesis of Compound A-1

Figure pat00015
Figure pat00015

화합물 A (500 mg, 0.5 mmol, 1 eq) 및 N,N-다이석시니미딜 카보네이트(DSC, 384 mg, 1.5 mmol, 3 eq, TCI), N,N-다이아이소프로필에틸아민(DIPEA) (870 μL, 5 mmol, 10 eq, TCI)을 다이메틸포름아마이드 50 mL에 가한 후, 1 시간 동안 40℃에서 가열하며 반응시켰다. 상온으로 냉각시키고, 다이에틸 이터를 이용하여 입자를 잡은 뒤 생성된 고체 입자를 감압 건조시켰다(500 mg, 91%). Compound A (500 mg, 0.5 mmol, 1 eq) and N, N-diisuccinimidyl carbonate (DSC, 384 mg, 1.5 mmol, 3 eq, TCI), N, N-diisopropylethylamine (DIPEA) (870 μL, 5 mmol, 10 eq, TCI) was added to 50 mL of dimethylformamide and then reacted with heating at 40 ° C. for 1 hour. After cooling to room temperature, the particles were caught using diethyl ether and the resulting solid particles were dried under reduced pressure (500 mg, 91%).

Rf = 0.31 (정상, 실리카겔, 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v)R f = 0.31 (normal, silica gel, isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v)

LC/MS, 계산치 1215.14, 측정치 1216.2 LC / MS, calculated 1215.14, found 1216.2

(2) 화합물 A-2의 합성 (2) Synthesis of Compound A-2

Figure pat00016
Figure pat00016

화합물 A-1 (500 mg, 0.035mmol, 1 eq)에 1,3-다이아미노프로판(9.72 μL, 0.1165 mmol, 1 eq)을 DMF 10mL에 가한 후, 30분 동안 상온에서 반응시켰다. 반응 후, 생성된 고체 입자를 여과하였다. 에틸아세테이트로 2, 3회 세정한 후, 감압 건조시켰다. 아세토니트릴 수용액을 전개액으로 RP-C18 역상 크로마토그래피로 정제하여 순수한 화합물 A-2를 얻었다(400 mg, 75.6%). 1,3-diaminopropane (9.72 μL, 0.1165 mmol, 1 eq) was added to Compound A-1 (500 mg, 0.035 mmol, 1 eq) in 10 mL of DMF, followed by reaction at room temperature for 30 minutes. After the reaction, the resulting solid particles were filtered off. After washing two or three times with ethyl acetate, the mixture was dried under reduced pressure. Acetonitrile aqueous solution was purified by RP-C18 reverse phase chromatography with a developing solution to obtain pure Compound A-2 (400 mg, 75.6%).

Rf = 0.33 (정상, 실리카겔, 아세토니트릴:증류수=4:1 v/v)R f = 0.33 (normal, silica gel, acetonitrile: distilled water = 4: 1 v / v)

LC/MS, 계산치 1174.2, 측정치 1175.3 LC / MS, calculated 1174.2, found 1175.3

(3) 화합물 A-3의 합성 (3) Synthesis of Compound A-3

Figure pat00017
Figure pat00017

시아누릭 클로라이드(383 mg, 2.08 mmol, 5.5 eq)를 아세토나이드릴 35 mL와 얼음 35 mL에 넣은 후 온도를 0 내지 5 ℃로 0.5 시간 동안 섞어주었다. 화합물 A-2 (400 mg, 0.378 mmol, 1eq), 중탄산나트륨(sodium bicarbonate) 191 mg를 첨가하여 온도를 0 내지 5 ℃로 2 시간 동안 반응시켰다. 감압 건조 뒤, 아세토나이트릴 수용액을 전개액으로 RP-C18 역상 크로마토그래피로 정제하여 순수한 화합물 A-3을 얻었다(373 mg, 81.9 %). Cyanuric chloride (383 mg, 2.08 mmol, 5.5 eq) was added to 35 mL of acetonitrile and 35 mL of ice, and the temperature was mixed at 0 to 5 ° C. for 0.5 hour. Compound A-2 (400 mg, 0.378 mmol, 1eq) and 191 mg of sodium bicarbonate were added thereto, and the temperature was reacted at 0-5 ° C. for 2 hours. After drying under reduced pressure, an acetonitrile aqueous solution was purified by RP-C18 reverse phase chromatography with a developing solution to give pure Compound A-3 (373 mg, 81.9%).

Rf = 0.47 (이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3)R f = 0.47 (isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3)

LC/MS, 계산치 1321.14, 측정치 1322.8 LC / MS, calculated 1321.14, found 1322.8

(4) 화합물 A-4의 합성 (4) Synthesis of Compound A-4

Figure pat00018
Figure pat00018

화합물 A-3 (373 mg, 0.309 mmol, 1eq), 6-아미노헥사노익산(284 mg, 2.16 mmol, 7 eq), N,N-다이아이소프로필에틸아민(DIPEA) (538 μL, 3.09 mmol, 10 eq, TCI)을 증류수 30 mL에 가한 후, 1시간 동안 상온에서 반응시켰다. 그 후 아세토나이트릴 수용액을 전개액으로 이용하는 역상 크로마토그래피로 정제하여 순수한 화합물 A-4를 얻었다(235 mg, 58.5 %). Compound A-3 (373 mg, 0.309 mmol, 1eq), 6-aminohexanoic acid (284 mg, 2.16 mmol, 7 eq), N, N-diisopropylethylamine (DIPEA) (538 μL, 3.09 mmol, 10 eq, TCI) was added to 30 mL of distilled water and reacted at room temperature for 1 hour. Then purified by reverse phase chromatography using an aqueous solution of acetonitrile as a developing solution to give the pure compound A-4 (235 mg, 58.5%).

Rf = 0.33 (이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3)R f = 0.33 (isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3)

LC/MS, 계산치 1416.26, 측정치 1416.9 LC / MS, calculated 1416.26, found 1416.9

(5) 화합물 1의 합성 (5) Synthesis of Compound 1

Figure pat00019
Figure pat00019

화합물 A-4 (235 mg, 0.18 mmol, 1 eq) 및 N,N-다이석시니미딜 카보네이트(DSC) (139 mg, 0.542 mmol, 3 eq, TCI), N,N-다이아이소프로필에틸아민(DIPEA, 314 μL, 1.8 mmol, 10 eq, TCI)을 다이메틸포름아마이드 20 mL에 가한 후, 1시간 동안 상온에서 반응시켰다. 다이에틸 이터를 이용하여 입자를 잡은 뒤 생성된 고체 입자를 감압 건조시켰다. 그 후 아세토나이트릴 수용액을 전개액으로 이용하는 역상 크로마토그래피로 정제하여 순수한 화합물 1을 얻었다(39 mg, 15.5 %). Compound A-4 (235 mg, 0.18 mmol, 1 eq) and N, N-diisuccinimidyl carbonate (DSC) (139 mg, 0.542 mmol, 3 eq, TCI), N, N-diisopropylethylamine (DIPEA, 314 μL, 1.8 mmol, 10 eq, TCI) was added to 20 mL of dimethylformamide, followed by reaction at room temperature for 1 hour. The resulting solid particles were dried under reduced pressure after catching the particles with diethyl ether. Then purified by reverse phase chromatography using an aqueous solution of acetonitrile as a developing solution to give the pure compound 1 (39 mg, 15.5%).

Rf = 0.65 (정상, 실리카겔, 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v)R f = 0.65 (normal, silica gel, isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v)

LC/MS, 1513.28, 측정치 1514.3 LC / MS, 1513.28, found 1514.3

제조예 2: 화합물 B의 제조Preparation Example 2 Preparation of Compound B

(1) 화합물 i의 합성 (1) Synthesis of Compound i

Figure pat00020
Figure pat00020

1,1,2-트리메틸벤즈 인돌(2 g, 9.56 mmol, 1 eq) 및 1,4-부탄설톤(2.9 mL, 28.7 mmol, 3.01 eq, TCI), 아세트산 나트륨(941 mg, 11.5 mmol, 1,2 eq)을 아세토나이트릴 10 mL에 가한 후, 12 시간 동안 100℃에서 가열 환류하며 반응시켰다. 상온으로 냉각시키고, 용매 제거 후 생성된 고체 입자를 여과하였다. 에틸아세테이트로 2, 3회 세정한 후 감압 건조시켰다(1.56 g, 47.3 %). 1,1,2-trimethylbenz indole (2 g, 9.56 mmol, 1 eq) and 1,4-butanesultone (2.9 mL, 28.7 mmol, 3.01 eq, TCI), sodium acetate (941 mg, 11.5 mmol, 1, 2 eq) was added to 10 mL of acetonitrile and then reacted with heating under reflux at 100 ° C. for 12 hours. After cooling to room temperature, the resulting solid particles were filtered after removing the solvent. After washing 2-3 times with ethyl acetate and dried under reduced pressure (1.56 g, 47.3%).

Rf = 0.37 (정상, 실리카겔, 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v)R f = 0.37 (normal, silica gel, isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v)

(2) 화합물 j의 합성 (2) Synthesis of Compound j

Figure pat00021
Figure pat00021

1,1,2-트리메틸벤즈 인돌(2 g, 9.56 mmol, 1 eq) 및 6-브로모헥사노익산(5.6 g, 28.7 mmol, 3.01 eq, TCI), 아세트산 나트륨(941 mg, 11.5 mmol, 1,2 eq)을 아세토나이트릴 10 mL에 가한 후, 12 시간 동안 100 ℃에서 가열 환류하며 반응시켰다. 상온으로 냉각시키고, 용매 제거 후 생성된 고체 입자를 여과하였다. 에틸아세테이트로 2, 3회 세정한 후 감압 건조시켰다(1.01 g, 33.7 %). 1,1,2-trimethylbenz indole (2 g, 9.56 mmol, 1 eq) and 6-bromohexanoic acid (5.6 g, 28.7 mmol, 3.01 eq, TCI), sodium acetate (941 mg, 11.5 mmol, 1 , 2 eq) was added to 10 mL of acetonitrile and then reacted with heating under reflux at 100 ° C. for 12 hours. After cooling to room temperature, the resulting solid particles were filtered after removing the solvent. After washing 2-3 times with ethyl acetate and dried under reduced pressure (1.01 g, 33.7%).

Rf = 0.37 (정상, 실리카겔, 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v)R f = 0.37 (normal, silica gel, isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v)

(3) 화합물 k의 합성 (3) Synthesis of Compound k

Figure pat00022
Figure pat00022

화합물 i (15 g, 30.4 mmol, 1 eq) 및 글루타콘다이아닐리드 하이드로클로라이드(glutacondianilide Hydrochloride) (7.5 g, 30.4 mmol, 1 eq, TCI), 트리에틸아민(4.2 mL, 30.4 mmol, 1 eq, TCI)를 아세트산 100mL에 가한 후 4 시간 동안 140℃에서 가열 환류하며 반응시켰다. 상온으로 냉각시키고, 에틸아세테이트로 2, 3회 세정한 후 감압 건조시켰다. 그 후 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v의 전개액으로 Silica gel 60 정상 크로마토그래피로 정제하였다(16 g, 96.9 %). Compound i (15 g, 30.4 mmol, 1 eq) and glutacondianilide hydrochloride (7.5 g, 30.4 mmol, 1 eq, TCI), triethylamine (4.2 mL, 30.4 mmol, 1 eq, TCI) was added to 100 mL of acetic acid and then reacted by heating to reflux at 140 ° C. for 4 hours. After cooling to room temperature, the mixture was washed two or three times with ethyl acetate and dried under reduced pressure. Then, the mixture was purified by Silica gel 60 normal chromatography with isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v (16 g, 96.9%).

Rf = 0.5 정상, 실리카겔, 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v)R f = 0.5 normal, silica gel, isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v)

(4) 화합물 B의 합성 (4) Synthesis of Compound B

Figure pat00023
Figure pat00023

화합물 j (15 g, 46.3 mmol, 1.5 eq) 및 화합물 k (16.7 g, 30.9 mmol, 1 eq)를 디메틸포름아마이에 완용하였다. 상기 용액에 트리에틸아민(20.5 mL, 147 mmol, 8.5 eq, TCI)를 아세트산무수물(9 mL, 95.1 mmol, 5.5 eq, 덕산)를 가한 후, 1 시간 동안 상온에서 반응시켰다. 에틸아세테이트로 2, 3회 세정한 후 감압 건조시켰다. 그 후 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v의 전개액으로 Silica gel 60 정상 크로마토그래피로 정제하였다(5.7 g, 24.9 %). Compound j (15 g, 46.3 mmol, 1.5 eq) and compound k (16.7 g, 30.9 mmol, 1 eq) were completed in dimethylformamy. Triethylamine (20.5 mL, 147 mmol, 8.5 eq, TCI) was added to the solution, followed by addition of acetic anhydride (9 mL, 95.1 mmol, 5.5 eq, Duksan), followed by reaction at room temperature for 1 hour. After washing 2-3 times with ethyl acetate, the mixture was dried under reduced pressure. Thereafter, the mixture was purified by silica gel 60 normal chromatography with isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v (5.7 g, 24.9%).

Rf = 0.5 정상, 실리카겔, 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v)R f = 0.5 normal, silica gel, isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v)

실시예 2: 화합물 2의 제조Example 2: Preparation of Compound 2

(1) 화합물 B-1의 합성 (1) Synthesis of Compound B-1

Figure pat00024
Figure pat00024

화합물 B (500 mg, 0.67 mmol, 1 eq) 및 N,N-다이석시니미딜 카보네이트(DSC) (518 mg, 2.0 mmol, 3 eq, TCI), N,N-다이아이소프로필에틸아민(DIPEA) (1.1 mL, 6.7 mmol, 10 eq, TCI)을 다이메틸포름아마이드 50 mL에 가한 후, 1 시간 동안 40℃에서 가열하며 반응시켰다. 상온으로 냉각시키고, 다이에틸 이터를 이용하여 입자를 잡은 뒤 생성된 고체 입자를 감압 건조시켰다 (500 mg, 89%). Compound B (500 mg, 0.67 mmol, 1 eq) and N, N-diisuccinimidyl carbonate (DSC) (518 mg, 2.0 mmol, 3 eq, TCI), N, N-diisopropylethylamine (DIPEA ) (1.1 mL, 6.7 mmol, 10 eq, TCI) was added to 50 mL of dimethylformamide, followed by reaction at 40 ° C. for 1 hour. After cooling to room temperature, the particles were caught using diethyl ether and the resulting solid particles were dried under reduced pressure (500 mg, 89%).

Rf = 0.31 (정상, 실리카겔, 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v)R f = 0.31 (normal, silica gel, isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v)

LC/MS, 계산치 827.36, 측정치 828.1 LC / MS, calculated 827.36, found 828.1

(2) 화합물 B-2의 합성 (2) Synthesis of Compound B-2

Figure pat00025
Figure pat00025

화합물 B-1 (500 mg, 0.6 mmol, 1 eq)에 1,3-다이아미노프로판) (49.8 μL, 0.6 mmol, 1 eq)을 디엠에프(DMF) 10 mL에 가한 후, 30분 동안 상온에서 반응시켰다. 반응 후 생성된 고체 입자를 여과하였다. 에틸아세테이트로 2, 3회 세정한 후 감압 건조시켰다. 아세토니트릴 수용액을 전개액으로 RP-C18 역상 크로마토그래피로 정제하여 순수한 화합물 B-2를 얻었다(327mg, 68.4%). To compound B-1 (500 mg, 0.6 mmol, 1 eq) was added 1,3-diaminopropane) (49.8 μL, 0.6 mmol, 1 eq) to 10 mL of DMF, followed by 30 minutes at room temperature. Reacted. Solid particles produced after the reaction were filtered. After washing 2-3 times with ethyl acetate, the mixture was dried under reduced pressure. Acetonitrile aqueous solution was purified by RP-C18 reverse phase chromatography with a developing solution to obtain pure Compound B-2 (327 mg, 68.4%).

Rf = 0.33 (정상, 실리카겔, 아세토니트릴:증류수=4:1 v/v)R f = 0.33 (normal, silica gel, acetonitrile: distilled water = 4: 1 v / v)

LC/MS, 계산치 786.42, 측정치 785.9 LC / MS, calculated 786.42, found 785.9

(3) 화합물 B-3의 합성 (3) Synthesis of Compound B-3

Figure pat00026
Figure pat00026

시아누릭 클로라이드(416 mg, 2.26 mmol, 5.5 eq)를 아세토나이드릴 35 mL와 얼음 35 mL에 넣은 후 온도를 0 내지 5 ℃로 0.5 시간 동안 섞어주었다. 화합물 B-2 (327 mg, 0.41 mmol, 1eq), 중탄산나트륨(sodium bicarbonate) 200 mg를 첨가하여 온도를 0~5℃로 2시간 동안 반응시켰다. 감압 건조 뒤, 아세토나이트릴 수용액을 전개액으로 RP-C18 역상 크로마토그래피로 정제하여 순수한 화합물 B-3을 얻었다(157mg, 40.6 %). Cyanuric chloride (416 mg, 2.26 mmol, 5.5 eq) was added to 35 mL of acetonitrile and 35 mL of ice, and the temperature was mixed at 0 to 5 ° C. for 0.5 hour. Compound B-2 (327 mg, 0.41 mmol, 1eq) and 200 mg of sodium bicarbonate were added thereto, and the temperature was reacted at 0˜5 ° C. for 2 hours. After drying under reduced pressure, an acetonitrile aqueous solution was purified by RP-C18 reverse phase chromatography with a developing solution to obtain pure Compound B-3 (157 mg, 40.6%).

Rf = 0.47 (이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3)R f = 0.47 (isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3)

LC/MS, 계산치 933.36 측정치 932.6 LC / MS, calculated 933.36 found 932.6

(4) 화합물 B-4의 합성 (4) Synthesis of Compound B-4

Figure pat00027
Figure pat00027

화합물 B-3 (157 mg, 0.166 mmol, 1eq), 6-아미노헥사노익산 (153 mg, 1.16 mmol, 7 eq), N,N-다이아이소프로필에틸아민(DIPEA) (279 μL, 1.6 mmol, 10 eq, TCI)을을 증류수 30 mL에 가한 후, 1시간 동안 상온에서 반응시켰다. 그 후 아세토나이트릴 수용액을 전개액으로 이용하는 역상 크로마토그래피로 정제하여 순수한 화합물 B-4를 얻었다(112 mg, 65.5 %). Compound B-3 (157 mg, 0.166 mmol, 1eq), 6-aminohexanoic acid (153 mg, 1.16 mmol, 7 eq), N, N-diisopropylethylamine (DIPEA) (279 μL, 1.6 mmol, 10 eq, TCI) was added to 30 mL of distilled water and reacted at room temperature for 1 hour. Then purified by reverse phase chromatography using an aqueous solution of acetonitrile as a developing solution to give pure Compound B-4 (112 mg, 65.5%).

Rf = 0.33 (이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3)R f = 0.33 (isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3)

LC/MS, 계산치 1028.47, 측정치 1027.8
LC / MS, calculated 1028.47, measured 1027.8

(5) 화합물 2의 합성 (5) Synthesis of Compound 2

Figure pat00028
Figure pat00028

화합물 B-4 (112 mg, 0.11 mmol, 1 eq) 및 N,N-다이석시니미딜 카보네이트(DSC) (83.7 mg, 0.33 mmol, 3 eq, TCI), N,N-다이아이소프로필에틸아민(DIPEA) (192 μL, 1.1 mmol, 10 eq, TCI)을 다이메틸포름아마이드 20 mL에 가한 후, 1시간 동안 상온에서 반응시켰다. 다이에틸 이터를 이용하여 입자를 잡은 뒤 생성된 고체 입자를 감압 건조시켰다. 그 후 아세토나이트릴 수용액을 전개액으로 이용하는 역상 크로마토그래피로 정제하여 순수한 화합물 2를 얻었다(57 mg, 46 %). Compound B-4 (112 mg, 0.11 mmol, 1 eq) and N, N-diisuccinimidyl carbonate (DSC) (83.7 mg, 0.33 mmol, 3 eq, TCI), N, N-diisopropylethylamine (DIPEA) (192 μL, 1.1 mmol, 10 eq, TCI) was added to 20 mL of dimethylformamide, followed by reaction at room temperature for 1 hour. The resulting solid particles were dried under reduced pressure after catching the particles with diethyl ether. Then purified by reverse phase chromatography using an aqueous solution of acetonitrile as a developing solution to give pure Compound 2 (57 mg, 46%).

Rf = 0.65 (정상, 실리카겔, 이소부탄올 : 프로판올 : 에틸아세테이트 : 증류수 = 2 : 4 : 1 : 3 v/v)R f = 0.65 (normal, silica gel, isobutanol: propanol: ethyl acetate: distilled water = 2: 4: 1: 3 v / v)

LC/MS, 계산치 1124.5, 측정치 1125.1 LC / MS, calculated 1124.5, measured 1125.1

제조예 3: 담즙산-키토산 나노입자의 제조Preparation Example 3 Preparation of Bile Acid-Chitosan Nanoparticles

(1) 키토산의 정제 (1) Purification of Chitosan

글라이콜 키토산(GC) (100kDa) 1 g을 250 mL 삼각플라스크에 넣고 초순수수 80 mL에 녹인 후 투석용 멤브레인(MWCO 100 kDa)을 사용하여 수 차례 투석하였다. 투석 완료 후, 영하 80 ℃에서 12 시간 냉각 후 동결건조 진행하여 정제된 GC를 얻었다( 0.571 g, 57.1 %), 1 g of glycol chitosan (GC) (100 kDa) was placed in a 250 mL Erlenmeyer flask, dissolved in 80 mL of ultrapure water, and dialyzed several times using a dialysis membrane (MWCO 100 kDa). After completion of dialysis, the mixture was cooled at -80 ° C for 12 hours and then lyophilized to obtain purified GC (0.571 g, 57.1%),

(2) 담즙산-키토산(HGC) 나노입자의 합성 (2) Synthesis of Bile Acid-Chitosan (HGC) Nanoparticles

Figure pat00029
Figure pat00029

정제된 GC 500 mg을 초순수수 60 mL에 완용한 후, 60 mL의 메탄올을 추가로 투입하여 충분히 교반하였다. 150 mg의 담즙산(5β-cholanic acid)을 120 mL의 메탄올에 넣고 완용하였다. 150 mg N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 염산염 (EDC)에 1000 mL의 메탄올을 넣고 교반한 후, GC 용액에 투입하여 교반하였다. 72 mg의 N-하이드록시석신이미드(NHS)를 메탄올 1 mL에 넣고 교반한 후, 담즙산 용액에 투입하여 교반하였다. 담즙산 혼합용액을 GC 혼압용액에 투입하여, 상온 일야교반 진행하였다. 반응액을 주사기 필터(pore size 80 μm)를 이용하여 여과한 후, 투석용 멤브레인(MWCO 12~14 kDa)에 넣고 4일 동안 투석 진행하였다. 투석 완료 후 초음파 분산기(Waterbath sonicator)에 30 초 동안 분산한 후 동결건조 진행하여 HGC 나노입자를 얻었다(0.492 g, 75.7 %). 500 mg of purified GC was completed in 60 mL of ultrapure water, and then 60 mL of methanol was further added thereto, followed by sufficient stirring. 150 mg of bile acid (5β-cholanic acid) was added to 120 mL of methanol and completed. 1000 mL of methanol was added to 150 mg N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride (EDC), followed by stirring into a GC solution. 72 mg of N-hydroxysuccinimide (NHS) was added to 1 mL of methanol and stirred, and then added to a bile acid solution and stirred. The bile acid mixed solution was added to the GC mixed pressure solution, and the mixture was stirred at room temperature overnight. The reaction solution was filtered using a syringe filter (pore size 80 μm), and then placed in a dialysis membrane (MWCO 12-14 kDa), followed by dialysis for 4 days. After completion of dialysis, the dispersion was dispersed in an ultrasonic disperser (Waterbath sonicator) for 30 seconds and then lyophilized to obtain HGC nanoparticles (0.492 g, 75.7%).

- 1~2일차 투석용액: 메탄올/초순수수 3:1 v/v Day 1 ~ 2 Dialysis Solution: Methanol / Ultra Pure Water 3: 1 v / v

- 3일차 투석용액: 메탄올/초순수수 1:1 v/v Day 3 dialysis solution: methanol / ultra pure water 1: 1 v / v

- 4일차 투석용액: 초순수수 Day 4 dialysis solution: ultrapure water

실시예 3: 화합물1-HGC의 제조Example 3: Preparation of Compound 1 -HGC

Figure pat00030
Figure pat00030

(1) 화합물1-HGC 나노입자의 합성 (1) Synthesis of Compound 1-HGC Nanoparticles

담즙산-키토산(HGC) 나노입자(20 mg, 0.21 μmol, 1 eq)를 8 mL 카보네이트 버퍼 용액(pH=9.0)에 넣고 완용하였다. 화합물 1 (1.29mg, 0.85 μmol)을 DMSO에 10 mg/mL의 농도로 녹인 후, HGC 용액에 적가하여 상온 일야반응 하였다. 반응액을 투석용 멤브레인 (MWCO 12~14 kDa)을 사용하여 5일동안 투석 진행하였다. 투석이 완료된 화합물을 동결건조 하여 화합물1-HGC 나노입자를 얻었다(15 mg, 75 %). Bile acid-chitosan (HGC) nanoparticles (20 mg, 0.21 μmol, 1 eq) were added to 8 mL carbonate buffer solution (pH = 9.0) and completed. Compound 1 (1.29mg, 0.85 μmol) was dissolved in DMSO at a concentration of 10 mg / mL, and then added dropwise to HGC solution to react with room temperature overnight. The reaction solution was dialyzed for 5 days using a dialysis membrane (MWCO 12-14 kDa). The dialysis-compounded compound was lyophilized to obtain compound 1-HGC nanoparticles (15 mg, 75%).

- 1~2일차 투석용액: 정제염/초순수수 8.4 g/1 L Day 1-2 dialysis solution: 8.4 g / 1 L of purified salt / ultra pure water

- 3~5일차 투석용액: 초순수수 -Day 3 ~ 5 Dialysis Solution: Ultrapure Water

실시예 4: 화합물2-HGC의 제조Example 4: Preparation of Compound 2-HGC

Figure pat00031
Figure pat00031

(2) 화합물2-HGC 나노입자의 합성 (2) Synthesis of Compound 2-HGC Nanoparticles

담즙산-키토산(HGC) 나노입자(20 mg, 0.21 μmol, 1 eq)를 8 mL 카보네이트 버퍼 용액(carbonate buffer, pH=9.0)에 넣고 완용하였다. 화합물 2 (0.96mg, 0.85 μmol)를 DMSO에 10 mg/mL의 농도로 녹인 후, HGC 용액에 적가하여 상온 일야반응 하였다. 반응액을 투석용 멤브레인(MWCO 12~14 kDa)을 사용하여 5일 동안 투석 진행하였다. 투석이 완료된 화합물을 동결건조 하여 HGC-FSD ICG 나노입자를 얻었다(17 mg, 85 %). Bile acid-chitosan (HGC) nanoparticles (20 mg, 0.21 μmol, 1 eq) were added to 8 mL carbonate buffer solution (carbonate buffer, pH = 9.0) and completed. Compound 2 (0.96mg, 0.85 μmol) was dissolved in DMSO at a concentration of 10 mg / mL, and then added dropwise to HGC solution to react at room temperature overnight. The reaction solution was dialyzed for 5 days using a dialysis membrane (MWCO 12-14 kDa). The dialysis completed compound was lyophilized to obtain HGC-FSD ICG nanoparticles (17 mg, 85%).

- 1~2일차 투석용액: 정제염/초순수수 8.4 g/1 L Day 1-2 dialysis solution: 8.4 g / 1 L of purified salt / ultra pure water

- 3~5일차 투석용액: 초순수수 -Day 3 ~ 5 Dialysis Solution: Ultrapure Water

시험예 1: 화합물의 광학분석Test Example 1 Optical Analysis of a Compound

(1) 화합물 1의 흡수, 형광파장 분석 (1) Absorption, fluorescence wavelength analysis of compound 1

화합물 1의 흡수, 형광파장의 분석을 진행하였다. 화합물 1에 DMF를 넣어 Stock solution을 제조하였다. 10 mg/mL의 농도로 Stock solution을 제조한 후 pH 7.4 10 mM Phosphate buffered saline(이하 1X PBS)을 이용하여 6.6 μM의 농도로 희석하였다. 합성된 물질의 흡수 파장 및 최대 파장에서의 흡수 값은 Agilent 사의 Cary 8454 기기를 사용하여 측정하였고, 678 nm에서의 최대 흡수 값을 확인하였다(도 1). The absorption and fluorescence wavelength of Compound 1 were analyzed. Stock solution was prepared by adding DMF to Compound 1. Stock solutions were prepared at a concentration of 10 mg / mL and diluted to a concentration of 6.6 μM using pH 7.4 10 mM Phosphate buffered saline (hereinafter, referred to as 1 × PBS). Absorption values at the maximum wavelength and absorption wavelength of the synthesized material were measured using an Agilent Cary 8454 instrument, and the maximum absorption value at 678 nm was confirmed (FIG. 1).

형광 파장 및 최대 형광 파장에서의 형광 값은 Perkin Elmer사의 LS-55를 사용하여 측정하였고, 측정된 최대흡수파장인 678 nm으로 Excitation을 설정한 후 66 nM로 희석된 시약으로 형광을 측정하였다(도 2). Fluorescence values at the fluorescence wavelength and the maximum fluorescence wavelength were measured using LS-55 manufactured by Perkin Elmer. Excitation was set to 678 nm, the measured maximum absorption wavelength, and fluorescence was measured using a reagent diluted to 66 nM (Fig. 2).

(2) 화합물 2의 흡수, 형광파장 분석 (2) Absorption, fluorescence wavelength analysis of compound 2

화합물 2의 흡수, 형광파장의 분석을 진행하였다. 화합물 2에 DMF를 넣어 Stock solution을 제조하였다. 10 mg/mL의 농도로 Stock solution을 제조한 후 Methanol을 이용하여 6.6 μM의 농도로 희석하였다. 합성된 물질의 흡수 파장 및 최대 파장에서의 흡수 값은 Agilent 사의 Cary 8454 기기를 사용하여 측정하였고, 786 nm에서의 최대 흡수 값을 확인하였다(도 3). The absorption and fluorescence wavelength of Compound 2 were analyzed. DMF was added to compound 2 to prepare a stock solution. Stock solutions were prepared at a concentration of 10 mg / mL and diluted to a concentration of 6.6 μM using Methanol. Absorption values at the maximum wavelength and absorption wavelength of the synthesized material were measured using an Agilent Cary 8454 instrument, and the maximum absorption value at 786 nm was confirmed (FIG. 3).

형광 파장 및 최대 형광 파장에서의 형광 값은 Perkin Elmer사의 LS-55를 사용하여 측정하였고, 측정된 최대흡수파장인 786 nm으로 Excitation을 설정한 후 0.22 μM로 희석된 시약으로 형광을 측정하였다(도 4). Fluorescence values at the fluorescence wavelength and the maximum fluorescence wavelength were measured using LS-55 manufactured by Perkin Elmer, and the fluorescence was measured with a reagent diluted to 0.22 μM after setting Excitation to the measured maximum absorption wavelength of 786 nm. 4).

(3) 대조형광물질과 형광강도 비교 (3) Comparison of control phosphor and fluorescence intensity

화합물 1과 화합물 2, 대조형광염료(Cy 5.5, Cy 7.5)의 형광강도를 비교하였다. 4 종의 형광염료에 DMF를 넣어 Stock solution을 제조하였다. 농도는 10 mg/mL로 동일하게 만들었다. 이후 화합물 1과 Cy 5.5는 pH 7.4 10 mM Phosphate buffered saline(이하 1x PBS)을 이용하여 1 nM의 농도로 희석한 후 Excitation 678 nm 설정 하에 형광을 측정하였고, 화합물 2와 Cy 7.5는 Methanol을 이용하여 10 nM의 농도로 희석한 후 Excitation 768 nm 설정 하에 측정하였다. 측정은 PerkinElmer의 LS 55 Fluorescence spectrometer를 활용하였다. The fluorescence intensities of Compound 1, Compound 2 and control fluorescent dyes (Cy 5.5, Cy 7.5) were compared. DMF was added to four fluorescent dyes to prepare a stock solution. The concentration was made equal to 10 mg / mL. Compound 1 and Cy 5.5 were then diluted to a concentration of 1 nM using pH 7.4 10 mM Phosphate buffered saline (hereinafter referred to as 1x PBS) and measured for fluorescence under the setting of Excitation 678 nm, and Compound 2 and Cy 7.5 using Methanol. After dilution to a concentration of 10 nM it was measured under Excitation 768 nm setting. The measurement was performed using PerkinElmer's LS 55 Fluorescence spectrometer.

도 5 및 도 6은 화합물 1, 화합물 2의 형광 스펙트럼을 나타낸 것이며, 본 분석으로 화합물 1과 화합물 2의 형광강도가 모든 대조형광염료(Cy 5.5, Cy 7.5)보다 형광강도가 상대적으로 강함을 확인하였다. 5 and 6 show fluorescence spectra of Compounds 1 and 2, and the fluorescence intensities of Compounds 1 and 2 were relatively stronger than those of all control dyes (Cy 5.5 and Cy 7.5). It was.

시험예 2: 화합물 1 및 화합물 2의 동물실험 분석Test Example 2: Animal Experimental Analysis of Compound 1 and Compound 2

(1) 마우스에서의 체내 분포양상 측정 (1) Measurement of distribution patterns in the mouse

화합물 1과 화합물 2를 DMSO에 10mg/mL로 녹여 Stock solution으로 만들어 사용하였고, 1X PBS를 이용하여 희석하여 5 μg/200 μL로 마우스의 꼬리정맥을 통해 주사하였다. 마우스는 6주령의 수컷 Balb/c-nu (20g)의 마우스를 사용하였다. 이미징은 IVIS spectrum (PerkinElmer)를 이용하여 화합물을 주사한 후 1시간, 2시간, 4시간, 8시간, 24시간이 지난 뒤 In vivo 이미징하였고, 24시간 이미징을 한 후 Liver, Lung, Spleen, Kidney, Heart를 적출하여 ex vivo 이미징을 수행하였다. 이때 화합물 1은 710 nm / 760 nm (Excitation / Emission) 화합물 2는 745 nm / 820 nm (Excitation / Emission) 설정 하에 수행하였다. Compound 1 and compound 2 were dissolved in DMSO at 10 mg / mL to make a stock solution, diluted with 1X PBS, and injected through the tail vein of the mouse at 5 μg / 200 μL. Mice were male 6-week-old male Balb / c-nu (20 g) mice. Imaging was performed in vivo 1 hour, 2 hours, 4 hours, 8 hours, 24 hours after injection of the compound using the IVIS spectrum (PerkinElmer), followed by Liver, Lung, Spleen, Kidney , Heart was extracted and ex vivo imaging was performed. In this case, Compound 1 was performed at 710 nm / 760 nm (Excitation / Emission) Compound 2 was set to 745 nm / 820 nm (Excitation / Emission).

도 7의 In vivo 이미징 결과로 화합물 1은 화합물을 주사한 후 1시간이 지났을 때 마우스의 각 장기에 염료가 퍼져있었고, 2시간이 지나 면서 점차 소변을 통해 빠져나가면서 24시간이 지났을 때는 거의 모든 화합물가 빠져 나간 것을 확인하였다. 화합물 2는 화합물을 주사한 후 1시간이 지났을 때 마우스의 Kidney에 축적이 많이 되는 것을 확인하였고, 시간이 지나면서 소변을 통해 빠져나가는 것을 확인하였다. As a result of the in vivo imaging of FIG. 7, Compound 1 had dye spread over each organ of the mouse at 1 hour after injection of the compound, and almost all at 24 hours after gradually passing through the urine over 2 hours. It was confirmed that the compound escaped. Compound 1 was confirmed that a lot of accumulation in the Kidney of the mouse when 1 hour after the injection of the compound, it was confirmed that the passage through the urine over time.

도 8의 ex vivo 이미징 결과로 화합물 1은 Kidney에 화합물 2는 Liver에 잔유 화합물이 많은 것으로 확인하였다. ex vivo 이미징 이후 각 장기 별 형광 강도 값은 도 9에 나타내었다. As a result of the ex vivo imaging of FIG. 8, Compound 1 was found to have many residues in Kidney and Compound 2 in Liver. After ex vivo imaging, fluorescence intensity values for each organ are shown in FIG. 9.

(2) 화합물1-HGC 나노입자의 Xenograft mouse model을 이용한 암 타겟능 확인 (2) Confirmation of Cancer Target Capability by Using Xenograft Mouse Model of Compound 1-HGC Nanoparticles

화합물1-HGC의 암 타겟능을 확인하기 위해 6주령의 수컷 Balb/c-nu (20 g)에 Squamous cell carcinoma 세포주인 SCC7 세포(1x106/0.1mL)를 마우스의 왼쪽 허벅지 위에 Subcutaneous injection하여 Xenograft mouse model을 제작하였다. 화합물1-HGC는 1 mg/mL의 농도로 Distilled water (이하 DW)에 녹여 Stock solution을 제조하고, 마우스 종양의 부피가 60 내지 80 mm3가 되었을 때 화합물1-HGC를 120 μg 꼬리정맥을 통해 주사하였다. In vivo 이미징은 IVIS spectrum (PerkinElmer)을 이용하여 710 nm / 760 nm (Excitation / Emission) 설정 하에 수행하였다. 나노입자 주사 후 1 시간, 2 시간, 4 시간, 8 시간, 24 시간 이미징을 수행하였고, ex vivo 이미징은 24 시간 이미징을 한 후 Liver, Lung, Spleen, Kidney, Heart, Tumor를 적출하여 수행하였으며, 분석은 IVIS spectrum의 software를 이용하여 수행하였다.To determine the cancer targetability of Compound 1-HGC, 6-week-old male Balb / c-nu (20 g) was injected with subcutaneous injection of SCC7 cells (1x106 / 0.1mL), a Squamous cell carcinoma cell line, on the left thigh of the mouse. A model was produced. Compound 1-HGC was dissolved in distilled water (hereinafter referred to as DW) at a concentration of 1 mg / mL to prepare a stock solution.When the volume of the mouse tumor became 60 to 80 mm 3 , Compound 1-HGC was injected through 120 μg tail vein. Injection. In vivo imaging was performed under the setting of 710 nm / 760 nm (Excitation / Emission) using the IVIS spectrum (PerkinElmer). After 1 hour, 2 hours, 4 hours, 8 hours, and 24 hours of nanoparticle injection, ex vivo imaging was performed after 24 hours of imaging, followed by extraction of Liver, Lung, Spleen, Kidney, Heart, Tumor, The analysis was performed using software from the IVIS spectrum.

도 10의 In vivo 이미징의 분석 결과, 주사 후 8 시간 까지는 체내 전체에 분포되어 있다가 차츰 종양에 축적되어 24 시간에는 종양에 축적된 나노입자를 제외하고 대부분 대사과정을 통해 빠져 나가는 것을 확인하였다. As a result of the in vivo imaging analysis of FIG. 10, it was confirmed that the cells were distributed throughout the body until 8 hours after injection and gradually accumulated in tumors and exited through metabolism except for nanoparticles accumulated in tumors at 24 hours.

도 11에서 종양 외 다른 장기에 축적되는지 확인하기 위해 장기를 적출하고, ex vivo 이미징을 하여 장기의 형광 강도를 비교한 결과, 종양 이외에 Kidney에 많이 축적되는 것을 확인되었는데, 이것은 화합물1-HGC가 소변으로 배출되기 때문인 것으로 보인다. In vivo, ex vivo 이미징으로 화합물1-HGC의 암 타겟능을 확인하였고, 화합물 1이 다양한 동물실험에서 사용 가능한 것을 확인하였다. In FIG. 11, organs were extracted to confirm accumulation in organs other than the tumor, and ex vivo imaging was performed to compare the fluorescence intensity of organs. As a result, it was confirmed that the compound 1-HGC was accumulated in Kidney. It seems to be because In vivo and ex vivo imaging confirmed the cancer targeting ability of Compound 1-HGC, and confirmed that Compound 1 can be used in various animal experiments.

Claims (15)

하기 화학식 1로 표시되는 형광 화합물:
[화학식 1]
Figure pat00032

상기 X1, X2, X3, X4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, SO3H, SO3 - 중에서 선택되며,
상기 X5는 SO3H 또는 SO3 -이고,
(i) 상기 Y1은 하기 화학식 1a의 구조를 가지고 상기 Y2는 SO3H 또는 SO3 -이거나, 또는 (ii) 상기 Y1은 SO3H 또는 SO3 -이고 상기 Y2는 하기 화학식 1a의 구조를 가지며,
[화학식 1a]
Figure pat00033

상기 n1은 2 내지 7의 자연수이고,
상기 n3은 2 내지 7의 자연수이고,
상기 n2는 1 내지 5의 자연수이고,
상기 m1은 3 내지 7의 자연수이고,
상기 m2는 2내지 5의 자연수이고,
상기 m3은 3 내지 7의 자연수이고,
상기 Z는 Cl이다.
Fluorescent compound represented by the following formula (1):
[Formula 1]
Figure pat00032

Is selected from, wherein X 1, X 2, X 3 , X 4 are the same or different and each independently represent hydrogen, SO 3 H, SO 3 together
X 5 is SO 3 H or SO 3 ,
(i) wherein Y 1 has a structure of Formula 1a and Y 2 is SO 3 H or SO 3 , or (ii) Y 1 is SO 3 H or SO 3 and Y 2 is Has the structure of
[Formula 1a]
Figure pat00033

N1 is a natural number of 2 to 7,
N3 is a natural number of 2 to 7,
N2 is a natural number of 1 to 5,
M1 is a natural number of 3 to 7,
M2 is a natural number of 2 to 5,
M3 is a natural number of 3 to 7,
Z is Cl.
제1항에 있어서, 상기 X1, X2, X3, X4는 (i) 모두 수소이거나 또는 (ii) 각각 독립적으로 SO3H 및 SO3 - 중에서 선택되고,
상기 n1은 3이거나 4이고,
상기 n3은 3이거나 4이고,
상기 n2는 2 또는 3이고,
상기 m1은 5이고,
상기 m2는 3이고,
상기 m3은 5인 것을 특징으로 하는 형광 화합물.
The compound of claim 1, wherein X 1 , X 2 , X 3 , X 4 are (i) all hydrogen or (ii) each independently selected from SO 3 H and SO 3 ,
N1 is 3 or 4,
N3 is 3 or 4,
N2 is 2 or 3,
M1 is 5,
M2 is 3,
M3 is a fluorescent compound, characterized in that 5.
제2항에 있어서, 상기 X1, X2, X3, X4는 (i) 모두 수소이거나 또는 (ii) 이들 중 하나만 SO3 -이고 나머지는 SO3H인 것을 특징으로 하는 형광 화합물.The fluorescent compound according to claim 2, wherein X 1 , X 2 , X 3 , X 4 are (i) all hydrogen or (ii) only one of them is SO 3 and the other is SO 3 H. 제3항에 있어서, 상기 형광 화합물은 하기 화학식 2a 또는 화학식 2b의 구조를 갖는 것을 특징으로 하는 형광 화합물:
[화학식 2a]
Figure pat00034

[화학식 2b]
Figure pat00035
The fluorescent compound of claim 3, wherein the fluorescent compound has a structure of Formula 2a or Formula 2b:
[Formula 2a]
Figure pat00034

[Formula 2b]
Figure pat00035
제1항 내지 제4항 중 어느 한 항에 따른 형광 화합물을 유효성분으로 포함하는 조영제 조성물. A contrast agent composition comprising the fluorescent compound according to any one of claims 1 to 4 as an active ingredient. 제1항 내지 제4항 중 어느 한 항에 따른 형광 화합물을 유효성분으로 포함하는 조영제 주사제. A contrast agent injection comprising the fluorescent compound according to any one of claims 1 to 4 as an active ingredient. (a) 담즙산-키토산 복합체 나노입자, (b) 담즙산-키토산 복합체 나노입자에 봉입된 형광 화합물을 포함하는 형광화합물-담즙산-키토산 나노입자로서,
상기 형광 화합물은 제1항 내지 제4항 중 어느 한 항에 따른 형광 화합물인 것을 특징으로 하는 형광화합물-담즙산-키토산 나노입자.
A fluorescent compound-bile acid-chitosan nanoparticle comprising (a) a bile acid-chitosan composite nanoparticle, and (b) a fluorescent compound encapsulated in a bile acid-chitosan composite nanoparticle,
The fluorescent compound is a fluorescent compound according to any one of claims 1 to 4, characterized in that the fluorescent compound-bile acid-chitosan nanoparticles.
제7항에 따른 형광화합물-담즙산-키토산 나노입자를 포함하는 조영제 조성물. A contrast agent composition comprising the fluorescent compound-bile acid-chitosan nanoparticles according to claim 7. 제7항에 따른 형광화합물-담즙산-키토산 나노입자를 포함하는 조영제 주사제. A contrast agent injection comprising the fluorescent compound-bile acid-chitosan nanoparticles according to claim 7. 하기 단계를 포함하는 담즙산-키토산 복합체 나노입자 제조방법:
(A) 담즙산과 메탄올을 혼합하고 NHS를 투입하여 담즙산 용액을 제조하는 단계,
(B) 글라이콜 키토산과 메탄올을 포함하는 수용액에 EDC를 투입하여 키토산 용액을 제조하는 단계,
(C) 상기 키토산 용액을 상기 담즙산 용액에 투입한 후, 투석하고 분산시키고 나서 동결건조하는 단계.
Bile acid-chitosan composite nanoparticles manufacturing method comprising the following steps:
(A) mixing the bile acid and methanol and preparing a bile acid solution by adding NHS,
(B) preparing a chitosan solution by adding EDC to an aqueous solution containing glycol chitosan and methanol,
(C) adding the chitosan solution to the bile acid solution, followed by dialysis, dispersion and lyophilization.
하기 단계를 포함하는 형광화합물-담즙산-키토산 나노입자 제조방법:
(A) 담즙산-키토산 복합체 나노입자를 카보네이트 버퍼 용액에 용해하여 담즙산-키토산 복합체 나노입자 용액을 제조하는 단계,
(B) 제1항 내지 제4항 중 어느 한 항에 따른 형광 화합물을 DMSO에 용해하여 형광 화합물 용액을 제조하는 단계,
(C) 상기 형광 화합물 용액을 상기 담즙산-키토산 복합체 나노입자 용액에 투입하고, 투석 동결건조하는 단계.
Fluorescent compound-bile acid-chitosan nanoparticles manufacturing method comprising the following steps:
(A) dissolving bile acid-chitosan composite nanoparticles in a carbonate buffer solution to prepare a bile acid-chitosan composite nanoparticle solution,
(B) dissolving the fluorescent compound according to any one of claims 1 to 4 in DMSO to prepare a fluorescent compound solution,
(C) adding the fluorescent compound solution to the bile acid-chitosan complex nanoparticle solution and dialysis lyophilization.
제1항 내지 제4항 중 어느 한 항에 따른 형광 화합물을 표지대상 물질과 결합시키는 단계를 포함하는 형광 화합물 표지방법으로서,
상기 표지대상 물질은 섬유, 생체분자, 나노입자 및 유기화합물 중에서 선택된 1종 이상이며,
상기 표지대상 물질은 아민기, 수산화기 및 티올기 중에서 선택된 적어도 1개의 기능기를 포함하며,
상기 기능기에 상기 형광 화합물이 결합하는 것을 특징으로 하는 형광 화합물 표지방법.
A method for labeling a fluorescent compound comprising the step of binding the fluorescent compound according to any one of claims 1 to 4 with a labeling substance,
The label material is at least one selected from fibers, biomolecules, nanoparticles and organic compounds,
The material to be labeled includes at least one functional group selected from an amine group, a hydroxyl group and a thiol group,
The fluorescent compound labeling method characterized in that the functional compound is bonded to the functional group.
제12항에 있어서, 상기 생체분자는 단백질, 펩타이드, 탄수화물, 당, 지방, 항체, 프로테오글라이칸, 글라이코프로틴 및 siRNA으로 이루어진 군 중에서 선택되는 것인 형광 화합물 표지방법. The method of claim 12, wherein the biomolecule is selected from the group consisting of proteins, peptides, carbohydrates, sugars, fats, antibodies, proteoglycans, glycoproteins, and siRNAs. 제7항에 따른 형광화합물-담즙산-키토산 나노입자를 표지대상 물질과 결합시키는 단계를 포함하는 형광 화합물 표지방법으로서,
상기 표지대상 물질은 섬유, 생체분자, 나노입자 및 유기화합물 중에서 선택된 1종 이상이며,
상기 표지대상 물질은 아민기, 수산화기 및 티올기 중에서 선택된 적어도 1개의 기능기를 포함하며,
상기 기능기에 상기 형광 화합물이 결합하는 것을 특징으로 하는 형광화합물-담즙산-키토산 나노입자의 표지방법.
A fluorescent compound labeling method comprising the step of binding the fluorescent compound-bile acid-chitosan nanoparticles according to claim 7 with a labeling substance,
The label material is at least one selected from fibers, biomolecules, nanoparticles and organic compounds,
The material to be labeled includes at least one functional group selected from an amine group, a hydroxyl group and a thiol group,
The fluorescent compound-bile acid-chitosan nanoparticles labeling method characterized in that the fluorescent compound is bonded to the functional group.
제14항에 있어서, 상기 생체분자는 단백질, 펩타이드, 탄수화물, 당, 지방, 항체, 프로테오글라이칸, 글라이코프로틴 및 siRNA으로 이루어진 군 중에서 선택되는 것인 형광화합물-담즙산-키토산 나노입자의 표지방법. 15. The label of claim 14, wherein the biomolecule is selected from the group consisting of proteins, peptides, carbohydrates, sugars, fats, antibodies, proteoglycans, glycoproteins, and siRNAs. Way.
KR1020180024289A 2018-02-28 2018-02-28 Fluorescence compounds, complex nanoparticles comprising the same, and preparation method thereof KR102121965B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180024289A KR102121965B1 (en) 2018-02-28 2018-02-28 Fluorescence compounds, complex nanoparticles comprising the same, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180024289A KR102121965B1 (en) 2018-02-28 2018-02-28 Fluorescence compounds, complex nanoparticles comprising the same, and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20190103631A true KR20190103631A (en) 2019-09-05
KR102121965B1 KR102121965B1 (en) 2020-06-12

Family

ID=67949755

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180024289A KR102121965B1 (en) 2018-02-28 2018-02-28 Fluorescence compounds, complex nanoparticles comprising the same, and preparation method thereof

Country Status (1)

Country Link
KR (1) KR102121965B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115516044A (en) * 2020-05-12 2022-12-23 斯特拉斯堡大学 Fluorescent dimeric compounds useful as probes for the detection of endogenous receptors

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100094034A (en) 2009-02-18 2010-08-26 충남대학교산학협력단 Water-soluble conjugated polymer, method for producing the same and electrostatic self-assembly of protein pattern biosensor using them
KR20110122314A (en) 2010-05-04 2011-11-10 충남대학교산학협력단 Method for selectively detecting cysteine via water-soluble fluorescent hyperbranched conjugated polymer-metal ions complexation
KR20110136367A (en) 2010-06-15 2011-12-21 충남대학교산학협력단 Method for selectively detecting cysteine via conjugated fluorescent polyelectrolyte-mercury-thymine complexation
WO2012027625A2 (en) * 2010-08-25 2012-03-01 Pacific Biosciences Of California, Inc. Scaffold-based polymerase enzyme substrates
KR20130005381A (en) 2011-07-06 2013-01-16 충남대학교산학협력단 Water-soluble conjugated polymer and method for selective detection of cysteine using a water-soluble conjugated polymer in the film state
KR101695617B1 (en) * 2009-09-25 2017-01-16 (주)바이오액츠 Benzindocyanine compound for labeling material, intermediate therefore, and process for producing the same
KR101720290B1 (en) * 2015-08-14 2017-03-28 (주)바이오액츠 Dichlorotriazine derivatives and preparation method thereof
KR20170097840A (en) * 2016-02-19 2017-08-29 (주)바이오액츠 Method for manufacturing Fluorochrom combined with Bile acid-Chitosan complex nanoparticle and Composition including this fluorochrom for diagnosis of disease
KR20170122654A (en) * 2016-04-27 2017-11-06 (주)바이오액츠 Fluorescence Compounds and Preparation Method Therof
KR101796474B1 (en) * 2016-06-24 2017-11-13 (주)바이오액츠 Fluorescent peptide combined with a polymeric Bile acid-Chitosan for detecting cell apoptosis and the composition including thereof for the diagnosis of disease

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100094034A (en) 2009-02-18 2010-08-26 충남대학교산학협력단 Water-soluble conjugated polymer, method for producing the same and electrostatic self-assembly of protein pattern biosensor using them
KR101695617B1 (en) * 2009-09-25 2017-01-16 (주)바이오액츠 Benzindocyanine compound for labeling material, intermediate therefore, and process for producing the same
KR20110122314A (en) 2010-05-04 2011-11-10 충남대학교산학협력단 Method for selectively detecting cysteine via water-soluble fluorescent hyperbranched conjugated polymer-metal ions complexation
KR20110136367A (en) 2010-06-15 2011-12-21 충남대학교산학협력단 Method for selectively detecting cysteine via conjugated fluorescent polyelectrolyte-mercury-thymine complexation
WO2012027625A2 (en) * 2010-08-25 2012-03-01 Pacific Biosciences Of California, Inc. Scaffold-based polymerase enzyme substrates
KR20130005381A (en) 2011-07-06 2013-01-16 충남대학교산학협력단 Water-soluble conjugated polymer and method for selective detection of cysteine using a water-soluble conjugated polymer in the film state
KR101720290B1 (en) * 2015-08-14 2017-03-28 (주)바이오액츠 Dichlorotriazine derivatives and preparation method thereof
KR20170097840A (en) * 2016-02-19 2017-08-29 (주)바이오액츠 Method for manufacturing Fluorochrom combined with Bile acid-Chitosan complex nanoparticle and Composition including this fluorochrom for diagnosis of disease
KR20170122654A (en) * 2016-04-27 2017-11-06 (주)바이오액츠 Fluorescence Compounds and Preparation Method Therof
KR101796474B1 (en) * 2016-06-24 2017-11-13 (주)바이오액츠 Fluorescent peptide combined with a polymeric Bile acid-Chitosan for detecting cell apoptosis and the composition including thereof for the diagnosis of disease

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115516044A (en) * 2020-05-12 2022-12-23 斯特拉斯堡大学 Fluorescent dimeric compounds useful as probes for the detection of endogenous receptors
CN115516044B (en) * 2020-05-12 2024-05-14 斯特拉斯堡大学 Fluorescent dimer compounds useful as probes for detection of endogenous receptors

Also Published As

Publication number Publication date
KR102121965B1 (en) 2020-06-12

Similar Documents

Publication Publication Date Title
JP6606487B2 (en) Substituted silaxanthenium red to near-infrared fluorescent dyes for in vitro and in vivo imaging and detection
CN1093768C (en) Diagnostic marker
Hilderbrand et al. Near infrared fluorescence-based bacteriophage particles for ratiometric pH imaging
CN105120903A (en) Methods of manufacture and synthesis of amino acid linking groups conjugated to compounds used for targeted imaging of tumors
DE102012107475B4 (en) BENZOCYANINE COMPOUNDS
EA009386B1 (en) Hydrophilic, thiol-reactive cyanine dyes and conjugates thereof with biomolecules for fluorescence diagnosis
CN103402547B (en) Switching mode fluorescent nanoparticle probe and use its fluorescent molecules imaging method
KR101944912B1 (en) Fluorescence Compounds and Preparation Method Therof
Gao et al. Enabling AIEgens close assembly in tumor-overexpressed protein cluster for boosted image-guided cancer surgery
KR101663465B1 (en) Cyanine dye for laveling biomolecule and preparation method thereof
KR102121965B1 (en) Fluorescence compounds, complex nanoparticles comprising the same, and preparation method thereof
KR101980292B1 (en) Fluorescence Compounds and Preparation Method Therof
KR101695617B1 (en) Benzindocyanine compound for labeling material, intermediate therefore, and process for producing the same
KR101921662B1 (en) Fluorescence Compounds and Preparation Method Therof
KR102112719B1 (en) Fluorescence Compounds and Preparation Method Therof
KR102066344B1 (en) Novel fluorescent compound for labelling nucleic acids and the preparation method thereof
US20180140723A1 (en) Optimised multivalent targeting fluorescent tracer
KR102414552B1 (en) Fluorescent compound for detecting biological materials and the preparation method thereof
KR101796474B1 (en) Fluorescent peptide combined with a polymeric Bile acid-Chitosan for detecting cell apoptosis and the composition including thereof for the diagnosis of disease
KR102414574B1 (en) Fluorescent compound for detecting biological materials and the preparation method thereof
KR102414554B1 (en) Fluorescent compound for detecting biological materials and the preparation method thereof
KR102550713B1 (en) Fluorescent compound with cyanuric-hydroxide and the preparation method thereof
KR101720290B1 (en) Dichlorotriazine derivatives and preparation method thereof
Swamy et al. Biocompatible and Water-Soluble Shortwave-Infrared (SWIR)-Emitting Cyanine-Based Fluorescent Probes for In Vivo Multiplexed Molecular Imaging
WO2022196694A1 (en) Compound, production method therefor, complex, and short wavelength infrared fluorescent agent

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right