KR20190102853A - Process for preparing dicyanonorbornane compound - Google Patents

Process for preparing dicyanonorbornane compound Download PDF

Info

Publication number
KR20190102853A
KR20190102853A KR1020180023862A KR20180023862A KR20190102853A KR 20190102853 A KR20190102853 A KR 20190102853A KR 1020180023862 A KR1020180023862 A KR 1020180023862A KR 20180023862 A KR20180023862 A KR 20180023862A KR 20190102853 A KR20190102853 A KR 20190102853A
Authority
KR
South Korea
Prior art keywords
compound
nickel
acid
cyanide
solvent
Prior art date
Application number
KR1020180023862A
Other languages
Korean (ko)
Other versions
KR102081309B1 (en
Inventor
김근식
권오준
Original Assignee
케이에스광학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이에스광학주식회사 filed Critical 케이에스광학주식회사
Priority to KR1020180023862A priority Critical patent/KR102081309B1/en
Publication of KR20190102853A publication Critical patent/KR20190102853A/en
Application granted granted Critical
Publication of KR102081309B1 publication Critical patent/KR102081309B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/08Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds
    • C07C253/10Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0267Phosphines or phosphonium compounds, i.e. phosphorus bonded to at least one carbon atom, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, the other atoms bonded to phosphorus being either carbon or hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/45Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C255/47Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of rings being part of condensed ring systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for manufacturing a dicyano norbornane isomer compound by hydro-cyanolating a carbon-carbon double bond of 5-norbornenecarbonitrile with a metal cyan compound. According to the present invention, a dicyano norbornane compound can be efficiently manufactured by using a divalent nickel catalyst in an aqueous solution.

Description

디시아노노보난 화합물의 제조 방법{Process for preparing dicyanonorbornane compound}Process for preparing dicyanonorbornane compound

본 발명은 디시아노노보난 화합물의 제조 방법에 관한 것이다. 좀 더 구체적으로는, 금속 시안 화합물을 이용하여 5-노보넨카보-2-니트릴의 탄소-탄소 이중 결합을 히드로-시아노화하여, 디시아노노보난 이성질체 화합물을 제조하는 방법에 관한 것이다. The present invention relates to a process for the preparation of dicyanonobonan compounds. More specifically, the present invention relates to a method for producing a dicyanobornane isomeric compound by hydro-cyanolating a carbon-carbon double bond of 5-norbornenecarbonitrile using a metal cyan compound.

본 발명은 산업통상자원부와 한국산업기술진흥원의 “지역특화산업육성사업 (R&D, A018200288)”으로 수행된 연구결과에 따른 것이다.The present invention is in accordance with the results of research conducted by the Ministry of Trade, Industry and Energy and the Korea Institute of Industrial Technology Promotion (R & D, A018200288).

노보난디니트릴 화합물은 카르복실 산, 에스테르, 아민 및 아미드 원료 및 중간체 화합물을 합성하기 위한 중간 원료로서 의약품, 농약, 기능성 색소 재료 및 기능성 폴리머 등을 제조하는데 유용한 화합물이다. 기존의 디시아노노보난 화합물의 제조 방법은 니켈 촉매를 이용하는 방법 (특허 문헌 1 및 2 참조)이 있다. 선행특허 1 및 2에서 맹독의 시안화 수소를 이용하는 방법은 비이온성 0가 니켈 착물을 합성하기 위해 별도로2가의 니켈 화합물을 아연 또는 카드뮴, 철, 코발트, 베릴륨, 알루미늄과 같은 금속과 2가 아연 화합물, 포스핀 또는 포스파이트 와 같은 유기 인계 리간드를 이용하여 합성하는 과정이 별도로 구성된다. 그 다음, 시안화수소를 천천히 주입하여 디시아노보노난 (dicyanonorbornane)을 얻는 과정으로 구성되어 있다. Novonandinitrile compounds are compounds useful for preparing pharmaceuticals, pesticides, functional pigment materials, functional polymers, and the like as intermediate materials for synthesizing carboxylic acid, ester, amine and amide raw materials and intermediate compounds. As a conventional method for producing a dicyano nobonane compound, there is a method using a nickel catalyst (see Patent Documents 1 and 2). The method using the poisonous hydrogen cyanide in the prior patents 1 and 2 separately separates the divalent nickel compound from zinc or metals such as cadmium, iron, cobalt, beryllium, aluminum and divalent zinc compounds, The process of synthesis using organophosphorus ligands such as phosphine or phosphite is configured separately. Then, hydrogen cyanide is slowly injected to obtain dicyanobonoranane.

이러한 제조 방법은 니트릴 공급원으로 시안화 수소 등을 이용해야 한다. 시안화수소는 폭발성과 독성이 매우 높다. 따라서 시안화수소의 유통 제한 문제, 또는 가스의 누출이나 반응액의 누출 시 인명 및 환경에 악영향이 높기 때문에, 이의 제조 비용 보다는 안전 설비의 구축이나 안전 유지 비용이 더 높다. 또한 대기중에 보관이 어려운 비이온성 0가 니켈 착물 촉매를 사용하는 단점이 있어 재현성 있는 제조를 위해 촉매의 보관 또는 반응 중 수분과 산소의 철저한 관리가 필요하다. This preparation method requires the use of hydrogen cyanide or the like as the nitrile source. Hydrogen cyanide is extremely explosive and highly toxic. Therefore, the problem of restricting the distribution of hydrogen cyanide or the leakage of the gas or the reaction liquid has a high adverse effect on human life and the environment, so the cost of constructing or maintaining safety facilities is higher than the cost of manufacturing them. In addition, there is a disadvantage of using a nonionic zero-valent nickel complex catalyst, which is difficult to store in the air, it is necessary to thoroughly manage the moisture and oxygen during storage or reaction of the catalyst for reproducible production.

이러한 선행기술의 방법으로는 맹독의 시안화 수소를 이용하기 때문에 누설 대책, 반응 장치의 부식 방지 조치 및 반응액의 누출 방지 조치를 강구 할 필요가 있었다. 또한 대기 중의 저장 및 취급이 어려운 0가 니켈 금속 착물을 이용하지 않고, 안정화된 조건에서 원하는 디시아노노보난 화합물을 제조 할 수 있는 제조방법이 요구되고 있었다.Since the prior art uses hydrogen cyanide, it is necessary to take measures to prevent leakage, to prevent corrosion of the reactor, and to prevent leakage of the reaction solution. There has also been a demand for a production method capable of producing desired dicyano nobonane compounds under stabilized conditions without the use of zero-valent nickel metal complexes that are difficult to store and handle in the air.

특허 문헌 1: EP 0438638Patent Document 1: EP 0438638 특허 문헌 2: WO2008/001490Patent document 2: WO2008 / 001490

본 발명의 목적은, 이러한 종래 기술의 문제점을 감안하여 디시아노노보난 공급원으로 시안화 수소를 사용하지 않고, 안정한 금속시안 화합물을 사용하고, 수용액상에서 반응 조건에서 취급 가능한 2가 니켈 염 화합물을 이용하여 효율적인 디시아노노보난 화합물 제조를 목적으로 한다.The object of the present invention is to provide a divalent nickel salt compound that can be handled under reaction conditions in an aqueous solution, using a stable metal cyanide compound, without using hydrogen cyanide as a dicyano bonanic source in view of the problems of the prior art. An object is to produce an efficient dicyanonobonan compound.

본 출원의 목적을 달성하기 위한 일 양태로서, 본 출원은 5-노보넨카보-2-니트릴과 금속 시안 화합물을, 용매 수용액 상에서 금속 분말과 2가 니켈 화합물, 유기 인 화합물을 함유하는 촉매 조합과 함께 산 화합물 하에서, 반응시켜 디시아노노보난을 제조하는 방법을 제공한다.As an aspect for achieving the object of the present application, the present application is a catalyst combination containing a 5-norbornene carbon-2-nitrile and a metal cyan compound, a metal powder, a divalent nickel compound, an organophosphorus compound in an aqueous solvent solution and Together under an acid compound to provide a process for producing dicyanobornane.

본 출원은 기존의 방법에서 사용된 비이온성 니켈 착물 촉매에 비해 훨씬 저렴하고 취급이 용이한 2 가의 니켈 화합물이 사용될 수 있고, 또한 화재의 위험을 감소시킬 수 있는 혼합 용매 수용액을 사용할 수 있다. 따라서 본 출원은 안전하고, 용이하게 디시아노노보난을 제조하는 방법을 제시 할 수 있다.  The present application can use divalent nickel compounds, which are much cheaper and easier to handle than the nonionic nickel complex catalysts used in the existing methods, and can also use mixed solvent aqueous solutions that can reduce the risk of fire. Therefore, the present application can propose a method for producing dicyano bonanone safely and easily.

상기와 같은 특징을 갖는 디시아노노보난 화합물의 제조 방법에 대해 면밀히 연구 한 결과, 시안화 수소를 사용하지 않고 디시아노노보난 화합물을 얻을 수 있는 발견에 기초하여 본 발명을 할 수 있었다. 특히, 본 발명에서, 수용액에 혼합되는 케톤계열의 용매와 알코올 계열의 혼합 용매에서2 가의 니켈 화합물과 니켈에 배위 할 인 리간드, 환원역할을 하는 금속 분말로 구성된 촉매 조건에서 5-노보넨카보-2-니트릴 화합물과 금속시안 화합물을 반응시켜 니트릴기를 부가함으로써, 본 발명을 완성하였다. 본 발명을 구체적인 하나의 반응 도식으로 나타내면 하기와 같다:As a result of a careful study on the manufacturing method of the dicyano bonan compound which has the above characteristics, this invention was made based on the discovery which can obtain a dicyano bonan compound without using hydrogen cyanide. In particular, in the present invention, 5-norbornene carbo- under catalytic conditions consisting of a divalent nickel compound, a phosphorus ligand to coordinate with nickel, and a metal powder to act as a reducing agent in a ketone solvent mixed with an aqueous solution and an alcohol-based mixed solvent. The present invention was completed by reacting a 2-nitrile compound with a metal cyan compound to add a nitrile group. Representing the present invention in one specific reaction scheme is as follows:

Figure pat00001
Figure pat00001

본 출원의 일 구현예에 따르면, 상기 금속시안 화합물은 시안화나트륨, 시안화칼륨, 시안화은, 시안화구리, 시안화수은, 시안화코발트, 및 포타슘페리시아나이드로 구성된 군으로부터 선택되는 적어도 1종이 사용될 것이다. 본 출원에서, 금속시안 화합물은 니트릴 공급원으로서 역할을 하게 될 것이고, 무수물 또는 수화물 형태 중 어느 것이어도 상관이 없다.According to one embodiment of the present application, the metal cyanide compound may be at least one selected from the group consisting of sodium cyanide, potassium cyanide, silver cyanide, copper cyanide, mercury cyanide, cobalt cyanide, and potassium ferricyanide. In the present application, the metal cyanide compound will serve as a nitrile source and can be in either anhydride or hydrate form.

본 출원의 다른 구현예에 따르면, 상기 산 화합물은 아세트산, 염산, 브롬산, 황산, 인산, 질산, 메탄 술폰산, 및 파라톨루엔술폰산 포타슘페리시아나이드로 구성된 군으로부터 선택되는 적어도 1종이 사용될 것이다. 이러한, 산 화합물은 제조처에서 공급되는 농도 그대로 사용하여도 좋지만, 물 또는 용매에 희석하여 사용하는 것이 바람직하다.According to another embodiment of the present application, at least one acid compound selected from the group consisting of acetic acid, hydrochloric acid, bromic acid, sulfuric acid, phosphoric acid, nitric acid, methane sulfonic acid, and paratoluenesulfonic acid potassium ferricyanide will be used. Such acid compounds may be used as they are supplied from the manufacturer, but are preferably diluted with water or a solvent.

본 출원의 또 다른 구현예에 따르면, 상기 2가 니켈 화합물이 니켈 할로겐 염, 또는 니켈 카르복실산염 화합물로부터 선택된다. 구체적인 니켈 화합물로는 불화 니켈, 염화 니켈, 브롬화 니켈, 요오드화 니켈, 수산화 니켈, 황산 니켈, 질산 니켈, 인산 니켈, 과염소산 니켈, 술폰산 니켈, 포름산 니켈, 아세트산 니켈, 트리플루오로아세트산 니켈, 호박산 니켈, 옥살산 니켈, 유산 니켈, 주석산 니켈, 구연산 니켈, 안식향산 니켈, 옥탄산 니켈, 올레산 니켈, 스테아린산 니켈, 비스(2,4-펜탄디오나토)니켈, 비스(1,1,1,5,5,5-헥사플루오로-2,4-펜탄디오나토) 니켈 및 비스(2,2,6,6-테트라메틸-3,5- 헵탄디오나토) 등을 들 수 있다. 이러한 니켈 화합물은 무수물 이어도 좋고 수화물 이어도 좋다. 이러한 니켈 화합물은 수용액 혼합용매에 용해되는 것이 바람직하다. 이러한 니켈 화합물 중에서도 초산 니켈이 바람직하다. According to another embodiment of the present application, the divalent nickel compound is selected from nickel halogen salts, or nickel carboxylate compounds. Specific nickel compounds include nickel fluoride, nickel chloride, nickel bromide, nickel iodide, nickel hydroxide, nickel sulfate, nickel nitrate, nickel phosphate, nickel perchlorate, nickel sulfonate, nickel formate, nickel acetate, nickel trifluoroacetic acid, nickel succinate, Nickel Oxalate, Nickel Lactate, Nickel Tartrate, Nickel Citrate, Nickel Benzoate, Nickel Octane, Nickel Oleate, Nickel Stearate, Nickel Bis (2,4-pentanedionate), Bis (1,1,1,5,5,5,5 -Hexafluoro-2,4-pentanedionate) nickel and bis (2,2,6,6-tetramethyl-3,5-heptanedionato). Such a nickel compound may be an anhydride or a hydrate. Such nickel compound is preferably dissolved in an aqueous solution mixed solvent. Among these nickel compounds, nickel acetate is preferred.

본 출원의 다른 구현예에 따르면, 유기 인 화합물은 니켈의 리간드로서 기능한다. 유기 인 화합물은 하기 식(1)로 나타내지는 알킬포스핀 또는 아릴포스핀 이어도 좋다: According to another embodiment of the present application, the organophosphorus compound functions as a ligand of nickel. The organophosphorus compound may be alkylphosphine or arylphosphine represented by the following formula (1):

Figure pat00002
Figure pat00002

(R1, R2, R3는 각각 탄소수 1 ~ 10의 알킬기 또는 아릴기를 나타낸다)(R1, R2, R3 each represent an alkyl or aryl group having 1 to 10 carbon atoms)

또한, 유기 인 화합물은 하기 식(2)로 표현되는 두 자리의 알킬 또는 아릴 포스핀일 수 있다: In addition, the organophosphorus compound may be a bidentate alkyl or aryl phosphine represented by the following formula (2):

Figure pat00003
Figure pat00003

(R1, R2, R3, R4는 각각 탄소수 6의 알킬기 또는 아릴기를 나타내고, n은 1-6 이다.)(R1, R2, R3, and R4 each represent an alkyl or aryl group having 6 carbon atoms, and n is 1-6.)

또한, 유기 인 화합물은 하기 식 (3)으로 표현되는 알킬포스파이트 또는 아릴포스파이트 이어도 좋다:In addition, the organophosphorus compound may be alkyl phosphite or aryl phosphite represented by the following formula (3):

Figure pat00004
Figure pat00004

(R1, R2, R3는 각각 탄소수 1-7의 알킬기 또는 아릴기 이다).(R1, R2, R3 are each an alkyl or aryl group having 1-7 carbon atoms).

본 출원의 다른 구현예에 따르면, 상기 금속분말은 아연, 마그네슘, 및 알루미늄으로 구성된 군으로부터 선택되는 적어도 1종이 사용될 수 있다. 금속 분말은 환원제 역할을 한다. 금속 분말은 입자 직경의 산술 평균치인 평균 입경이 1μm ~ 200μm 분말 금속이 사용될 수 있다. 금속 분말의 평균 입경은 6μm ~ 10μm 특히 바람직하다. According to another embodiment of the present application, the metal powder may be at least one selected from the group consisting of zinc, magnesium, and aluminum. The metal powder acts as a reducing agent. As the metal powder, a powder metal having an average particle diameter of 1 μm to 200 μm, which is an arithmetic mean of the particle diameters, may be used. The average particle diameter of the metal powder is particularly preferably 6 µm to 10 µm.

본 출원의 또 다른 구현예에 따르면, 상기 수용액 혼합 용매는 케톤계열의 용매와 알코올계열의 용매의 혼합물이면서, 상기 용매가 아세톤, 메틸에틸케톤, 시클로헥사논, 벤조페논의 케톤계열 화합물로 구성된 군으로부터 선택되는 적어도 1종이 사용될 것이다. 또한 탄소-탄소 이중 결합을 갖는 유기 화합물과 금속시안 화합물과 반응 할 때의 수용액 혼합 용매는 케톤 화합물 알코올 화합물, 아미드 화합물 및 에테르 화합물 계열의 용매로 선택할 수 있다. 케톤 화합물로서 아세톤, 메틸에틸케톤, 시클로헥사논, 벤조페논 등을 반응의 용매로 사용하여도 좋다. 알코올 화합물로서, 메탄올, 에탄올 및 1-프로판올, 2-프로판올 등을 들 수 있다. 아미드 화합물로서, N- 메틸피롤리 디논, 디메틸포름 아미드 및 디메틸아세트아미드 등을 들 수 있다. 에테르 화합물로서 테트라하이드로퓨란 등을 들 수 있다. 또한, 아세토니트릴 등의 니트릴계 용매 또는 톨루엔과 크실렌 등의 방향족계 용매 등을 들 수 있다. According to another embodiment of the present application, the aqueous solution mixed solvent is a mixture of a ketone-based solvent and an alcohol-based solvent, and the solvent is a group consisting of a ketone-based compound of acetone, methyl ethyl ketone, cyclohexanone, and benzophenone At least one selected from will be used. In addition, the mixed solution of the aqueous solution when reacting with an organic compound having a carbon-carbon double bond and a metal cyan compound can be selected as a solvent of a ketone compound alcohol compound, an amide compound and an ether compound series. As a ketone compound, acetone, methyl ethyl ketone, cyclohexanone, benzophenone, etc. may be used as a reaction solvent. Examples of the alcohol compound include methanol, ethanol, 1-propanol, 2-propanol, and the like. Examples of the amide compound include N-methylpyrrolidinone, dimethylformamide, dimethylacetamide, and the like. Tetrahydrofuran etc. are mentioned as an ether compound. Moreover, nitrile solvents, such as acetonitrile, or aromatic solvents, such as toluene and xylene, etc. are mentioned.

본 출원의 또 다른 구현예에 따르면, 금속시안 화합물 사용량은 5-노보넨카보-2-니트릴에 대해 0.8 당량 ~ 1.5 당량이 바람직하고, 0.9 당량 ~1.2 당량이보다 바람직하고, 1.0 당량이 보다 바람직하다. 산 화합물은 금속시안 화합물 사용량에 대해 0.9당량 ~ 1.5당량이 바람직하고, 0.95당량 ~1.1당량이 보다 바람직하고, 1.0당량이 가장 바람직하다.According to another embodiment of the present application, the amount of the metal cyanide compound used is preferably 0.8 to 1.5 equivalents, more preferably 0.9 to 1.2 equivalents, and more preferably 1.0 equivalent to 5-norbornenecarbonitrile. . The acid compound is preferably 0.9 equivalent to 1.5 equivalents, more preferably 0.95 equivalent to 1.1 equivalents, and most preferably 1.0 equivalent to the amount of the metal cyanide compound used.

또한, 촉매의 사용량으로서, 니켈 화합물의 사용량이 5-노보넨카보-2-니트릴과에 대해 3mol % ~20mol %가 바람직하고, 4mol % ~10mol %보다 바람직하고, 5mol %가 더 바람직하다. 또한 유기 인 화합물의 사용량은 니켈 화합물에 대해 1 당량 ~ 4 당량이 바람직하고, 1.5 당량 2.5 당량이 보다 바람직하고, 2 당량이 보다 바람직하다. 또한 금속 분말의 사용량은 니켈 화합물에 대하여 2 당량 ~ 20 당량이 바람직하고, 5 당량 ~ 15 당량 보다 바람직하고, 10 당량이 더욱 바람직하다. As the amount of the catalyst used, the amount of the nickel compound is preferably 3 mol% to 20 mol%, more preferably 4 mol% to 10 mol%, and more preferably 5 mol% with respect to 5-norbornene carbononitrile. The amount of the organophosphorus compound used is preferably 1 to 4 equivalents, more preferably 1.5 equivalents and 2.5 equivalents, and more preferably 2 equivalents to the nickel compound. The amount of the metal powder used is preferably 2 equivalents to 20 equivalents, more preferably 5 equivalents to 15 equivalents, and even more preferably 10 equivalents to the nickel compound.

5-노보넨카보-2-니트릴과 금속시안의 반응에서, 산성 화합물을 투입하는 온도는 0℃ ~ 20℃가 바람직하고, 5℃ ~ 10℃가 보다 바람직하다. 산을 투입 후 반응온도는 50 ℃ ~ 100 ℃가 바람직하고, 55 ℃ ~ 70 ℃가 보다 바람직하다. 반응 온도가 50 ℃보다 낮은 경우에 따라서는 디시아노노보난 화합물의 수율이 저하 될 수 있다. 또한 반응 온도가 100 ℃보다 높으면 경우에 따라 반응이 과도하게 진행되어, 원료가 분해하거나 중합 반응 등의 부반응이 진행 할 수 있다.  In the reaction of 5-norbornene carbon-2-nitrile and metal cyanide, the temperature at which the acidic compound is added is preferably 0 ° C to 20 ° C, more preferably 5 ° C to 10 ° C. 50 degreeC-100 degreeC is preferable and, as for the reaction temperature after adding an acid, 55 degreeC-70 degreeC is more preferable. In some cases, where the reaction temperature is lower than 50 ° C., the yield of the dicyano bonanone compound may decrease. In addition, when the reaction temperature is higher than 100 ℃, the reaction proceeds excessively in some cases, the raw material may decompose or side reactions such as polymerization reaction may proceed.

지금까지, 디시아노노보난 화합물의 제조 방법으로서, 니켈 화합물, 유기 인 화합물과 금속 분말을 포함하는 촉매 시스템에 5-노보넨카보-2-니트릴 화합물과 금속시안 화합물을 가한 후 산 처리 단계를 위주로 설명하였다. 하지만, 본 제조 방법은, (1) 상기 산 화합물 투입 단계에 이어서, (2) 산 화합물 투입 단계에서 얻어진 중간생성물을 가열 반응시키는 단계로 구성될 수 있지만, 이들 단계를 하나로 합하여 진행하여도 문제가 되지 않을 것이다. Until now, as a method for producing a dicyano nobonane compound, a 5-norbornene carbon-2-nitrile compound and a metal cyan compound were added to a catalyst system including a nickel compound, an organophosphorus compound, and a metal powder, and then, mainly based on an acid treatment step. Explained. However, the present production method may be composed of (1) the step of adding the acid compound, followed by the step of (2) heating the intermediate product obtained in the step of adding the acid compound. Will not be.

본 명세서에 기재되지 않은 내용은 본 출원의 기술 분야 또는 유사 분야에서 숙련된 자이면 충분히 인식하고 유추할 수 있는 것이므로, 나머지 부분에 대한 설명은 생략한다.The contents not described herein may be sufficiently recognized and inferred by those skilled in the art or similar fields of the present application, and thus descriptions of the remaining parts will be omitted.

본 발명에 의하면, 니트릴 공급원으로 시안화 수소, 유기성 시안화합물을 사용하지 않고 금속 시안 화합물로서 디시아노노보난 화합물이 얻어 진다. 또한, 본 발명에 의하면, 수용액에서 2 가의 니켈 촉매를 이용하는 것으로, 디시아노노보난 화합물을 효율적으로 제조 할 수 있다.According to the present invention, dicyano bonanone compounds are obtained as metal cyanide compounds without using hydrogen cyanide and organic cyanide compounds as the nitrile source. Moreover, according to this invention, a dicyano no bonan compound can be manufactured efficiently by using a bivalent nickel catalyst in aqueous solution.

또한, 무수물조건에서 니트릴 공급원으로 맹독의 시안화 수소를 이용하거나, 아세톤시안히드린, 트리메틸실릴시안과 같은 유기성 화합물을 이용할 필요가 없게 될 것이다.In addition, there would be no need to use poisonous hydrogen cyanide or organic compounds such as acetonecyanhydrin, trimethylsilylcyanine as the nitrile source under anhydride conditions.

본 출원을 하기 합성예 및 실시예를 들어 상세히 설명하고자 하나, 하기 합성예 및 실시예는 예시적으로 제공되는 것으로서, 본 출원이 이에 한정되는 것은 아니다.Although the present application will be described in detail with reference to the following Synthesis Examples and Examples, the following Synthesis Examples and Examples are provided by way of example, the present application is not limited thereto.

(각종 니켈 화합물을 이용한 디시아노노보난 화합물의 제조) (Preparation of dicyano bonan compound using various nickel compounds)

합성예 1. 5-노보넨카보-2-니트릴 합성Synthesis Example 1. Synthesis of 5-norbornenecarboni-2-nitrile

기계적 교반기 와 온도계, 구조 패킹(structured packing) 이 장착된 컬럼(Boegger Industrial Limited, ID 5 cm, 길이 25cm), 전기식 정량펌프(ProMinent, gamma/L)가 장착된 4구 1L 반응기에 액체 파라핀 오일(E-IL ESOL industrial Co., Ltd, ESOL-P27) 300ml을 투입하고, 맨틀을 이용하여 반응 내부온도를 200~240 ℃로 가열하였다. 이때 정량펌프에 준비된 디시클로펜타디엔(DCPD)를 3ml/min정도의 속도로 투입하였다. 컬럼상부를 통해 약 40~42℃에서 배출되는 시클로펜타디엔(CPD)를 냉각 컬럼을 통해 포집하였다. 본 실험에서는 상기 분해 반응을 통해 생성된 CPD 는 별도 포집하지 않고 6시간 증류되어 나오는 상태 그대로 테프론 호스를 통해, 미리 25℃로 조절된 아크릴로니트릴 682 g (12.86 mol, 1당량)이 투입된 2L 반응기에 곧바로 투입하여 반응을 진행하였다. 약 6시간 포집된 CPD는 독립적인 실험을 통해 증류된 양을 확인할 결과, 850g이며 수율은 85% 였고, 순도는 99%였다. CPD 투입이 완료된 후 추가로 2시간 반응하여 반응을 종결하였다.Liquid paraffin oil (four in 1 L reactor with mechanical stirrer, thermometer, column with structured packing (ID 5 cm, length 25 cm) and electric metering pump (ProMinent, gamma / L) 300 ml of E-IL ESOL industrial Co., Ltd, ESOL-P27) was added and the reaction internal temperature was heated to 200-240 ° C. using a mantle. At this time, dicyclopentadiene (DCPD) prepared in the metering pump was introduced at a rate of about 3 ml / min. Cyclopentadiene (CPD), discharged at about 40-42 ° C. through the column top, was collected via a cooling column. In this experiment, the CPD generated through the decomposition reaction was collected without distillation for 6 hours without distillation, and then, through a Teflon hose, 682 g (12.86 mol, 1 equivalent) of acrylonitrile, which was previously adjusted to 25 ° C., was added thereto. Immediately added to the reaction proceeded. CPD collected for about 6 hours was the amount of distilled through independent experiments, 850g yield was 85%, purity was 99%. After the completion of the CPD dosing reaction was terminated by an additional 2 hours.

가스크로마토그래피 분석으로 이성질체(endo/exo) 비율이 1.27로 생성된 5-노보넨카보-2-니트릴 1,517g을 순도 99%의 이론수율 100%로 얻을 수 있었다. Gas chromatographic analysis showed that 1,517 g of 5-norbornenecarbono-2-nitrile having an isomer (endo / exo) ratio of 1.27 was obtained at a theoretical yield of 100% with a purity of 99%.

산 화합물 투입 시 니켈촉매의 촉매의 활성저하 비교를 위해 저온에서 산처리하는 방법과 고온에서 산처리하는 방법을 합성예2와 합성예 3으로 구분하여 실시하였다. 특히 고온 산 처리에서도 촉매의 활성저하를 예상하였으나 촉매의 활성이 유지되었다.In order to compare the deactivation of the catalyst of the nickel catalyst when the acid compound was added, the acid treatment at low temperature and the acid treatment at high temperature were carried out separately into Synthesis Example 2 and Synthesis Example 3. In particular, the high activity of the catalyst was expected to decrease the activity of the catalyst, but the activity of the catalyst was maintained.

합성예 2. 디시아노노보난의 합성Synthesis Example 2 Synthesis of Dicyano nobonane

기계적 교반기와 온도계, 적하 깔때기가 장착된 1L 반응기에 5-노보넨카보-2-니트릴 72g(0.604 mol, 1당량), 시안화칼륨 39.4 g(0.604 mol, 1당량), 염화니켈(II)·6수화물 7.2 g( 0.03 mol, 0.05당량), 트리페닐포스핀 15.84 g(0.06 mol, 0.1 당량), 아연 분말 20.66 g (0.3 mol, 0.5당량)을 투입하고 아세톤(100ml), 메탄올(200ml), 증류수(100ml)를 투입하였다. 반응 내부온도를 5~10℃로 유지하면서 아세트산 36.3 g (0.604mol, 1당량) 을 2시간에 걸쳐 투입하였다. 72 g (0.604 mol, 1 equivalent) of 5-norbornenecarbononitrile, 39.4 g (0.604 mol, 1 equivalent) of potassium cyanide, nickel chloride (II) 6 in a 1 L reactor equipped with a mechanical stirrer, thermometer and dropping funnel 7.2 g (0.03 mol, 0.05 equivalent) of hydrate, 15.84 g (0.06 mol, 0.1 equivalent) of triphenylphosphine, 20.66 g (0.3 mol, 0.5 equivalent) of zinc powder were added, and acetone (100 ml), methanol (200 ml) and distilled water were added. (100 ml) was added. 36.3 g (0.604 mol, 1 equivalent) of acetic acid was added over 2 hours while maintaining the reaction internal temperature at 5 to 10 ° C.

투입 후 반응 내부 온도를 70℃로 승온하여 2시간 동안 교반하였다. 가스크로마토그래피 분석을 통해 반응이 완료됨을 확인하고, 반응 내부온도를 25℃로 냉각하였다. 반응 혼합액에 톨루엔 300ml를 투입하여 생성된 디시아노노보난을 추출하고, 유기층을 2N 염산 수용액 300ml로 3회 세척 후 유기층을 실리카 패드를 통과 후 농축하여 순도 99%의 디시아노노보난을 77 g, 수율 98%로 얻을 수 있었다.After the addition, the reaction internal temperature was raised to 70 ° C. and stirred for 2 hours. Gas chromatography analysis confirmed that the reaction was completed, and the reaction internal temperature was cooled to 25 ℃. 300 ml of toluene was added to the reaction mixture to extract the dicyanobornane produced. The organic layer was washed three times with 300 ml of 2N hydrochloric acid, and the organic layer was passed through a silica pad and concentrated to obtain 77 g of dicyanobornane having a purity of 99%. Yield was 98%.

합성예 3. 디시아노노보난의 합성Synthesis Example 3 Synthesis of Dicyano nobonane

기계적 교반기와 온도계, 적하 깔때기가 장착된 1L 반응기에 5-노보넨카보-2-니트릴 72g(0.604 mol, 1당량), 시안화칼륨 39.4 g(0.604 mol, 1당량), 염화니켈(II).6수화물 7.2 g( 0.03 mol, 0.05당량), 트리페닐포스핀 15.84 g(0.06 mol, 0.1 당량), 아연 분말 20.66 g (0.3 mol, 0.5당량)을 투입하고 아세톤(100ml), 메탄올(200ml), 증류수(100ml)를 투입하였다. 반응 내부온도를 70℃로 유지하면서 아세트산 36.3 g (0.604mol, 1당량) 을 2시간에 걸쳐 투입하였다. 72 g (0.604 mol, 1 equivalent) of 5-norbornenecarbononitrile, 39.4 g (0.604 mol, 1 equivalent) of potassium cyanide, nickel chloride (II) in a 1 L reactor equipped with a mechanical stirrer, thermometer and dropping funnel. 7.2 g (0.03 mol, 0.05 equivalent) of hydrate, 15.84 g (0.06 mol, 0.1 equivalent) of triphenylphosphine, 20.66 g (0.3 mol, 0.5 equivalent) of zinc powder were added, and acetone (100 ml), methanol (200 ml) and distilled water were added. (100 ml) was added. 36.3 g (0.604 mol, 1 equivalent) of acetic acid was added over 2 hours while maintaining the reaction internal temperature at 70 ° C.

투입 후 가스크로마토그래피 분석을 통해 반응이 완료됨을 확인하고, 반응 내부온도를 25℃로 냉각하였다. 반응 혼합액에 톨루엔 300ml를 투입하여 생성된 디시아노노보난을 추출하고, 유기층을 2N 염산 수용액 300ml로 3회 세척 후 유기층을 실리카 패드를 통과 후 농축하여 순도 99%의 디시아노노보난을 74 g, 수율 94%로 얻을 수 있었다.After the addition, it was confirmed that the reaction was completed through gas chromatography analysis, and the reaction internal temperature was cooled to 25 ° C. After distilling 300 ml of toluene into the reaction mixture, the resulting dicyano bonan was extracted, and the organic layer was washed three times with 300 ml of a 2N hydrochloric acid aqueous solution. The organic layer was passed through a silica pad and concentrated to obtain 74 g of dicyano bonan having a purity of 99%. Yield 94%.

상기 합성예 2 및 3에 따라, 반응물의 함량 및 온도를 변화시켜 각 실시예에 따라 얻어진 수율을 하기 표 1에 나타내었다.According to Synthesis Examples 2 and 3, the yield obtained according to each example by varying the content and temperature of the reactants is shown in Table 1 below.

실시예Example NBCNNBCN NiCl2 6H2ONiCl2 6H2O ZnZn PPh3PPh3 KCNKCN 온도Temperature 아세트산Acetic acid 합성예Synthesis Example 수율yield 1-11-1 1One 0.010.01 0.050.05 0.010.01 1One 7070 1One 22 3535 1-21-2 0.010.01 0.50.5 0.020.02 22 7070 1One 22 6363 1-31-3 0.050.05 0.050.05 0.10.1 1One 7070 1One 22 5757 1-41-4 0.050.05 0.50.5 0.050.05 1One 7070 1One 22 6868 1-51-5 0.050.05 0.50.5 0.10.1 1One 6060 1One 22 9595 1-61-6 0.050.05 0.10.1 0.10.1 1One 7070 1One 22 7272 1-71-7 0.050.05 0.50.5 0.10.1 1One 7070 1One 22 9898 1-81-8 0.050.05 0.50.5 0.10.1 1One 7070 1One 33 9494

상기 표 1의 수율 수치에서 알 수 있는 바와 같이, 디시아노노보난의 합성결과 염화니켈 0.05당량, 금속아연 분말 0.5당량, 트리페닐포스핀 0.1당량, 염화칼륨 1당량을 70℃에서 반응결과인 실시예 1-7 및 1-8이 제일 우수하였다. 합성예 2에서 아세트산 1당량을 5~10℃에서 투입 후 온도를 70℃로 올려 반응하거나, 반응온도 70℃에서 아세트산 1당량을 투입해도 촉매의 활성저하 없이 고수율의 디시아노노보난을 얻을 수 있었다.As can be seen from the yield value of Table 1, the synthesis result of the dicyano nobonane nickel chloride 0.05 equivalents, metal zinc powder 0.5 equivalents, triphenylphosphine 0.1 equivalents, potassium chloride 1 equivalent of the reaction result at 70 ℃ 1-7 and 1-8 were the best. In Synthesis Example 2, 1 equivalent of acetic acid was added at 5 to 10 ° C., and then the temperature was increased to 70 ° C., or 1 equivalent of acetic acid was added at reaction temperature of 70 ° C. to obtain a high yield of dicyanobornane without deactivation of the catalyst. there was.

합성예 2 및 3에서 사용된 용매 대신에, 케톤계열, 물, 알코올계열, 아미드계열 용매 중 용매의 조합에 대한 반응으로 디시아노노보난 화합물의 제조를 실시하여, 그 결과를 하기 표 2에 나타내었다. Instead of the solvents used in Synthesis Examples 2 and 3, a dicyano bonan compound was prepared by reaction with a combination of a solvent in a ketone series, water, alcohol series, and amide series solvent, and the results are shown in Table 2 below. It was.

실시예Example 아세톤 Acetone 시클로헥산Cyclohexane water 메탄올Methanol 에탄올ethanol DMFDMF 수율yield 2-12-1 OO XX OO OO XX XX 9898 2-22-2 XX OO OO OO XX XX 8282 2-32-3 OO XX OO XX OO XX 9393 2-42-4 OO XX OO XX XX OO 8888 2-52-5 OO XX OO XX XX XX 8585 비교예2-1Comparative Example 2-1 OO XX XX XX XX XX 00 비교예2-2Comparative Example 2-2 XX XX OO OO XX OO 00 비교예2-3Comparative Example 2-3 XX XX OO XX XX XX 00 비교예2-4Comparative Example 2-4 XX XX XX OO XX XX 00 비교예2-5Comparative Example 2-5 XX XX XX XX OO XX 00 비교예2-6Comparative Example 2-6 XX XX XX XX XX OO 00

상기 표 2에서, 어느 한쪽 용매만 사용하면 디시아노노보난 화합물을 얻을 수 없는 것으로 나타났다. 특히 케톤계열의 용매가 없으면 디시아노노보난 화합물을 얻을 수 없었으며, 케톤계열 용매와 물의 조합으로도 디시아노노보난 화합물을 얻을 수 있었으나 알코올 계열 또는 아미드 계열의 용매가 있으면 수율이 올라가는 결과를 얻을 수 있었다.In Table 2, it was found that only one solvent could not be used to obtain a dicyano nobonane compound. In particular, the dicyano bonan compound could not be obtained without the ketone solvent, and the dicyano bonan compound could be obtained by the combination of the ketone solvent and water, but the alcohol or the amide solvent may increase the yield. Could.

이번에는, 합성예 2 및 3에 사용된 니켈화합물과 리간드를 변화시켜 이와 동일한 합성 과정을 진행하여 그 결과를 하기 표 3에 나타내었다.This time, by changing the nickel compound and ligand used in Synthesis Examples 2 and 3 and proceeding the same synthesis process is shown in Table 3 below.

실시예Example Ni화합물Ni compound 리간드Ligand 금속metal 합성예Synthesis Example 반응진행Reaction 3-13-1 염화니켈 6수화물Nickel Chloride Heptahydrate PPh3PPh3 아연 zinc 33 OO 3-23-2 아세트산니켈 4수화물Nickel Acetate Tetrahydrate PPh3PPh3 아연zinc 33 OO 3-33-3 염화니켈 6수화물Nickel Chloride Heptahydrate P(OPh)3P (OPh) 3 아연 zinc 33 00 3-43-4 아세트산니켈 4수화물Nickel Acetate Tetrahydrate P(OPh)3P (OPh) 3 아연zinc 33 00 비교예3-1Comparative Example 3-1 아세트산니켈 4수화물Nickel Acetate Tetrahydrate PPh3PPh3 -- 33 XX 비교예3-2Comparative Example 3-2 아세트산니켈 4수화물Nickel Acetate Tetrahydrate -- -- 33 XX 비교예3-3Comparative Example 3-3 테트라키스(트리페닐포스파이트)니켈Tetrakis (triphenylphosphite) nickel -- -- 22 XX 비교예3-4Comparative Example 3-4 테트라키스(트리페닐포스파이트)니켈Tetrakis (triphenylphosphite) nickel -- -- 33 XX

니켈화합물을 염화니켈 6수화물, 아세트산니켈 4수화물을 사용하고, 리간드를 트리페닐포스핀과 트리페닐포스파이트를 사용하는 촉매조합에서 모두 반응이 진행되었지만 비교예 3-1내지 3-2에서 리간드와 금속중 어느 하나가 없더라도 반응이 진행되지 않는다. Nickel compounds used nickel chloride hexahydrate and nickel acetate tetrahydrate, and ligands were all reacted in a catalyst combination using triphenylphosphine and triphenylphosphite, but in Comparative Examples 3-1 to 3-2, The reaction does not proceed even without any of the metals.

비교예 3-3 내지 3-4는 선행특허 1 및 2에서 디시아노노보난 화합물을 제조하는 방법에 사용된 테트라키스(트리페닐포스파이트)니켈 착물을 촉로를 적용한 경우 합성예 2와 3에서 모두 반응이 진행되지 않아, 본 발명이 선행기술과 차이가 있음을 확인할 수 있었다.Comparative Examples 3-3 to 3-4 are both in Synthesis Examples 2 and 3 when the catalyst was applied to the tetrakis (triphenylphosphite) nickel complex used in the method for preparing the dicyano bonan compound in the prior patents 1 and 2 Since the reaction did not proceed, it was confirmed that the present invention is different from the prior art.

Claims (10)

5-노보넨카보-2-니트릴과 금속 시안 화합물을, 용매 수용액 상에서 금속 분말과 2가 니켈 화합물, 유기 인 화합물을 함유하는 촉매 조합과 함께 산 화합물 하에서, 반응시켜 디시아노노보난을 제조하는 방법.A method for producing dicyanobornane by reacting a 5-norbornenecarbonitrile and a metal cyanide compound with a catalyst combination containing a metal powder, a divalent nickel compound and an organophosphorus compound in a solvent aqueous solution, under an acid compound. . 청구항 1에 있어서, 상기 금속시안 화합물은 시안화나트륨, 시안화칼륨, 시안화은, 시안화구리, 시안화수은, 시안화코발트, 및 포타슘페리시아나이드로 구성된 군으로부터 선택되는 적어도 1종인, 방법. The method of claim 1, wherein the metal cyanide compound is at least one selected from the group consisting of sodium cyanide, potassium cyanide, silver cyanide, copper cyanide, mercury cyanide, cobalt cyanide, and potassium ferricyanide. 청구항 1 또는 청구항 2에 있어서, 상기 산 화합물은 아세트산, 염산, 브롬산, 황산, 인산, 질산, 메탄 술폰산, 및 파라톨루엔술폰산 포타슘페리시아나이드로 구성된 군으로부터 선택되는 적어도 1종인, 방법. The method according to claim 1 or 2, wherein the acid compound is at least one selected from the group consisting of acetic acid, hydrochloric acid, bromic acid, sulfuric acid, phosphoric acid, nitric acid, methane sulfonic acid, and paratoluenesulfonic acid potassium ferricyanide. 청구항 1 또는 2에 있어서, 상기 유기 인 화합물이 하기 식 (1)로 나타내지는 알킬 또는 아릴 포스핀이거나, 하기 식(2)로 나타내지는 두 자리의 알킬 또는 아릴 포스핀이거나, 하기 식(3)으로 나타내지는 알킬 포스파이트 또는 아릴 포스파이트인, 방법: 
Figure pat00005

(R1, R2, R3는 각각 탄소수 1 ~ 10의 알킬기 또는 아릴기를 나타낸다);
Figure pat00006

(R1, R2, R3, R4는 각각 탄소수 6의 알킬기 또는 아릴기를 나타내고, n은 1-6 이다.); 및
Figure pat00007

(R1, R2, R3는 각각 탄소수 1-7의 알킬기 또는 아릴기 이다).
The said organophosphorus compound is an alkyl or aryl phosphine represented by following formula (1), the bidentate alkyl or aryl phosphine represented by following formula (2), or a following formula (3) Wherein the alkyl phosphite or aryl phosphite is represented by:
Figure pat00005

(R1, R2, R3 each represent an alkyl or aryl group having 1 to 10 carbon atoms);
Figure pat00006

(R1, R2, R3, R4 each represent an alkyl or aryl group having 6 carbon atoms, n is 1-6.); And
Figure pat00007

(R1, R2, R3 are each an alkyl or aryl group having 1-7 carbon atoms).
청구항 1 또는 청구항 2에 있어서, 상기 2가 니켈 화합물이 니켈 할로겐 염, 또는 니켈 카르복실산염 화합물로부터 선택되는, 방법. The method according to claim 1 or 2, wherein the divalent nickel compound is selected from nickel halogen salts or nickel carboxylate compounds. 청구항 1 또는 2에 있어서, 상기 금속분말이 아연, 마그네슘, 및 알루미늄으로 구성된 군으로부터 선택되는 적어도 1종인, 방법. The method according to claim 1 or 2, wherein the metal powder is at least one selected from the group consisting of zinc, magnesium, and aluminum. 청구항 1 또는 2에 있어서, 상기 수용액 용매는 케톤계열의 용매와 알코올계열의 용매의 혼합물이면서, 상기 용매가 아세톤, 메틸에틸케톤, 시클로헥사논, 벤조페논의 케톤계열 화합물로 구성된 군으로부터 선택되는 적어도 1종인, 방법. The method of claim 1, wherein the aqueous solvent is a mixture of a ketone-based solvent and an alcohol-based solvent, wherein the solvent is at least selected from the group consisting of ketone-based compounds of acetone, methyl ethyl ketone, cyclohexanone, and benzophenone. One kind, method. 청구항 7에 있어서, 상기 케톤계열의 용매와 알코올계열의 용매가 혼합된 수용액상에서 반응온도가 55 ~ 70℃인, 방법.The method according to claim 7, wherein the reaction temperature is 55 ~ 70 ℃ in the aqueous solution in which the ketone solvent and the alcohol solvent is mixed. 청구항 1 또는 2에 있어서, 상기 금속시안 화합물 사용량은 5-노보넨카보-2-니트릴에 대해 1.0 당량 이상이고, 상기 산 화합물은 상기 금속시안 화합물 사용량에 대해 0.9당량 ~ 1.5당량인, 방법.The method according to claim 1 or 2, wherein the amount of the metal cyanide compound is 1.0 equivalent or more based on 5-norbornene carbonitrile and the acid compound is 0.9 equivalent to 1.5 equivalents based on the amount of the metal cyanide compound. 청구항 9에 있어서, 상기 니켈 화합물의 사용량은 5-노보넨카보-2-니트릴에 대해 3mol% ~ 20mol%이고, 상기 유기 인 화합물의 사용량은 상기 니켈 화합물에 대해 2 당량 이상이고, 상기 금속 분말의 사용량은 상기 니켈 화합물에 대하여 5 당량 이상인, 방법.
The method of claim 9, wherein the amount of the nickel compound is 3 mol% to 20 mol% with respect to 5-norbornenecarbonitrile, the amount of the organophosphorus compound is 2 equivalents or more with respect to the nickel compound, The usage-amount is 5 equivalent or more with respect to the said nickel compound.
KR1020180023862A 2018-02-27 2018-02-27 Process for preparing dicyanonorbornane compound KR102081309B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180023862A KR102081309B1 (en) 2018-02-27 2018-02-27 Process for preparing dicyanonorbornane compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180023862A KR102081309B1 (en) 2018-02-27 2018-02-27 Process for preparing dicyanonorbornane compound

Publications (2)

Publication Number Publication Date
KR20190102853A true KR20190102853A (en) 2019-09-04
KR102081309B1 KR102081309B1 (en) 2020-02-25

Family

ID=67950535

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180023862A KR102081309B1 (en) 2018-02-27 2018-02-27 Process for preparing dicyanonorbornane compound

Country Status (1)

Country Link
KR (1) KR102081309B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438638A1 (en) 1989-12-27 1991-07-31 MITSUI TOATSU CHEMICALS, Inc. Process for producing norcamphane dicarbonitriles
JP2003055327A (en) * 2001-08-09 2003-02-26 Mitsui Chemicals Inc Method for producing dicyanonorbornanes
WO2008001490A1 (en) 2006-06-30 2008-01-03 Mitsui Chemicals, Inc. Process for producing dicyanonorbornane and zerovalent-nickel complex catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0438638A1 (en) 1989-12-27 1991-07-31 MITSUI TOATSU CHEMICALS, Inc. Process for producing norcamphane dicarbonitriles
JP2003055327A (en) * 2001-08-09 2003-02-26 Mitsui Chemicals Inc Method for producing dicyanonorbornanes
WO2008001490A1 (en) 2006-06-30 2008-01-03 Mitsui Chemicals, Inc. Process for producing dicyanonorbornane and zerovalent-nickel complex catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wikipedia, Hydrocyanation of unsaturated carbonylcompounds(2013.01.10.)* *

Also Published As

Publication number Publication date
KR102081309B1 (en) 2020-02-25

Similar Documents

Publication Publication Date Title
US3655723A (en) Hydrocyanation of olefins
TW453983B (en) Hydrocyanation processes and multidentate phosphite ligand and nickel catalyst compositions therefor
EP2107047A1 (en) Method for producing organic compounds by means of a transition metal-catalysed cross-coupling reaction of an aryl-X, heteroaryl-X, cycloalkenyl-X or alkenyl-X compound with an alkyl, alkenyl, cycloalkyl or cycloalkenyl halogenide
CN109704944B (en) Method for preparing menthone from citronellal and catalyst system used in method
JPH11511729A (en) Method for producing ruthenium hydrogenation catalyst and its product
WO2005042156A1 (en) Method for producing of nickel(0)/phosphorus ligand complexes
CN101270113A (en) Preparation of multi-chiral catalyst, preparation and application of cyclic carbonates with optical activity
KR102081309B1 (en) Process for preparing dicyanonorbornane compound
EP1386663B1 (en) Microencapsulated metal catalyst
JP6521305B2 (en) Method for producing nitrile compound
US4309357A (en) Process for preparing dienoic acids
WO2010061807A1 (en) Ketone manufacturing method
JP2009233659A (en) Method of preserving catalyst and method of isomerizing allyl compound
CN109535029B (en) Synthetic method of 2,4,4, 4-tetrachlorobutyronitrile
JP2014129269A (en) Method for producing an olefin
EP3169651B1 (en) Process for the production of biaryl compounds
Maity et al. Assisted Tandem Catalytic Conversion of Acrylates into Adipic Esters
Onuma et al. The Reductive Coupling Reactions of Some Chloromethylbenzene Derivatives with Iron (II) and Copper (I) Complexes
US11377415B2 (en) Method for converting N,N-dialkylamide compound into ester compound using complex of fourth-period transition metal as catalyst
US3562181A (en) Supported catalysts for dimerization of acrylonitriles and process of using the same
CN100378062C (en) Process for the preparation of fluorophenylalkylene acid derivatives
CN115093346B (en) Method for preparing nitrile compound from different substituted cycloalkanone in one step
Sabounchei et al. Spectral and crystallography studies of new palladacycle complexes with P, C‐and C, C‐donor ligands; Application of (OAL16) to optimizing the yield of Mizoroki‐Heck reaction
WO2018202724A1 (en) Production of adipic acid and derivatives thereof
CN114790132B (en) Fluorine-containing aldehyde and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant