KR20190083732A - An Ultrafiltration Membrane and its Preparation Method - Google Patents

An Ultrafiltration Membrane and its Preparation Method Download PDF

Info

Publication number
KR20190083732A
KR20190083732A KR1020180001522A KR20180001522A KR20190083732A KR 20190083732 A KR20190083732 A KR 20190083732A KR 1020180001522 A KR1020180001522 A KR 1020180001522A KR 20180001522 A KR20180001522 A KR 20180001522A KR 20190083732 A KR20190083732 A KR 20190083732A
Authority
KR
South Korea
Prior art keywords
membrane
period
temperature
polyvinyl alcohol
humidity
Prior art date
Application number
KR1020180001522A
Other languages
Korean (ko)
Inventor
셩민 리
Original Assignee
셩민 리
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 셩민 리 filed Critical 셩민 리
Priority to KR1020180001522A priority Critical patent/KR20190083732A/en
Publication of KR20190083732A publication Critical patent/KR20190083732A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • B01D67/00165Composition of the coagulation baths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a method for manufacturing an ultrafiltration membrane having excellent mechanical properties. In the present invention, hemicellulose having excellent mechanical properties is added to a casting membrane solution, so that the retention rate of the ultrafiltration membrane is enhanced. The method comprises a step of obtaining a cast membrane solution by dissolving polyvinyl alcohol, hemicellulose, and titanium dioxide in N,N-dimethylacetamide.

Description

한외 여과 멤브레인 및 이의 제조 방법 {An Ultrafiltration Membrane and its Preparation Method}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an ultrafiltration membrane,

본 발명은 높은 기계적 특성을 가진 한외 여과 멤브레인 및 이의 제조 방법에 관한 것이다.The present invention relates to an ultrafiltration membrane having high mechanical properties and a method for producing the same.

현재, 한외 여과 멤브레인은 오랜 시간 동안 압력을 받으나 기계적 특성이 불량하기 때문에, 한외 여과 멤브레인의 사용기간이 짧아지고, 멤브레인 모듈(membrane module) 내 한외 여과 멤브레인의 잦은 교체가 필요하다.Currently, ultrafiltration membranes are pressurized for a long time, but their mechanical properties are poor, shortening the life of ultrafiltration membranes and requiring frequent replacement of ultrafiltration membranes in membrane modules.

따라서, 한외 여과 멤브레인의 기계적 특성을 향상시킬 수 있는 한외 여과 멤브레인을 개발하는 것이 필요하다.Therefore, it is necessary to develop an ultrafiltration membrane capable of improving the mechanical properties of the ultrafiltration membrane.

본 발명의 한 목적은 높은 기계적 특성을 가진 한외 여과 멤브레인 및 이의 제조 방법을 제공하는 것이다.It is an object of the present invention to provide an ultrafiltration membrane having high mechanical properties and a method for producing the same.

본 발명은 높은 기계적 특성을 가진 한외 여과 멤브레인을 제조하는 방법에 관한 것이다. 본 발명에서는, 높은 기계적 특성을 가진 헤미셀룰로오스(hemicellulose)를 캐스팅 멤브레인(casting membrane) 용액에 첨가함으로써, 본 발명의 한외 여과 멤브레인의 유지율(retention rate)을 향상시킨다.The present invention relates to a method for producing an ultrafiltration membrane having high mechanical properties. In the present invention, hemicellulose having high mechanical properties is added to a casting membrane solution to improve the retention rate of the ultrafiltration membrane of the present invention.

실시예 1Example 1

단계 1: 폴리비닐 알코올 16g, 헤미셀룰로오스 8g 및 이산화 티타늄 0.8g을 3구 플라스크에 첨가하였다;Step 1: 16 g of polyvinyl alcohol, 8 g of hemicellulose and 0.8 g of titanium dioxide were added to a three-necked flask;

단계 2: 그 후 N,N-디메틸아세트아마이드(N,N-dimethylacetamide) 50g을 상기 3구 플라스크에 첨가하여 혼합물을 수득하고, 상기 혼합물을 65℃에서 5시간 동안 교반하였다;Step 2: 50 g of N, N-dimethylacetamide was then added to the three-necked flask to obtain a mixture and the mixture was stirred at 65 DEG C for 5 hours;

단계 3: 20℃의 온도 및 20%의 습도 환경에서 8시간 동안 거품이 제거되도록 방치시켜, 균일하고 거품이 없는 캐스팅 멤브레인 용액을 얻었다;Step 3: Leave to bubble for 8 hours at a temperature of 20 ° C and a humidity of 20% to obtain a uniform, bubble-free casting membrane solution;

단계 4: 상기 캐스팅 멤브레인 용액을 유리 기판에 붓고, 유리 기판 상의 캐스팅 멤브레인 용액을 멤브레인 도포기로 도포하여 두께가 200μm인 액상 멤브레인을 얻었다;Step 4: The casting membrane solution was poured onto a glass substrate, and the casting membrane solution on the glass substrate was coated with a membrane applicator to obtain a liquid membrane having a thickness of 200 m;

단계 5: 상기 액상 멤브레인이 형성된 유리 기판을 20℃의 온도 및 20%의 습도 환경에 두어 15초 동안 휘발시켰다;Step 5: The glass substrate on which the liquid membrane was formed was volatilized for 15 seconds at a temperature of 20 캜 and a humidity environment of 20%;

단계 6: 상기 액상 멤브레인이 형성된 유리 기판을 탈이온수에 넣어, 액상 멤브레인을 고상 멤브레인으로 고형화시켰다;Step 6: The glass substrate on which the liquid membrane was formed was put into deionized water to solidify the liquid membrane into a solid phase membrane;

단계 7: 상기 고상 멤브레인을 탈이온수에서 꺼내고, 공기 건조한 후, 건조 오븐에 10분 동안 두어, 한외 여과 멤브레인을 얻었다.Step 7: The solid membrane was taken out of deionized water, air dried, and then placed in a drying oven for 10 minutes to obtain an ultrafiltration membrane.

비교예에서는, 헤미셀룰로오스를 첨가하지 않은 것을 제외하고, 실시예 1과 실험 조건이 모두 동일하였다.In the comparative example, the experimental conditions were the same as those in Example 1, except that hemicellulose was not added.

구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 실시예 7Example 7 실시예 8Example 8 실시예 9Example 9 실시예 10Example 10 비교예Comparative Example 폴리비닐알코올의 질량 농도 (%)Mass concentration (%) of polyvinyl alcohol 3232 2020 5050 3232 3232 3232 3232 3232 3232 3232 3232 헤미셀룰로오스와 폴리비닐알코올의 질량 비율The mass ratio of hemicellulose to polyvinyl alcohol 0.5:10.5: 1 0.5:10.5: 1 0.5:10.5: 1 0.1:10.1: 1 1:11: 1 0.5:10.5: 1 0.5:10.5: 1 0.5:10.5: 1 0.5:10.5: 1 0.5:10.5: 1 -- 이산화 티타늄과 폴리비닐알코올의 질량 비율 Mass ratio of titanium dioxide to polyvinyl alcohol 0.05:10.05: 1 0.05:10.05: 1 0.05:10.05: 1 0.05:10.05: 1 0.05:10.05: 1 0.01:10.01: 1 0.1:10.1: 1 0.05:10.05: 1 0.05:10.05: 1 0.05:10.05: 1 0.05:10.05: 1 1차 온도 (℃)Primary temperature (℃) 6565 6565 6565 6565 6565 6565 6565 6565 5050 9090 6565 2차 온도 (℃)Secondary temperature (캜) 2020 2020 2020 2020 2020 2020 2020 1515 2020 2020 2020 3차 온도 (℃)Tertiary temperature (캜) 2020 2020 2020 2020 2020 2020 2020 2525 2020 2020 2020 1차 습도 (%)Primary humidity (%) 2020 2020 2020 2020 2020 2020 2020 1010 2020 2020 2020 2차 습도 (%)Secondary humidity (%) 2020 2020 2020 2020 2020 2020 2020 3030 2020 2020 2020 1차 기간 (h)The first period (h) 88 88 88 88 88 88 88 88 1010 66 88 2차 기간 (s)Second period (s) 1515 1515 1515 1515 1515 1515 1515 1515 1010 120120 1515 3차 기간 (min)The third period (min) 1010 1010 1010 1010 1010 1010 1010 1010 55 6060 1010

실시예 1 내지 3에서, 폴리비닐알코올의 질량 농도가 각각 32%, 20% 및 50%인 것을 제외하면, 실험 조건은 모두 동일하였다.In Examples 1 to 3, the experimental conditions were all the same except that the mass concentrations of polyvinyl alcohol were 32%, 20%, and 50%, respectively.

실시예 1, 4 및 5에서, 헤미셀룰로오스와 폴리비닐알코올 간의 질량 비율이 각각 0.5:1, 0.1:1 및 1:1인 것을 제외하면, 실험 조건은 모두 동일하였다.In Examples 1, 4 and 5, the experimental conditions were all the same except that the mass ratio between hemicellulose and polyvinyl alcohol was 0.5: 1, 0.1: 1 and 1: 1, respectively.

실시예 1, 6 및 7에서, 이산화 티타늄과 폴리비닐알코올 간의 질량 비율이 각각 0.05:1, 0.01:1 및 0.1:1인 것을 제외하면, 실험 조건은 모두 동일하였다.In Examples 1, 6, and 7, the experimental conditions were all the same except that the mass ratio between titanium dioxide and polyvinyl alcohol was 0.05: 1, 0.01: 1, and 0.1: 1, respectively.

실시예 1 및 8에서, 2차 및 3차 온도, 1차 및 2차 습도가 실시예 1에서는 각각 20℃, 20℃, 20% 및 20%이지만, 실시예 8에서는 각각 15℃, 25℃, 10% 및 30%인 것을 제외하면, 실험 조건은 모두 동일하였다. 즉, 거품을 제거하고 고상 멤브레인을 형성하는 환경이 상이하였다.In Examples 1 and 8, the secondary and tertiary temperatures, primary and secondary humidity were 20 ° C, 20 ° C, 20%, and 20%, respectively in Example 1, 10% and 30%, respectively. That is, the environment in which the foam was removed and the solid membrane was formed was different.

실시예 1, 9 및 10에서, 1차 온도, 1차, 2차 및 3차 기간, 즉, 캐스팅 멤브레인 용액을 제조하는 온도, 캐스팅 멤브레인 용액을 제조하는 기간, 도포된 액상 멤브레인을 휘발시키는 기간 및 멤브레인 샘플을 건조하는 기간이 상이한 것을 제외하면, 실험 조건은 모두 동일하였다.In Examples 1, 9 and 10, the primary temperature, the primary, secondary and tertiary periods, that is, the temperature at which the casting membrane solution is prepared, the period during which the casting membrane solution is prepared, the period during which the applied liquid membrane is volatilized, The experimental conditions were all the same except that the period of drying the membrane samples was different.

room 험예Stunning 1 One

실시예 1 내지 10 및 비교예에서 제조된 멤브레인의 기계적 특성을 측정하고 비교하였으며, 측정 결과는 표 2에 나타내었다.The mechanical properties of the membranes prepared in Examples 1 to 10 and Comparative Examples were measured and compared. The measurement results are shown in Table 2.

기계적 특성 시험:Mechanical properties test:

시험 장치: 페이퍼 및 페이퍼 보드 인장 시험기(paper and paper board tensile tester) ZL-100ATest apparatus: Paper and paper board tensile tester ZL-100A

시험 단계:Testing phase:

첫번째로, 시험할 멤브레인 샘플을 시험기에 맞는 모양으로 자르고, 눈금 거리(scale distance)를 두 개의 표시선으로 표시했다;First, the membrane sample to be tested is cut to the shape of the tester and the scale distance is indicated by two markers;

두번째로, 자른 멤브레인 샘플을 시험기의 홀더에 놓고, 대칭 위치로 조심스럽게 조절하여, 당기는 힘(stretching force)이 멤브레인 샘플의 단면 상에 균등하게 분배되도록 하였다;Second, the cut membrane sample was placed in a holder of the tester and carefully adjusted to a symmetrical position so that a stretching force was evenly distributed over the cross-section of the membrane sample;

마지막으로, 시험기를 가동하고, 멤브레인 샘플이 파단되는 최대 힘(오차 ±1%), 및 두 개의 표시선의 안쪽 사이의 거리(오차 ±1.25mm)를 기록했다.Finally, the tester was run and the maximum force (error ± 1%) at which the membrane sample was broken and the distance between the inside of the two marks (error ± 1.25 mm) were recorded.

기계적 특성은 하기와 같이 계산될 수 있다:The mechanical properties can be calculated as follows:

Figure pat00001
Figure pat00001

상기 식에서, P는 평균 인장 강도이고, F는 파단 시 최대 힘이고, A는 평균 초기 단면적이다.Where P is the average tensile strength, F is the maximum force at break, and A is the average initial cross-sectional area.

Figure pat00002
Figure pat00002

상기 식에서, α는 파단 시 연신율이고, L은 파단 시 눈금 거리이고, L 0 는 초기 눈금 거리이다.In the above equation ,? Is the elongation at break, L is the scale distance at break, and L 0 is the initial scale distance.

실험예Experimental Example 2 2

유수량 및 메틸렌 블루 유지율의 측정Determination of oil content and methylene blue retention

시험 압력: 0.1MpaTest pressure: 0.1 MPa

시험 단계:Testing phase:

첫번째로, 멤브레인 샘플을 멤브레인 특성 시험기에 올려놓았다;First, the membrane sample was placed on a membrane characterization tester;

두번째로, 탈이온수를 멤브레인 특성 시험기의 멤브레인 풀(membrane pool)에 채웠다;Second, deionized water was charged to the membrane pool of the membrane characterization tester;

마지막으로, 멤브레인 샘플의 유수량을 계산하기 위해, 멤브레인 풀에 압력을 가하여 멤브레인 풀의 탈이온수가 멤브레인을 통과하여 출구 끝 밖으로 흘러나오도록 하였다.Finally, to calculate the flow rate of the membrane sample, pressure was applied to the membrane pool so that deionized water from the membrane pool flowed out of the outlet end through the membrane.

유수량의 계산식:Calculation of flow rate:

Figure pat00003
Figure pat00003

상기 식에서, B는 (L·m -2 ·h - 1) 단위의 멤브레인 샘플의 유수량이고, V는 멤브레인 특성 테스터의 출구 끝 밖으로 흘러나온 물의 총 부피이며, D는 멤브레인 샘플의 면적이고, t는 총 시험 시간이다.Wherein, B is - (L · m -2 · h 1 ) water flow of the membrane samples of the unit, V is the total volume of water flowed out of the outlet end of the membrane characteristics tester, D is the area of the membrane sample, t is Total test time.

유지율 시험:Retention rate test:

시험 장치: 한외 여과 컵, 자외선 및 가시광선 분광 광도계Test apparatus: ultrafiltration cup, ultraviolet and visible light spectrophotometer

시험 압력: 1MpaTest pressure: 1 Mpa

시험 단계:Testing phase:

첫번째로, 멤브레인 샘플을 한외 여과 컵에 올려 놓았다.First, the membrane sample was placed in an ultrafiltration cup.

두번째로, 1g/L의 메틸렌 블루 수용액을 한외 여과 컵의 멤브레인 풀에 채웠다.Second, a 1 g / L aqueous methylene blue solution was charged to the membrane pool of the ultrafiltration cup.

세번째로, 멤브레인 풀에 압력을 가하여 멤브레인 풀의 메틸렌 블루 수용액이 멤브레인을 통과하도록 하고, 이때 최소한 메틸렌 블루의 일부분이 멤브레인 상에 남도록 하고, 메틸렌 블루 수용액의 나머지가 출구 끝의 밖으로 흘러나오도록 하였다.Third, pressure was applied to the membrane pool to allow a methylene blue aqueous solution of the membrane pool to pass through the membrane, leaving at least a portion of the methylene blue on the membrane, leaving the remainder of the aqueous methylene blue solution out of the outlet end.

마지막으로, 멤브레인 풀 내의 메틸렌 블루 수용액 및 출구 끝 밖으로 흘러나온 메틸렌 블루 수용액의 메틸렌 블루 농도를 자외선 분광 광도계로 측정하여, 멤브레인 샘플의 메틸렌 블루 유지율을 계산하였다.Finally, the methylene blue aqueous solution in the membrane pool and the methylene blue concentration of the methylene blue aqueous solution flowing out of the outlet end were measured with an ultraviolet spectrophotometer, and the methylene blue retention ratio of the membrane sample was calculated.

유지율 계산식:Retention rate calculation formula:

Figure pat00004
Figure pat00004

상기 식에서, R은 멤브레인 샘플의 메틸렌 블루 유지율이고, c는 출구 끝 밖으로 흘러나온 메틸렌 블루 수용액의 메틸렌 블루 농도이며, c 0 는 멤브레인 풀 내의 메틸렌 블루 수용액의 메틸렌 블루 농도이다.Where R is the methylene blue retention of the membrane sample, c is the methylene blue concentration of the methylene blue aqueous solution flowing out of the outlet end and c 0 is the methylene blue concentration of the methylene blue aqueous solution in the membrane pool.

평균 인장 강도
(Mpa) (23℃)
Average tensile strength
(Mpa) (23 < 0 > C)
파단 시 연신율(%)Elongation at break (%) 유수량
(L·m -2 · MPa -1 ·h -1)
water flow
(L · m -2 · MPa -1 · h -1)
메틸렌 블루 유지율 (%)Methylene Blue Retention (%)
실시예 1Example 1 150.9150.9 100100 139.2139.2 5656 실시예 2Example 2 101.1101.1 6060 144.5144.5 1919 실시예 3Example 3 129.3129.3 7676 100.7100.7 4747 실시예 4Example 4 104.1104.1 5858 135.5135.5 3939 실시예 5Example 5 136.9136.9 9090 99.799.7 4949 실시예 6Example 6 149.5149.5 9393 94.894.8 4141 실시예 7Example 7 143.2143.2 8080 112.4112.4 3838 실시예 8Example 8 141.1141.1 9393 130.2130.2 5252 실시예 9Example 9 132.1132.1 8686 128.9128.9 3636 실시예 10Example 10 134.5134.5 8787 105.9105.9 6262 비교예Comparative Example 89.789.7 5555 103.6103.6 3434

표 2를 통해, 실시예 1 내지 10이 비교예보다 더욱 높은 평균 인장 강도 및 파단 시 연신율을 가짐을 알 수 있으며, 이는 헤미셀룰로오스의 첨가가 멤브레인의 기계적 특성을 향상시킬 수 있음을 나타낸다.It can be seen from Table 2 that Examples 1 to 10 have higher average tensile strength and elongation at break than the Comparative Examples, indicating that the addition of hemicellulose can improve the mechanical properties of the membrane.

또한, 실시예 1 내지 10과 비교예 간의 유수량 및 메틸렌 블루 유지율을 비교함으로써 얻은 비교 결과는, 본 발명에 따라 캐스팅 멤브레인 용액에 적당량의 헤미셀룰로오스를 첨가함으로써, 유수량이 일정하게 유지된 상황에서 본 발명의 한외 여과 멤브레인의 유지율이 향상됨을 나타낸다.The comparison results obtained by comparing the water content between Examples 1 to 10 and the comparative example with the methylene blue retentivity indicate that by adding an appropriate amount of hemicellulose to the casting membrane solution according to the present invention, Indicating that the retention ratio of the ultrafiltration membrane is improved.

표 1 및 2를 결합하면, 다음과 같은 결론에 도달한다:Combining Tables 1 and 2, we arrive at the following conclusions:

실시예 1 내지 3에서, 폴리비닐 알코올의 질량 농도는 각각 32%, 20% 및 50%이고, 다른 실험 조건은 동일하다. 실시예 1이 실시예 2 및 3보다 평균 인장 강도, 파단 시 연신율, 유수량 및 메틸렌 블루 유지율이 더욱 우수함을 알 수 있고, 이는 폴리비닐 알코올의 바람직한 질량 농도가 32%임을 나타낸다.In Examples 1 to 3, the mass concentrations of polyvinyl alcohol are 32%, 20%, and 50%, respectively, and the other experimental conditions are the same. It can be seen that Example 1 has better average tensile strength, elongation at break, water content and methylene blue retention than Examples 2 and 3, indicating that the preferred mass concentration of polyvinyl alcohol is 32%.

실시예 1, 4 및 5에서, 실시예 1이 실시예 4 및 5보다 평균 인장 강도, 파단 시 연신율, 유수량 및 메틸렌 블루 유지율이 더욱 우수함을 알 수 있고, 이는 헤미셀룰로오스와 폴리비닐 알코올의 바람직한 질량 비율이 0.5:1임을 나타낸다.In Examples 1, 4, and 5, it can be seen that Example 1 is superior to Examples 4 and 5 in terms of average tensile strength, elongation at break, water retention, and methylene blue retention ratio, which is the ratio of the weight ratio of hemicellulose and polyvinyl alcohol Is 0.5: 1.

실시예 1, 6 및 7에서, 실시예 1이 실시예 6 및 7보다 평균 인장 강도, 파단 시 연신율, 유수량 및 메틸렌 블루 유지율이 더욱 우수함을 알 수 있고, 이는 이산화 티타늄과 폴리비닐 알코올의 바람직한 질량 비율이 0.05:1임을 나타낸다.In Examples 1, 6 and 7, it can be seen that Example 1 is superior to Examples 6 and 7 in terms of average tensile strength, elongation at break, water retention and methylene blue retention, which is a desirable mass of titanium dioxide and polyvinyl alcohol Indicating that the ratio is 0.05: 1.

실시예 1과 8을 비교하면, 실시예 1이 실시예 8보다 평균 인장 강도, 파단 시 연신율, 유수량 및 메틸렌 블루 유지율이 더욱 우수함을 알 수 있고, 이는 2차 온도, 3차 온도, 1차 습도 및 2차 습도가 각각 20℃, 20℃, 20% 및 20%인 것이 바람직함을 나타낸다.Comparing Examples 1 and 8, it can be seen that Example 1 is superior to Example 8 in terms of average tensile strength, elongation at break, oil content and methylene blue retention, And secondary humidity of 20 [deg.] C, 20 [deg.] C, 20% and 20%, respectively.

실시예 1, 9 및 10을 비교하면, 실시예 1이 실시예 9 및 10보다 평균 인장 강도, 파단 시 연신율, 유수량 및 메틸렌 블루 유지율이 더욱 우수함을 알 수 있고, 이는 1차 온도, 1차 기간, 2차 기간 및 3차 기간이 각각 65℃, 8시간, 15초 및 10분인 것이 바람직함을 나타낸다.Comparing Examples 1, 9 and 10, it can be seen that Example 1 is superior to Examples 9 and 10 in terms of average tensile strength, elongation at break, flow rate and methylene blue retention, , And the secondary and tertiary periods are preferably 65 ° C, 8 hours, 15 seconds and 10 minutes, respectively.

결론적으로, 비교예에 비해, 실시예 1 내지 10이 바람직하고, 실시예 1, 4, 7 및 8이 더 바람직하며, 실시예 1이 가장 바람직하다.Consequently, in comparison with the comparative examples, Examples 1 to 10 are preferable, and Examples 1, 4, 7 and 8 are more preferable, and Embodiment 1 is most preferable.

Claims (5)

폴리비닐 알코올, 헤미셀룰로오스 및 이산화 티타늄을 1차 온도에서 N,N-디메틸아세트아마이드에 용해시켜 초기 캐스팅 멤브레인 용액을 형성하고, 2차 온도 및 1차 습도에서 1차 기간 동안 거품이 제거되도록 하여, 처리된 캐스팅 멤브레인 용액을 얻는 단계;
상기 처리된 캐스팅 멤브레인 용액을 유리 기판 상에 붓고, 멤브레인 도포기를 이용하여 150 내지 250μm 두께의 액상 멤브레인을 얻는 단계;
상기 액상 멤브레인을 3차 온도 및 2차 습도에서 2차 기간 동안 휘발시키고, 상기 액상 멤브레인이 형성된 유리 기판을 응고 배쓰(coagulation bath)에 넣어, 상기 액상 멤브레인을 고형화하여 고상 멤브레인을 얻는 단계;
상기 고상 멤브레인을 응고 배쓰에서 꺼내고, 공기 건조한 후, 건조 오븐에서 3차 기간 동안 건조하여, 한외 여과 멤브레인을 얻는 단계를 포함하는, 한외 여과 멤브레인의 제조 방법.
Polyvinyl alcohol, hemicellulose and titanium dioxide are dissolved in N, N-dimethylacetamide at a first temperature to form an initial casting membrane solution and bubbles are removed during the first period at a second temperature and primary humidity, Obtaining a casting membrane solution;
Pouring the treated casting membrane solution onto a glass substrate and obtaining a liquid membrane having a thickness of 150 to 250 mu m using a membrane applicator;
Volatilizing the liquid membrane at a third temperature and a second humidity for a second period of time and solidifying the liquid membrane by placing the glass substrate on which the liquid membrane is formed in a coagulation bath to obtain a solid phase membrane;
Removing the solid membrane from the coagulating bath, air drying, and drying in a drying oven for a third period of time to obtain an ultrafiltration membrane.
제1항에 있어서, 1차 온도는 50 내지 90℃이고;
2차 온도는 15 내지 25℃이며;
3차 온도는 15 내지 25℃이고;
1차 습도는 10 내지 30%이며;
2차 습도는 10 내지 30%이고;
1차 기간은 6 내지 10시간이며;
2차 기간은 10 내지 120초이고;
3차 기간은 60분인, 한외 여과 멤브레인의 제조 방법.
The process of claim 1, wherein the primary temperature is from 50 to 90 占 폚;
The secondary temperature is 15 to 25 占 폚;
The tertiary temperature is 15 to 25 占 폚;
The primary humidity is 10 to 30%;
The secondary humidity is 10 to 30%;
The primary period is 6 to 10 hours;
The second period is 10 to 120 seconds;
And the third period is 60 minutes.
제1항에 있어서, 상기 처리된 캐스팅 멤브레인 용액에서,
폴리비닐 알코올의 질량 농도는 20 내지 40%이고,
헤미셀룰로오스와 폴리비닐알코올의 질량 비율은 0.1 내지 1:1이며,
이산화 티타늄과 폴리비닐알코올의 질량 비율은 0.01 내지 0.1:1인, 한외 여과 멤브레인의 제조 방법.
The method of claim 1, wherein in the treated casting membrane solution,
The mass concentration of the polyvinyl alcohol is 20 to 40%
The mass ratio of hemicellulose to polyvinyl alcohol is 0.1 to 1: 1,
Wherein the mass ratio of titanium dioxide to polyvinyl alcohol is 0.01 to 0.1: 1.
제1항에 있어서, 세 번째 단계에서, 상기 응고 배쓰는 탈이온수인, 한외 여과 멤브레인의 제조 방법.The method of claim 1, wherein, in the third step, the coagulation bath is deionized water. 제1항 내지 제4항 중 어느 한 항에 따른 방법으로 제조된 한외 여과 멤브레인.5. An ultrafiltration membrane produced by the process of any one of claims 1 to 4.
KR1020180001522A 2018-01-05 2018-01-05 An Ultrafiltration Membrane and its Preparation Method KR20190083732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180001522A KR20190083732A (en) 2018-01-05 2018-01-05 An Ultrafiltration Membrane and its Preparation Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180001522A KR20190083732A (en) 2018-01-05 2018-01-05 An Ultrafiltration Membrane and its Preparation Method

Publications (1)

Publication Number Publication Date
KR20190083732A true KR20190083732A (en) 2019-07-15

Family

ID=67257510

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180001522A KR20190083732A (en) 2018-01-05 2018-01-05 An Ultrafiltration Membrane and its Preparation Method

Country Status (1)

Country Link
KR (1) KR20190083732A (en)

Similar Documents

Publication Publication Date Title
EP3430076B1 (en) Composition and method for manufacturing sulfone polymer membrane
AU2013361727B9 (en) Hydrophilic fluoropolymer
EP3681620A1 (en) Purification methods comprising the use of membranes obtained from bio-based sulfone polymers
CN112495197B (en) Polyvinylidene fluoride filtering membrane and preparation method and application thereof
JP2023506230A (en) Polymer additive containing zwitterionic sites for PVDF-based membranes
KR20190083732A (en) An Ultrafiltration Membrane and its Preparation Method
CN110270229A (en) The preparation method of dual responsiveness hollow fiber composite membrane
CN104624061B (en) A kind of production method of Flat Membrane
KR20190084631A (en) An ultrafiltration membrane and its preparation method
JP2006257397A (en) Aromatic polyamide porous film
KR20160071394A (en) Process for manufacturing fluoropolymer membranes
KR20190087175A (en) An ultrafiltration membrane and its preparation method
KR20190082499A (en) An Ultrafiltration Membrane and Its Preparation Method
CN107551833A (en) A kind of double modified hollow fiber ultrafiltration membranes and preparation method thereof
KR102464154B1 (en) An ultrafiltration membrane and its preparation method
KR102473581B1 (en) An ultrafiltration membrane and its preparation method
CN104492274B (en) A kind of preparation method of reverse osmosis membrane
KR20190077994A (en) Ultrafiltration membrane and its preparation method
KR20190093888A (en) An ultra-filtration membrane and its preparation method
KR20230004125A (en) Preparation method of cellulose-based polymer microfiltration membrane and microfiltration membrane thereby
KR20190063307A (en) An ultrafiltration membrane and its preparation method
KR20190071286A (en) Ultrafiltration membrane and its preparation method
KR20190056660A (en) An ultrafiltration membrane and its preparation method
DE102018100884A1 (en) Ultrafiltration membrane and process for its preparation
Lin et al. Characterization of temperature-sensitive membranes prepared from poly (vinylidene fluoride)-graft-poly (N-isopropylacrylamide) copolymers obtained by atom transfer radical polymerization

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application