KR20190083732A - An Ultrafiltration Membrane and its Preparation Method - Google Patents
An Ultrafiltration Membrane and its Preparation Method Download PDFInfo
- Publication number
- KR20190083732A KR20190083732A KR1020180001522A KR20180001522A KR20190083732A KR 20190083732 A KR20190083732 A KR 20190083732A KR 1020180001522 A KR1020180001522 A KR 1020180001522A KR 20180001522 A KR20180001522 A KR 20180001522A KR 20190083732 A KR20190083732 A KR 20190083732A
- Authority
- KR
- South Korea
- Prior art keywords
- membrane
- period
- temperature
- polyvinyl alcohol
- humidity
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 74
- 238000000108 ultra-filtration Methods 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title 1
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 16
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229920002488 Hemicellulose Polymers 0.000 claims abstract description 12
- 238000005266 casting Methods 0.000 claims abstract description 12
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 7
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims abstract 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 3
- 239000007790 solid phase Substances 0.000 claims description 2
- 230000015271 coagulation Effects 0.000 claims 2
- 238000005345 coagulation Methods 0.000 claims 2
- 238000007605 air drying Methods 0.000 claims 1
- 230000001112 coagulating effect Effects 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 abstract description 14
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 21
- 229960000907 methylthioninium chloride Drugs 0.000 description 21
- 238000012360 testing method Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000012071 phase Substances 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011087 paperboard Substances 0.000 description 2
- QQGISFDJEJMKIL-JAIQZWGSSA-N (5z)-5-[[3-(hydroxymethyl)thiophen-2-yl]methylidene]-10-methoxy-2,2,4-trimethyl-1h-chromeno[3,4-f]quinolin-9-ol Chemical compound C1=CC=2NC(C)(C)C=C(C)C=2C2=C1C=1C(OC)=C(O)C=CC=1O\C2=C/C=1SC=CC=1CO QQGISFDJEJMKIL-JAIQZWGSSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0013—Casting processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0016—Coagulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0016—Coagulation
- B01D67/00165—Composition of the coagulation baths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0095—Drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/08—Specific temperatures applied
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/12—Specific ratios of components used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/15—Use of additives
- B01D2323/218—Additive materials
- B01D2323/2182—Organic additives
- B01D2323/21839—Polymeric additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/24—Mechanical properties, e.g. strength
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Inorganic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
본 발명은 높은 기계적 특성을 가진 한외 여과 멤브레인 및 이의 제조 방법에 관한 것이다.The present invention relates to an ultrafiltration membrane having high mechanical properties and a method for producing the same.
현재, 한외 여과 멤브레인은 오랜 시간 동안 압력을 받으나 기계적 특성이 불량하기 때문에, 한외 여과 멤브레인의 사용기간이 짧아지고, 멤브레인 모듈(membrane module) 내 한외 여과 멤브레인의 잦은 교체가 필요하다.Currently, ultrafiltration membranes are pressurized for a long time, but their mechanical properties are poor, shortening the life of ultrafiltration membranes and requiring frequent replacement of ultrafiltration membranes in membrane modules.
따라서, 한외 여과 멤브레인의 기계적 특성을 향상시킬 수 있는 한외 여과 멤브레인을 개발하는 것이 필요하다.Therefore, it is necessary to develop an ultrafiltration membrane capable of improving the mechanical properties of the ultrafiltration membrane.
본 발명의 한 목적은 높은 기계적 특성을 가진 한외 여과 멤브레인 및 이의 제조 방법을 제공하는 것이다.It is an object of the present invention to provide an ultrafiltration membrane having high mechanical properties and a method for producing the same.
본 발명은 높은 기계적 특성을 가진 한외 여과 멤브레인을 제조하는 방법에 관한 것이다. 본 발명에서는, 높은 기계적 특성을 가진 헤미셀룰로오스(hemicellulose)를 캐스팅 멤브레인(casting membrane) 용액에 첨가함으로써, 본 발명의 한외 여과 멤브레인의 유지율(retention rate)을 향상시킨다.The present invention relates to a method for producing an ultrafiltration membrane having high mechanical properties. In the present invention, hemicellulose having high mechanical properties is added to a casting membrane solution to improve the retention rate of the ultrafiltration membrane of the present invention.
실시예 1Example 1
단계 1: 폴리비닐 알코올 16g, 헤미셀룰로오스 8g 및 이산화 티타늄 0.8g을 3구 플라스크에 첨가하였다;Step 1: 16 g of polyvinyl alcohol, 8 g of hemicellulose and 0.8 g of titanium dioxide were added to a three-necked flask;
단계 2: 그 후 N,N-디메틸아세트아마이드(N,N-dimethylacetamide) 50g을 상기 3구 플라스크에 첨가하여 혼합물을 수득하고, 상기 혼합물을 65℃에서 5시간 동안 교반하였다;Step 2: 50 g of N, N-dimethylacetamide was then added to the three-necked flask to obtain a mixture and the mixture was stirred at 65 DEG C for 5 hours;
단계 3: 20℃의 온도 및 20%의 습도 환경에서 8시간 동안 거품이 제거되도록 방치시켜, 균일하고 거품이 없는 캐스팅 멤브레인 용액을 얻었다;Step 3: Leave to bubble for 8 hours at a temperature of 20 ° C and a humidity of 20% to obtain a uniform, bubble-free casting membrane solution;
단계 4: 상기 캐스팅 멤브레인 용액을 유리 기판에 붓고, 유리 기판 상의 캐스팅 멤브레인 용액을 멤브레인 도포기로 도포하여 두께가 200μm인 액상 멤브레인을 얻었다;Step 4: The casting membrane solution was poured onto a glass substrate, and the casting membrane solution on the glass substrate was coated with a membrane applicator to obtain a liquid membrane having a thickness of 200 m;
단계 5: 상기 액상 멤브레인이 형성된 유리 기판을 20℃의 온도 및 20%의 습도 환경에 두어 15초 동안 휘발시켰다;Step 5: The glass substrate on which the liquid membrane was formed was volatilized for 15 seconds at a temperature of 20 캜 and a humidity environment of 20%;
단계 6: 상기 액상 멤브레인이 형성된 유리 기판을 탈이온수에 넣어, 액상 멤브레인을 고상 멤브레인으로 고형화시켰다;Step 6: The glass substrate on which the liquid membrane was formed was put into deionized water to solidify the liquid membrane into a solid phase membrane;
단계 7: 상기 고상 멤브레인을 탈이온수에서 꺼내고, 공기 건조한 후, 건조 오븐에 10분 동안 두어, 한외 여과 멤브레인을 얻었다.Step 7: The solid membrane was taken out of deionized water, air dried, and then placed in a drying oven for 10 minutes to obtain an ultrafiltration membrane.
비교예에서는, 헤미셀룰로오스를 첨가하지 않은 것을 제외하고, 실시예 1과 실험 조건이 모두 동일하였다.In the comparative example, the experimental conditions were the same as those in Example 1, except that hemicellulose was not added.
실시예 1 내지 3에서, 폴리비닐알코올의 질량 농도가 각각 32%, 20% 및 50%인 것을 제외하면, 실험 조건은 모두 동일하였다.In Examples 1 to 3, the experimental conditions were all the same except that the mass concentrations of polyvinyl alcohol were 32%, 20%, and 50%, respectively.
실시예 1, 4 및 5에서, 헤미셀룰로오스와 폴리비닐알코올 간의 질량 비율이 각각 0.5:1, 0.1:1 및 1:1인 것을 제외하면, 실험 조건은 모두 동일하였다.In Examples 1, 4 and 5, the experimental conditions were all the same except that the mass ratio between hemicellulose and polyvinyl alcohol was 0.5: 1, 0.1: 1 and 1: 1, respectively.
실시예 1, 6 및 7에서, 이산화 티타늄과 폴리비닐알코올 간의 질량 비율이 각각 0.05:1, 0.01:1 및 0.1:1인 것을 제외하면, 실험 조건은 모두 동일하였다.In Examples 1, 6, and 7, the experimental conditions were all the same except that the mass ratio between titanium dioxide and polyvinyl alcohol was 0.05: 1, 0.01: 1, and 0.1: 1, respectively.
실시예 1 및 8에서, 2차 및 3차 온도, 1차 및 2차 습도가 실시예 1에서는 각각 20℃, 20℃, 20% 및 20%이지만, 실시예 8에서는 각각 15℃, 25℃, 10% 및 30%인 것을 제외하면, 실험 조건은 모두 동일하였다. 즉, 거품을 제거하고 고상 멤브레인을 형성하는 환경이 상이하였다.In Examples 1 and 8, the secondary and tertiary temperatures, primary and secondary humidity were 20 ° C, 20 ° C, 20%, and 20%, respectively in Example 1, 10% and 30%, respectively. That is, the environment in which the foam was removed and the solid membrane was formed was different.
실시예 1, 9 및 10에서, 1차 온도, 1차, 2차 및 3차 기간, 즉, 캐스팅 멤브레인 용액을 제조하는 온도, 캐스팅 멤브레인 용액을 제조하는 기간, 도포된 액상 멤브레인을 휘발시키는 기간 및 멤브레인 샘플을 건조하는 기간이 상이한 것을 제외하면, 실험 조건은 모두 동일하였다.In Examples 1, 9 and 10, the primary temperature, the primary, secondary and tertiary periods, that is, the temperature at which the casting membrane solution is prepared, the period during which the casting membrane solution is prepared, the period during which the applied liquid membrane is volatilized, The experimental conditions were all the same except that the period of drying the membrane samples was different.
실room 험예Stunning 1 One
실시예 1 내지 10 및 비교예에서 제조된 멤브레인의 기계적 특성을 측정하고 비교하였으며, 측정 결과는 표 2에 나타내었다.The mechanical properties of the membranes prepared in Examples 1 to 10 and Comparative Examples were measured and compared. The measurement results are shown in Table 2.
기계적 특성 시험:Mechanical properties test:
시험 장치: 페이퍼 및 페이퍼 보드 인장 시험기(paper and paper board tensile tester) ZL-100ATest apparatus: Paper and paper board tensile tester ZL-100A
시험 단계:Testing phase:
첫번째로, 시험할 멤브레인 샘플을 시험기에 맞는 모양으로 자르고, 눈금 거리(scale distance)를 두 개의 표시선으로 표시했다;First, the membrane sample to be tested is cut to the shape of the tester and the scale distance is indicated by two markers;
두번째로, 자른 멤브레인 샘플을 시험기의 홀더에 놓고, 대칭 위치로 조심스럽게 조절하여, 당기는 힘(stretching force)이 멤브레인 샘플의 단면 상에 균등하게 분배되도록 하였다;Second, the cut membrane sample was placed in a holder of the tester and carefully adjusted to a symmetrical position so that a stretching force was evenly distributed over the cross-section of the membrane sample;
마지막으로, 시험기를 가동하고, 멤브레인 샘플이 파단되는 최대 힘(오차 ±1%), 및 두 개의 표시선의 안쪽 사이의 거리(오차 ±1.25mm)를 기록했다.Finally, the tester was run and the maximum force (error ± 1%) at which the membrane sample was broken and the distance between the inside of the two marks (error ± 1.25 mm) were recorded.
기계적 특성은 하기와 같이 계산될 수 있다:The mechanical properties can be calculated as follows:
상기 식에서, P는 평균 인장 강도이고, F는 파단 시 최대 힘이고, A는 평균 초기 단면적이다.Where P is the average tensile strength, F is the maximum force at break, and A is the average initial cross-sectional area.
상기 식에서, α는 파단 시 연신율이고, L은 파단 시 눈금 거리이고, L 0 는 초기 눈금 거리이다.In the above equation ,? Is the elongation at break, L is the scale distance at break, and L 0 is the initial scale distance.
실험예Experimental Example 2 2
유수량 및 메틸렌 블루 유지율의 측정Determination of oil content and methylene blue retention
시험 압력: 0.1MpaTest pressure: 0.1 MPa
시험 단계:Testing phase:
첫번째로, 멤브레인 샘플을 멤브레인 특성 시험기에 올려놓았다;First, the membrane sample was placed on a membrane characterization tester;
두번째로, 탈이온수를 멤브레인 특성 시험기의 멤브레인 풀(membrane pool)에 채웠다;Second, deionized water was charged to the membrane pool of the membrane characterization tester;
마지막으로, 멤브레인 샘플의 유수량을 계산하기 위해, 멤브레인 풀에 압력을 가하여 멤브레인 풀의 탈이온수가 멤브레인을 통과하여 출구 끝 밖으로 흘러나오도록 하였다.Finally, to calculate the flow rate of the membrane sample, pressure was applied to the membrane pool so that deionized water from the membrane pool flowed out of the outlet end through the membrane.
유수량의 계산식:Calculation of flow rate:
상기 식에서, B는 (L·m -2 ·h - 1) 단위의 멤브레인 샘플의 유수량이고, V는 멤브레인 특성 테스터의 출구 끝 밖으로 흘러나온 물의 총 부피이며, D는 멤브레인 샘플의 면적이고, t는 총 시험 시간이다.Wherein, B is - (L · m -2 · h 1 ) water flow of the membrane samples of the unit, V is the total volume of water flowed out of the outlet end of the membrane characteristics tester, D is the area of the membrane sample, t is Total test time.
유지율 시험:Retention rate test:
시험 장치: 한외 여과 컵, 자외선 및 가시광선 분광 광도계Test apparatus: ultrafiltration cup, ultraviolet and visible light spectrophotometer
시험 압력: 1MpaTest pressure: 1 Mpa
시험 단계:Testing phase:
첫번째로, 멤브레인 샘플을 한외 여과 컵에 올려 놓았다.First, the membrane sample was placed in an ultrafiltration cup.
두번째로, 1g/L의 메틸렌 블루 수용액을 한외 여과 컵의 멤브레인 풀에 채웠다.Second, a 1 g / L aqueous methylene blue solution was charged to the membrane pool of the ultrafiltration cup.
세번째로, 멤브레인 풀에 압력을 가하여 멤브레인 풀의 메틸렌 블루 수용액이 멤브레인을 통과하도록 하고, 이때 최소한 메틸렌 블루의 일부분이 멤브레인 상에 남도록 하고, 메틸렌 블루 수용액의 나머지가 출구 끝의 밖으로 흘러나오도록 하였다.Third, pressure was applied to the membrane pool to allow a methylene blue aqueous solution of the membrane pool to pass through the membrane, leaving at least a portion of the methylene blue on the membrane, leaving the remainder of the aqueous methylene blue solution out of the outlet end.
마지막으로, 멤브레인 풀 내의 메틸렌 블루 수용액 및 출구 끝 밖으로 흘러나온 메틸렌 블루 수용액의 메틸렌 블루 농도를 자외선 분광 광도계로 측정하여, 멤브레인 샘플의 메틸렌 블루 유지율을 계산하였다.Finally, the methylene blue aqueous solution in the membrane pool and the methylene blue concentration of the methylene blue aqueous solution flowing out of the outlet end were measured with an ultraviolet spectrophotometer, and the methylene blue retention ratio of the membrane sample was calculated.
유지율 계산식:Retention rate calculation formula:
상기 식에서, R은 멤브레인 샘플의 메틸렌 블루 유지율이고, c는 출구 끝 밖으로 흘러나온 메틸렌 블루 수용액의 메틸렌 블루 농도이며, c 0 는 멤브레인 풀 내의 메틸렌 블루 수용액의 메틸렌 블루 농도이다.Where R is the methylene blue retention of the membrane sample, c is the methylene blue concentration of the methylene blue aqueous solution flowing out of the outlet end and c 0 is the methylene blue concentration of the methylene blue aqueous solution in the membrane pool.
(Mpa) (23℃)Average tensile strength
(Mpa) (23 < 0 > C)
(L·m -2 · MPa -1 ·h -1)water flow
(L · m -2 · MPa -1 · h -1)
표 2를 통해, 실시예 1 내지 10이 비교예보다 더욱 높은 평균 인장 강도 및 파단 시 연신율을 가짐을 알 수 있으며, 이는 헤미셀룰로오스의 첨가가 멤브레인의 기계적 특성을 향상시킬 수 있음을 나타낸다.It can be seen from Table 2 that Examples 1 to 10 have higher average tensile strength and elongation at break than the Comparative Examples, indicating that the addition of hemicellulose can improve the mechanical properties of the membrane.
또한, 실시예 1 내지 10과 비교예 간의 유수량 및 메틸렌 블루 유지율을 비교함으로써 얻은 비교 결과는, 본 발명에 따라 캐스팅 멤브레인 용액에 적당량의 헤미셀룰로오스를 첨가함으로써, 유수량이 일정하게 유지된 상황에서 본 발명의 한외 여과 멤브레인의 유지율이 향상됨을 나타낸다.The comparison results obtained by comparing the water content between Examples 1 to 10 and the comparative example with the methylene blue retentivity indicate that by adding an appropriate amount of hemicellulose to the casting membrane solution according to the present invention, Indicating that the retention ratio of the ultrafiltration membrane is improved.
표 1 및 2를 결합하면, 다음과 같은 결론에 도달한다:Combining Tables 1 and 2, we arrive at the following conclusions:
실시예 1 내지 3에서, 폴리비닐 알코올의 질량 농도는 각각 32%, 20% 및 50%이고, 다른 실험 조건은 동일하다. 실시예 1이 실시예 2 및 3보다 평균 인장 강도, 파단 시 연신율, 유수량 및 메틸렌 블루 유지율이 더욱 우수함을 알 수 있고, 이는 폴리비닐 알코올의 바람직한 질량 농도가 32%임을 나타낸다.In Examples 1 to 3, the mass concentrations of polyvinyl alcohol are 32%, 20%, and 50%, respectively, and the other experimental conditions are the same. It can be seen that Example 1 has better average tensile strength, elongation at break, water content and methylene blue retention than Examples 2 and 3, indicating that the preferred mass concentration of polyvinyl alcohol is 32%.
실시예 1, 4 및 5에서, 실시예 1이 실시예 4 및 5보다 평균 인장 강도, 파단 시 연신율, 유수량 및 메틸렌 블루 유지율이 더욱 우수함을 알 수 있고, 이는 헤미셀룰로오스와 폴리비닐 알코올의 바람직한 질량 비율이 0.5:1임을 나타낸다.In Examples 1, 4, and 5, it can be seen that Example 1 is superior to Examples 4 and 5 in terms of average tensile strength, elongation at break, water retention, and methylene blue retention ratio, which is the ratio of the weight ratio of hemicellulose and polyvinyl alcohol Is 0.5: 1.
실시예 1, 6 및 7에서, 실시예 1이 실시예 6 및 7보다 평균 인장 강도, 파단 시 연신율, 유수량 및 메틸렌 블루 유지율이 더욱 우수함을 알 수 있고, 이는 이산화 티타늄과 폴리비닐 알코올의 바람직한 질량 비율이 0.05:1임을 나타낸다.In Examples 1, 6 and 7, it can be seen that Example 1 is superior to Examples 6 and 7 in terms of average tensile strength, elongation at break, water retention and methylene blue retention, which is a desirable mass of titanium dioxide and polyvinyl alcohol Indicating that the ratio is 0.05: 1.
실시예 1과 8을 비교하면, 실시예 1이 실시예 8보다 평균 인장 강도, 파단 시 연신율, 유수량 및 메틸렌 블루 유지율이 더욱 우수함을 알 수 있고, 이는 2차 온도, 3차 온도, 1차 습도 및 2차 습도가 각각 20℃, 20℃, 20% 및 20%인 것이 바람직함을 나타낸다.Comparing Examples 1 and 8, it can be seen that Example 1 is superior to Example 8 in terms of average tensile strength, elongation at break, oil content and methylene blue retention, And secondary humidity of 20 [deg.] C, 20 [deg.] C, 20% and 20%, respectively.
실시예 1, 9 및 10을 비교하면, 실시예 1이 실시예 9 및 10보다 평균 인장 강도, 파단 시 연신율, 유수량 및 메틸렌 블루 유지율이 더욱 우수함을 알 수 있고, 이는 1차 온도, 1차 기간, 2차 기간 및 3차 기간이 각각 65℃, 8시간, 15초 및 10분인 것이 바람직함을 나타낸다.Comparing Examples 1, 9 and 10, it can be seen that Example 1 is superior to Examples 9 and 10 in terms of average tensile strength, elongation at break, flow rate and methylene blue retention, , And the secondary and tertiary periods are preferably 65 ° C, 8 hours, 15 seconds and 10 minutes, respectively.
결론적으로, 비교예에 비해, 실시예 1 내지 10이 바람직하고, 실시예 1, 4, 7 및 8이 더 바람직하며, 실시예 1이 가장 바람직하다.Consequently, in comparison with the comparative examples, Examples 1 to 10 are preferable, and Examples 1, 4, 7 and 8 are more preferable, and Embodiment 1 is most preferable.
Claims (5)
상기 처리된 캐스팅 멤브레인 용액을 유리 기판 상에 붓고, 멤브레인 도포기를 이용하여 150 내지 250μm 두께의 액상 멤브레인을 얻는 단계;
상기 액상 멤브레인을 3차 온도 및 2차 습도에서 2차 기간 동안 휘발시키고, 상기 액상 멤브레인이 형성된 유리 기판을 응고 배쓰(coagulation bath)에 넣어, 상기 액상 멤브레인을 고형화하여 고상 멤브레인을 얻는 단계;
상기 고상 멤브레인을 응고 배쓰에서 꺼내고, 공기 건조한 후, 건조 오븐에서 3차 기간 동안 건조하여, 한외 여과 멤브레인을 얻는 단계를 포함하는, 한외 여과 멤브레인의 제조 방법.Polyvinyl alcohol, hemicellulose and titanium dioxide are dissolved in N, N-dimethylacetamide at a first temperature to form an initial casting membrane solution and bubbles are removed during the first period at a second temperature and primary humidity, Obtaining a casting membrane solution;
Pouring the treated casting membrane solution onto a glass substrate and obtaining a liquid membrane having a thickness of 150 to 250 mu m using a membrane applicator;
Volatilizing the liquid membrane at a third temperature and a second humidity for a second period of time and solidifying the liquid membrane by placing the glass substrate on which the liquid membrane is formed in a coagulation bath to obtain a solid phase membrane;
Removing the solid membrane from the coagulating bath, air drying, and drying in a drying oven for a third period of time to obtain an ultrafiltration membrane.
2차 온도는 15 내지 25℃이며;
3차 온도는 15 내지 25℃이고;
1차 습도는 10 내지 30%이며;
2차 습도는 10 내지 30%이고;
1차 기간은 6 내지 10시간이며;
2차 기간은 10 내지 120초이고;
3차 기간은 60분인, 한외 여과 멤브레인의 제조 방법.The process of claim 1, wherein the primary temperature is from 50 to 90 占 폚;
The secondary temperature is 15 to 25 占 폚;
The tertiary temperature is 15 to 25 占 폚;
The primary humidity is 10 to 30%;
The secondary humidity is 10 to 30%;
The primary period is 6 to 10 hours;
The second period is 10 to 120 seconds;
And the third period is 60 minutes.
폴리비닐 알코올의 질량 농도는 20 내지 40%이고,
헤미셀룰로오스와 폴리비닐알코올의 질량 비율은 0.1 내지 1:1이며,
이산화 티타늄과 폴리비닐알코올의 질량 비율은 0.01 내지 0.1:1인, 한외 여과 멤브레인의 제조 방법. The method of claim 1, wherein in the treated casting membrane solution,
The mass concentration of the polyvinyl alcohol is 20 to 40%
The mass ratio of hemicellulose to polyvinyl alcohol is 0.1 to 1: 1,
Wherein the mass ratio of titanium dioxide to polyvinyl alcohol is 0.01 to 0.1: 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180001522A KR20190083732A (en) | 2018-01-05 | 2018-01-05 | An Ultrafiltration Membrane and its Preparation Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180001522A KR20190083732A (en) | 2018-01-05 | 2018-01-05 | An Ultrafiltration Membrane and its Preparation Method |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20190083732A true KR20190083732A (en) | 2019-07-15 |
Family
ID=67257510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180001522A KR20190083732A (en) | 2018-01-05 | 2018-01-05 | An Ultrafiltration Membrane and its Preparation Method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20190083732A (en) |
-
2018
- 2018-01-05 KR KR1020180001522A patent/KR20190083732A/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3430076B1 (en) | Composition and method for manufacturing sulfone polymer membrane | |
AU2013361727B9 (en) | Hydrophilic fluoropolymer | |
EP3681620A1 (en) | Purification methods comprising the use of membranes obtained from bio-based sulfone polymers | |
CN112495197B (en) | Polyvinylidene fluoride filtering membrane and preparation method and application thereof | |
JP2023506230A (en) | Polymer additive containing zwitterionic sites for PVDF-based membranes | |
KR20190083732A (en) | An Ultrafiltration Membrane and its Preparation Method | |
CN110270229A (en) | The preparation method of dual responsiveness hollow fiber composite membrane | |
CN104624061B (en) | A kind of production method of Flat Membrane | |
KR20190084631A (en) | An ultrafiltration membrane and its preparation method | |
JP2006257397A (en) | Aromatic polyamide porous film | |
KR20160071394A (en) | Process for manufacturing fluoropolymer membranes | |
KR20190087175A (en) | An ultrafiltration membrane and its preparation method | |
KR20190082499A (en) | An Ultrafiltration Membrane and Its Preparation Method | |
CN107551833A (en) | A kind of double modified hollow fiber ultrafiltration membranes and preparation method thereof | |
KR102464154B1 (en) | An ultrafiltration membrane and its preparation method | |
KR102473581B1 (en) | An ultrafiltration membrane and its preparation method | |
CN104492274B (en) | A kind of preparation method of reverse osmosis membrane | |
KR20190077994A (en) | Ultrafiltration membrane and its preparation method | |
KR20190093888A (en) | An ultra-filtration membrane and its preparation method | |
KR20230004125A (en) | Preparation method of cellulose-based polymer microfiltration membrane and microfiltration membrane thereby | |
KR20190063307A (en) | An ultrafiltration membrane and its preparation method | |
KR20190071286A (en) | Ultrafiltration membrane and its preparation method | |
KR20190056660A (en) | An ultrafiltration membrane and its preparation method | |
DE102018100884A1 (en) | Ultrafiltration membrane and process for its preparation | |
Lin et al. | Characterization of temperature-sensitive membranes prepared from poly (vinylidene fluoride)-graft-poly (N-isopropylacrylamide) copolymers obtained by atom transfer radical polymerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |