KR20190078242A - System for Cooling Working Fluid Discharged from Turbine and Method for Controlling That System - Google Patents
System for Cooling Working Fluid Discharged from Turbine and Method for Controlling That System Download PDFInfo
- Publication number
- KR20190078242A KR20190078242A KR1020170180064A KR20170180064A KR20190078242A KR 20190078242 A KR20190078242 A KR 20190078242A KR 1020170180064 A KR1020170180064 A KR 1020170180064A KR 20170180064 A KR20170180064 A KR 20170180064A KR 20190078242 A KR20190078242 A KR 20190078242A
- Authority
- KR
- South Korea
- Prior art keywords
- condenser
- vacuum
- cooling water
- degree
- factors
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 69
- 238000001816 cooling Methods 0.000 title claims description 32
- 238000000034 method Methods 0.000 title claims description 28
- 239000000498 cooling water Substances 0.000 claims description 154
- 238000004140 cleaning Methods 0.000 claims description 27
- 230000001419 dependent effect Effects 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 238000000746 purification Methods 0.000 claims description 10
- 238000010248 power generation Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 2
- 230000001174 ascending effect Effects 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 238000005201 scrubbing Methods 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 239000002826 coolant Substances 0.000 abstract description 2
- 230000001276 controlling effect Effects 0.000 description 13
- 239000013535 sea water Substances 0.000 description 12
- 238000012423 maintenance Methods 0.000 description 8
- 238000013480 data collection Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 4
- 238000007405 data analysis Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/16—Control of working fluid flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/32—Collecting of condensation water; Drainage ; Removing solid particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/14—Cooling of plants of fluids in the plant, e.g. lubricant or fuel
- F02C7/141—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/048—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Fluid Mechanics (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Control Of Turbines (AREA)
Abstract
Description
본 발명은 냉각 시스템에 관한 것으로서, 보다 구체적으로 터빈에서 배출되는 작동유체를 냉각할 수 있는 냉각 시스템에 관한 것이다.The present invention relates to a cooling system, and more particularly, to a cooling system capable of cooling a working fluid discharged from a turbine.
터빈은 작동유체에 의해 회전하여 발전기를 구동시킴으로써 발전기가 에너지를 생성할 수 있도록 한다. 터빈의 회전에 이용되고 난 후 터빈에서 배출되는 작동유체는 콘덴서(Condenser)와 같은 냉각장치에 의해 응축된다. 이와 같이, 콘덴서는 터빈에서 배출되는 작동유체가 보유한 열낙차를 크게 함으로써 터빈 효율을 향상시키고, 응축된 작동유체를 재사용할 수 있도록 함으로써 시스템 유지비용이 절감되도록 한다.The turbine is rotated by the working fluid to drive the generator so that the generator can generate energy. The working fluid discharged from the turbine after being used for rotation of the turbine is condensed by a cooling device such as a condenser. Thus, the condenser improves the turbine efficiency by increasing the thermal drop of the working fluid discharged from the turbine, and allows the condensed working fluid to be reused, thereby reducing the system maintenance cost.
콘덴서의 일 예가 대한민국 공개특허 제10-2016-0059065호(발명의 명칭: 복수기 스팀터빈의 복수기 폐열을 재활용하는 부유식 발전선, 이하, '선행문헌 1'이라 함)에 제시되어 있다. 선행문헌 1에서는 콘덴서가 유입된 해수를 이용하여 증기수를 회수하고, 콘덴서에서 배출되는 고온 (약 40~50℃)의 해수를 열이 필요한 편의설비, 추진설비, 담수를 발생시키기 위한 설비 등으로 제공하는 내용이 제시되어 있다.An example of a condenser is shown in Korean Patent Laid-Open No. 10-2016-0059065 (entitled "Floating Power Generation Line for Recycling Waste Heat of a Condenser of a Multiplier Steam Turbine, hereinafter referred to as" Prior Art Document 1 "). In the prior art document 1, steam water is recovered by using the seawater into which the condenser is introduced, and the high temperature (about 40 to 50 ° C) seawater discharged from the condenser is used as a facility for generating heat, a propulsion facility, The contents are provided.
일반적으로, 콘덴서의 압력(진공도)이 높으면 터빈의 작동유체가 충분히 팽창하지 못하여 정격 출력이 낮아지게 되고 이로 인해 터빈 효율이 저하되므로 콘덴서의 진공도는 터빈의 효율을 결정하는데 있어서 중요한 요소이다. 하지만, 콘덴서의 진공도는 주변상황에 따라 변화되기 때문에 콘덴서의 진공도를 정확하게 산출하기는 쉽지 않다. 따라서, 도 1에 도시된 바와 같은 콘덴서 제작사에서 제공하는 이론적인 보정 곡선의 값을 이용하여 콘덴서의 진공도를 산출하는 방법이 제안된 바 있다.Generally, when the pressure (vacuum degree) of the condenser is high, the working fluid of the turbine does not expand sufficiently and the rated output becomes low. As a result, the efficiency of the turbine is lowered, so that the degree of vacuum of the condenser is an important factor in determining the efficiency of the turbine. However, since the degree of vacuum of the condenser varies depending on the surrounding conditions, it is difficult to accurately calculate the degree of vacuum of the condenser. Therefore, a method of calculating the degree of vacuum of the condenser using the theoretical correction curve value provided by the capacitor manufacturer as shown in FIG. 1 has been proposed.
하지만, 도 1에 도시된 이론적인 보정 곡선을 이용하여 콘덴서 진공도를 산출하는 방법은 외부 조건들을 상수로 고정시킨 이상적인 조건하에 계산된 수식에 의해 진공도를 산출하는 것이기 때문에, 이러한 방법에 따라 산출된 콘덴서 진공도는 실시간으로 현재 상황에 따라 변화하는 실제 진공도와는 차이가 있을 수 밖에 없고, 따라서 콘덴서의 진공도를 기초로 콘덴서를 제어하여 터빈의 효율이 최적화되게 하는 것 또한 제약이 발생할 수 밖에 없다는 문제점이 있다.However, since the method of calculating the condenser degree of vacuum using the theoretical calibration curve shown in FIG. 1 is to calculate the degree of vacuum by the formula calculated under ideal conditions in which the external conditions are fixed to a constant, There is a problem that the degree of vacuum must be different from the actual vacuum degree which varies according to the current situation in real time and thus the restriction of the efficiency of the turbine by controlling the condenser based on the degree of vacuum of the condenser .
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 주변 상황에 따라 변화되는 콘덴서의 진공도를 예측할 수 있는 터빈의 배출작동유체 냉각 시스템 및 그 제어 방법을 제공하는 것을 그 기술적 과제로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a discharge operation fluid cooling system for a turbine that can predict a degree of vacuum of a condenser which changes according to a surrounding situation, and a control method thereof.
또한, 본 발명은 콘덴서의 진공도에 영향을 미치는 팩터들의 센싱값을 이용하여 현재 진공도 대비 진공도 개선량을 산출할 수 있는 터빈의 배출작동유체 냉각 시스템 및 그 제어 방법을 제공하는 것을 다른 기술적 과제로 한다.Another object of the present invention is to provide a discharge operation fluid cooling system for a turbine and a control method thereof, which can calculate a vacuum degree improvement amount with respect to a current vacuum degree by using a sensing value of a factor affecting a degree of vacuum of a condenser .
또한, 본 발명은 진공도 개선량 달성을 위해 조절 가능한 팩터들을 가이드할 수 있는 터빈의 배출작동유체 냉각 시스템 및 그 제어 방법을 제공하는 것을 또 다른 기술적 과제로 한다.Another object of the present invention is to provide a discharge operation fluid cooling system and a control method thereof for a turbine capable of guiding adjustable factors for achieving a degree of vacuum improvement.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따른 터빈의 배출작동유체 냉각 시스템은, 발전기를 구동시키는 터빈에서 배출되는 작동유체를 냉각수를 이용하여 응축시키는 콘덴서; 복수개의 설비들로 구성되어 상기 콘덴서를 동작시키는 구동장치; 상기 복수개의 설비에 종속되어 각 설비의 상태에 따라 변경되는 제1 팩터들 및 상기 각 설비에 독립적인 제2 팩터들로 구성된 진공도 모델에서 제1 팩터 각각에 대해서는 과거 소정기간 동안 수집된 센싱값들 중 어느 하나의 값인 기준값을 대입하고, 제2 팩터 각각에 대해서는 현재시점에서 센싱된 상기 제2 팩터들의 센싱값을 대입하여 상기 콘덴서의 최적 진공도를 예측하는 최적 진공도 예측부; 및 상기 최적 진공도를 이용하여 상기 콘덴서의 진공도를 조절하는 진공도 제어부를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a discharge operation fluid cooling system for a turbine, comprising: a condenser for condensing a working fluid discharged from a turbine for driving a generator using cooling water; A driving device including a plurality of facilities and operating the condenser; In the vacuum degree model which is dependent on the plurality of equipments and is changed according to the state of each facility and the second factors independent of the respective equipments, An optimum vacuum degree predicting unit for predicting an optimum degree of vacuum of the condenser by substituting the sensed values of the second factors sensed at the present time for each of the second factors; And a vacuum degree controller for adjusting the vacuum degree of the condenser using the optimum vacuum degree.
상기 목적을 달성하기 위한 본 발명의 다른 측면에 따른 터빈의 배출작동유체 냉각 시스템 제어방법은, 콘덴서의 응축기능 수행을 위한 복수개의 설비에 종속되어 각 설비의 상태에 따라 변경되는 제1 팩터들 및 상기 각 설비에 독립적인 제2 팩터들로 구성된 진공도 모델에서 제1 팩터 각각에 대해 과거 소정기간 동안 수집된 센싱값들 중에서 선택된 기준값 및 현재시점에서 센싱된 상기 제2 팩터들의 센싱값을 대입하여 상기 콘덴서의 최적 진공도를 예측하는 단계; 상기 제1 팩터들 중 상기 최적 진공도를 기초로 결정되는 진공도 개선량 달성을 위해 조절 가능한 타겟팩터를 선택하는 단계; 및 상기 선택된 타겟팩터가 종속된 설비를 제어하여 상기 콘덴서의 진공도를 조절하는 단계를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method of controlling a discharge operation fluid cooling system of a turbine, the method comprising: controlling a first factor to be dependent on a plurality of facilities for performing a condensing function of the condenser, A sensing value of a second factor sensed at a current time point and a reference value selected from sensing values collected during a predetermined period of time for each of the first factors in a degree of vacuum model composed of independent second factors, Predicting the optimum vacuum degree of the condenser; Selecting an adjustable target factor for achieving a degree of vacuum improvement determined based on the optimal one of the first factors; And adjusting the degree of vacuum of the condenser by controlling a facility to which the selected target factor is dependent.
상기 목적을 달성하기 위한 본 발명의 또 다른 측면에 따른 터빈의 배출작동유체 냉각 시스템은, 작동유체를 응축시키는 콘덴서의 동작을 위한 복수개의 설비에 종속되어 각 설비의 상태에 따라 변경되는 제1 팩터들 및 상기 각 설비에 독립적인 제2 팩터들로 구성된 진공도 모델에서 제1 팩터 각각에 대해서는 과거 소정기간 동안 수집된 센싱값들 중 선택된 어느 하나의 값인 기준값을 대입하고, 제2 팩터 각각에 대해서는 현재시점에서 센싱된 센싱값을 대입하여 상기 콘덴서의 최적 진공도를 예측하는 최적 진공도 예측부를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a discharge operation fluid cooling system for a turbine, including a first factor dependent on a plurality of facilities for operation of a condenser for condensing a working fluid, In the vacuum degree model constituted by the first and second equipments and the second factors independent of the respective equipments, a reference value which is a selected one of the sensing values collected during the past predetermined period is substituted for each of the first factors, And an optimum vacuum degree predicting unit for predicting an optimum degree of vacuum of the condenser by substituting a sensing value sensed at a time point.
상기 목적을 달성하기 위한 본 발명의 또 측면에 따른 발전시스템은 발전기를 구동시키는 터빈; 상기 터빈에서 배출되는 작동유체를 응축시키는 콘덴서의 동작을 위한 복수개의 설비에 종속되어 각 설비의 상태에 따라 변경되는 제1 팩터들 및 상기 각 설비에 독립적인 제2 팩터들로 구성된 진공도 모델에서 제1 팩터 각각에 대해서는 과거 소정기간 동안 수집된 센싱값들 중 선택된 어느 하나의 값인 기준값을 대입하고, 제2 팩터 각각에 대해서는 현재시점에서 센싱된 센싱값을 대입하여 상기 콘덴서의 최적 진공도를 예측하는 냉각장치를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a power generation system including: a turbine for driving a generator; The first factor being dependent on a plurality of facilities for operation of a condenser for condensing the working fluid discharged from the turbine, the first factors varying according to the state of each facility, and the second factor independent of the facility, One of the sensed values obtained during a predetermined period of time is substituted for the first factor and the sensed value at the current time is substituted for each of the second factors to predict the optimum degree of vacuum of the condenser, And a device.
본 발명에 따르면, 빅데이터 분석을 통해 콘덴서의 진공도에 영향을 미치는 것으로 결정된 팩터들의 현재 센싱값을 이용하여 주변 상황에 따라 변화되는 콘덴서의 현재 진공도를 예측할 수 있고, 예측된 콘덴서의 현재 진공도를 기초로 냉각 시스템을 제어함으로써 터빈의 효율을 최대화할 수 있으며, 냉각 시스템의 정비 기준을 수립할 수 있다는 효과가 있다.According to the present invention, it is possible to predict the current degree of vacuum of the condenser, which is changed according to the surrounding situation, using the current sensing value of the factors determined to affect the degree of vacuum of the condenser through the big data analysis, The efficiency of the turbine can be maximized by controlling the cooling system, and the maintenance standard of the cooling system can be established.
또한, 본 발명에 따르면 각 팩터들의 최적 센싱값을 기초로 산출되는 최적 진공도와 각 팩터들의 현재 센싱값을 기초로 산출되는 현재 진공도를 기초로 진공도 개선량을 산출함으로써 현재 진공도 대비 진공도 개선량를 정량화하여 사용자에게 제공할 수 있다는 효과가 있다.According to the present invention, the improvement degree of vacuum degree is calculated based on the optimum degree of vacuum calculated based on the optimum sensing value of each factor and the current degree of vacuum calculated on the basis of the current sensing value of each factor, So that it can be provided to the user.
또한, 본 발명은 복수개의 팩터들 중 산출된 진공도 개선량을 달성하기 위한 최적의 팩터를 사용자에게 가이드함으로써 냉각 시스템 제어의 용이성을 극대화할 수 있다는 효과가 있다.Further, the present invention has an effect of maximizing the ease of control of the cooling system by guiding the user to an optimal factor for achieving the calculated degree of vacuum improvement among a plurality of factors.
도 1은 진공도 산출에 이용되는 이론적인 보정 곡선을 보여주는 그래프이다.
도 2는 본 발명의 일 실시예에 따른 터빈의 배출작동유체 냉각 시스템의 구성을 개략적으로 보여주는 블록도이다.
도 3은 도 2에 도시된 터빈의 구성을 보여주는 도면이다.
도 4는 도 2에 도시된 콘덴서의 구성을 보여주는 도면이다.
도 5는 도 2에 도시된 냉각수 공급설비의 구성을 보여주는 도면이다.
도 6는 도 2에 도시된 제어장치의 구성을 보여주는 블록도이다.
도 7은 본 발명의 일 실시예에 따른 터빈의 배출작동유체 냉각 시스템의 제어방법을 보여주는 플로우차트이다.1 is a graph showing a theoretical calibration curve used for calculating the degree of vacuum.
2 is a block diagram schematically illustrating a configuration of a discharge operating fluid cooling system of a turbine according to an embodiment of the present invention.
3 is a view showing the configuration of the turbine shown in FIG.
FIG. 4 is a view showing a configuration of the capacitor shown in FIG. 2. FIG.
5 is a view showing a configuration of the cooling water supply equipment shown in FIG.
6 is a block diagram showing the configuration of the control apparatus shown in FIG.
7 is a flow chart illustrating a method of controlling a discharge operating fluid cooling system of a turbine in accordance with an embodiment of the present invention.
이하, 첨부되는 도면을 참고하여 본 발명의 실시예들에 대해 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 명세서에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.The meaning of the terms described herein should be understood as follows.
단수의 표현은 문맥상 명백하게 다르게 정의하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다.The word " first, "" second," and the like, used to distinguish one element from another, are to be understood to include plural representations unless the context clearly dictates otherwise. The scope of the right should not be limited by these terms.
"포함하다" 또는 "가지다" 등의 용어는 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.It should be understood that the terms "comprises" or "having" does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.
"적어도 하나"의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다. 예를 들어, "제1 항목, 제2 항목 및 제 3항목 중에서 적어도 하나"의 의미는 제1 항목, 제2 항목 또는 제3 항목 각각 뿐만 아니라 제1 항목, 제2 항목 및 제3 항목 중에서 2개 이상으로부터 제시될 수 있는 모든 항목의 조합을 의미한다.It should be understood that the term "at least one" includes all possible combinations from one or more related items. For example, the meaning of "at least one of the first item, the second item and the third item" means not only the first item, the second item or the third item, but also the second item and the second item among the first item, Means any combination of items that can be presented from more than one.
도 2는 본 발명의 일 실시예에 따른 터빈의 배출작동유체 냉각 시스템의 구성을 개략적으로 보여주는 블록도이다.2 is a block diagram schematically illustrating a configuration of a discharge operating fluid cooling system of a turbine according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 터빈의 배출작동유체 냉각 시스템(200)은 터빈(210), 콘덴서(220), 구동장치(230), 및 제어장치(240)를 포함한다.2, a turbine exhaust operating
이때, 구동장치(230)는 복수개의 설비(250~295)들로 구성되어 콘덴서(220)가 응축기능을 수행할 수 있도록 콘덴서(220)를 동작시키기 위한 것으로서, 도 2에 도시된 바와 같이, 진공펌프(250), 냉각수 공급설비(260), 필터(265), 세정설비(270), 배출펌프(280), 정수설비(290), 및 열교환기(295) 중 적어도 하나를 포함할 수 있다.The
터빈(210)은 터빈(210)에 공급되는 고온의 작동유체에 의해 회전함으로써 터빈(210)에 연결된 발전기(미도시)를 가동시킨다. 발전기의 가동에 의해 전기 에너지가 발생하게 된다. 일 실시예에 있어서, 터빈(210)은 증기 터빈일 수 있고, 도 3에 도시된 바와 같이 고압증기터빈(212), 중압증기터빈(214), 및 저압증기터빈(216)으로 구성될 수 있다. 이때, 도 3에 도시된 바와 같이 저압증기터빈(216)이 콘덴서(220)에 연결되기 때문에, 저압증기터빈(216)에서 배출되는 고온의 작동유체가 콘덴서(220)로 공급된다. The
콘덴서(220)는 터빈(210)의 회전 이후 터빈(210)으로부터 배출되는 고온의 작동유체를 냉각수를 이용하여 응축시킨다. 콘덴서(220)에 의해 냉각된 작동유체는 배출펌프(280)를 통해 타 설비들로 제공된다. 특히, 본 발명에 따른 콘덴서(220)는 도 3에 도시된 바와 같이 저압증기터빈(216)에 연결되므로 저압증기터빈(216)에서 배출되는 스팀을 냉각, 응축시켜 물로 회수한다. The
이와 같이, 콘덴서(220)는 작동유체가 보유한 열 낙차를 증가시킴으로써 터빈(210)의 효율을 향상시키고, 응축된 작동유체를 재사용할 수 있도록 함으로써 작동유체의 처리비용을 감소시킨다. 또한, 콘덴서(220)는 작동유체를 보충하는 역할을 수행하거나 각종 드레인 회수 장소로 이용되기도 한다.Thus, the
콘덴서(220)의 일 예가 도 4에 도시되어 있다. 도 4에 도시된 바와 같이, 콘덴서(220)는 동체(410), 동체(410) 내에 배치된 복수개의 튜브(420), 및 동체(410)의 입구 및 출구측에 배치된 냉각수 저장소(430), 및 동체(410)의 하부에 배치된 작동유체 저장소(440)로 구성된다. 이때, 냉각수 저장소(430)는 냉각수가 유입되는 측에 구비되는 인렛 냉각수 저장소(432) 및 냉각수가 토출되는 측에 구비되는 아웃렛 냉각수 저장소(434)를 포함한다.An example of the
상술한 바와 같은 구성에 따를 때, 냉각수 공급설비(250)로부터 공급되는 냉각수는 동체(410)의 입구측에 구비된 인렛 냉각수 저장소(432)로 유입되고, 인렛 냉각수 저장소(432)로 유입된 냉각수는 복수개의 튜브(420)를 통과하여 동체(410)의 출구측에 구비된 아웃렛 냉각수 저장소(434)로 배출된다. 이때, 터빈(210)으로부터 동체(410)의 상부로 고온의 작동유체가 투입되면 고온의 작동유체는 냉각수가 흐르는 튜브(420)의 외측을 지나면서 냉각수에 잠열을 전달함으로써 응축되어 동체(410)의 하부에 구비된 작동유체 저장소(440)에 집수된다.The cooling water supplied from the cooling
진공펌프(250)는 콘덴서(220)의 내부압력을 조절하여 콘덴서(220) 내부를 진공상태로 만들어 콘덴서(220)로 유입되는 고온의 작동유체가 저온의 작동유체로 응축될 수 있도록 한다. 이때 진공펌프(250)에 의해 콘덴서(220)의 내부압력이 낮아질 수록, 즉 콘덴서(220)의 진공도가 높아질수록 터빈(210)과 콘덴서(220)의 압력차가 증가하게 되어 고온의 작동유체가 저온의 작동유체로 응축되는 효율이 좋아지고, 이에 따라 터빈(210)의 출력도 향상된다. 일 실시예에 있어서, 진공펌프(250)는 2개의 펌프로 이중화 되어 있을 수 있다.The
냉각수 공급설비(260)는 고온의 작동유체를 응축시키기 위한 냉각수를 콘덴서(220)로 공급한다. 일 실시예에 있어서, 냉각수 공급설비(260)는 냉각수로써 해수를 콘덴서(220)로 공급할 수 있다. 이하, 본 발명에 따른 냉각수 공급설비(260)의 구성을 도 5를 참조하여 구체적으로 설명한다.The cooling
도 5는 본 발명의 일 실시예에 따른 냉각수 공급설비의 구성을 보여주는 도면이다. 도 5에 도시된 바와 같이 본 발명의 일 실시예에 따른 냉각수 공급설비(260)는 수조(510), 메인 냉각수 공급 펌프(520), 및 서브 냉각수 공급 펌프(530)를 포함한다. 5 is a view showing a configuration of a cooling water supply apparatus according to an embodiment of the present invention. As shown in FIG. 5, the cooling
수조(510)에는 콘덴서(220)로 공급될 냉각수가 저장된다.The
메인 냉각수 공급 펌프(520)는 수조(510)에 저장된 냉각수를 펌핑하여 메인 스트림(522)을 통해 콘덴서(220) 및 열교환기(295)로 공급한다. 일 실시예에 있어서, 메인 냉각수 공급 펌프(520)는 도 5에 도시된 바와 같이 이중화 되어 있을 수 있다.The main cooling
서브 냉각수 공급 펌프(530)는 수조(510)에 저장된 냉각수를 펌핑하여 서브 스트림(524)를 통해 열교환기(295)로 공급한다. 일 실시예에 있어서, 서브 냉각수 공급 펌프(530)는 도 5에 도시된 바와 같이 이중화 되어 있을 수 있다.The sub cooling
구체적으로, 정상상태의 경우 메인 냉각수 공급 펌프(520)는 온되고 서브 냉각수 공급 펌프(530)는 오프되므로 메인 냉각수 공급 펌프(520)의 유량이 콘덴서(220) 및 열교환기(295)로 분배되어 공급된다. 콘덴서(220)에 냉각수가 부족한 것으로 판단되는 경우 서브 냉각수 공급 펌프(530)가 온됨으로써 메인 냉각수 공급 펌프(520)에 의해 펌핑된 냉각수는 모두 콘덴서(220)로 공급되고, 서브 냉각수 공급 펌프(530)에 의해 펌핑되는 냉각수가 열교환기(295)로 공급된다.Specifically, in the normal state, the main cooling
한편, 냉각수로써 해수가 이용되는 경우 본 발명에 따른 냉각수 공급설비(260)는 해수공급펌프(540)를 더 포함할 수 있다. 해수공급펌프(540)는 해수를 펌핑하여 수조(510)로 공급한다. 이때, 해수공급펌프(540)는 도 5에 도시된 바와 같이 2개의 펌프로 이중화되어 있을 수 있다.On the other hand, when seawater is used as cooling water, the cooling
다시 도 2를 참조하면, 필터(265)는 냉각수 공급설비(260)의 출구측에 배치되어 냉각수 공급설비(260)로부터 배출되는 냉각수를 필터링한다. 구체적으로, 필터(265)는 도 5에 도시된 바와 같이, 메인 냉각수 공급 펌프(520)의 출구측에 배치되는 제1 필터(265a) 및 서브 냉각수 공급 펌프(530)의 출구측에 배치되는 제2 필터(265b)를 포함할 수 있다. 제1 필터(265a)는 메인 냉각수 공급 펌프(520)로부터 배출되는 냉각수로부터 냉각수에 포함된 이물질(예컨대, 뻘 또는 조개 등)을 제거한다. 제2 피터(265b)는 서브 냉각수 공급 펌프(530)로부터 배출되는 냉각수로부터 냉각수에 포함된 이물질을 제거한다.Referring again to FIG. 2, the
이러한 필터(265)를 통해 콘덴서(220) 및 열교환기(295)로 공급되는 냉각수가 필터링되기 때문에 콘덴서(220) 및 열교환기(295)의 오염을 방지할 수 있게 된다.Since the cooling water supplied to the
세정설비(270)는 콘덴서(220)를 구성하는 복수개의 튜브(420) 및 냉각수 저장소(430)를 세정한다. 일 실시예에 있어서, 세정설비(270)는 볼 스트레이너(Ball Strainer)일 수 있다.The
배출펌프(280)는 콘덴서(220)로부터 배출되는 저온의 작동유체를 타 설비로 공급한다.The
정수설비(290)는 콘덴서(220)로 유입되거나 콘덴서(220)로부터 배출되는 작동유체에 포함된 철 또는 등과 같은 금속산화물과 불순물을 제거함으로써 작동유체를 고순도로 유지하는 역할을 수행한다.The
열교환기(295)는 콘덴서(220)로부터 배출되는 고온의 냉각수를 냉각시킨다. 일 실시예에 있어서, 열교환기(295)는 도 5에 도시된 메인 냉각수 공급 펌프(520)로부터 공급되는 냉각수를 이용하여 콘덴서(220)로부터 배출되는 고온의 냉각수를 냉각시키거나, 서브 냉각수 공급 펌프(530)로부터 공급되는 냉각수를 이용하여 콘덴서(220)로부터 배출되는 고온의 냉각수를 냉각시킬 수 있다.The
제어장치(240)는 구동장치(230)를 구성하는 각 설비(240~295)들로부터 센싱되는 센싱값들을 이용하여 콘덴서(220)의 현재 진공도 및 최적 진공도를 예측하고, 예측된 현재 진공도 및 최적 진공도를 기초로 콘덴서(220)의 진공도가 개선될 수 있도록 각 설비(240~295)들을 제어한다.The
냉각수의 온도가 낮을수록, 유량이 많을수록 콘덴서(220)의 진공도가 향상되지만 냉각수로써 해수가 이용되는 경우 해수온도는 계절의 영향을 받으므로 제어가 불가능하고, 해수유량은 해수를 공급하는 냉각수 공급설비(260)의 가동력을 높일수록 유량을 증가시킬 수는 있지만 전력소모가 증가하게 된다. 또한, 해수의 유량을 증가시켰다고 하더라도 해수의 불순물을 제거하는 설비들이 정상적으로 동작하지 않거나 콘덴서(220) 내에서 냉각수를 이동시키기 위한 밸브들의 개도율이 적절하지 않거나 정비가 필요할 경우 진공도를 향상시킬 수 없다.The lower the temperature of the cooling water and the higher the flow rate, the better the degree of vacuum of the
따라서, 본 발명에서는 단순히 냉각수의 유량이나 온도제어만을 통해 콘덴서(220)의 진공도를 제어하는 것이 아니라, 제어장치(240)가 각 설비(240~295)들로부터 센싱되는 센싱값들을 기초로 현재 진공도 및 최적 진공도를 예측하고, 예측결과를 기초로 진공도가 개선될 수 있도록 각 설비(240~295)들을 제어하는 것이다.Therefore, in the present invention, instead of controlling the degree of vacuum of the
이하, 도 6을 참조하여 본 발명에 따른 제어장치(240)의 구성을 보다 구체적으로 설명한다.Hereinafter, the configuration of the
도 6은 본 발명의 일 실시예에 따른 제어장치(240)의 구성을 보여주는 블록도이다. 도 6에 도시된 바와 같이, 본 발명의 일 실시예에 따른 제어장치(240)는 데이터 수집부(610), 모델링부(620), 현재 진공도 예측부(630), 최적 진공도 예측부(640), 및 진공도 제어부(650)를 포함한다.6 is a block diagram illustrating a configuration of a
데이터 수집부(610)는 터빈의 배출작동유체 냉각 시스템(200)에 설치된 센서(미도시)들로부터 콘덴서(220)의 진공도 산출을 위해 요구되는 팩터들의 센싱값을 수집한다. 이때, 센싱 대상이 되는 팩터는 구동장치(230)를 구성하는 각 설비(250~295)에 종속되어 각 설비(250~295)의 제어에 따라 변경되는 제1 팩터들 및 각 설비(250~295)와는 독립적이고 비제어 대상인 제2 팩터들을 포함한다.The
일 실시예에 있어서, 제1 팩터들 중 진공펌프(250)의 제어에 따라 변경되는 제1 팩터들에는 진공펌프(250)를 통과하는 냉각수의 압력차, 콘덴서(220)의 내부압력과 진공펌프(250) 입구압력 간의 압력차, 및 진공펌프(250)의 청소 도과기간 별로 설정된 제1 설정값 중 적어도 하나를 포함할 수 있다.In one embodiment, the first factors that are changed according to the control of the
이때, 진공펌프(250)를 통과하는 냉각수의 압력차는 진공펌프(250)에 포함된 열교환기(미도시)를 통과하는 냉각수의 압력차를 의미하는 것으로서, 진공펌프(250)에 포함된 열교환기의 입구측 및 출구측에 설치되는 압력센서를 이용하여 센싱될 수 있다. 콘덴서(220)의 내부압력과 진공펌프(250) 입구압력 간의 압력차는 진공펌프(250)의 입구측 및 출구측에 설치되는 압력센서를 이용하여 측정할 수 있다.The pressure difference of the cooling water passing through the
진공펌프(250)의 청소 도과기간 별로 설정된 제1 설정값은 진공펌프(250)에 포함된 열교환기의 필터 청소일로부터 1일 경과후에 대한 값, 2일 경과후에 대한 값, 3일 경화후에 대한 값, 4일 경과후에 대한 값, 및 5일 경과후에 대한 값과 진공펌프(250)에 포함된 열교환기의 튜브 청소일로부터 1일 경과후에 대한 값, 2일 경과후에 대한 값, 3일 경화후에 대한 값, 4일 경과후에 대한 값, 및 5일 경과후에 대한 값을 포함한다.The first set value set for each cleaning period of the
제1 팩터들 중 냉각수 공급설비(260)의 제어에 따라 변경되는 제1 팩터들에는 메인 냉각수 공급 펌프(520)에 의해 조절되는 메인 냉각수 유량, 메인 냉각수 유량의 제곱값, 메인 냉각수 유량의 세제곱값, 서브 냉각수 공급 펌프(530)에 의해 조절되는 서브 냉각수 유량, 메인 냉각수 공급 펌프(520)의 입출구 압력차, 및 서브 냉각수 공급 펌프(530)의 입출구 압력차 중 적어도 하나를 포함할 수 있다.The first factors, which are changed according to the control of the cooling
이때, 메인 냉각수 공급 펌프(520)에 의해 조절되는 메인 냉각수 유량은 메인 스트림(522)에 설치되는 유량센서 또는 압력센서를 이용하여 획득할 수 있고, 서브 냉각수 공급 펌프(530)에 의해 조절되는 서브 냉각수 유량은 서브 스트림(532)에 설치되는 유량센서 또는 압력센서를 이용하여 획득할 수 있다. 또한, 메인 냉각수 공급 펌프(520)의 입출구 압력차는 메인 냉각수 공급 펌프(520)의 입구측 및 출구측에 설치되는 압력센서를 이용하여 획득할 수 있고, 서브 냉각수 공급 펌프(530)의 입출구 압력차는 서브 냉각수 공급 펌프(530)의 입구측 및 출구측에 설치되는 압력센서를 이용하여 획득할 수 있다.At this time, the main cooling water flow rate regulated by the main cooling
제1 팩터들 중 필터(265)의 제어에 따라 변경되는 제1 팩터는 필터(265)의 입출구 압력차를 포함할 수 있다. 이때, 필터(265)의 입출구 압력차는 필터(265)의 입구측 및 출구측에 설치되는 압력센서에 의해 획득될 수 있다.The first factor, which is changed in accordance with the control of the
제1 팩터들 중 콘덴서(220) 및 세정설비(270)의 제어에 따라 변경되는 제1 팩터들은 세정설비(270)의 입출구 압력차, 튜브(420)의 입출구 압력차, 콘덴서(220)에 포함된 밸브들(미도시)의 개도율, 및 각 밸브들이 설치되는 스트림과 콘덴서(220)의 온도차 중 적어도 하나를 포함할 수 있다. 이때, 세정설비(270)의 입출구 압력차는 세정설비(270)의 입구측 및 출구측에 설치되는 압력센서에 의해 획득될 수 있고, 튜브(420)의 입출구 압력차는 튜브(420)의 입구측 및 출구측에 설치되는 압력센서에 의해 획득될 수 있다.The first factors, which are changed in accordance with the control of the
제1 팩터들 중 배출펌프(280)의 제어에 따라 변경되는 제1 팩터들은 배출펌프(280)의 출구압력과 콘덴서(220)의 내부압력 간의 압력차를 포함할 수 있다. 이때, 배출펌프(280)의 출구압력은 배출펌프(280)의 출구측에 설치된 압력센서에 의해 획득되고, 콘덴서(220)의 내부압력은 콘덴서(220)에 설치되는 압력센서에 의해 획득된다. 데이터 수집부(610)는 2개의 압력센서에 의해 획득되는 압력값의 차이를 산출함에 의해 배출펌프(280)의 출구압력과 콘덴서(220)의 내부압력 간의 압력차를 획득할 수 있다.The first factors, which vary according to the control of the
제1 팩터들 중 정수설비(290)의 제어에 따라 변경되는 제1 팩터들은 정수설비(290)의 출구압력과 콘덴서(220)의 내부압력 간의 압력차를 포함할 수 있다. 이때, 정수설비(290)의 출구압력은 정수설비(290)의 출구측에 설치된 압력센서에 의해 획득되고, 콘덴서(220)의 내부압력은 콘덴서(220)에 설치되는 압력센서에 의해 획득된다. 데이터 수집부(610)는 2개의 압력센서에 의해 획득되는 압력값의 차이를 산출함에 의해 정수설비(290)의 출구압력과 콘덴서(220)의 내부압력 간의 압력차를 획득할 수 있다.The first factors, which vary according to the control of the
한편, 각 설비(250~295)와는 독립적이고 비제어 대상인 제2 팩터들에는 냉각수 온도, 냉각수 온도의 제곱, 냉각수 온도의 세제곱, 터빈(210)에서 배출되는 작동유체의 유량, 및 터빈(210)의 출력량 중 적어도 하나를 포함할 수 있다. 이때, 냉각수 온도는 냉각수 공급설비(260)로 공급되는 냉각수의 유입온도를 의미하는 것으로서, 온도센서를 이용하여 냉각수 공급설비(260)로 유입되는 냉각수의 온도를 센싱함에 의해 획득될 수 있다. 터빈(210)에서 배출되는 작동유체의 유량은 터빈(210)의 출력단에 설치되는 유량센서를 이용하여 측정함에 의해 획득될 수 있다.The second factors, which are independent of the
한편, 데이터 수집부(610)는 각 팩터 별로 수집된 센싱값을 저장한다. 이때, 데이터 수집부(610)는 각 팩터별로 수집된 센싱값 들 중 미리 정해진 상한치 및 하한치를 벗어나는 센싱값들은 폐기할 수 있다.Meanwhile, the
모델링부(620)는 데이터 수집부(610)에 의해 획득된 제1 팩터들 및 제2 팩터들의 센싱값들을 빅데이터 분석을 통해 학습함으로써 콘덴서(220)의 진공도 예측을 위한 진공도 모델을 모델링한다.The
구체적으로, 모델링부(620)는 데이터 수집부(610)에 의해 획득된 제1 팩터들 및 제2 팩터들의 센싱값들을 빅데이터 분석을 통해 학습함으로써 각각의 제1 팩터 및 제2 팩터 별로 회귀계수를 산출하고, 산출된 회귀계수를 각 팩터들에 승산하는 형태의 진공도 모델을 생성한다.Specifically, the
일 실시예에 있어서, 모델링부(620)에 의해 모델링된 진공도 모델은 제1 팩터 및 제2 팩터 별로 산출된 회귀계수를 제1 팩터 및 제2 팩터에 각각 승산한 후 승산한 결과를 모두 합산한 형태로 정의될 수 있다. 이때, 상술한 제1 팩터 및 제2 팩터들 모두가 진공도 모델에 포함될 수 있지만, 사용자의 선택에 따라 제1 팩터 및 제2 팩터 중 일부는 진공도 모델에 적용되지 않을 수 있다.In one embodiment, the degree of vacuum modeling modeled by the
이와 같이, 본 발명에 따르면 콘덴서(220)의 진공도 산출에 이용되는 진공도 모델이 냉각수의 온도나 유량에 대한 변수로만 이루어지는 것이 아니라 콘덴서(220)의 진공도에 영향을 미치는 다수의 팩터들에 대한 변수로 이루어지고, 각 팩터들 또한 진공도에 영향을 미치는 정도에 따라 다르게 산출되는 회귀계수가 적용된 형태로 반영되기 때문에 주변 상황에 따라 변화되는 콘덴서(220)의 진공도를 정확하게 예측할 수 있게 된다.As described above, according to the present invention, the degree of vacuum model used for calculating the degree of vacuum of the
현재 진공도 예측부(630)는 데이터 수집부(610)에 의해 수집된 제1 팩터들의 센싱값들 중 현재시점에 센싱된 센싱값 및 제2 팩터들의 센싱값들 중 현재시점에서 획득된 센싱값을 진공도 모델에 대입하여 콘덴서(220)의 현재 진공도를 예측한다.The vacuum
최적 진공도 예측부(640)는 제1 팩터 각각에 대해 선택된 기준값과 제2 팩터들의 센싱값들 중 현재시점에서 획득된 센싱값을 진공도 모델에 대입하여 콘덴서(220)의 최적 진공도를 예측한다. 이때, 제1 팩터 각각에 대해 선택된 기준값은 데이터 수집부(610)에 의해 제1 팩터 각각에 대해 과거 소정기간 동안 수집된 센싱값들 중 어느 하나의 값으로 선택될 수 있다.The optimum vacuum
일 실시예에 있어서, 최적 진공도 예측부(640)는 제1 팩터 각각에 대해 과거 소정기간 동안 수집된 센싱값들 중 최고의 진공도가 달성되었던 시점에서의 센싱값을 제1 팩터 각가에 대한 기준값으로 결정할 수 있다.In one embodiment, the optimum vacuum
진공도 제어부(650)는 현재 진공도 예측부(630)에 의해 예측된 현재 진공도 및 최적 진공도 예측부(640)에 의해 예측된 최적 진공도를 이용하여 콘덴서(220)의 진공도를 조절한다. 진공도 제어부(650)는 도 6에 도시된 바와 같이, 진공도 개선량 산출부(652) 및 타겟팩터 선택부(654)를 포함한다.The degree-of-
진공도 개선량 산출부(652)는 현재 진공도 예측부(630)에 의해 예측된 현재 진공도와 최적 진공도 예측부(640)에 의해 예측된 최적 진공도의 차를 산출하여 진공도 개선량을 산출한다.The vacuum degree improvement
타겟팩터 선택부(654)는 제1 팩터들 중 진공도 개선량을 달성하기 위해 조절 가능한 타겟팩터를 선택한다. 타겟팩터 선택부(654)는 선택된 타겟팩터가 종속된 설비(250~295)를 제어하여 콘덴서(220)의 현재 진공도가 콘덴서(220)의 최적 진공도를 추종하도록 한다. 구체적으로, 타겟팩터 선택부(654)는 타겟팩터가 선택되면 선택된 타겟팩터가 종속된 설비(250~295)의 정비 또는 세정을 수행하거나, 선택된 타겟팩터가 종속된 설비(250~295)의 운전 상태(예컨대, 압력의 변경 등)를 변경함으로써 콘덴서(220)의 현재 진공도가 콘덴서(220)의 최적 진공도를 추종하도록 할 수 있다.The
예컨대, 타겟팩터 선택부(654)는 메인 냉각수 유량이 타겟팩터로 선택되는 경우 메인 냉각수 공급 펌프(520)의 압력을 조절함으로써 메인 냉각수의 유량을 증가시킬 수 있다.For example, the
다른 예로, 타겟팩터 선택부(654)는 세정설비(270)의 입출구 압력차가 타겟팩터로 선택되는 경우 세정설비(270)의 정비를 수행함으로써 콘덴서(220)의 현재 진공도가 콘덴서(220)의 최적 진공도를 추종하도록 할 수 있다.As another example, the
또 다른 예로, 타겟팩터 선택부(654)는 복수개의 튜브(420)의 입출구 압력차가 타겟팩터로 선택되는 경우 튜브(420) 또는 냉각수 저장소(430)의 세정을 수행함으로써 콘덴서(220)의 현재 진공도가 콘덴서(220)의 최적 진공도를 추종하도록 할 수 있다.The target
상술한 실시예에 있어서는 타겟팩터 선택부(654)가 타겟팩터를 선택하고, 선택된 타겟팩터가 종속된 설비(250~295)를 직접 제어하는 것으로 설명하였지만, 다른 실시예에 있어서 타겟팩터 선택부(654)는 타겟팩터를 사용자에게 제공함으로써 사용자가 타겟팩터가 종속된 설비(250~295)를 직접 제어하도록 할 수도 있다. 예컨대, 타겟팩터 선택부(654)는 진공펌프(250)를 통과하는 냉각수의 압력차가 타겟팩터로 선택되는 경우 해당 타겟팩터 및 진공펌프(250)에 포함된 열교환기의 필터 청소를 사용자에게 가이드할 수 있다. The target
일 실시예에 있어서, 타겟팩터 선택부(654)는 제1 팩터 각각에 대해 현재시점에서의 센싱값과 기준값 간의 차이에 제1 팩터 별로 설정된 회귀계수를 승산함으로써 제1 팩터 별로 개선 가능한 진공도량(이하, '상승 가능 진공도량'이라 함)을 산출하고, 제1 팩터 별로 산출된 상승 가능 진공도량이 큰 순서에 따라 순차적으로 타겟팩터를 선택할 수 있다.In one embodiment, the
이러한 실시예에 따르는 경우 타겟팩터 선택부(654)는 제1 팩터들 중 상승 가능 진공도량이 가장 큰 제1 팩터를 타겟팩터로 선택하고, 해당 제1 팩터가 종속된 설비를 제어하여 진공도 개선량이 달성되는지 여부를 확인하고, 달성되지 않는 경우 제1 팩터들 중 상승 가능 진공도량이 차순위인 제1 팩터를 타겟팩터로 선택하고 해당 제1 팩터가 종속된 설비를 제어하여 진공도 개선량이 달성되는지 여부를 확인한다. 타겟팩터 선택부(654)는 진공도 개선량이 달성될 때까지 타겟팩터를 선택하여 선택된 타겟팩터가 종속된 설비들을 제어한다.According to this embodiment, the
상술한 바와 같이, 본 발명에 따르면 냉각수 온도나 냉각수 유량 이외에도 다양한 운전 조건 변화에 따라 변화하는 콘덴서(220)의 현재 진공도를 정확하게 예측할 수 있고, 현재 진공도가 최적 진공도를 추종하기 위해 제어할 수 있는 팩터들을 선택하여 사용자에게 가이드하거나 팩터가 종속된 설비들을 직접 제어함으로써 콘덴서(220)가 최적의 진공도를 갖는 상태로 운전될 수 있도록 함으로써 터빈(210)의 효율 또한 향상시킬 수 있다.As described above, according to the present invention, it is possible to accurately predict the current degree of vacuum of the
또한, 본 발명에 따르면 콘덴서(220)가 최적의 진공도를 유지할 수 있도록 설비(250~295)들의 정비 스케쥴을 조정할 수도 있다.Also, according to the present invention, the maintenance schedule of the
이하, 도 7을 참조하여 본 발명의 일 실시예에 따른 터빈의 배출작동유체 냉각 시스템의 제어방법에 대해 설명한다.Hereinafter, a method of controlling the discharge operation fluid cooling system of the turbine according to the embodiment of the present invention will be described with reference to FIG.
도 7은 본 발명의 일 실시예에 따른 터빈의 배출작동유체 냉각 시스템의 제어방법을 보여주는 플로우차트이다. 도 7에 도시된 터빈의 배출작동유체 냉각 시스템의 제어방법은 도 2에 도시된 터빈의 배출작동유체 냉각 시스템에 적용될 수 있는 것으로서, 도 2에 도시된 제어장치에 의해 수행될 수 있다.7 is a flow chart illustrating a method of controlling a discharge operating fluid cooling system of a turbine in accordance with an embodiment of the present invention. The control method of the exhaust operation fluid cooling system of the turbine shown in Fig. 7 can be applied to the exhaust operation fluid cooling system of the turbine shown in Fig. 2, and can be performed by the control device shown in Fig.
먼저, 제어장치(240)는 콘덴서(220)의 응축기능 수행을 위한 복수개의 설비(250~295)에 종속되어 각 설비의 상태에 따라 변경되는 제1 팩터들 및 각 설비(250~295)에 독립적인 제2 팩터들로 구성된 진공도 모델을 모델링한다(S700).First, the
일 실시예에 있어서, 제1 팩터들은 콘덴서(220)의 내부압력 조절을 위한 진공펌프(250)를 통과하는 냉각수의 압력차, 콘덴서(220)의 내부압력과 진공펌프(250) 입구압력의 압력차, 진공펌프(250)의 청소 도과기간 별로 설정된 제1 설정값, 메인 냉각수 공급 펌프(520)에 의해 공급되는 메인 냉각수 유량, 메인 냉각수 유량의 제곱값, 메인 냉각수 유량의 세제곱값, 서브 냉각수 공급 펌프(530)에 의해 공급되는 서브 냉각수 유량, 메인 냉각수 공급 펌프(520)의 입출구 압력차, 서브 냉각수 공급 펌프(530)의 입출구 압력차, 냉각수를 필터링하는 필터(265)의 입출구 압력차, 콘덴서(220)를 세정하는 세정설비(270)의 입출구 압력차, 콘덴서(220)에 포함된 튜브(420)의 입출구 압력차, 콘덴서(220)에 포함된 밸브들의 개도율, 응축된 작동유체를 타 설비로 공급하는 배출펌프(280)의 입구압력과 콘덴서(220)의 내부압력의 압력차, 및 콘덴서(220)로 유입되거나 콘덴서(220)로부터 배출되는 작동유체를 정수하는 정수설비(290)의 출구압력과 콘덴서(220)의 내부압력의 압력차 중 적어도 하나를 포함할 수 있다.In one embodiment, the first factors include the pressure difference of the cooling water passing through the vacuum pump 250 for adjusting the internal pressure of the condenser 220, the pressure of the inlet pressure of the vacuum pump 250, A first set value that is set according to the cleaning mode and the period of the vacuum pump 250, a main cooling water flow rate supplied by the main cooling water supply pump 520, a square value of the main cooling water flow rate, a cubic value of the main cooling water flow rate, The inlet / outlet pressure difference of the main cooling water supply pump 520, the inlet / outlet pressure difference of the sub cooling water supply pump 530, the inlet / outlet pressure difference of the filter 265 for filtering the cooling water, The pressure difference between the inlet and outlet of the cleaning device 270 for cleaning the condenser 220, the inlet and outlet pressure difference of the tube 420 included in the condenser 220, the opening rate of the valves contained in the condenser 220, The discharge pump 280, The pressure difference between the inlet pressure and the internal pressure of the condenser 220 and the pressure difference between the outlet pressure of the water purifier 290 for purifying the working fluid flowing into the condenser 220 or the condenser 220 and the internal pressure of the condenser 220 Of the pressure difference between the first and second pressure differentials.
또한, 제2 팩터들은 냉각수 온도, 냉각수 온도의 제곱, 냉각수 온도의 세제곱, 터빈에서 배출되는 작동유체의 유량, 및 터빈의 출력량 중 적어도 하나를 포함할 수 있다.Further, the second factors may include at least one of a cooling water temperature, a square of the cooling water temperature, a cube of the cooling water temperature, a flow rate of the working fluid discharged from the turbine, and an output amount of the turbine.
구체적으로, 제어장치(240)는 터빈의 배출작동유체 냉각 시스템(200)에 설치된 센서(미도시)들로부터 콘덴서(220)의 진공도 산출을 위해 요구되는 제1 팩터들 및 제2 팩터들의 센싱값이 수집되면 수집된 제1 팩터들 및 제2 팩터들의 센싱값들을 빅데이터 분석을 통해 학습함으로써 각각의 제1 팩터 및 제2 팩터 별로 회귀계수를 산출하고, 산출된 회귀계수를 각 팩터들에 승산하는 형태의 진공도 모델을 생성한다.Specifically, the
일 실시예에 있어서, 제어장치(240)는 제1 팩터 및 제2 팩터 별로 산출된 회귀계수를 제1 팩터 및 제2 팩터에 각각 승산한 후 승산한 결과를 모두 합산한 형태의 진공도 모델을 생성할 수 있다. 이때, 수집된 제1 팩터 및 제2 팩터들 모두가 진공도 모델에 포함될 수 있지만, 사용자의 선택에 따라 제1 팩터 및 제2 팩터 중 일부는 진공도 모델에 적용되지 않을 수 있다.In one embodiment, the
이와 같이, 본 발명에 따르면 콘덴서(220)의 진공도 산출에 이용되는 진공도 모델이 냉각수의 온도나 유량에 대한 변수로만 이루어지는 것이 아니라 콘덴서(220)의 진공도에 영향을 미치는 다수의 팩터들에 대한 변수로 이루어지고, 각 팩터들 또한 진공도에 영향을 미치는 정도에 따라 다르게 산출되는 회귀계수가 적용된 형태로 반영되기 때문에 주변 상황에 따라 변화되는 콘덴서(220)의 진공도를 정확하게 예측할 수 있게 된다.As described above, according to the present invention, the degree of vacuum model used for calculating the degree of vacuum of the
이후, 제어장치(240)는 현재시점에서 센싱된 제1 팩터들의 센싱값 및 제2 팩터들의 센싱값을 진공도 모델에 대입하여 콘덴서(220)의 현재 진공도를 예측한다(S710).Subsequently, the
이후, 제어장치(240)는 제1 팩터 각각에 대해 과거 소정기간 동안 수집된 센싱값들 중에서 선택된 기준값 및 상기 제2 팩터들의 센싱값을 진공도 모델에 대입하여 콘덴서(220)의 최적 진공도를 예측한다(S720).Subsequently, the
일 실시예에 있어서, 제1 팩터 각각에 대해 선택된 기준값은 제1 팩터 각각에 대해 과거 소정기간 동안 수집된 센싱값들 중 최고의 진공도가 달성되었던 시점에서의 센싱값으로 결정될 수 있다.In one embodiment, the reference value selected for each of the first factors may be determined as the sensing value at the time the highest degree of vacuum of the sensing values collected over the past predetermined period for each of the first factors is achieved.
이후, 제어장치(240)는 현재 진공도와 최적 진공도를 기초로 진공도 개선량을 산출한다(S730). 일 실시예에 있어서, 제어장치(240)는 최적 진공도에서 현재 진공도를 감산함에 의해 진공도 개선량을 산출할 수 있다.Thereafter, the
이후, 제어장치(240)는 제1 팩터들 중 진공도 개선량 달성을 위해 조절 가능한 타겟팩터를 선택한다(S740). 일 실시예에 있어서, 제어장치(240)는 제1 팩터 별로 제1 팩터의 조절을 통해 상승 가능한 상승 가능 진공도량을 산출하고, 제1 팩터들 중 상승 가능 진공도량이 큰 순서에 따라 순차적으로 타겟팩터를 선택할 수 있다.Thereafter, the
이때, 제1 팩터 별 상승 가능 진공도량은 제1 팩터 각각에 대해 현재시점에서의 센싱값과 기준값 간의 차이에 제1 팩터 별로 설정된 회귀계수를 승산함에 의해 산출할 수 있다.At this time, the ascendible vacuum degree for each first factor can be calculated by multiplying the difference between the sensed value and the reference value at the present time for each of the first factors by a regression coefficient set for each first factor.
이러한 실시예에 따르는 경우 제어장치(240)는 제1 팩터들 중 상승 가능 진공도량이 가장 큰 제1 팩터를 타겟팩터로 선택하고, 해당 제1 팩터가 종속된 설비를 제어하여 진공도 개선량이 달성되는지 여부를 확인하고, 달성되지 않는 경우 제1 팩터들 중 상승 가능 진공도량이 차순위인 제1 팩터를 타겟팩터로 선택하고 해당 제1 팩터가 종속된 설비를 제어하여 진공도 개선량이 달성되는지 여부를 확인한다. 제어장치(240)는 진공도 개선량이 달성될 때까지 타겟팩터를 선택한다.According to this embodiment, the
이후, 제어장치(240)는 선택된 타겟팩터가 종속된 설비(250~295)를 제어하여 콘덴서의 진공도를 조절한다(S750). 이에 따라 콘덴서(220)의 현재 진공도가 콘덴서(220)의 최적 진공도를 추종하게 된다.Thereafter, the
구체적으로, 제어장치(240)는 타겟팩터가 선택되면 선택된 타겟팩터가 종속된 설비(250~295)의 정비 또는 세정을 수행하거나, 선택된 타겟팩터가 종속된 설비(250~295)의 운전 상태(예컨대, 압력의 변경 등)를 변경함으로써 콘덴서(220)의 현재 진공도가 콘덴서(220)의 최적 진공도를 추종하도록 할 수 있다.Specifically, when the target factor is selected, the
예컨대, 제어장치(240)는 메인 냉각수 유량이 타겟팩터로 선택되는 경우 메인 냉각수 공급 펌프(520)의 압력을 조절함으로써 메인 냉각수의 유량을 증가시킬 수 있다. 다른 예로, 제어장치(240)는 세정설비(270)의 입출구 압력차가 타겟팩터로 선택되는 경우 세정설비(270)의 정비를 수행함으로써 콘덴서(220)의 현재 진공도가 콘덴서(220)의 최적 진공도를 추종하도록 할 수 있다. 또 다른 예로, 제어장치(240)는 복수개의 튜브(420)의 입출구 압력차가 타겟팩터로 선택되는 경우 튜브(420) 또는 냉각수 저장소(430)의 세정을 수행함으로써 콘덴서(220)의 현재 진공도가 콘덴서(220)의 최적 진공도를 추종하도록 할 수 있다.For example, when the main cooling water flow rate is selected as the target factor, the
상술한 실시예에 있어서는 제어장치(240)가 타겟팩터를 선택하고, 선택된 타겟팩터가 종속된 설비(250~295)를 직접 제어하는 것으로 설명하였지만, 다른 실시예에 있어서 제어장치(240)는 선택된 타겟팩터를 사용자에게 제공함으로써 사용자가 타겟팩터가 종속된 설비(250~295)를 직접 제어하도록 할 수도 있다.In the above-described embodiment, the
예컨대, 제어장치(240)는 진공펌프(250)를 통과하는 냉각수의 압력차가 타겟팩터로 선택되는 경우 해당 타겟팩터 및 진공펌프(250)에 포함된 열교환기의 필터 청소를 사용자에게 가이드할 수 있다. For example, the
본 발명이 속하는 기술분야의 당업자는 상술한 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.It will be understood by those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof.
예컨대, 변형된 실시예에 있어서는 터빈(210), 콘덴서(220), 및 제어장치(240)로 구성된 발전시스템을 구성할 수도 있을 것이다.For example, in a modified embodiment, a power generation system composed of a
그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the appended claims rather than the detailed description and all changes or modifications derived from the meaning and scope of the claims and their equivalents are to be construed as being included within the scope of the present invention do.
200: 터빈의 배출작동유체 냉각 시스템
210: 터빈
220: 콘덴서
230: 구동장치
240: 제어장치
250: 진공펌프
260: 냉각수 공급설비
265: 필터
270: 세정설비
280: 배출펌프
290: 정수설비
295: 열교환기
610: 데이터 수집부
620: 모델링부
630: 현재 진공도 예측부
640: 최적 진공도 예츠부
650: 진공도 제어부
652: 진공도 개선량 산출부
654: 타겟팩터 선택부200: discharge of turbine working fluid cooling system 210: turbine
220: capacitor 230: driving device
240: Control device 250: Vacuum pump
260: Cooling water supply facility 265: Filter
270: Cleaning equipment 280: Discharge pump
290: Water purification plant 295: Heat exchanger
610: Data collecting unit 620: Modeling unit
630: Current degree of vacuum prediction unit 640: Optimum degree of vacuum degree
650: Vacuum degree control unit 652: Vacuum degree improvement amount calculation unit
654: Target factor selector
Claims (20)
복수개의 설비들로 구성되어 상기 콘덴서를 동작시키는 구동장치;
상기 복수개의 설비에 종속되어 각 설비의 상태에 따라 변경되는 제1 팩터들 및 상기 각 설비에 독립적인 제2 팩터들로 구성된 진공도 모델에서 제1 팩터 각각에 대해서는 과거 소정기간 동안 수집된 센싱값들 중 어느 하나의 값인 기준값을 대입하고, 제2 팩터 각각에 대해서는 현재시점에서 센싱된 상기 제2 팩터들의 센싱값을 대입하여 상기 콘덴서의 최적 진공도를 예측하는 최적 진공도 예측부; 및
상기 최적 진공도를 이용하여 상기 콘덴서의 진공도를 조절하는 진공도 제어부를 포함하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템.A condenser for condensing the working fluid discharged from the turbine driving the generator by using cooling water;
A driving device including a plurality of facilities and operating the condenser;
In the vacuum degree model which is dependent on the plurality of equipments and is changed according to the state of each facility and the second factors independent of the respective equipments, An optimum vacuum degree predicting unit for predicting an optimum degree of vacuum of the condenser by substituting the sensed values of the second factors sensed at the present time for each of the second factors; And
And a vacuum degree control unit for controlling the degree of vacuum of the condenser using the optimum vacuum degree.
상기 진공도 모델에 현재시점에서 센싱된 상기 제1 팩터들의 센싱값 및 제2 팩터들의 센싱값을 대입하여 상기 콘덴서의 현재 진공도를 예측하는 현재 진공도 예측부를 더 포함하고,
상기 진공도 제어부는 상기 현재 진공도 및 상기 최적 진공도를 이용하여 상기 콘덴서의 진공도를 조절하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템.The method according to claim 1,
Further comprising a current degree of vacuum predicting unit for predicting the current degree of vacuum of the condenser by substituting the sensed values of the first factors and the sensed values of the second factors sensed at the present time into the degree of vacuum model,
Wherein the vacuum degree control unit adjusts the degree of vacuum of the condenser using the current degree of vacuum and the optimum degree of vacuum.
상기 진공도 모델에 현재시점에서 센싱된 상기 제1 팩터들의 센싱값 및 제2 팩터들의 센싱값을 대입하여 상기 콘덴서의 현재 진공도를 예측하는 현재 진공도 예측부를 더 포함하고,
상기 진공도 제어부는,
상기 현재 진공도와 상기 최적 진공도의 차를 산출하여 진공도 개선량을 산출하는 진공도 개선량 산출부; 및
상기 제1 팩터들 중 상기 진공도 개선량을 달성하기 위해 조절 가능한 타겟팩터를 선택하고, 상기 선택된 타겟팩터가 종속된 설비를 제어하여 상기 콘덴서의 진공도를 조절하는 타겟팩터 선택부를 포함하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템.The method according to claim 1,
Further comprising a current degree of vacuum predicting unit for predicting the current degree of vacuum of the condenser by substituting the sensed values of the first factors and the sensed values of the second factors sensed at the present time into the degree of vacuum model,
The vacuum degree control unit,
A vacuum degree improvement amount calculating unit for calculating a vacuum degree improvement amount by calculating a difference between the current vacuum degree and the optimum vacuum degree; And
And a target factor selector for selecting a controllable target factor to achieve the degree of vacuum degree improvement among the first factors and controlling the equipment to which the selected target factor is dependent to control the degree of vacuum of the condenser Discharge working fluid cooling system of the turbine.
상기 타겟팩터 선택부는, 상기 제1 팩터의 조절을 통해 상승 가능 진공도량을 산출하고, 상기 제1 팩터들 중 상승 가능 진공도량이 큰 순서에 따라 상기 타겟팩터를 선정하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템.The method of claim 3,
Wherein the target factor selection unit calculates the updatable vacuum degree through the adjustment of the first factor and selects the target factor according to the ascending order of the vacuum degree of the first factor. Working fluid cooling system.
상기 타겟팩터 선택부는, 상기 제1 팩터 각각에 대해 현재시점에서의 센싱값과 기준값 간의 차이에 상기 제1 팩터 별로 설정된 회귀계수를 승산하여 상기 제1 팩터 별로 상승 가능 진공도량을 산출하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템.The method of claim 3,
Wherein the target factor selection unit calculates a riseable vacuum degree for each of the first factors by multiplying the difference between the sensed value at the current point in time and the reference value by the regression coefficient set for each of the first factors, The discharge of the turbine working fluid cooling system.
상기 진공도 모델은 제1 팩터들 및 제2 팩터들 별로 설정된 회귀계수가 해당 제1 팩터 및 제2 팩터에 각각 승산된 결과들을 가산하는 형태의 모델인 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템.The method according to claim 1,
Wherein the vacuum degree model is a model in which a regression coefficient set for each of the first and second factors is added to a result of multiplying the first factor and the second factor, respectively.
상기 복수개의 설비들은,
상기 콘덴서의 내부압력을 조절하여 콘덴서 내부를 진공상태로 만드는 진공펌프를 포함하고,
상기 제1 팩터들은 상기 진공펌프를 통과하는 냉각수의 압력차, 상기 콘덴서의 내부압력과 상기 진공펌프 입구압력의 압력차, 및 상기 진공펌프의 청소 도과기간 별로 설정된 제1 설정값 중 적어도 하나를 포함하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템.The method according to claim 1,
The plurality of facilities include:
And a vacuum pump for adjusting the internal pressure of the condenser to make the inside of the condenser into a vacuum state,
The first factors include at least one of a pressure difference of the cooling water passing through the vacuum pump, a pressure difference between the internal pressure of the condenser and the inlet pressure of the vacuum pump, and a first setting value Wherein the turbine is a turbine.
상기 복수개의 설비들은, 메인 스트림을 통해 상기 냉각수를 상기 콘덴서 및 상기 냉각수의 냉각을 위한 열교환기 중 적어도 하나로 공급하는 메인 냉각수 공급 펌프 및 서브 스트림을 통해 상기 냉각수를 상기 열교환기로 공급하는 서브 냉각수 공급 펌프를 포함하는 냉각수 공급설비를 포함하고,
상기 제1 팩터들은 상기 메인 냉각수 공급 펌프에 의해 조절되는 메인 냉각수 유량, 상기 메인 냉각수 유량의 제곱값, 상기 메인 냉각수 유량의 세제곱값, 상기 서브 냉각수 공급 펌프에 의해 조절되는 서브 냉각수 유량, 상기 메인 냉각수 공급 펌프의 입출구 압력차, 및 상기 서브 냉각수 공급 펌프의 입출구 압력차 중 적어도 하나를 포함하는 것을 특징으로 하는 하는 터빈의 배출작동유체 냉각 시스템.The method according to claim 1,
The plurality of equipments includes a main cooling water supply pump for supplying the cooling water to at least one of the condenser and the heat exchanger for cooling the cooling water through a main stream and a sub cooling water supply pump for supplying the cooling water to the heat exchanger through a sub- And a cooling water supply device including the cooling water supply device,
The first factors include a main cooling water flow rate controlled by the main cooling water supply pump, a square value of the main cooling water flow rate, a cubic value of the main cooling water flow rate, a sub cooling water flow rate controlled by the sub cooling water supply pump, Outlet pressure difference of the supply pump, and inlet-outlet pressure difference of the sub-cooling water supply pump.
상기 복수개의 설비들은 상기 냉각수로부터 부유물질을 제거하는 필터를 포함하고,
상기 제1 팩터들은 상기 필터의 입출구 압력차를 포함하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템.The method according to claim 1,
Wherein the plurality of facilities includes a filter for removing suspended solids from the cooling water,
Wherein the first factors comprise inlet and outlet pressure differentials of the filter.
상기 콘덴서는 냉각수가 통과하는 복수개의 튜브 및 상기 복수개의 튜브로 공급되는 냉각수와 상기 복수개의 튜브로부터 배출되는 냉각수가 저장되는 냉각수 저장소를 포함하고,
상기 복수개의 설비는 상기 복수개의 튜브를 세정하는 세정설비를 포함하며,
상기 제1 팩터들은 상기 세정설비의 입출구 압력차, 상기 튜브의 입출구 압력차, 및 상기 콘덴서에 포함된 밸브들의 개도율 중 적어도 하나를 포함하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템.The method according to claim 1,
Wherein the condenser includes a plurality of tubes through which cooling water passes and a cooling water reservoir in which cooling water supplied to the plurality of tubes and cooling water discharged from the plurality of tubes are stored,
Wherein the plurality of facilities includes a cleaning facility for cleaning the plurality of tubes,
Wherein the first factors include at least one of inlet and outlet pressure differentials of the scrubbing facility, inlet and outlet pressure differentials of the tube, and an opening rate of valves contained in the condenser.
상기 복수개의 설비는 상기 콘덴서에 의해 응축된 상기 작동유체를 타 설비로 공급하는 배출펌프 및 상기 복수개의 설비는 상기 콘덴서로 유입되거나 상기 콘덴서로부터 배출되는 상기 작동유체를 정수하는 정수설비 중 적어도 하나를 포함하고,
상기 제1 팩터들은 상기 배출펌프의 입구압력과 상기 콘덴서의 내부압력의 압력차 및 상기 정수설비의 출구압력과 상기 콘덴서의 내부압력의 압력차 중 적어도 하나를 포함하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템.The method according to claim 1,
Wherein the plurality of equipments includes at least one of a discharge pump for supplying the working fluid condensed by the condenser to another facility and a plurality of facilities for purifying the working fluid flowing into the condenser or for discharging the working fluid from the condenser Including,
Wherein the first factors comprise at least one of a pressure difference between an inlet pressure of the discharge pump and an internal pressure of the condenser and a pressure difference between an outlet pressure of the purification plant and an internal pressure of the condenser. Fluid cooling system.
상기 제2 팩터들은 상기 냉각수 온도, 상기 냉각수 온도의 제곱, 상기 냉각수 온도의 세제곱, 상기 터빈에서 배출되는 상기 작동유체의 유량, 및 상기 터빈의 출력량 중 적어도 하나를 포함하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템.The method according to claim 1,
Wherein the second factors include at least one of the cooling water temperature, the square of the cooling water temperature, the cube of the cooling water temperature, the flow rate of the working fluid discharged from the turbine, and the output amount of the turbine Working fluid cooling system.
상기 제1 팩터들 중 상기 최적 진공도를 기초로 결정되는 진공도 개선량 달성을 위해 조절 가능한 타겟팩터를 선택하는 단계; 및
상기 선택된 타겟팩터가 종속된 설비를 제어하여 상기 콘덴서의 진공도를 조절하는 단계를 포함하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템 제어방법.In a vacuum degree model which is dependent on a plurality of facilities for performing a condensing function of a condenser and is changed in accordance with the state of each facility and second factors independent of the respective facilities, Estimating an optimal vacuum degree of the condenser by substituting a selected reference value among the sensed values collected during a predetermined time and a sensed value of the second factors sensed at the present time;
Selecting an adjustable target factor for achieving a degree of vacuum improvement determined based on the optimal one of the first factors; And
And controlling the equipment to which the selected target factor is dependent to control the degree of vacuum of the condenser.
상기 진공도 모델에 현재시점에서 센싱된 상기 제1 팩터들의 센싱값 및 제2 팩터들의 센싱값을 대입하여 상기 콘덴서의 현재 진공도를 예측하는 단계를 더 포함하고,
상기 타겟팩터를 선택하는 단계에서, 상기 진공도 개선량은 상기 현재 진공도와 상기 최적 진공도의 차이로 결정되는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템 제어방법.14. The method of claim 13,
Further comprising the step of predicting the current degree of vacuum of the condenser by substituting the sensed values of the first factors and the sensed values of the second factors sensed at the present time into the degree of vacuum model,
Wherein the improvement in vacuum degree is determined by a difference between the current vacuum degree and the optimal vacuum degree in the step of selecting the target factor.
상기 타겟팩터를 선택하는 단계에서, 상기 제1 팩터의 조절을 통해 상승 가능한 상승 가능 진공도량을 산출하고, 상기 제1 팩터들 중 상승 가능 진공도량이 큰 순서에 따라 상기 타겟팩터를 선정하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템 제어방법.14. The method of claim 13,
Wherein the step of selecting the target factor comprises the step of calculating an ascendible vacuum degree of elevatable through the adjustment of the first factor and selecting the target factor in descending order of the ascendible vacuum degree of the first factors Of a turbine to be controlled.
상기 타겟팩터를 선택하는 단계에서, 상기 제1 팩터 각각에 대해 현재시점에서의 센싱값과 기준값 간의 차이에 상기 제1 팩터 별로 설정된 회귀계수를 승산하여 상기 제1 팩터 별로 상승 가능 진공도량을 산출하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템 제어방법.14. The method of claim 13,
The step of selecting the target factor calculates a riseable vacuum degree for each of the first factors by multiplying the difference between the sensed value at the current time point and the reference value for each of the first factors by the regression coefficient set for each first factor Wherein the turbine is a turbine.
상기 제1 팩터들은 상기 콘덴서의 내부압력 조절을 위한 진공펌프를 통과하는 냉각수의 압력차, 상기 콘덴서의 내부압력과 상기 진공펌프 입구압력의 압력차, 상기 진공펌프의 청소 도과기간 별로 설정된 제1 설정값, 메인 냉각수 공급 펌프에 의해 공급되는 메인 냉각수 유량, 상기 메인 냉각수 유량의 제곱값, 상기 메인 냉각수 유량의 세제곱값, 서브 냉각수 공급 펌프에 의해 공급되는 서브 냉각수 유량, 상기 메인 냉각수 공급 펌프의 입출구 압력차, 상기 서브 냉각수 공급 펌프의 입출구 압력차, 상기 냉각수를 필터링하는 필터의 입출구 압력차, 상기 콘덴서를 세정하는 세정설비의 입출구 압력차, 상기 콘덴서에 포함된 튜브의 입출구 압력차, 상기 콘덴서에 포함된 밸브들의 개도율, 상기 콘덴서에 의해 응축된 작동유체를 타 설비로 공급하는 배출펌프의 입구압력과 상기 콘덴서의 내부압력의 압력차, 및 상기 콘덴서로 유입되거나 상기 콘덴서로부터 배출되는 작동유체를 정수하는 정수설비의 출구압력과 상기 콘덴서의 내부압력의 압력차 중 적어도 하나를 포함하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템 제어방법.14. The method of claim 13,
The first factors include a pressure difference of cooling water passing through a vacuum pump for adjusting an internal pressure of the condenser, a pressure difference between an internal pressure of the condenser and an inlet pressure of the vacuum pump, A main cooling water flow rate supplied by the main cooling water supply pump, a square value of the main cooling water flow rate, a cubic value of the main cooling water flow rate, a sub cooling water flow rate supplied by the sub cooling water supply pump, An input / output pressure difference of the filter for filtering the cooling water, an inlet / outlet pressure difference of a cleaning device for cleaning the condenser, an inlet / outlet pressure difference of the tube included in the condenser, The rate of opening of the valves, the discharge rate of the working fluid condensed by the condenser, At least one of a pressure difference between an inlet pressure of the pump and an internal pressure of the condenser and a pressure difference between an outlet pressure of a water purification plant and an internal pressure of the condenser to purify the working fluid flowing into the condenser or discharged from the condenser Wherein the turbine is a turbine.
상기 제2 팩터들은 터빈에서 공급되는 작동유체를 냉각시키는 냉각수 온도, 상기 냉각수 온도의 제곱, 상기 냉각수 온도의 세제곱, 상기 터빈에서 배출되는 작동유체의 유량, 및 상기 터빈의 출력량 중 적어도 하나를 포함하는 것을 특징으로 하는 터빈의 배출작동유체 냉각 시스템 제어방법.14. The method of claim 13,
The second factors include at least one of a cooling water temperature for cooling a working fluid supplied from a turbine, a square of the cooling water temperature, a cube of the cooling water temperature, a flow rate of a working fluid discharged from the turbine, and an output amount of the turbine Wherein the turbine is a turbine.
상기 터빈에서 배출되는 작동유체를 응축시키는 콘덴서의 동작을 위한 복수개의 설비에 종속되어 각 설비의 상태에 따라 변경되는 제1 팩터들 및 상기 각 설비에 독립적인 제2 팩터들로 구성된 진공도 모델에서 제1 팩터 각각에 대해서는 과거 소정기간 동안 수집된 센싱값들 중 선택된 어느 하나의 값인 기준값을 대입하고, 제2 팩터 각각에 대해서는 현재시점에서 센싱된 센싱값을 대입하여 상기 콘덴서의 최적 진공도를 예측하는 냉각장치를 포함하는 것을 특징으로 하는 발전시스템.A turbine for driving a generator; And
The first factor being dependent on a plurality of facilities for operation of a condenser for condensing the working fluid discharged from the turbine, the first factors varying according to the state of each facility, and the second factor independent of the facility, One of the sensed values obtained during a predetermined period of time is substituted for the first factor and the sensed value at the current time is substituted for each of the second factors to predict the optimum degree of vacuum of the condenser, Power generation system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170180064A KR102059245B1 (en) | 2017-12-26 | 2017-12-26 | System for Cooling Working Fluid Discharged from Turbine and Method for Controlling That System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170180064A KR102059245B1 (en) | 2017-12-26 | 2017-12-26 | System for Cooling Working Fluid Discharged from Turbine and Method for Controlling That System |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190078242A true KR20190078242A (en) | 2019-07-04 |
KR102059245B1 KR102059245B1 (en) | 2019-12-24 |
Family
ID=67258946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170180064A KR102059245B1 (en) | 2017-12-26 | 2017-12-26 | System for Cooling Working Fluid Discharged from Turbine and Method for Controlling That System |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102059245B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007262916A (en) * | 2006-03-27 | 2007-10-11 | Jfe Steel Kk | Condenser vacuum control method of condensate steam turbine |
KR20160059065A (en) | 2014-11-17 | 2016-05-26 | 현대중공업 주식회사 | Operating energy saving floating lng re-gasification power plant |
-
2017
- 2017-12-26 KR KR1020170180064A patent/KR102059245B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007262916A (en) * | 2006-03-27 | 2007-10-11 | Jfe Steel Kk | Condenser vacuum control method of condensate steam turbine |
KR20160059065A (en) | 2014-11-17 | 2016-05-26 | 현대중공업 주식회사 | Operating energy saving floating lng re-gasification power plant |
Also Published As
Publication number | Publication date |
---|---|
KR102059245B1 (en) | 2019-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0048234B1 (en) | A method of controlling a heat exchanger | |
US9939201B2 (en) | Thermosyphon coolers for cooling systems with cooling towers | |
RU2134851C1 (en) | Method and device for coolant regeneration | |
JP5537730B2 (en) | Solar thermal steam cycle system | |
EA027469B1 (en) | Method and apparatus for optimizing refrigeration systems | |
CN107762851A (en) | Injected compressor or vavuum pump for the method for the outlet temperature that controls injected compressor or vavuum pump and for implementing this method | |
CN107763857A (en) | Frequency conversion air injection enthalpy increasing heat pump water heater frequency dynamic optimizes and control method | |
KR101965848B1 (en) | Variable control heat exchange heat pump system using water source | |
CN112228329A (en) | System, device and method for automatically optimizing and adjusting running frequency of circulating water pump | |
JP4647469B2 (en) | Operation method of air conditioning equipment | |
KR20190078242A (en) | System for Cooling Working Fluid Discharged from Turbine and Method for Controlling That System | |
JP4024204B2 (en) | Waste heat recovery device | |
KR20180078090A (en) | The cooling equipment and the cooling method for vessel's heating unit | |
CN107543141A (en) | Steam generator analogue body water supply system and control method during increasing temperature and pressure | |
JP2013092476A (en) | Auxiliary feed water valve control device of steam generator | |
JP2017203574A (en) | Heat recovery system | |
JP2007262916A (en) | Condenser vacuum control method of condensate steam turbine | |
JP2010169368A (en) | Condenser backwash system and condenser backwash method | |
CN113471475B (en) | Fuel cell and method for cooling fuel cell | |
Kocher et al. | PID Based Temperature Control of a Plant Heat Exchanger System | |
JP5742306B2 (en) | Industrial heating system and control method thereof | |
JP2011036831A (en) | Solvent extraction apparatus | |
JP7459615B2 (en) | water treatment equipment | |
JPH11230684A (en) | Apparatus for cleaning cooling water tube of condenser | |
JP2000274962A (en) | Warm drainage controller, and power generation plant using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |