KR20190076490A - Particulater matter detection sensor for enhancing deposition - Google Patents

Particulater matter detection sensor for enhancing deposition Download PDF

Info

Publication number
KR20190076490A
KR20190076490A KR1020170178319A KR20170178319A KR20190076490A KR 20190076490 A KR20190076490 A KR 20190076490A KR 1020170178319 A KR1020170178319 A KR 1020170178319A KR 20170178319 A KR20170178319 A KR 20170178319A KR 20190076490 A KR20190076490 A KR 20190076490A
Authority
KR
South Korea
Prior art keywords
exhaust gas
jaw
particulate matter
sensor
flow
Prior art date
Application number
KR1020170178319A
Other languages
Korean (ko)
Other versions
KR102022996B1 (en
Inventor
엄재현
조용준
장지상
서호철
Original Assignee
세종공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세종공업 주식회사 filed Critical 세종공업 주식회사
Priority to KR1020170178319A priority Critical patent/KR102022996B1/en
Publication of KR20190076490A publication Critical patent/KR20190076490A/en
Application granted granted Critical
Publication of KR102022996B1 publication Critical patent/KR102022996B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/043Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a granular material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

The present invention relates to an exhaust gas particular matter (PM) sensor with enhanced deposition rate. An inter-digital electrode is installed on an exhaust line through which vehicle exhaust gas passes and is formed on a substrate to detect a particular matter. A start point of the electrode is perpendicular to the exhaust gas flow. An end point of the electrode is formed on a lower end of a jaw which is formed at the regular height and length and is in the position where the exhaust gas passing the jaw touches. A PM sensor is located between a start point and an end point of the jaw. A vortex flow area of the exhaust gas is formed between the start point and the end point of the jaw. More particular matters are deposited on a position close to the jaw than a position far from the jaw in the vortex flow area.

Description

퇴적율이 향상된 PM 센서 {PARTICULATER MATTER DETECTION SENSOR FOR ENHANCING DEPOSITION} TECHNICAL FIELD [0001] The present invention relates to a PM sensor having improved deposition rate,

본 발명은 배기가스 중 입자상 물질(PM) 센서에서 PM 센서로의 퇴적율을 향상시킨 입자상 물질(PM) 센서에 관한 것으로, 보다 자세하게는 PM 센서 주변에 인위적인 흐름유도부를 갑춘 PM 센서에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particulate matter (PM) sensor in which the deposition rate from a particulate matter (PM) sensor to an PM sensor is improved in an exhaust gas, and more particularly, to a PM sensor having an artificial flow guide around the PM sensor.

일반적으로, 배기 규제가 한층 강화됨에 따라 배기 가스를 정화하는 후처리 장치에 대한 관심이 높아지고 있다. 특히, 디젤 자동차에 대해 입자상 물질(Particulate Matter; PM)에 대한 규제가 더욱 엄격해지고 있는 현실이다.Generally, there is a growing interest in a post-treatment apparatus for purifying exhaust gas as the exhaust regulation is further strengthened. Particularly, regulations on Particulate Matter (PM) are becoming more strict with respect to diesel cars.

가솔린 또는 디젤을 연료로 사용하는 가솔린 차량 또는 디젤 차량에는 배출되는 배기가스 중에서 일산화탄소, 탄화수소, 질소산화물(NOx), 황산화물 및 입자상 물질(Particulate Matter, PM)이 포함된다.Gasoline or diesel vehicles that use gasoline or diesel fuel include carbon monoxide, hydrocarbons, nitrogen oxides (NOx), sulfur oxides, and particulate matter (PM) in exhaust gases.

여기서, 차량에서 배출되는 일산화탄소, 탄화수소, 질소산화물(NOx), 황산화물 및 입자상 물질(ParticulateMatter, PM) 등의 배기가스 중 입자상 물질은 부유 분진의 발생을 가중시킴으로써 대기 오염의 주요 원인으로 알려져 있다.Here, particulate matter in exhaust gas such as carbon monoxide, hydrocarbon, nitrogen oxides (NOx), sulfur oxides and particulate matter (PM) discharged from vehicles is known as a main cause of air pollution by increasing the generation of suspended dust.

상술한 바와 같은 대기 오염 물질에 따른 인간의 쾌적한 환경의 요구 및 각국의 환경 규제에 의하여 배기가스에 포함되는 배기 오염 물질에 대한 규제가 점차 증가하고 있으며, 이에 대한 대책으로 다양한 배기가스 여과 방법이 연구되고 있다.Regulation of exhaust pollutants contained in exhaust gas is gradually increasing due to demands of pleasant environment of human being according to the air pollutants as described above and environmental regulations of each country, and various exhaust gas filtration methods have been studied .

즉, 배기가스에 포함되는 대기 오염 물질을 감소시키기 위하여 차량의 엔진 내부에서 자체적으로 오염 물질을 저감시키는 기술로서, 엔진 기술 및 전처리 기술 등이 개발되고 있으나, 배기가스의 규제가 강화됨에 따라 엔진 내부에서의 유해가 가스 저감 기술만으로는 규제를 만족시키는데 한계가 있었다.That is, in order to reduce air pollutants contained in the exhaust gas, engine technology and pretreatment technology have been developed as technology for reducing pollutants in the engine of the vehicle itself. However, as the regulation of exhaust gas is strengthened, The toxicity of the gas was limited by the gas reduction technology alone.

이러한 문제점을 해결하기 위하여 차량의 엔진에서 연소된 후 배출되는 배기가스를 처리하는 후처리 기술이 제안되었으며, 상술한 후 처리 기술은 산화촉매, 질소산화물 촉매 및 매연 여과장치를 통한 배기가스 저감장치 등이 있다.In order to solve such a problem, a post-treatment technique for treating exhaust gas after combustion in an engine of a vehicle has been proposed. The above-described post-treatment technique includes an oxidation catalyst, a nitrogen oxide catalyst and an exhaust gas reduction device .

상술한 바와 같은 산화 촉매, 질소산화물 촉매 및 매연 여과장치 중 입자상 물질을 저감시키는 가장 효율적이고 실용화에 접근되는 기술은 매연 여과장치를 이용한 배기가스 저감장치이다.The most efficient and practical approach to reduce particulate matter among the oxidation catalyst, nitrogen oxide catalyst and soot filtration apparatus as described above is an exhaust gas reduction apparatus using a soot filter apparatus.

이러한 배기가스 저감장치는 주로 디젤 엔진에서 배출되는 입자상 물질을 여과필터로 포집한 후 이것을 태우고(이하, 재생이라 함) 다시 입자상 물질을 포집하여 계속 사용하는 기술로서, 성능 면에서는 아주 우수하나, 정확한 입자상 물질의 양이나 크기 측정이 어려워 내구성과 경제성이 실용화의 장애요인으로 작용하고 있으며, 배기가스의 온도 변화 및 입자상 물질의 퇴적에 따라 PM센서 측정값이 부정확하다.Such an exhaust gas abatement device is a technology that mainly captures particulate matter discharged from a diesel engine by a filter, burns it (hereinafter referred to as regeneration), and then continues to use particulate matter and collects it again. It is difficult to measure the amount and size of particulate matter. Therefore, durability and economical efficiency are obstacles to practical use. PM sensor measurement value is inaccurate due to temperature change of exhaust gas and accumulation of particulate matter.

한국공개특허 제2010-0035682호Korea Patent Publication No. 2010-0035682

디젤자동차의 입자상 물질을 제거하기 위해 DPF(Diesel Particulate Filter)를 장착을 의무화 하고, DPF의 고장유무에 따른 입자상 물질배출량 모니터링을 위해 입자상 물질양을 측정할 수 있도록 DPF 후단에 OBD 입자상 물질센서 장착을 의무화하고 있다(Euro6C). 현재 디젤자동차에 장착중인 입자상 물질센서는 그림과 같이 Interdigital 전극에 입자상 물질의 퇴적에 의한 저항변화를 측정하는 방식을 이용하고 있다. 입자상 물질이 퇴적되지 않은 상태에서는 전류가 흐를 수 없지만 퇴적된 입자상 물질에 의해 전류가 흐를 수 있는 회로가 형성되게 되고 이러한 입자상 물질의 퇴적량은 배기가스 중의 입자상 물질 양에 의해 결정되므로 저항변화를 측정함으로써 배기가스 중의 입자상 물질 양을 측정할 수 있게 된다. 일정 양 이상의 입자상 물질이 퇴적된 경우 별도의 히터를 이용해 퇴적된 입자상 물질을 연소시켜 제거하는 재생 단계를 통해 지속적인 입자상 물질 모니터링을 할 수 있다. It is mandatory to install a DPF (Diesel Particulate Filter) in order to remove particulate matter from diesel vehicles. In order to monitor the amount of particulate matter to monitor the particulate matter emission with the failure of DPF, OBD particulate matter sensor It is mandatory (Euro6C). The particulate matter sensor currently mounted on a diesel vehicle uses a method of measuring the resistance change due to deposition of particulate matter on the Interdigital electrode as shown in the figure. In the state that the particulate matter is not accumulated, a current can not flow but a circuit capable of flowing electric current can be formed by the deposited particulate matter. Since the deposition amount of the particulate matter is determined by the amount of particulate matter in the exhaust gas, Whereby the amount of particulate matter in the exhaust gas can be measured. When a particulate matter of a certain amount or more is deposited, continuous particulate matter monitoring can be performed through a regeneration step of burning and removing accumulated particulate matter using a separate heater.

현재 입자상 물질센서는 Al2O3 등의 세라믹 기판 위에 Pt와 같은 고온안정성을 갖는 금속을 이용해 Interdigital 전극를 형성하는 방법을 이용해 제작하고 있다. 전극의 너비 및 전극간의 간격은 ~수십 ㎛이다. 이와같이 제작된 전극 사이에 전압을 인가하여 입자상 물질의 퇴적을 유도하는데 인가전압이 높을수록 입자상 물질의 퇴적이 잘 이루어져 빠른 응답속도를 얻을 수 있게 된다. 현재는 40V이상의 전압을 인가하고 있는데 이와같이 높은 전압을 인가하는 것은 차량 및 센서에 부담을 주게 된다. Currently, particulate matter sensors are fabricated on a ceramic substrate such as Al2O3 using a method of forming interdigital electrodes using metals with high temperature stability such as Pt. The width of the electrodes and the spacing between the electrodes are ~ several tens of micrometers. The voltage is applied between the electrodes so as to induce the deposition of the particulate matter. The higher the applied voltage is, the better the deposition speed of the particulate matter can be achieved and the faster response speed can be obtained. Currently, a voltage of more than 40V is being applied. Applying such a high voltage puts a burden on the vehicle and the sensor.

본 발명은 상기와 같은 문제점을 해결하기 위해 발명된 것으로서, 배기가스 흐름 유도부를 갖춰 입자상물질이 PM 센서에 쉽게 퇴적될 수 있는 PM센서를 제공하는데 그 목적이 있다. It is an object of the present invention to provide a PM sensor capable of easily depositing particulate matter on a PM sensor by providing an exhaust gas flow guide portion.

상기한 목적을 달성하기 위한 본 발명에 따른 배기가스 중 입자상 물질 센서 장치는 자동차 배기가스가 통과되는 배기라인에 설치되어 입자상물질(PM)를 감지하기 위해 전극이 형성된 PM 센서에 있어서, PM 센서로의 배기가스 흐름을 유도할 수 있는 배기가스 흐름유도부를 통해 배기가스로부터 입자상물질이 PM 센서로 퇴적될 수 있도록 한다. 상기 전극의 시작지점은 배기가스 흐름에 직각이 되며, 일정높이 및 일정길이로 형성된 턱의 아랫단에 형성되며, 전극의 끝지점은 턱을 지난 배기가스가 부딧치는 위치에 있고, 턱의 시작지점과 끝지점의 사이에 PM 센서가 위치하며, 턱의 시작지점과 끝지점의 사이에 배기가스의 와류유동 영역이 형성되며, 와류유동 영역 내에서 턱에서 가까운 거리가 턱에서 먼거리보다 입자상물질의 퇴적이 더 많은 것을 특징으로 한다.According to an aspect of the present invention, there is provided a particulate matter sensor device for an exhaust gas according to the present invention, the PM sensor having an electrode formed on an exhaust line through which exhaust gas from an automobile is passed to detect particulate matter, So that particulate matter can be deposited from the exhaust gas into the PM sensor through the exhaust gas flow inducing portion capable of inducing the exhaust gas flow of the exhaust gas. The starting point of the electrode is perpendicular to the exhaust gas flow, and is formed at the lower end of the jaw formed at a predetermined height and a predetermined length. The end point of the electrode is located at the position where the exhaust gas passing the jaw is in a floating position, The PM sensor is located between the end points, and a swirling flow area of the exhaust gas is formed between the start point and the end point of the jaw. A distance from the jaw to the jaw within the swirl flow area is smaller than the distance from the jaw to the accumulation of particulate matter And more.

기와 같은 구성을 갖는 본 발명에 의한 배기가스 중 PM 센서의 온도 및 퇴적되는 입자상물질의 퇴적율 향상을 통해 보다 빠른 응답속도를 가진 PM 센서가 가능하다.The temperature of the PM sensor and the deposition rate of the deposited particulate matter in the exhaust gas according to the present invention having the same configuration as that of the PM sensor can be improved.

도 1은 퇴적량이 적은 경우 전기장을 높이는 원리에 대한 그림이다.
도 2는 본 발명에 따른 배기가스 중 입자상 물질 센서의 구조를 설명하기 위한 도면이다.
도 3은 본 발명에 따른 배기가스 중 입자상 물질 센서의 실제 적용예이다.
FIG. 1 is a diagram illustrating the principle of raising the electric field when the deposition amount is small.
2 is a view for explaining a structure of a particulate matter sensor in an exhaust gas according to the present invention.
3 is a practical application example of the particulate matter sensor in the exhaust gas according to the present invention.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다. 우선, 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 출력되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings in order to facilitate a person skilled in the art to easily carry out the technical idea of the present invention. . First, in adding reference numerals to the constituent elements of the drawings, it should be noted that the same constituent elements are denoted by the same reference numerals whenever possible even if they are displayed on other drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

이하, 본 발명의 실시예에 따른 배기가스 입자상 물질 센서에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다.Hereinafter, an exhaust gas particulate matter sensor according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 기판 상에 고온안정성을 갖는 금속을 이용해 인터디지털(Interdigital) 전극을 설치함으로서, 배기가스 중 함유된 금속 입자에 의한 영향을 줄일 수 있는 센서의 구조에서, 퇴적된 입자상물질이 적은 경우, 외부전극에 인가된 전압을 상승시키는 이유에 대한 그림이다. 인터디지털(Interdigital) 전극이란, 도 1에서와 같이 손가락 모양의 금속 판 두 개가 서로 엇갈려 있는 형태의 전극을 의미한다.FIG. 1 shows a structure of a sensor capable of reducing the influence of metal particles contained in an exhaust gas by providing an interdigital electrode using a metal having high temperature stability on a substrate, The reason for raising the voltage applied to the external electrode is shown in FIG. An interdigital electrode means an electrode in which two finger-like metal plates are staggered as shown in FIG.

즉, 입자상 물질이 전극 사이에 퇴적됨에 따라, 입자상물질을 통해 전류가 흐르게 됨으로서 전체 저항이 감소하게 되는데, 이러한 저항 변화를 측정함으로서 퇴적된 입자상 물질의 양을 측정할 수 있는데, 퇴적된 입자상 물질의 양 자체가 소량이면, 입자상물질의 퇴적을 향상시키기 위해 외부전극 간 높은 전압차이를 인가해주어야 한다. 입자상 물질에 작용하는 힘은 F ~ -∇(E ·P)이며, E는 전기장의 크기, P는 입자상물질의 dipole moment의 크기로서, 인가전압이 클수록 전기장의 세기가 커지며, 입자상물질의 거동에 영향을 줘 기판상에 퇴적이 되도록 하는 것이다.That is, as the particulate matter is deposited between the electrodes, current flows through the particulate matter, thereby reducing the total resistance. By measuring the resistance change, it is possible to measure the amount of deposited particulate matter. If the amount is small, a high voltage difference between the external electrodes must be applied in order to improve the deposition of the particulate matter. E is the magnitude of the electric field and P is the magnitude of the dipole moment of the particulate matter. The larger the applied voltage is, the stronger the electric field strength is. Thereby causing deposition on the substrate.

그러나, 이러한 방법은 높은 전압을 인가해야 하는 문제점이 발생하며, 이를 해결하기 위해 배기가스의 흐름 자체를 PM센서로 유도하는 구조가 더욱 바람직하다.However, in this method, a problem of applying a high voltage occurs, and in order to solve this problem, it is more preferable that the flow of the exhaust gas itself is guided to the PM sensor.

그림 2는 PM 센서 주변에 배기가스 흐름유도부를 형성한 것으로 부도체 재질의 흐름유도부를 통해 배기가스의 흐름이 유도되고, 배기가스 흐름유도부의 끝단은 계단처럼 단차가 형성되고, 아랫단에 PM센서가 위치한다. 이때, 다수개의 전극의 배열은 배기가스 흐름에 대해 서로 직각방향을 형성할 수 있도록 함으로서 배기가스와의 접촉을 극대화시킨다.Figure 2 shows an exhaust gas flow guide formed around the PM sensor. The flow of exhaust gas is guided through the flow guide part of the non-conductive material. The end of the exhaust gas flow guide part forms a step like a step. do. At this time, the arrangement of the plurality of electrodes maximizes the contact with the exhaust gas by making it possible to form a direction perpendicular to the exhaust gas flow.

배기가스 흐름유도부는 끝단, 즉 PM센서가 놓인 위치는 배기가스 흐름유도부를 지나 흐르는 배기가스가 끝단에 형성된 단차에 의해 형성하는 2차유동의 와류의 형성과 관련이 있다. 즉, 배기가스 흐름유도부의 끝단에 형성된 단차에 의해 배기가스가 PM센서와 부딧치게 되며, 이때 배기가스 흐름의 내부에 도 2와 같은 2차유동의 와류가 형성되며, 상기 와류는 배기가스 흐름속에 갇힌채 순환하기 때문에 그 안의 입자상물질이 PM 센서와 접촉하여 퇴적될 확률이 높아지게 된다.The end of the exhaust gas flow inducing portion, that is, the position where the PM sensor is placed, is related to the formation of a vortex of the secondary flow formed by the step formed at the end of the exhaust gas flowing through the exhaust gas flow inducing portion. That is, the exhaust gas flows to the PM sensor by the step formed at the end of the exhaust gas flow induction portion, and a vortex of the secondary flow as shown in FIG. 2 is formed inside the exhaust gas flow at this time, Because it circulates in a trapped state, the probability that particulate matter in the particulate matter is deposited in contact with the PM sensor increases.

한편 이러한, 와류를 형성하기 위해서는 배기가스 유속, 배기가스가 PM 센서와 부딪히게되는 거리(d) 및 높이(h)의 적정범위가 존재하며, 본 실시예에서는 h/d가 0.1~3의 범위에서 퇴적율이 향상되는 효과를 보였다. PM을 측정해야하는 모드에서는 배기가스 유속보다는 h/d가 더욱 중요한 인자이다.On the other hand, in order to form such a vortex, there is an appropriate range of the exhaust gas flow velocity, the distance d and the height h at which the exhaust gas collides with the PM sensor. In this embodiment, h / d is in the range of 0.1 to 3 The sedimentation rate was improved. In the mode where the PM is measured, h / d is more important factor than the exhaust gas flow rate.

도 3은 본 발명에 따른 배기가스 중 입자상 물질 센서의 실제 적용예로서, 측면에서 볼때 배기가스의 흐름이 일정길이까지 형성된 턱에서 PM 센서가 위치하고 있다. 턱에서 먼 위치에서는 PM 퇴적량이 적으며, 턱에서 가까울 수록 PM 퇴적량이 많은 결과가 나왔는데, 이는 턱에서 가까울 수록 배기가스 흐름 속에 갇힌 와류가 배기가스 흐름에 의한 영향을 덜 받고, 턱에서 멀수록 배기가스 흐름 속에 갇힌 와류가 배기가스 흐름에 의한 영향을 더 받는다는 것을 보여준다.3 is a practical application example of the particulate matter sensor in the exhaust gas according to the present invention, in which the PM sensor is positioned at a jaw having a predetermined length of exhaust gas flow. The PM accumulation amount at the farther from the jaw was small and the closer the jaw was, the more the PM accumulation amount was. This is because the vortex trapped in the exhaust gas flow is less affected by the exhaust gas flow as the distance from the jaw is closer to the jaw, It is shown that the trapped vortex in the gas flow is more influenced by the exhaust gas flow.

이상에서 본 발명에 따른 바람직한 실시예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진 자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형예 및 수정예를 실시할 수 있을 것으로 이해된다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but many variations and modifications may be made without departing from the scope of the present invention. It will be understood that the invention may be practiced.

Claims (5)

자동차 배기가스가 통과되는 배기라인에 설치되어 입자상물질(PM)를 감지하기 위해 기판 상 형성되는 인터디지털 전극;
상기 인터디지털 전극로 상기 배기가스 흐름을 유도하도록 일정길이 및 일정높이의 턱을 형성하는 흐름유도부;
상기 흐름유도부의 끝단으로부터 상기 일정높이 아래에 상기 인터디지털 전극의 시작점이 위치함으로서, 상기 인터디지털 전극에 대해 상기 배기가스의 수직방향 흐름이 형성되는 것을 특징으로 하는 퇴적율이 향상된 배기가스 PM 센서.
An interdigital electrode formed on a substrate for detecting particulate matter (PM) installed on an exhaust line through which automobile exhaust gas is passed;
A flow inducing unit for forming a step of a predetermined length and a predetermined height to induce the exhaust gas flow to the interdigital electrode;
Wherein a start point of the interdigital electrode is located below the predetermined height from an end of the flow inducing unit so that a vertical flow of the exhaust gas is formed with respect to the interdigital electrode.
제1항에 있어서,
상기 인터디지털 전극의 끝지점은 상기 턱으로부터 상기 수직방향의 배기가스가 충돌되는 위치인 것을 특징으로 하는 퇴적율이 향상된 배기가스 PM 센서.
The method according to claim 1,
Wherein an end point of the interdigital electrode is a position where the exhaust gas in the vertical direction collides with the jaw.
제2항에 있어서,
상기 턱으로부터 상기 시작지점과 상기 끝지점의 사이에 상기 PM 센서가 위치하는 것을 특징으로 하는 퇴적율이 향상된 배기가스 PM 센서.
3. The method of claim 2,
And the PM sensor is positioned between the starting point and the end point from the jaw.
제3항에 있어서,
상기 턱의 시작지점과 끝지점의 사이에 배기가스의 와류유동 영역이 형성되는 것을 특징으로 하는 퇴적율이 향상된 배기가스 PM 센서.
The method of claim 3,
Wherein a swirling flow area of exhaust gas is formed between the start point and the end point of the jaw.
제4항에 있어서,
상기 와류유동 영역 내에서 턱에서 가까운 거리가 상기 턱에서 먼거리보다 입자상물질의 퇴적이 더 많은 것을 특징으로 하는 퇴적율이 향상된 배기가스 PM 센서.
5. The method of claim 4,
Wherein a distance from the jaw to the jaw within the vortex flow region is higher than that from the jaw to accumulate particulate matter.
KR1020170178319A 2017-12-22 2017-12-22 Particulater matter detection sensor for enhancing deposition KR102022996B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170178319A KR102022996B1 (en) 2017-12-22 2017-12-22 Particulater matter detection sensor for enhancing deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170178319A KR102022996B1 (en) 2017-12-22 2017-12-22 Particulater matter detection sensor for enhancing deposition

Publications (2)

Publication Number Publication Date
KR20190076490A true KR20190076490A (en) 2019-07-02
KR102022996B1 KR102022996B1 (en) 2019-09-20

Family

ID=67258103

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170178319A KR102022996B1 (en) 2017-12-22 2017-12-22 Particulater matter detection sensor for enhancing deposition

Country Status (1)

Country Link
KR (1) KR102022996B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757921A2 (en) * 2005-08-25 2007-02-28 Msp Corporation Aerosol measurement by dilution and particle counting
KR20100035682A (en) 2007-04-27 2010-04-06 세라마테크, 인코오포레이티드 Particulate matter sensor
JP2011256796A (en) * 2010-06-09 2011-12-22 Toyota Motor Corp Pm quantity detection system
JP2012093287A (en) * 2010-10-28 2012-05-17 Denso Corp Particulate substance detection sensor
JP2012168143A (en) * 2011-02-17 2012-09-06 Nippon Soken Inc Particulate matter detector
EP2770973A1 (en) * 2011-10-22 2014-09-03 Lightintegra Technology Inc. Apparatus and method for platelet monitoring and for assessing the quality of plateletes
JP2014529356A (en) * 2011-07-28 2014-11-06 エレクトリクフィル オートモーティヴ Method and apparatus for measuring the concentration of soot particles in exhaust gases, in particular exhaust gases from internal combustion engines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757921A2 (en) * 2005-08-25 2007-02-28 Msp Corporation Aerosol measurement by dilution and particle counting
KR20100035682A (en) 2007-04-27 2010-04-06 세라마테크, 인코오포레이티드 Particulate matter sensor
JP2011256796A (en) * 2010-06-09 2011-12-22 Toyota Motor Corp Pm quantity detection system
JP2012093287A (en) * 2010-10-28 2012-05-17 Denso Corp Particulate substance detection sensor
JP2012168143A (en) * 2011-02-17 2012-09-06 Nippon Soken Inc Particulate matter detector
JP2014529356A (en) * 2011-07-28 2014-11-06 エレクトリクフィル オートモーティヴ Method and apparatus for measuring the concentration of soot particles in exhaust gases, in particular exhaust gases from internal combustion engines
EP2770973A1 (en) * 2011-10-22 2014-09-03 Lightintegra Technology Inc. Apparatus and method for platelet monitoring and for assessing the quality of plateletes

Also Published As

Publication number Publication date
KR102022996B1 (en) 2019-09-20

Similar Documents

Publication Publication Date Title
RU2686351C2 (en) Method and system for detecting solid particles in spent gases
RU2716664C2 (en) Method and system for detection of solid particles in exhaust gases
CN106248540B (en) Particulate matter sensor and exhaust gas purification system using same
EP3056698B1 (en) Method for monitoring a particulate filter
KR101401713B1 (en) Particular Matter Sensor
CN105822398B (en) Diagnostic device for internal combustion engine and on-board diagnostic system
Hawker et al. Effect of a continuously regenerating diesel particulate filter on non-regulated emissions and particle size distribution
RU2692874C2 (en) Method (embodiments) for detection of solid particles in exhaust gases
JP4574411B2 (en) Wrinkle detection sensor and wrinkle detection method
US20130298640A1 (en) Method for operating a soot sensor
KR102125393B1 (en) Particulater matter detection sensor
JP4186425B2 (en) Soot particle detection sensor, diesel particulate filter device using the same, and control method therefor
KR101593670B1 (en) Particular Matter Sensor and exhaust gas purification system using the same
RU2673645C2 (en) Method and system for exhaust particulate matter sensing
KR101860455B1 (en) Particulater matter detection sensor
KR101593669B1 (en) Particular Matter Sensor and exhaust gas purification system using the same
KR20190076490A (en) Particulater matter detection sensor for enhancing deposition
US10947887B2 (en) Method and system for exhaust particulate matter sensing
Subramaniam et al. Simultaneous reduction of HC, NO x and PM by using active regeneration technique
KR101699126B1 (en) Apparatus using particulater matter detection sensor circuit and method using the same
JP6466002B2 (en) Particulate matter sensor and exhaust gas purification system including the same
JP4385850B2 (en) Collection amount detection method and collection amount detection device
KR101860817B1 (en) Particulater matter detection sensor using porous substrate
KR102342938B1 (en) Diesel Engines Including Diesel Particulate Filters and Methods for Operating Diesel Engines
KR102015803B1 (en) Particulater matter detection sensor for compensation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right