KR20190074842A - Steel sheet having ultra high strength and high yield ratio and method of manufacturing the same - Google Patents

Steel sheet having ultra high strength and high yield ratio and method of manufacturing the same Download PDF

Info

Publication number
KR20190074842A
KR20190074842A KR1020170176504A KR20170176504A KR20190074842A KR 20190074842 A KR20190074842 A KR 20190074842A KR 1020170176504 A KR1020170176504 A KR 1020170176504A KR 20170176504 A KR20170176504 A KR 20170176504A KR 20190074842 A KR20190074842 A KR 20190074842A
Authority
KR
South Korea
Prior art keywords
steel sheet
excluding
less
cold
present
Prior art date
Application number
KR1020170176504A
Other languages
Korean (ko)
Inventor
구민서
서인식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020170176504A priority Critical patent/KR20190074842A/en
Publication of KR20190074842A publication Critical patent/KR20190074842A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

The present invention relates to an ultra high strength high-yield ratio steel sheet and a manufacturing method thereof. According to an embodiment of the present invention, the ultra high strength high-yield ratio steel sheet includes: 0.12-0.4 wt% of C; no more than 0.5 wt% (except 0 wt%) of Si; 2.6-4.0 wt% of Mn; no more than 0.03 wt% (except 0 wt%) of P; no more than 0.015 wt% (except 0 wt%) of S; no more than 0.1 wt% (except 0 wt%) of Al; no more than 1 wt% of Cr (except 0 wt%); 48/14*[N]-0.1 wt% of Ti; no more than 0.1 wt% (except 0 wt%) of Nb; no more than 0.005 wt% (except 0 wt%) of B; no more than 0.01 wt% (except 0 wt%) of N; and the remaining of Fe and inevitable impurities. A microstructure includes: no less than 90% (including 100%) of the sum of martensite and tempered martensite in terms of area fraction; and no more than 10% (including 0%) of the sum of one or two kinds of ferrite and bainite. The yield ratio is no less than 0.8, and the deviation between before and after tempering is no more than 100 MPa.

Description

초고강도 고항복비 강판 및 그 제조방법{STEEL SHEET HAVING ULTRA HIGH STRENGTH AND HIGH YIELD RATIO AND METHOD OF MANUFACTURING THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet having a high strength and a high strength,

본 발명은 초고강도 고항복비 강판 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0002] The present invention relates to a super high strength and high strength steel plate and a manufacturing method thereof.

자동차강판의 경량화 및 충돌 안전성 확보라는 모순된 목표를 만족하기 위하여, 이상조직강(Dual Phase Steel, 이하 DP강이라고도 함), 변태유기소성강(Transformation Induced Plasticity Steel, 이하 TRIP강이라도 함), 복합조직강(Complex Phase Steel, 이하 CP강이라고도 함) 등의 다양한 자동차용 강판이 개발되고 있다. 그러나, 이러한 진보된 고강도강에서 탄소량을 높여서 보다 강도를 높일 수 있으나, 점 용접성 등의 실용적 측면을 고려할 때 구현 가능한 인장강도는 약 1200Mpa급 수준이 한계이다. 충돌 안전성을 확보하기 위한 구조부재로의 적용은 고온에서 성형 후 수냉하는 다이(Die)와의 직접 접촉을 통한 급냉에 의하여 최종 강도를 확보하는 방법이 각광받고 있으며, 대표적인 기술로는 특허문헌 1이 있다. 그러나, 특허문헌 1은 소둔 후에 실온까지 급냉시킬 필요가 있기 때문에, 소둔로와 과시효로 사이에 강판을 급냉시킬 수 있는 특별한 설비를 가진 라인이 아니면 제조할 수 없다는 문제가 있다. 즉, 설비 투자비가 과도하게 높고, 열처리 및 공정비용이 높아서 적용 확대가 크지 않다. In order to satisfy the contradictory goal of light weight of automotive steel sheet and ensuring collision safety, it has been proposed to use dual phase steel (hereinafter referred to as DP steel), Transformation Induced Plasticity Steel (hereinafter also referred to as TRIP steel) And a variety of automotive steel plates such as a composite phase steel (hereinafter also referred to as CP steel) are being developed. However, it is possible to increase the strength by increasing the amount of carbon in the advanced high strength steel. However, considering the practical aspect such as the spot weldability, the tensile strength that can be implemented is limited to the level of about 1200 MPa. As a structural member for ensuring collision safety, a method of securing a final strength by quenching through direct contact with a die that is water-cooled after molding at a high temperature is attracting attention, and Patent Literature 1 is a typical technique . However, in Patent Document 1, since it is necessary to quench the steel sheet to room temperature after annealing, there is a problem that it can not be manufactured without a line having a special facility capable of quenching the steel sheet between the annealing furnace and the overexposure furnace. That is, it is not so large that the investment cost is high and the heat treatment and the process cost are high.

이러한 수냉을 통한 급냉 방식의 대안으로서 서냉방식을 사용하는 기술이 개발되었다. 그러나, 서냉구간이 존재하는 연속소둔로 및 연속소둔형 용융도금라인에서는 소둔 열처리 후 90%이상의 미세조직 분율을 갖는 마르텐사이트강은 항복강도와 인장강도의 비가 0.75미만으로 항복비가 열위한 단점이 있다. 이에 따라, 자동차의 충돌시 저항력을 높이기 위해서는 항복강도를 보다 높이는 것이 바람직하며, 이를 위한 개선방안이 요구된다. 아울러, 자동차의 경량화를 위하여 인장강도의 하락을 최대한 억제하는 방안이 필요하다.As an alternative to the quenching method through water cooling, a technique using a slow cooling method has been developed. However, in the continuous annealing furnace and the continuous annealing type hot-dip plating line in which the slow cooling section exists, the martensitic steel having a microstructure fraction of 90% or more after annealing has a drawback that the yield ratio is less than 0.75 . Accordingly, it is desirable to increase the yield strength in order to increase the resistance of the vehicle in the event of a collision of the vehicle. In addition, to reduce the weight of automobiles, it is necessary to minimize the decrease of the tensile strength.

한편, 특허문헌 2는 서냉방식을 사용하는 기술로서, Ms점, 즉 마르텐사이트 변태 개시 온도에 도달한 강판에 대해 마르텐사이트 변태를 일으키게 함과 동시에, 변태 후의 마르텐사이트를 템퍼링하는 오토템퍼 처리에 의해 고강도를 확보하는 것을 특징으로 하는 기술이다. 그러나, 특허문헌 2는 Ms 직하의 온도에서의 열처리 조건을 엄밀히 제어해야 하므로 제조 안정성에 문제가 있다. 또한, 템퍼링 온도 구간에서 매우 느린 속도로 냉각하거나 장시간 유지시켜야 하기 때문에 생산성이 양호하지 않고, 여전히 항복비가 낮다는 단점이 있다.On the other hand, Patent Document 2 discloses a technique of using the slow cooling method, in which martensite transformation is caused to a steel sheet having reached Ms point, that is, a martensitic transformation starting temperature, and at the same time, And a high strength is ensured. However, Patent Document 2 has a problem in manufacturing stability because the heat treatment conditions under the temperature of Ms must be strictly controlled. In addition, since it has to be cooled at a very low speed in the tempering temperature range or must be maintained for a long time, the productivity is not good and the yield ratio is still low.

일본 등록특허공보 제2528387호Japanese Patent Publication No. 2528387 한국 공개특허공보 제2010-0116608호Korean Patent Publication No. 2010-0116608

본 발명의 일측면은 초고강도 고항복비 강판 및 제조방법을 제공하고자 하는 것이다.An aspect of the present invention is to provide an ultra high strength high strength steel sheet and a manufacturing method thereof.

본 발명의 일 실시형태는 중량%로, C: 0.12~0.4%, Si: 0.5%이하(0% 제외), Mn: 2.6~4.0%, P: 0.03%이하(0% 제외), S: 0.015%이하(0% 제외), Al: 0.1%이하(0% 제외), Cr: 1%이하(0% 제외), Ti: 48/14*[N]~0.1%, Nb: 0.1%이하(0% 제외), B: 0.005%이하(0% 제외), N: 0.01%이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 미세조직은 면적분율로, 마르텐사이트와 템퍼드 마르텐사이트의 합: 90% 이상(100% 포함); 및 페라이트와 베이나이트 중 1종 또는 2종의 합: 10% 이하(0%를 포함)을 포함하며, 항복비가 0.8 이상이고, 템퍼링 전 및 후의 인장강도 편차가 100MPa 이하인 초고강도 고항복비 강판을 제공한다.An embodiment of the present invention is a steel sheet comprising, by weight%, 0.12 to 0.4% of C, 0.5% or less of Si (excluding 0%), 2.6 to 4.0% of Mn, 0.03% or less of P Ti: 48/14 * [N] to 0.1%, Nb: 0.1% or less (excluding 0%), Al: not more than 0.1% %), B: not more than 0.005% (excluding 0%), N: not more than 0.01% (excluding 0%), the balance Fe and other unavoidable impurities. The microstructure contains martensite and tempered martensite : 90% or more (including 100%); And a sum of one or both of ferrite and bainite: 10% or less (including 0%), having a yield ratio of 0.8 or more, and a tensile strength difference before and after tempering of 100 MPa or less do.

본 발명의 다른 실시형태는 중량%로, C: 0.12~0.4%, Si: 0.5%이하(0% 제외), Mn: 2.6~4.0%, P: 0.03%이하(0% 제외), S: 0.015%이하(0% 제외), Al: 0.1%이하(0% 제외), Cr: 1%이하(0% 제외), Ti: 48/14*[N]~0.1%, Nb: 0.1%이하(0% 제외), B: 0.005%이하(0% 제외), N: 0.01%이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강재를 냉간압연하여 냉연강판을 얻는 단계; 상기 냉연강판을 연속소둔하는 단계; 상기 연속소둔된 냉연강판을 상온까지 서냉하는 단계; 및 상기 서냉된 냉연강판을 유도 가열하여 150~300℃에서 20초 이상 템퍼링하는 단계를 포함하는 초고강도 고항복비 강판의 제조방법을 제공한다.In another embodiment of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: 0.12 to 0.4% of C, 0.5% or less of Si (excluding 0%), 2.6 to 4.0% of Mn, 0.03% Ti: 48/14 * [N] to 0.1%, Nb: 0.1% or less (excluding 0%), Al: not more than 0.1% (Excluding 0%), B: not more than 0.005% (excluding 0%), N: not more than 0.01% (excluding 0%), the balance Fe and other unavoidable impurities; Continuously annealing the cold-rolled steel sheet; Slowly cooling the continuous annealed cold rolled steel sheet to room temperature; And annealing the slowly cooled cold-rolled steel sheet at 150 to 300 ° C for at least 20 seconds by induction heating the cold-rolled cold-rolled steel sheet.

본 발명의 일측면에 따르면, 초고강도 고항복비 강판을 비교적 간단하면서도 높은 생산성으로 제조할 수 있는 효과가 있다.According to an aspect of the present invention, there is an effect that a super high strength and high strength composite steel sheet can be manufactured with relatively simple and high productivity.

이하, 본 발명을 상세히 설명한다. 먼저, 본 발명의 합금조성에 대하여 설명한다. 하기 설명되는 본 발명 강판의 합금조성은 중량%를 의미한다.Hereinafter, the present invention will be described in detail. First, the alloy composition of the present invention will be described. The alloy composition of the inventive steel sheet described below means weight%.

C: 0.12~0.4%C: 0.12 to 0.4%

탄소(C)의 함량은 0.12~0.4%가 바람직하다. C는 마르텐사이트 강도 확보를 위하여 필요하므로 0.12% 이상 첨가되어야 한다. 그러나 그 함량이 0.4%를 초과하면 용접성이 열위하게 되므로 상한을 0.4%로 제한한다.The content of carbon (C) is preferably 0.12 to 0.4%. C is required for securing the strength of martensite, so it should be added by 0.12% or more. However, if the content exceeds 0.4%, the weldability becomes poor, so the upper limit is limited to 0.4%.

Si: 0.5%이하(0% 제외)Si: 0.5% or less (excluding 0%)

실리콘(Si)의 함량은 0.5%이하(0% 제외)가 바람직하다. Si은 페라이트 안정화 원소로써 서냉각 구간이 존재하는 통상의 연속소둔형 용융도금 열처리로에서 소둔 후 서냉시 페라이트 생성을 촉진함에 의하여 강도를 약화시키는 단점이 있다. 또한, 본 발명과 같이 상변태 억제를 위하여 다량의 Mn을 첨가하는 경우에 소둔시 Si에 의한 표면 산화물 형성에 의한 용융도금 특성의 열화와 Si의 표면농화 및 산화에 의한 덴트결함 유발의 위험이 있으므로 상한을 0.5%로 제한한다.The content of silicon (Si) is preferably 0.5% or less (excluding 0%). Si has a disadvantage of weakening the strength by accelerating the generation of cold ferrite after annealing in a conventional continuous annealing type hot dip galvanizing heat treatment furnace in which a cooling section exists as a ferrite stabilizing element. Further, when a large amount of Mn is added for inhibiting phase transformation as in the present invention, there is a risk of deterioration of the molten plating property due to the formation of surface oxides by Si during annealing and generation of dent defects due to surface oxidation and oxidation of Si, To 0.5%.

Mn: 2.6~4.0%Mn: 2.6 to 4.0%

망간(Mn)의 함량은 2.6~4.0%가 바람직하다. 강중 Mn은 페라이트 형성을 억제하고 오스테나이트 형성을 용이하게 하는 원소로 잘 알려져 있다. 연속소둔형 용융도금열처리로의 경우에는 Mn이 2.6% 미만인 경우에는 서냉각시 페라이트 생성이 용이하며, Mn이 4%를 초과하는 경우에는 슬래브 및 열연공정에서 야기된 편석에 의한 밴드형성이 과도하여지고, 또한 전로 조업시 합금 투입량 과다에 의한 합금철 원가증가하는 문제가 있다.The content of manganese (Mn) is preferably 2.6 to 4.0%. Mn in steel is well known as an element that inhibits ferrite formation and facilitates the formation of austenite. In the case of the continuous annealing type hot-dip coating heat treatment furnace, when Mn is less than 2.6%, generation of ferrite is easy during cooling, and when Mn is more than 4%, band formation due to segregation caused by slab and hot rolling process is excessive There is a problem in that the amount of alloy iron is increased due to an excessive amount of the alloy when the converter is operated.

P: 0.03%이하(0% 제외)P: 0.03% or less (excluding 0%)

인(P)의 함량은 0.03%이하(0% 제외)가 바람직하다. 강중 P는 불순물 원소로서 그 함량이 0.03%를 초과하면 용접성이 저하되고 강의 취성이 발생할 위험성이 커지며, 덴트 결함 유발 가능성이 높아지기 때문에 그 상한을 0.03%로 한정하는 것이 바람직하다.The content of phosphorus (P) is preferably 0.03% or less (excluding 0%). If the content of P is an impurity element and the content thereof exceeds 0.03%, the weldability decreases and the risk of brittleness of steel increases, and the possibility of occurrence of dent defects increases. Therefore, the upper limit of P is preferably limited to 0.03%.

S: 0.015%이하(0% 제외)S: 0.015% or less (excluding 0%)

황(S)의 함량은 0.015%이하(0% 제외)가 바람직하다. S는 P와 마찬가지로 강중 불순물 원소로서, 강판의 연성 및 용접성을 저해하는 원소이다. 그 함량이 0.015%를 초과하면 강판의 연성 및 용접성을 저해할 가능성이 높기 때문에 그 상한을 0.015%로 한정하는 것이 바람직하다.The content of sulfur (S) is preferably 0.015% or less (excluding 0%). S, like P, is an impurity element in steel and is an element that hinders ductility and weldability of the steel sheet. If the content exceeds 0.015%, the ductility and weldability of the steel sheet are likely to be deteriorated. Therefore, the upper limit is preferably limited to 0.015%.

Al: 0.1%이하(0% 제외)Al: 0.1% or less (excluding 0%)

알루미늄(Al)의 함량은 0.1%이하(0% 제외)가 바람직하다. Al은 페라이트역을 확대하는 합금원소로써, 본 발명과 같이 서냉각이 존재하는 연속소둔형 용융도금열처리 공정을 활용하는 경우에는 페라이트 형성을 촉진하는 단점이 있으며, AlN 형성에 의한 고온 열간압연성 저하가 가능하므로 상한을 0.1%로 한정한다.The content of aluminum (Al) is preferably 0.1% or less (excluding 0%). Al is an alloy element for expanding the ferrite phase. When the continuous annealing type hot-dip coating heat treatment process in which the cooling is present as in the present invention is utilized, there is a disadvantage that ferrite formation is promoted, and the hot- The upper limit is limited to 0.1%.

Cr: 1%이하(0% 제외)Cr: 1% or less (excluding 0%)

크롬(Cr)의 함량은 1%이하(0% 제외)가 바람직하다. Cr은 페라이트 변태를 억제함에 의하여 저온변태조직 확보를 용이하게 하는 합금원소로서, 본 발명과 같이 서냉각이 존재하는 연속소둔형 용융도금열처리 공정을 활용하는 경우에는 페라이트 형성을 억제하는 장점이 있으나, 1%를 초과하는 경우에는 합금 투입량 과다에 의한 합금철 원가증가로 제한한다.The content of chromium (Cr) is preferably 1% or less (excluding 0%). Cr is an alloying element which facilitates securing low-temperature transformation structure by suppressing ferrite transformation. In the present invention, when a continuous annealing type hot-dip coating heat treatment process is used, there is an advantage of suppressing ferrite formation, If it exceeds 1%, it is limited to the increase of alloy iron cost due to excessive alloying amount.

Ti: 48/14*[N]~0.1%Ti: 48/14 * [N] to 0.1%

티타늄(Ti)의 함량은 48/14*[N]~0.1%가 바람직하다. Ti은 질화물 형성원소로써 강중 N를 TiN으로 석출시켜서 스캐빈징(scavenging)하는데 이를 위해서는 화학당량적으로 48/14*[N]이상을 첨가할 필요가 있다. Ti이 48/14*[N]미만으로 첨가되는 경우에는 상기 효과를 얻을 수 없기 곤란할 뿐만 아니라, AlN 형성에 의한 연속주조시 크랙이 발생할 우려가 있다. 반면, 0.1%를 초과하면 고용 N의 제거 외에 추가적인 탄화물 석출에 의하여 마르텐사이트 강도의 감소될 수 있다.The content of titanium (Ti) is preferably 48/14 * [N] to 0.1%. Ti is a nitride-forming element, and it is necessary to add a chemical equivalent of 48/14 * [N] in order to precipitate N in steel and scavenging it with TiN. When Ti is added in an amount less than 48/14 * [N], it is not only difficult to obtain the above effect, but cracks may occur during continuous casting by AlN formation. On the other hand, if it exceeds 0.1%, the martensite strength may be reduced by additional carbide precipitation in addition to removal of solid solution N.

Nb: 0.1%이하(0% 제외)Nb: 0.1% or less (excluding 0%)

니오븀(Nb)의 함량은 0.1%이하(0% 제외)가 바람직하다. Nb은 오스테나이트 입계에 편석되어 소둔열처리시 오스테나이트 결정립의 조대화를 억제하는 원소이므로 첨가가 필요하며, 0.1%를 초과하는 경우에는 합금 투입량 과다에 의해 원가가 증가하는 문제가 있다.The content of niobium (Nb) is preferably 0.1% or less (excluding 0%). Nb is an element which is segregated in the austenite grain boundaries and inhibits the coarsening of austenite grains during the annealing heat treatment. Therefore, when Nb is added in an amount exceeding 0.1%, the cost increases due to an excessive amount of alloy.

B: 0.005%이하(0% 제외)B: 0.005% or less (excluding 0%)

보론(B)의 함량은 0.005%이하(0% 제외)가 바람직하다. 상기 B은 페라이트 형성을 억제하는 장점이 있어서, 소둔 후 냉각시에 페라이트의 형성을 억제하는 원소이다. 상기 B의 함량이 0.005%를 초과하게 되면 오히려 Fe23(C,B)6의 석출에 의하여 페라이트 형성이 촉진되는 문제가 있다.The content of boron (B) is preferably 0.005% or less (excluding 0%). B has an advantage of inhibiting ferrite formation and is an element that inhibits the formation of ferrite upon cooling after annealing. If the content of B exceeds 0.005%, ferrite formation is promoted by precipitation of Fe (C, B) 6.

N: 0.01%이하(0% 제외)N: 0.01% or less (excluding 0%)

질소(N)의 함량은 0.01%이하(0% 제외)가 바람직하다. N은 0.01%를 초과하면 AlN 형성 등을 통한 연주시 크랙이 발생할 위험성이 크게 증가되므로 그 상한을 0.01%로 한정하는 것이 바람직하다.The content of nitrogen (N) is preferably 0.01% or less (excluding 0%). If N is more than 0.01%, the risk of cracking during performance through AlN formation or the like is greatly increased, so that the upper limit is preferably limited to 0.01%.

본 발명 강판의 나머지 성분은 Fe이며, 기타 제조공정상 불가피하게 함유되는 불순물을 포함할 수 있다.The remainder of the steel sheet of the present invention is Fe, and may contain impurities that are inevitably contained in other manufacturing processes.

본 발명 강판의 미세조직은 마르텐사이트와 템퍼드 마르텐사이트의 합이 100%인 것이 바람직하다. 다만, 제조조정상 불가피하게 페라이트 또는 베이나이트와 같은 미세조직이 형성될 수 있다. 따라서, 본 발명에서는 미세조직이 면적분율로, 마르텐사이트와 템퍼드 마르텐사이트의 합: 90% 이상(100% 포함); 및 페라이트와 베이나이트 중 1종 또는 2종의 합: 10% 이하(0%를 포함)을 포함하는 것이 바람직하다. 이를 통해, 상기와 같이 미세조직을 제어함으로써 우수한 인장강도와 항복강도를 확보할 수 있으며, 항복비 또한 높은 수준으로 확보할 수 있다. The microstructure of the steel sheet of the present invention preferably has a sum of martensite and tempered martensite of 100%. However, microstructures such as ferrite or bainite can inevitably be formed inevitably in the manufacturing process. Therefore, in the present invention, the microstructure has an area fraction of at least 90% (including 100%) of martensite and tempered martensite; And the sum of one or both of ferrite and bainite: 10% or less (inclusive of 0%). As a result, excellent tensile strength and yield strength can be secured by controlling the microstructure as described above, and the yield ratio can be secured at a high level.

상기와 같이 제공되는 본 발명의 강판은 인장강도가 1300MPa 이상이고, 항복강도가 1040MPa 이상이며, 항복비가 0.8 이상으로 매우 우수한 강도와 높은 항복비를 확보할 수 있다. 아울러, 본 발명의 강판은 템퍼링 전 및 후의 인장강도 편차가 100MPa 이하일 수 있다. The steel sheet of the present invention as described above has a tensile strength of 1300 MPa or more, a yield strength of 1040 MPa or more, and a yield ratio of 0.8 or more, thereby securing a very high strength and a high yield ratio. In addition, the steel sheet of the present invention may have a tensile strength difference before and after tempering of 100 MPa or less.

또한, 본 발명의 강판은 냉연강판, 용융아연도금강판 및 합금화 용융아연도금강판 중 하나일 수 있다.The steel sheet of the present invention may be one of a cold rolled steel sheet, a hot-dip galvanized steel sheet and a galvannealed galvanized steel sheet.

이하, 본 발명 강판의 제조방법에 대하여 상세히 설명한다.Hereinafter, the method of manufacturing the steel sheet of the present invention will be described in detail.

전술한 합금조성을 갖는 강재를 냉간압연하여 냉연강판을 얻는다. 상기 냉간압연은 당해 기술분야에서 통상적으로 적용되는 방법이라면 특별한 제한없이 적용될 수 있다.The steel material having the above-described alloy composition is cold-rolled to obtain a cold-rolled steel sheet. The cold rolling can be applied without any particular limitations as long as it is a method commonly applied in the related art.

상기 냉연강판을 연속소둔한다. 상기 연속소둔은 780~880℃에서 행하여지는 것이 바람직하다. 상기 소둔온도가 780℃미만인 경우에는 페라이트가 다량 형성되어 강도가 저하될 수 있다. 한편, 소둔온도가 880℃를 초과하게 되면 연속소둔로의 내구성 열화로 생산에 어려움이 있을 수 있다. The cold-rolled steel sheet is continuously annealed. The continuous annealing is preferably performed at 780 to 880 캜. If the annealing temperature is lower than 780 占 폚, a large amount of ferrite may be formed and the strength may be lowered. On the other hand, if the annealing temperature exceeds 880 DEG C, the durability of the continuous annealing furnace may be deteriorated and production may be difficult.

이후, 연속소둔된 냉연강판을 상온까지 서냉한다. 통상적으로는 마르텐사이트 조직을 얻기 위해서 수백℃/s의 냉각속도로 급냉하여야 하나, 본 발명에서는 상술한 바와 같이 합금조성을 제어함으로써 서냉을 행하더라도 90% 이상(100% 포함)의 마르텐사이트를 형성시킬 수 있다. 한편, 본 발명에서는 상기 서냉 속도에 대해서 특별히 한정하지 않으나, 예를 들면, 700 ~ 650℃까지 5℃/s이하의 냉각속도를 가질 수 있고, 320 ~ 460℃까지는 20℃/s이하의 냉각속도를 가질 수 있다.Thereafter, the cold-rolled steel sheet continuously annealed is slowly cooled to room temperature. Normally, quenching is carried out at a cooling rate of several hundreds of degrees Celsius per second in order to obtain a martensite structure. In the present invention, however, martensite of 90% or more (including 100%) is formed . In the present invention, the slow cooling rate is not particularly limited. For example, it may have a cooling rate of 5 DEG C / s or less from 700 to 650 DEG C and a cooling rate of 20 DEG C / s or less from 320 to 460 DEG C Lt; / RTI >

이후, 상기 연속소둔된 냉연강판을 유도 가열하여 150~300℃에서 20초 이상 템퍼링한다. 통상적으로 마르텐사이트 조직의 형성시에는 전위가 도입되는데, 본 발명에서는 유도 가열 방식에 따른 급속 템퍼링 공정을 통해 강 내부의 탄소를 확산시킴으로써 상기 전위에 고용탄소를 고착시켜 항복강도를 향상시킬 수 있다. 다만, 상기 템퍼링 온도가 150℃ 미만일 경우에는 상기 효과를 충분히 얻기 어려워 항복비를 0.8 이상으로 확보하는 것이 곤란하고, 300℃를 초과하는 경우에는 탄화물의 형성에 의하여 오히려 항복강도 및 인장강도가 감소하게 되는 단점이 있다. 또한, 상기 템퍼링 시간은 20초 이상인 것이 바람직한데, 상기 템퍼링 시간이 20초 미만일 경우에는 템퍼링 효과를 충분히 얻을 수 없어 항복비 확보가 불가능할 수 있다. 본 발명에서는 상기 템퍼링 시간의 상한에 대하여 특별히 한정하지는 않으나, 생산성 측면을 고려하면 상기 템퍼링은 30초 이하로 행하여지는 것이 바람직하다. 이와 같이, 본 발명에서는 짧은 시간의 템퍼링을 통해 생산성을 향상시킬 수 있다. Thereafter, the continuously annealed cold rolled steel sheet is subjected to induction heating and tempered at 150 to 300 DEG C for 20 seconds or more. Generally, a dislocation is introduced at the time of forming the martensite structure. In the present invention, the carbon in the steel is diffused through the rapid tempering process according to the induction heating method, so that the solidified carbon is fixed to the potential to improve the yield strength. However, if the tempering temperature is less than 150 ° C, it is difficult to obtain the above-mentioned effect sufficiently, and it is difficult to secure a yield ratio of 0.8 or more. When the tempering temperature is more than 300 ° C, the yield strength and tensile strength are decreased . The tempering time is preferably 20 seconds or more, but if the tempering time is less than 20 seconds, the tempering effect can not be sufficiently obtained and the yield ratio can not be ensured. In the present invention, the upper limit of the tempering time is not particularly limited. However, in view of productivity, the tempering is preferably performed for 30 seconds or less. As described above, in the present invention, productivity can be improved through short tempering.

한편, 상기 유도 가열시 가열속도는 15℃/s이상인 것이 바람직하다. 상기 가열속도가 15℃/s미만일 경우에는 템퍼링을 충분히 실시하지 못하여 고항복비를 얻기 곤란하다. 상기 가열속도는 18℃/s이상인 것이 보다 바람직하며, 20℃/s이상이 것이 보다 더 바람직하다. 상기 가열속도의 상한에 대해서는 특별히 한정하지 않으나, 설비의 한계상 상기 가열속도는 35℃/s를 초과하기 어렵다.On the other hand, the heating rate during the induction heating is preferably 15 ° C / s or higher. If the heating rate is less than 15 ° C / s, tempering can not be performed sufficiently and it is difficult to obtain a high specific gravity. The heating rate is more preferably 18 ° C / s or more, and more preferably 20 ° C / s or more. The upper limit of the heating rate is not particularly limited, but the heating rate is not more than 35 DEG C / s at the limit of the facility.

이 때, 상기 유도 가열은 인덕션 히터를 이용하여 행하여질 수 있으며, 상기 인덕션 히터를 통해 급속으로 템퍼링 처리할 수 있다.In this case, the induction heating may be performed using an induction heater, and the induction heater may be rapidly tempered through the induction heater.

한편, 상기 유도 가열 전에는 연속소둔된 강판을 용융도금하는 단계를 추가로 포함할 수 있다. 통상적으로 상기 용융도금은 약 460℃에서 행하여진다.On the other hand, before the induction heating, the step of hot-dipping the continuously annealed steel sheet may be further included. Normally, the above hot-dip coating is performed at about 460 캜.

이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명을 보다 상세하게 설명하기 위한 예시일 뿐 본 발명의 권리범위를 한정하지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only illustrative of the present invention in more detail and do not limit the scope of the present invention.

(실시예)(Example)

하기 표 1의 합금조성을 갖는 강재를 냉간압연한 후, 800℃에서 연속소둔한 후, 인덕션 히터를 이용하여 20℃/s의 가열속도로 가열하고, 하기 표 2의 조건으로 템퍼링 처리하여 냉연강판을 제조하였다. 이와 같이 제조된 냉연강판에 대하여 물성을 측정한 뒤, 그 결과를 하기 표 2에 나타내었다. 단, 하기 표 2의 인장강도 편차는 템퍼링 처리를 하지 않은 강종의 인장강도 대비 템퍼링 처리 후의 강종의 인장강도 차이를 의미한다.The steel material having the alloy composition shown in the following Table 1 was cold-rolled, then continuously annealed at 800 ° C, heated at a heating rate of 20 ° C / s using an induction heater, tempered under the conditions shown in Table 2, . The cold-rolled steel sheet thus produced was measured for physical properties, and the results are shown in Table 2 below. However, the deviation of the tensile strength in Table 2 means the difference in tensile strength of the steel species after the tempering treatment with respect to the tensile strength of the steel species not subjected to the tempering treatment.

구분division 합금조성(중량%)Alloy composition (% by weight) CC SiSi MnMn PP SS AlAl CrCr TiTi NbNb BB NN 발명강1Inventive Steel 1 0.180.18 0.110.11 3.63.6 0.0120.012 0.00360.0036 0.0220.022 0.050.05 0.020.02 0.0390.039 0.00160.0016 0.0040.004 발명강2Invention river 2 0.150.15 0.060.06 3.13.1 0.0110.011 0.00310.0031 0.0230.023 0.780.78 0.020.02 0.030.03 0.00150.0015 0.0030.003 비교강1Comparative River 1 0.170.17 0.070.07 2.22.2 0.0120.012 0.00300.0030 0.0220.022 0.060.06 0.020.02 0.0290.029 0.00180.0018 0.0040.004 비교강2Comparative River 2 0.110.11 0.070.07 2.52.5 0.0130.013 0.00280.0028 0.0230.023 0.50.5 0.0210.021 0.0320.032 0.00190.0019 0.0040.004

구분division 강종No.Grade Nr. 미세조직
(면적%)
Microstructure
(area%)
템퍼링
온도
(℃)
Tempering
Temperature
(° C)
템퍼링
시간
(s)
Tempering
time
(s)
항복강도
(YS,MPa)
Yield strength
(YS, MPa)
인강강도
(TS,MPa)
Tensile strength
(TS, MPa)
인장
강도 편차
(△TS)
Seal
Intensity deviation
(? TS)

연신율
(%
gun
Elongation
(%
균일
연신율
(%)
Uniformity
Elongation
(%)
항복비
(YS/TS)
Yield ratio
(YS / TS)
M+TMM + TM FF BB 비교예1Comparative Example 1 발명강1Inventive Steel 1 9898 1One 1One -- -- 11581158 15581558 -- 7.47.4 4.44.4 0.740.74 비교예2Comparative Example 2 9898 22 00 100100 2020 12191219 15611561 33 7.97.9 4.34.3 0.780.78 발명예1Inventory 1 9797 1One 22 150150 2020 12341234 15501550 88 7.87.8 4.24.2 0.800.80 발명예2Inventory 2 9999 00 1One 200200 2020 13211321 15541554 44 7.57.5 4.14.1 0.850.85 발명예3Inventory 3 9898 1One 1One 250250 2020 13221322 15361536 2222 7.17.1 4.04.0 0.860.86 발명예4Honorable 4 9797 1One 22 300300 2020 13771377 15071507 5151 6.26.2 3.33.3 0.910.91 비교예3Comparative Example 3 9696 22 22 330330 2020 13071307 14431443 115115 6.16.1 3.13.1 0.910.91 비교예4Comparative Example 4 9797 1One 22 425425 2020 12681268 13351335 223223 5.85.8 2.82.8 0.950.95 비교예5Comparative Example 5 9999 1One 00 200200 1010 12051205 15551555 33 7.27.2 4.34.3 0.770.77 비교예6Comparative Example 6 발명강2Invention river 2 9898 1One 1One -- -- 10581058 13951395 -- 6.96.9 3.43.4 0.760.76 비교예7Comparative Example 7 9797 1One 22 100100 2020 10891089 13911391 44 6.86.8 4.14.1 0.780.78 발명예5Inventory 5 9999 00 1One 200200 2020 12121212 13901390 55 7.17.1 3.83.8 0.870.87 비교예8Comparative Example 8 9898 22 00 200200 1010 10891089 13881388 77 6.86.8 3.73.7 0.780.78 비교예9Comparative Example 9 비교강1Comparative River 1 9292 22 66 -- -- 958958 12651265 -- 10.310.3 6.26.2 0.760.76 비교예10Comparative Example 10 9393 22 55 200200 2020 10881088 12581258 77 9.79.7 5.85.8 0.860.86 비교예11Comparative Example 11 비교강2
Comparative River 2
8888 22 1010 -- -- 750750 998998 -- 13.213.2 7.57.5 0.750.75
비교예12Comparative Example 12 8787 22 1111 200200 2020 814814 992992 66 12.812.8 6.96.9 0.820.82 단, 상기 미세조직 중 M은 마르텐사이트, TM은 템퍼드 마르텐사이트, F는 페라이트, B는 베이나이트를 의미함.In the above microstructure, M means martensite, TM means tempered martensite, F means ferrite, and B means bainite.

상기 표 1 및 2를 통해 알 수 있듯이, 본 발명이 제안하는 합금조성 및 제조조건을 만족하는 발명예 1 내지 5의 경우에는 본 발명에서 얻고자 하는 미세조직 뿐만 아니라, 우수한 기계적 물성을 확보하고 있으며, 템퍼링 후 인장강도의 저하 또한 낮은 수준임을 알 수 있다.As can be seen from Tables 1 and 2, in Examples 1 to 5, which satisfy the alloy composition and manufacturing conditions proposed by the present invention, not only the microstructure to be obtained in the present invention but also excellent mechanical properties are secured , And the lowering of the tensile strength after tempering is also low.

반면, 비교예 1 및 2의 경우에는 본 발명이 제안하는 합금조성은 만족하나 템퍼링을 수행하지 않거나 템퍼링 온도가 낮음에 따라 본 발명이 얻고자 하는 0.8 이상의 항복비를 얻지 못하고 있음을 알 수 있다.On the other hand, in the case of Comparative Examples 1 and 2, the alloy composition proposed by the present invention is satisfied, but it can be seen that the tempering temperature is low or the tempering temperature is low, the yield ratio of 0.8 or more is not obtained.

비교예 3 및 4의 경우에는 본 발명이 제안하는 합금조성은 만족하나 템퍼링 온도가 높음에 따라 템퍼링 후 인장강도가 템퍼링을 수행하기 전보다 100MPa 이상 낮아졌음을 확인할 수 있다.In the case of Comparative Examples 3 and 4, it was confirmed that the alloy composition proposed by the present invention was satisfied but the tensile strength after tempering was lowered by 100 MPa or more before the tempering, as the tempering temperature was high.

비교예 5의 경우에는 본 발명이 제안하는 합금조성은 만족하나 템퍼링 시간이 부족하여 0.8 이상의 항복비를 얻지 못하고 있음을 알 수 있다.In the case of Comparative Example 5, it is understood that the alloy composition proposed by the present invention is satisfied, but the yield ratio is not 0.8 or more because of insufficient tempering time.

비교예 6 및 7의 경우에는 본 발명이 제안하는 합금조성은 만족하나 템퍼링을 수행하지 않거나 템퍼링 온도가 낮음에 따라 본 발명이 얻고자 하는 0.8 이상의 항복비를 얻지 못하고 있음을 알 수 있다.In the case of Comparative Examples 6 and 7, it is understood that the alloy composition proposed by the present invention is satisfied but the annealing temperature is not lowered or the tempering temperature is low.

비교예 8의 경우에는 본 발명이 제안하는 합금조성은 만족하나 템퍼링 시간이 부족하여 0.8 이상의 항복비를 얻지 못하고 있음을 알 수 있다.In the case of Comparative Example 8, it is found that the alloy composition proposed by the present invention is satisfied but the yield ratio is not 0.8 or more because of insufficient tempering time.

비교예 9 내지 12의 경우에는 본 발명의 합금조성을 만족하지 않아 본 발명이 얻고자 하는 1300MPa 이상의 인장강도, 1040MPa 이상의 항복강도 또는 0.8 이상의 항복비를 확보하고 있지 못하고 있음을 알 수 있다. 특히, 비교예 11 및 12의 경우, 본 발명이 제안하는 미세조직을 확보하지 못함에 따라 강도가 현저히 낮은 수준임을 알 수 있다.In the case of Comparative Examples 9 to 12, the alloy composition of the present invention is not satisfied and it can be seen that the tensile strength of 1300 MPa or more, the yield strength of 1040 MPa or more or the yield ratio of 0.8 or more, which the present invention desires to obtain, can not be secured. In particular, in the case of Comparative Examples 11 and 12, it can be seen that the strength is remarkably low as the microstructure suggested by the present invention can not be secured.

Claims (8)

중량%로, C: 0.12~0.4%, Si: 0.5%이하(0% 제외), Mn: 2.6~4.0%, P: 0.03%이하(0% 제외), S: 0.015%이하(0% 제외), Al: 0.1%이하(0% 제외), Cr: 1%이하(0% 제외), Ti: 48/14*[N]~0.1%, Nb: 0.1%이하(0% 제외), B: 0.005%이하(0% 제외), N: 0.01%이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
미세조직은 면적분율로, 마르텐사이트와 템퍼드 마르텐사이트의 합: 90% 이상(100% 포함); 및 페라이트와 베이나이트 중 1종 또는 2종의 합: 10% 이하(0%를 포함)을 포함하며,
항복비가 0.8 이상이고, 템퍼링 전 및 후의 인장강도 편차가 100MPa 이하인 초고강도 고항복비 강판.
(Excluding 0%), Mn: 2.6 to 4.0%, P: not more than 0.03% (excluding 0%), S: not more than 0.015% (excluding 0%), , Al: not more than 0.1% (excluding 0%), Cr: not more than 1% (excluding 0%), Ti: 48/14 * % (Excluding 0%), N: 0.01% or less (excluding 0%), the balance Fe and other unavoidable impurities,
Microstructure is the area fraction, the sum of martensite and tempered martensite: 90% or more (including 100%); And a sum of one or two of ferrite and bainite: 10% or less (including 0%),
Wherein the yield ratio is not less than 0.8, and the tensile strength difference before and after tempering is not more than 100 MPa.
청구항 1에 있어서,
상기 강판은 인장강도가 1300MPa 이상이고, 항복강도가 1040MPa 이상인 초고강도 고항복비 강판.
The method according to claim 1,
The steel sheet has a tensile strength of 1300 MPa or more and a yield strength of 1040 MPa or more.
청구항 1에 있어서,
상기 강판은 냉연강판, 용융아연도금강판 및 합금화 용융아연도금강판 중 하나인 초고강도 고항복비 강판.
The method according to claim 1,
The steel sheet is one of a cold rolled steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet.
중량%로, C: 0.12~0.4%, Si: 0.5%이하(0% 제외), Mn: 2.6~4.0%, P: 0.03%이하(0% 제외), S: 0.015%이하(0% 제외), Al: 0.1%이하(0% 제외), Cr: 1%이하(0% 제외), Ti: 48/14*[N]~0.1%, Nb: 0.1%이하(0% 제외), B: 0.005%이하(0% 제외), N: 0.01%이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강재를 냉간압연하여 냉연강판을 얻는 단계;
상기 냉연강판을 연속소둔하는 단계;
상기 연속소둔된 냉연강판을 상온까지 서냉하는 단계; 및
상기 서냉된 냉연강판을 유도 가열하여 150~300℃에서 20초 이상 템퍼링하는 단계를 포함하는 초고강도 고항복비 강판의 제조방법.
(Excluding 0%), Mn: 2.6 to 4.0%, P: not more than 0.03% (excluding 0%), S: not more than 0.015% (excluding 0%), , Al: not more than 0.1% (excluding 0%), Cr: not more than 1% (excluding 0%), Ti: 48/14 * % Or less (excluding 0%), N: 0.01% or less (excluding 0%), the remainder Fe, and other unavoidable impurities to obtain a cold-rolled steel sheet;
Continuously annealing the cold-rolled steel sheet;
Slowly cooling the continuous annealed cold rolled steel sheet to room temperature; And
And annealing the slowly cooled cold-rolled steel sheet at 150 to 300 ° C for at least 20 seconds by induction heating the rolled cold-rolled steel sheet.
청구항 4에 있어서,
상기 연속소둔은 780~880℃의 온도 범위에서 행하여지는 초고강도 고항복비 강판의 제조방법.
The method of claim 4,
Wherein the continuous annealing is performed in a temperature range of 780 to 880 占 폚.
청구항 4에 있어서,
상기 유도 가열은 인덕션 히터를 이용하여 행하여지는 초고강도 고항복비 강판의 제조방법.
The method of claim 4,
Wherein the induction heating is performed using an induction heater.
청구항 4에 있어서,
상기 유도 가열시, 가열속도는 15℃/s 이상인 초고강도 고항복비 강판의 제조방법.
The method of claim 4,
Wherein the heating speed is 15 占 폚 / s or more during the induction heating.
청구항 4에 있어서,
상기 유도 가열 전, 연속소둔된 강판을 용융도금하는 단계를 추가로 포함한는 초고강도 고항복비 강판의 제조방법.
The method of claim 4,
Further comprising a step of hot-dipping the continuously annealed steel sheet before the induction heating.
KR1020170176504A 2017-12-20 2017-12-20 Steel sheet having ultra high strength and high yield ratio and method of manufacturing the same KR20190074842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170176504A KR20190074842A (en) 2017-12-20 2017-12-20 Steel sheet having ultra high strength and high yield ratio and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170176504A KR20190074842A (en) 2017-12-20 2017-12-20 Steel sheet having ultra high strength and high yield ratio and method of manufacturing the same

Publications (1)

Publication Number Publication Date
KR20190074842A true KR20190074842A (en) 2019-06-28

Family

ID=67066364

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170176504A KR20190074842A (en) 2017-12-20 2017-12-20 Steel sheet having ultra high strength and high yield ratio and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR20190074842A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528387B2 (en) 1990-12-29 1996-08-28 日本鋼管株式会社 Manufacturing method of ultra high strength cold rolled steel sheet with good formability and strip shape
KR20100116608A (en) 2008-01-31 2010-11-01 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and process for production therof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528387B2 (en) 1990-12-29 1996-08-28 日本鋼管株式会社 Manufacturing method of ultra high strength cold rolled steel sheet with good formability and strip shape
KR20100116608A (en) 2008-01-31 2010-11-01 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and process for production therof

Similar Documents

Publication Publication Date Title
JP6475861B2 (en) Steel plates used for hot stamping, hot stamping process and hot stamping components
KR101568549B1 (en) Steel sheet for hot press formed product having high bendability and ultra high strength, hot press formed product using the same and method for manufacturing the same
KR101758522B1 (en) Ultra high strength and high ductility steel sheet having excellent yield strength and hole expansion ratio, and method for manufacturing the same
KR101858852B1 (en) Cold-rolled steel sheet and galvanized steel sheet having excelent elonggation, hole expansion ration and yield strength and method for manufacturing thereof
KR102336757B1 (en) Hot stamping product and method of manufacturing the same
KR101714930B1 (en) Ultra high strength steel sheet having excellent hole expansion ratio, and method for manufacturing the same
US11655518B2 (en) Steel material for taylor welded blank and method for manufacturing hot-stamped part using same steel
KR20180074292A (en) Al-Fe ALLOY PLATED STEEL SHEET FOR HOT PRESS FORMING HAVING EXCELLENT TAILOR-WELDED-BLANK WELDING PROPERTY, HOT PRESS FORMED PART, AND METHOD OF MANUFACTURING THE SAME
KR101808431B1 (en) High strength cold- rolled steel sheet having improved workablity and method of manufacturing the same
CN109923236B (en) Ultra-high strength steel sheet having excellent yield ratio and method for producing same
KR101461715B1 (en) Ultra high strength cold rolled steel sheet and method for manufacturing the same
KR101403262B1 (en) Ultra high strength hot-dip plated steel sheet and method for manufacturing the same
KR101543918B1 (en) Ultra high strength cold rolled steel sheet having excellent shape property and method for manufacturing the same
KR101726139B1 (en) Hot press forming parts having superior ductility and impact toughness and method for manufacturing the same
KR102496311B1 (en) Steel sheet having high strength and high formability and method for manufacturing the same
KR20140030970A (en) High strength steel sheet having excellent yield strength
KR101630977B1 (en) High strength hot rolled steel sheet having excellent formability and method for manufacturing the same
KR101828699B1 (en) Cold-rolled steel sheet for car component and manufacturing method for the same
KR20190074842A (en) Steel sheet having ultra high strength and high yield ratio and method of manufacturing the same
KR101917478B1 (en) Hot formed parts and method for manufacturing the same
KR101003254B1 (en) Quenched steel sheet having excellent formability hot press, and method for producing the same
KR101568495B1 (en) High strength cold rolled steel sheet having excellent shape property and method for manufacturing the same
KR20200062428A (en) Cold rolled galvanized steel sheet and method of manufacturing the same
KR102510214B1 (en) Hot stamping galvanized iron steel, hot stamping product having iron-nickel alloy layer to prevent liquid metal embrittlement and method of manufacturing the same
KR20130056052A (en) Galvannealed steel sheet having ultra high strength and manufacturing method of the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application