KR20190070864A - Method for correcting modeled ammonia mass flow rate and modeled nitrogen oxide mass flow rate, and method for controlling scr-catalytic converter system - Google Patents

Method for correcting modeled ammonia mass flow rate and modeled nitrogen oxide mass flow rate, and method for controlling scr-catalytic converter system Download PDF

Info

Publication number
KR20190070864A
KR20190070864A KR1020180157815A KR20180157815A KR20190070864A KR 20190070864 A KR20190070864 A KR 20190070864A KR 1020180157815 A KR1020180157815 A KR 1020180157815A KR 20180157815 A KR20180157815 A KR 20180157815A KR 20190070864 A KR20190070864 A KR 20190070864A
Authority
KR
South Korea
Prior art keywords
modeled
flow rate
modeling
scr catalytic
nitrogen oxide
Prior art date
Application number
KR1020180157815A
Other languages
Korean (ko)
Inventor
프랑크 슈바이처
Original Assignee
로베르트 보쉬 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 로베르트 보쉬 게엠베하 filed Critical 로베르트 보쉬 게엠베하
Publication of KR20190070864A publication Critical patent/KR20190070864A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/148Arrangement of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0402Methods of control or diagnosing using adaptive learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0408Methods of control or diagnosing using a feed-back loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1616NH3-slip from catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

The present invention relates to a method for correcting (78, 79) a modeled ammonia mass flow rate (q_NH3 modeling) and a modeled nitrogen oxide mass flow rate (q_NOx modeling) between two SCR-catalytic converters continuously arranged within an exhaust gas line in an SCR-catalytic converter system. The SCR-catalytic converter system includes only one reducing agent metering unit upstream of the two SCR-catalytic converters. A first sum value (S_1) is calculated through the sum (74) of the modeled ammonia mass flow rate (q_NH3 modeling) and the modeled nitrogen oxide mass flow rate (q_NOx modeling). A second sum (S_2) is calculated from a signal (q_NH3/NOx measurement) of a sensor arranged between the two SCR-catalytic converters and sensitive to ammonia and a nitrogen oxide. The ratio (V) of the two sum values (S_1, S_2) is calculated for the correction (78, 79). In a method for controlling (80) an SCR-catalytic converter system (20), the modeled ammonia mass flow rate (q_NH3 modeling) and the modeled nitrogen oxide mass flow rate (q_NOx modeling) between the two SCR-catalytic converters are corrected by the correction method.

Description

모델링된 암모니아 유동량 및 모델링된 질소 산화물 유동량의 보정 방법과, SCR 촉매 컨버터 시스템의 제어 방법{METHOD FOR CORRECTING MODELED AMMONIA MASS FLOW RATE AND MODELED NITROGEN OXIDE MASS FLOW RATE, AND METHOD FOR CONTROLLING SCR-CATALYTIC CONVERTER SYSTEM}Technical Field [0001] The present invention relates to a method for correcting a modeled ammonia flow amount and a modeled nitrogen oxide flow amount, and a control method of an SCR catalytic converter system, and a method for controlling the SCR catalytic converter system,

본 발명은 배기 가스 라인 내에 연이어 배열된 2개의 SCR 촉매 컨버터들 사이의 모델링된 암모니아 유동량 및 모델링된 질소 산화물 유동량을 보정하기 위한 방법에 관한 것이다. 또한, 본 발명은 SCR 촉매 컨버터 시스템의 제어 방법에 관한 것이다. 또한, 본 발명은 상기 방법들 중 하나 이상의 방법의 각각의 단계를 실행하는 컴퓨터 프로그램과, 이러한 컴퓨터 프로그램을 저장하는 기계 판독 가능한 저장 매체에 관한 것이다. 마지막으로, 본 발명은 상기 방법들 중 하나 이상의 방법을 실행하도록 구성된 전자 제어 장치에 관한 것이다.The present invention relates to a method for correcting a modeled ammonia flow quantity and a modeled nitrogen oxide flow quantity between two SCR catalytic converters arranged in succession in an exhaust gas line. The present invention also relates to a control method of an SCR catalytic converter system. The invention also relates to a computer program for executing each step of one or more of the above methods and to a machine-readable storage medium storing such a computer program. Finally, the present invention relates to an electronic control device configured to execute one or more of the above methods.

산소가 풍부한 배기 가스 내 질소 산화물을 감소시키기 위한 유망한 방법으로서는 암모니아 또는 암모니아 분해 반응물을 사용한 선택적 촉매 환원법(Selective Catalytic Reduction; SCR)이 있다. SCR 촉매 컨버터의 효율은 자신의 온도와, 배기 가스의 공간 속도와, 매우 결정적으로는 자신의 표면에 흡수된 암모니아의 충전 수준에 좌우된다. 질소 산화물의 환원을 위해 직접 계량 공급되는 암모니아 외에, 흡수된 암모니아도 제공됨으로써, SCR 촉매 컨버터의 효율은 텅빈 촉매 컨버터에 비해 상승한다. 이러한 저장 특성은 촉매 컨버터의 각각의 작동 온도에 좌우된다. 온도가 낮을수록 저장 용량은 커진다.A promising way to reduce nitrogen oxides in oxygen-rich exhaust gases is Selective Catalytic Reduction (SCR) using ammonia or ammonia decomposition reactants. The efficiency of an SCR catalytic converter depends on its temperature, the space velocity of the exhaust gas, and very critically, the level of charge of ammonia absorbed on its surface. In addition to the ammonia being directly metered for the reduction of nitrogen oxides, absorbed ammonia is also provided, so that the efficiency of the SCR catalytic converter rises compared to that of an empty catalytic converter. This storage characteristic depends on the operating temperature of each of the catalytic converters. The lower the temperature, the larger the storage capacity.

SCR 촉매 컨버터가 자신의 저장기를 완전히 충전하면, SCR 촉매 컨버터에 의해 배기 가스가 감소되는 내연 기관의 부하 상승 시에는 암모니아 또는 암모니아 분해 반응물이 배기 가스 라인에 더 이상 계량 공급되지 않더라도 암모니아 슬립이 발생할 수 있다. 가능한 높은 질소 산화물 변환이 달성되어야 한다면, 높은 암모니아 충전 수준에서 SCR 시스템을 작동하는 것이 불가피하다. 내연 기관의 부하 상승에 의해, 완전 충전된 SCR 촉매 컨버터의 온도가 상승하면, 그 암모니아 저장 용량은 저하되는데, 이는 암모니아 슬립을 야기한다.When the SCR catalytic converter fully charges its reservoir, ammonia slip may occur even when the ammonia or ammonia decomposition reactant is no longer metered into the exhaust line at the time of the load rise of the internal combustion engine where the exhaust gas is reduced by the SCR catalytic converter have. If the highest possible nitrogen oxide conversion is to be achieved, it is inevitable to operate the SCR system at high ammonia charge levels. When the temperature of the fully charged SCR catalytic converter rises due to the load increase of the internal combustion engine, the ammonia storage capacity is lowered, which causes ammonia slip.

이러한 효과는 SCR 촉매 컨버터가 내연 기관의 냉간 시동 이후에 신속하게 자신의 작동 온도에 도달하도록 SCR 촉매 컨버터들이 내연 기관에 가깝게 장착됨으로써 특히 현저하게 나타난다. 따라서, 제1 SCR 촉매 컨버터 하류의 제2 SCR 촉매 컨버터는 제1 촉매 컨버터의 암모니아 슬립으로부터 암모니아를 흡수하고 뒤이어 변환을 실행하기 위해 배기 가스 라인 내에 제공될 수 있다. 비용 상의 이유로, 대개는 배기 가스 라인 내로 암모니아 분해 환원제 용액을 계량 공급하기 위한 하나의 계량 밸브만이 제1 SCR 촉매 컨버터 상류에 장착된다. 따라서, 제2 SCR 촉매 컨버터의 암모니아 충전은 제1 SCR 촉매 컨버터의 암모니아 슬립을 통해서만 실행된다.This effect is particularly pronounced when the SCR catalytic converters are mounted close to the internal combustion engine such that the SCR catalytic converter quickly reaches its operating temperature after the cold start of the internal combustion engine. Thus, a second SCR catalytic converter downstream of the first SCR catalytic converter can be provided in the exhaust gas line to absorb ammonia from the ammonia slip of the first catalytic converter and subsequently perform the conversion. For cost reasons, only one metering valve is typically installed upstream of the first SCR catalytic converter for metering the ammonia decomposition reducing agent solution into the exhaust gas line. Thus, the ammonia charging of the second SCR catalytic converter is only carried out through the ammonia slip of the first SCR catalytic converter.

온보드 진단(OBD)을 위한 지침은 두 SCR 촉매 컨버터들이 모니터링되어야 함을 요구한다. 이를 위해, 대개 두 SCR 촉매 컨버터들의 하류에는 각각 하나의 질소 산화물 센서가 존재한다.The guidelines for on-board diagnostics (OBD) require that two SCR catalytic converters be monitored. To this end, there is usually one nitrogen oxide sensor downstream of each of the two SCR catalytic converters.

신규의 SCR 촉매 컨버터 모델은 두 SCR 촉매 컨버터들을 균형화한 모델이며, 두 SCR 촉매 컨버터들 사이의 암모니아 슬립 및 질소 산화물 슬립을 어느 정도 정확하게 계산할 수 있다. DE 10 2016 201 602 A1호로부터, 제2 또는 하류측 SCR 촉매 컨버터 상류 및 하류의 질소 산화물 센서들의 평가에 기초하여 SCR 촉매 컨버터들 사이의 암모니아 슬립을 검출 가능하도록 하는 방법이 공지되어 있다. 두 SCR 촉매 컨버터들 사이의 질소 산화물 유동량은 제1 또는 상류측 SCR 촉매 컨버터의 모델을 통해 계산된다. 매우 작은 모델 에러일지라도 단 몇 시간의 작동 후에는 제2 SCR 촉매 컨버터 내 예상 암모니아 충전 수준과 실제 암모니아 충전 수준 간의 큰 편차를 야기한다. 두 SCR 촉매 컨버터들 사이의 질소 산화물 유동량을 과소 추정할 경우, 제2 SCR 촉매 컨버터 내 물리적 암모니아 충전 수준은 낮아진다. 물리적 암모니아 충전 수준이 너무 낮으면 이러한 SCR 촉매 컨버터의 질소 산화물 변환은 감소되며, 이때 법적 한계값의 초과가 야기될 수 있다. 신속한 적응 방법이 제2 SCR 촉매 컨버터 하류측의 질소 산화물 설정값을 재차 보정할 수 있지만, 에러의 원인을 제거하기는 어려운데, 이는 이러한 적응 방법에서는 에러 원인을 SCR 촉매 컨버터들 중 어느 SCR 촉매 컨버터의 영역에서 찾을 수 있는지를 모르기 때문이다.The new SCR catalytic converter model is a balanced model of two SCR catalytic converters, which can calculate the ammonia slip and nitrogen oxide slip between two SCR catalytic converters to some degree. From DE 10 2016 201 602 A1 it is known how to make it possible to detect the ammonia slip between the SCR catalytic converters based on the evaluation of nitrogen oxide sensors upstream and downstream of the second or downstream SCR catalytic converter. The NOx flow rate between the two SCR catalytic converters is calculated through a model of the first or upstream SCR catalytic converter. Even a very small model error, after only a few hours of operation, causes a large deviation between the expected ammonia charge level and the actual ammonia charge level in the second SCR catalytic converter. If the nitrogen oxide flow between two SCR catalytic converters is underestimated, the physical ammonia charge level in the second SCR catalytic converter is lowered. If the physical ammonia charge level is too low, the nitrogen oxide conversion of these SCR catalytic converters will be reduced, which may result in an over-legal threshold. Although the rapid adaptation method can again correct the nitrogen oxide setpoint on the downstream side of the second SCR catalytic converter, it is difficult to eliminate the cause of the error because in this adaptation method, the cause of the error can be detected by the SCR catalytic converter of any of the SCR catalytic converters Because they do not know if they can be found in the domain.

본원의 방법은 2개의 SCR 촉매 컨버터들 사이의 모델링된 암모니아 유동량 및 모델링된 질소 산화물 유동량을 보정하기 위해 사용된다. 이러한 두 SCR 촉매 컨버터들은 배기 가스 라인 내에 연이어 배열되어 하나의 SCR 촉매 컨버터 시스템을 형성한다. 이러한 SCR 촉매 컨버터 시스템은 두 SCR 촉매 컨버터들 상류에 단 하나의 환원제 계량 유닛을 포함한다. 모델링된 암모니아 유동량과 모델링된 질소 산화물 유동량의 합을 통해 제1 합계값이 산출된다. 제2 합계값은 두 SCR 촉매 컨버터들 사이에 배열된 센서의 신호로부터 산출된다. 이러한 센서는 암모니아 및 질소 산화물에 대해 민감하며, 종래의 질소 산화물 센서일 수 있다. 보정을 위해 두 합계값들의 비율이 산출된다.The method is used to calibrate the modeled ammonia flow volume and the modeled nitrogen oxide flow volume between two SCR catalytic converters. These two SCR catalytic converters are arranged in series in the exhaust gas line to form one SCR catalytic converter system. This SCR catalytic converter system includes only one reducing agent metering unit upstream of the two SCR catalytic converters. The first total value is calculated through the sum of the modeled ammonia flow rate and the modeled nitrogen oxide flow rate. The second summation value is calculated from the signals of the sensors arranged between the two SCR catalytic converters. These sensors are sensitive to ammonia and nitrogen oxides, and can be conventional nitrogen oxide sensors. The ratio of the two summation values is calculated for correction.

이러한 방법은 제1 SCR 촉매 컨버터의 모델에서 암모니아 유동량 및 질소 산화물 유동량을 매우 정확하게 모델링한 경우, 모델링된 유동량들의 합이 센서의 합신호(sum signal)에 상응해야 한다는 지식에 기초한다. 두 합계값들의 편차가 크면 클수록, 보정되어야 할 모델링 에러는 더 커진다.This method is based on the knowledge that when the ammonia flow rate and the nitrogen oxide flow rate are modeled very accurately in the model of the first SCR catalytic converter, the sum of the modeled flow quantities must correspond to the sum signal of the sensors. The larger the deviation of the two summation values, the greater the modeling error to be corrected.

바람직하게는 제1 합계값의 산출을 위해, 모델링된 암모니아 유동량 또는 모델링된 질소 산화물 유동량이 우선 ppm(parts per million) 단위로 제공된 후, 특히 밀리그램/초(mg/s) 단위의 질소 산화물 등가량들로 변환된다. 이후, 이러한 질소 산화물 등가량들이 합해진다. 이로 인해, 배기 가스 유동량을 통한 가중치가 얻어질 수 있다.Preferably, for the calculation of the first total value, after the modeled ammonia flow rate or the modeled nitrogen oxide flow rate is first provided in parts per million (ppm), especially in the milligrams per second (mg / s) / RTI > Then, such nitrogen oxides and the like are added together. As a result, a weight based on the amount of exhaust gas flow can be obtained.

보정이 이전의 모든 모니터링들의 정보에 기초하기 때문에, 모델링된 유동량들뿐만 아니라 측정된 유동량들의 합도 바람직하게는 필터링된다. 이를 위해, 상기 유동량들은 상기 방법의 일 실시예에서 통합되고, 적용 임계값의 도달 시에 0초과 1미만의 계수와 곱해진다. 대안의 일 실시예에서는 칼만 필터(Kalman filter)가 사용된다.Since the calibration is based on the information of all previous monitoring, the sum of the measured flow quantities as well as the modeled flow quantities is preferably filtered. To this end, the flows are integrated in one embodiment of the method and multiplied by a factor of less than 1 and greater than zero when the application threshold is reached. In an alternative embodiment, a Kalman filter is used.

상기 보정은 바람직하게는, 모델링된 암모니아 유동량 및 모델링된 질소 산화물 유동량이 상기 비율로부터 산출되는 보정 계수와 각각 곱해짐으로써 실행된다. 이와 같이 간단한 방식으로 단 하나의 보정 계수가, 모델링된 두 유동량들에 적용될 수 있다.The correction is preferably performed by multiplying the modeled ammonia flow rate and the modeled nitrogen oxide flow rate with a correction factor calculated from the ratio, respectively. In this simple manner, only one correction factor can be applied to the two flow quantities modeled.

이 경우, 특히 바람직하게 상기 보정 계수는 상기 비율이 특성 곡선을 통해 형성되고 그리고/또는 제한됨으로써 산출된다. 이로 인해, 계산되거나 경험적으로 산출된 데이터들을 보정 계수의 산출에 포함시킬 수 있다.In this case, particularly preferably, the correction coefficient is calculated by forming and / or limiting the ratio through the characteristic curve. As a result, the calculated or empirically calculated data can be included in the calculation of the correction coefficient.

SCR 촉매 컨버터 시스템을 제어하기 위한 방법에서, 두 SCR 촉매 컨버터들 사이의 모델링된 암모니아 유동량 및 모델링된 질소 산화물 유동량은 상기 유동량들의 보정 방법에 의해 보정된다.In a method for controlling an SCR catalytic converter system, a modeled ammonia flow rate and a modeled nitrogen oxide flow rate between two SCR catalytic converters are corrected by a correction method of the flow quantities.

이러한 제어에서 사용되는 질소 산화물 센서가 제2 SCR 촉매 컨버터 하류에 위치하는 경우, 제어를 위한 임계값은 더 이상 제2 SCR 촉매 컨버터 하류의 모델링된 질소 산화물 유동량에 기초하여 산출되면 안된다. 그 대신 바람직하게, 이러한 질소 산화물 센서에 의해 측정된 값은 설정값으로 제어되며, 상기 설정값은 SCR 촉매 컨버터들 상류에 배열된 질소 산화물 센서와, SCR 촉매 컨버터 시스템의 전체 효율로부터 계산된다. 전체 효율은 두 SCR 촉매 컨버터들의 개별 효율들로 이루어진다. 이러한 개별 효율들은 SCR 반응의 활성화 에너지; 각각의 SCR 촉매 컨버터의 온도; 각각의 SCR 촉매 컨버터의 정규화된 면적 계수; SCR 반응의 주파수 계수; 각각의 SCR 촉매 컨버터의 설정 충전 수준, 최대 암모니아 저장 능력 및 체류 시간;으로부터 얻어진다.If the nitrogen oxide sensor used in this control is located downstream of the second SCR catalytic converter, the threshold for control should no longer be calculated based on the modeled NOx flow rate downstream of the second SCR catalytic converter. Instead, the value measured by this nitrogen oxide sensor is controlled to a setpoint, which is calculated from the total efficiency of the NOx sensor and the SCR catalytic converter system arranged upstream of the SCR catalytic converters. The overall efficiency consists of the individual efficiencies of the two SCR catalytic converters. These individual efficiencies are the activation energy of the SCR reaction; The temperature of each SCR catalytic converter; The normalized area coefficient of each SCR catalytic converter; Frequency coefficient of SCR response; The set charge level, maximum ammonia storage capacity and residence time of each SCR catalytic converter.

SCR 촉매 컨버터들 사이에 암모니아 센서가 배열된 경우, 바람직하게는 암모니아 센서에 의해 측정된 값이 제어 시 질소 산화물 유동량의 모델링에서 고려된다. 이로 인해, 두 SCR 촉매 컨버터들 사이의 모델링된 질소 산화물 유동량의 정확도가 추가로 개선된다. 이때, 경우에 따라 이러한 질소 산화물 유동량은 심지어 두 SCR 촉매 컨버터들 사이에 배열된 질소 산화물 센서의 신호와 암모니아 센서의 신호 간의 편차로부터 간단히 산출될 수도 있다.Where ammonia sensors are arranged between SCR catalytic converters, preferably the values measured by the ammonia sensor are considered in the modeling of the NOx flow rate at the time of control. This further improves the accuracy of the modeled nitrogen oxide flow rate between the two SCR catalytic converters. At this time, this nitrogen oxide flow rate may even be calculated simply from the deviation between the signal of the nitrogen oxide sensor arranged between the two SCR catalytic converters and the signal of the ammonia sensor.

본원의 컴퓨터 프로그램은 특히 연산 장치 또는 전자 제어 장치에서 실행될 때, 상기 방법의 각각의 단계를 실행하도록 구성된다. 이로 인해, 구조 변경을 실행할 필요 없이 전자 제어 유닛 내에서 상기 방법의 상이한 실시예들을 구현 가능하다. 이를 위해, 컴퓨터 프로그램은 기계 판독 가능한 저장 매체에 저장된다. 종래의 전자 제어 유닛에 상기 컴퓨터 프로그램을 설치함으로써, 모델링된 암모니아 유동량 및 모델링된 질소 산화물 유동량을 상기 보정 방법에 의해 보정하고 그리고/또는 SCR 촉매 컨버터 시스템을 상기 제어 방법에 의해 제어하도록 구성된 전자 제어 장치가 얻어진다.The computer program of the present application is configured to execute each step of the method, particularly when executed in a computing device or an electronic control device. This makes it possible to implement different embodiments of the method within the electronic control unit without having to perform structural changes. To this end, the computer program is stored in a machine-readable storage medium. An electronic control unit configured to correct the modeled ammonia flow rate and the modeled nitrogen oxide flow rate by the correction method and / or to control the SCR catalytic converter system by the control method by installing the computer program in a conventional electronic control unit Is obtained.

본 발명의 실시예는 도면들에 도시되어 있으며, 하기의 설명부에 더 상세히 설명되어 있다.
도 1은 본 발명의 일 실시예에 따른 방법에 의해 제어될 수 있는 SCR 촉매 컨버터 시스템을 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 방법의 흐름도이다.
Embodiments of the present invention are illustrated in the drawings and are described in further detail in the following description.
1 is a schematic diagram of a SCR catalytic converter system that may be controlled by a method in accordance with an embodiment of the present invention.
2 is a flow diagram of a method in accordance with an embodiment of the present invention.

내연 기관(10)은 자신의 배기 가스 라인(11) 내에, 도 1에 도시된 SCR 촉매 컨버터 시스템(20)을 포함한다. 이러한 시스템은 요소 수용액이 배기 가스 라인(11) 내로 분사될 수 있도록 하는 환원제 계량 유닛(50)을 구비한다. 이러한 유닛으로부터는 높은 배기 가스 온도에서 암모니아가 발생된다. 환원제 계량 유닛(50) 하류에는 제1 SCR 촉매 컨버터(21)와, 제2 SCR 촉매 컨버터(22)가 배열되어 있다. 제1 SCR 촉매 컨버터의 촉매 물질은 입자 필터 상에 배열된다(SCR on filter; SCRF). 제1 NOx 센서(31)는 배기 가스 라인(11) 내에서 환원제 계량 유닛(50) 상류에 배열된다. 제2 NOx 센서(32)는 두 SCR 촉매 컨버터들(21, 22) 사이에 배열된다. 제3 NOx 센서는 제2 SCR 촉매 컨버터(22) 하류에 배열된다. 또한, 제2 NOx 센서(32)와 제2 SCR 촉매 컨버터(22) 사이에는 암모니아 센서(40)가 배열된다. 모든 NOx 센서들(31, 32, 33)과 암모니아 센서(40)는 자신의 신호를 전자 제어 장치(60)에 전달한다. NOx 센서들(31, 32, 33)이 교차 과민 방식으로 암모니아에 반응하므로, 이러한 센서들의 신호들은 질소 산화물 및 암모니아에 대한 합신호이다. 그러나, 제1 NOx 센서는 환원제 계량 유닛(50) 상류에 배열되므로, 이러한 센서는 배기 가스 내 질소 산화물 양을 신뢰 가능하게 측정한다. 제2 SCR 촉매 컨버터(22)에서 암모니아 슬립이 발생하지 않도록 SCR 촉매 컨버터 시스템(20)이 작동된다면, 제3 NOx 센서의 신호가 오로지 질소 산화물에 기초한다고 가정할 수 있다. 제2 SCR 촉매 컨버터(22)에 암모니아를 제공하기 위해 제1 SCR 촉매 컨버터(21)에서 암모니아 슬립이 제공되므로, 제2 NOx 센서(32)는 암모니아와 질소 산화물의 합신호를 제공하기도 한다. 환원제 계량 유닛(50)은 배기 가스 라인(11) 내로 계량 공급되는 암모니아 량을 마찬가지로 제어 장치(60)에 보고한다.The internal combustion engine 10 includes, within its own exhaust line 11, the SCR catalytic converter system 20 shown in Fig. This system includes a reducing agent metering unit 50 that allows the urea aqueous solution to be injected into the exhaust gas line 11. [ From these units ammonia is generated at high exhaust gas temperatures. A first SCR catalytic converter (21) and a second SCR catalytic converter (22) are arranged downstream of the reducing agent metering unit (50). The catalytic material of the first SCR catalytic converter is arranged on the particle filter (SCR on filter; SCRF). The first NOx sensor 31 is arranged upstream of the reducing agent metering unit 50 in the exhaust gas line 11. A second NOx sensor 32 is arranged between the two SCR catalytic converters 21,22. And the third NOx sensor is arranged downstream of the second SCR catalytic converter 22. [ Further, an ammonia sensor 40 is arranged between the second NOx sensor 32 and the second SCR catalytic converter 22. All of the NOx sensors 31, 32, and 33 and the ammonia sensor 40 transmit their signals to the electronic control unit 60. [ Since the NOx sensors 31, 32, and 33 respond to ammonia in a cross-sensitized manner, the signals of these sensors are the sum signal for nitrogen oxides and ammonia. However, since the first NOx sensor is arranged upstream of the reducing agent metering unit 50, such a sensor reliably measures the amount of nitrogen oxides in the exhaust gas. If the SCR catalytic converter system 20 is operated such that ammonia slip does not occur in the second SCR catalytic converter 22, it can be assumed that the signal of the third NOx sensor is based solely on nitrogen oxides. Because the ammonia slip is provided in the first SCR catalytic converter 21 to provide ammonia to the second SCR catalytic converter 22, the second NOx sensor 32 also provides a sum signal of ammonia and nitrogen oxides. The reducing agent metering unit 50 also reports the amount of ammonia metered into the exhaust gas line 11 to the controller 60 as well.

도 2에 개략적으로 도시된 본 발명에 따른 방법의 일 실시예에서, 제1 SCR 촉매 컨버터(21)의 모델을 통해서는 두 SCR 촉매 컨버터들(21, 22) 사이의 ppm 단위의 모델링된 암모니아 유동량(qNH3모델링)이 제공된다(70). 이러한 모델링된 암모니아 유동량(qNH3모델링)은 mg/s 단위의 질소 산화물 등가량(qNH3등가)으로 변환된다(71). 또한, 제1 SCR 촉매 컨버터(21)의 모델은 두 SCR 촉매 컨버터들(21, 22) 사이의 모델링된 질소 산화물 유동량(qNOx모델링)을 제공한다(72). 이는 마찬가지로 질소 산화물 등가량(qNOx등가)으로 변환된다(73). 질소 산화물 등가량으로 변환된 두 유동량들(qNH3등가, qNOx등가)은 제1 합계값(S1)을 얻기 위해 합해진다(74). 제2 NOx 센서(32)는 두 SCR 촉매 컨버터들(21, 22) 사이의 암모니아 유동량과 질소 산화물 유동량의 합신호(qNH3/NOx측정)의 측정(75)을 실행한다. 이러한 합신호(qNH3/NOx측정)는 제2 합계값(S2)으로서 사용된다. 두 합계값들(S1, S2)은 그들의 비율(V)을 얻기 위해 서로 나누어진다(76). 이는 특성 곡선(77)을 통해 형성되고 제한된다. 이러한 방식으로 보정 계수(f)가 얻어진다. 모델링된 암모니아 유동량(qNH3모델링)과 보정 계수(f)의 곱셈을 통해(78), 보정된 암모니아 유동량(qNH3보정)이 얻어진다. 모델링된 질소 산화물 유동량(qNOx모델링)과 보정 계수(f)의 곱셈을 통해(79), 보정된 질소 산화물 유동량(qNOx보정)이 얻어진다. 보정된 유동량들(qNH3보정, qNOx보정)은 전자 제어 장치(60) 내에서 SCR 촉매 컨버터 시스템(20)의 제어부(80)에 공급된다.In an embodiment of the method according to the invention schematically shown in Figure 2, through the model of the first SCR catalytic converter 21, the modeled ammonia flow volume in ppm between the two SCR catalytic converters 21, (q NH3 modeling) is provided (70). This modeled ammonia flow (q NH3 modeling) is converted to an equivalent amount of nitrogen oxides (q NH3 equivalent) in mg / s (71). In addition, the model of the first SCR catalytic converter 21 provides a modeled NOx flow rate (q NOx modeling) between the two SCR catalytic converters 21, 22 (72). This is similarly converted to an equivalent amount of nitrogen oxides (q NOx equivalent) (73). The two flow quantities (q NH3 equivalent, q NOx equivalent) that are converted to an amount such as nitrogen oxide are summed to obtain the first total value (S 1 ) (74). The second NOx sensor 32 performs a measurement 75 of the sum signal (q NH3 / NOx measurement) of the ammonia flow volume and the nitrogen oxide flow volume between the two SCR catalytic converters 21, This sum signal (q NH3 / NOx measurement) is used as a second sum value (S 2). The two summation values (S 1 , S 2 ) are divided 76 to obtain their ratio (V). Which is formed and limited through the characteristic curve 77. [ In this manner, the correction coefficient f is obtained. By multiplying 78 by the modeled ammonia flow (q NH3 modeling) and the correction factor (f), a corrected ammonia flow (q NH3 correction) is obtained. (79), a corrected nitrogen oxide flow rate (q NOx correction) is obtained by multiplying the modeled NOx flow rate (q NOx modeling) by the correction factor (f). The corrected flow quantities (q NH3 correction, q NOx correction) are supplied to the control unit 80 of the SCR catalytic converter system 20 in the electronic control unit 60.

대개, 제3 질소 산화물 센서(33)에 의해 측정된, 두 SCR 촉매 컨버터들(21, 22) 하류의 질소 산화물 유동량 값은 설정값으로 제어된다. 이러한 설정값은 제1 질소 산화물 센서(31)에 의해 측정된, 내연 기관(10)을 떠난 질소 산화물 유동량과; SCR 촉매 컨버터 시스템(20)의 전체 효율;로부터 계산된다. 전체 효율은 두 SCR 촉매 컨버터들(21, 22)의 개별 효율들로 이루어진다. 제어부(80)에서, 두 SCR 촉매 컨버터들(21, 22) 사이의 질소 산화물 유동량은 제2 질소 산화물 센서(32)의 센서 신호로부터 암모니아 센서(40)의 센서 신호를 감산함으로써 산출될 수 있다.Usually, the value of the nitrogen oxide flow rate downstream of the two SCR catalytic converters 21, 22, as measured by the third nitrogen oxide sensor 33, is controlled to a set value. These set values include the amount of nitrogen oxides leaving the internal combustion engine 10, as measured by the first nitrogen oxide sensor 31; SCR < / RTI > catalytic converter system 20. The overall efficiency consists of the individual efficiencies of the two SCR catalytic converters 21,22. In the control unit 80, the amount of nitrogen oxide flow between the two SCR catalytic converters 21, 22 can be calculated by subtracting the sensor signal of the ammonia sensor 40 from the sensor signal of the second nitrogen oxide sensor 32.

Claims (10)

두 SCR 촉매 컨버터들(21, 22) 상류에 단 하나의 환원제 계량 유닛(50)을 포함하는 SCR 촉매 컨버터 시스템(20) 내에서, 배기 가스 라인(11) 내에 연이어 배열된 2개의 SCR 촉매 컨버터들(21, 22) 사이의 모델링된 암모니아 유동량(qNH3모델링) 및 모델링된 질소 산화물 유동량(qNOx모델링)을 보정(78, 79)하기 위한 방법에 있어서,
모델링된 암모니아 유동량(qNH3모델링)과 모델링된 질소 산화물 유동량(qNOx모델링)의 합(74)을 통해 제1 합계값(S1)이 산출되고; 두 SCR 촉매 컨버터들(21, 22) 사이에 배열된, 암모니아 및 질소 산화물에 대해 민감한 센서(32)의 신호(qNH3/NOx측정)로부터 제2 합계값(S2)이 산출되며; 보정(78, 79)을 위해 두 합계값들(S1, S2)의 비율(V)이 산출되는; 것을 특징으로 하는, 유동량 보정 방법.
In the SCR catalytic converter system 20 comprising only one reducing agent metering unit 50 upstream of the two SCR catalytic converters 21 and 22 two SCR catalytic converters A method for correcting (78, 79) a modeled ammonia flow (q NH3 modeling) and a modeled nitrogen oxide flow (q NOx modeling) between a catalytic converter (21, 22)
A first total value S 1 is calculated through a sum 74 of the modeled ammonia flow (q NH 3 modeling) and the modeled nitrogen oxide flow (q NO x modeling); A second sum value S 2 is calculated from the signal (q NH 3 / NO x measurement) of the sensor 32, which is sensitive to ammonia and nitrogen oxides, arranged between the two SCR catalytic converters 21 and 22; The ratio V of the two summation values (S 1 , S 2 ) is calculated for the corrections 78, 79; And the flow rate correction method.
제1항에 있어서, 제1 합계값(S1)의 산출을 위해, 모델링된 암모니아 유동량(qNH3모델링) 및 모델링된 질소 산화물 유동량(qNOx모델링)은 NOx 등가량(qNH3등가, qNOx등가)으로 변환되어, 합해지는 것을 특징으로 하는, 유동량 보정 방법.The method of claim 1, wherein the first sum value for the calculation of (S 1), the modeled ammonia flow rate (q NH3 modeling) and the modeled NOx flow rate (q NOx modeling) is approximately NOx, etc. (q NH3 equivalent, q NOx , And is summed and summed. 제1항 또는 제2항에 있어서, 상기 보정(78, 79)은 모델링된 암모니아 유동량(qNH3모델링) 및 모델링된 질소 산화물 유동량(qNOx모델링)이, 상기 비율(V)로부터 산출되는 보정 계수(f)와 각각 곱해짐으로써 실행되는 것을 특징으로 하는, 유동량 보정 방법.3. The method according to claim 1 or 2, characterized in that the corrections (78,79) are performed such that the modeled ammonia flow (q NH3 modeling) and the modeled nitrogen oxide flow (q NOx modeling) (f), respectively. < / RTI > 제3항에 있어서, 상기 보정 계수(f)는, 상기 비율(V)이 특성 곡선을 통해 형성되고 그리고/또는 제한됨으로써(77) 산출되는 것을 특징으로 하는, 유동량 보정 방법.The flow rate correction method according to claim 3, characterized in that the correction coefficient (f) is calculated (77) by forming and / or limiting the ratio (V) through a characteristic curve. 배기 가스 라인(11) 내에 연이어 배열된 2개의 SCR 촉매 컨버터들(21, 22)을 구비한 SCR 촉매 컨버터 시스템(20)을 제어(80)하기 위한 방법에 있어서,
두 SCR 촉매 컨버터들(21, 22) 사이의 모델링된 암모니아 유동량(qNH3모델링) 및 모델링된 질소 산화물 유동량(qNOx모델링)은 제1항 내지 제4항 중 어느 한 항에 따른 방법에 의해 보정되는 것을 특징으로 하는, SCR 촉매 컨버터 시스템의 제어 방법.
A method for controlling (80) an SCR catalytic converter system (20) comprising two SCR catalytic converters (21, 22) arranged in series in an exhaust line (11)
The modeled ammonia flow rate (q NH3 modeling) and the modeled nitrogen oxide flow volume (q NOx modeling) between the two SCR catalytic converters 21, 22 are corrected by the method according to any one of claims 1 to 4 Gt; SCR < / RTI > catalytic converter system.
제5항에 있어서, SCR 촉매 컨버터들(21, 22) 하류에 배열된 질소 산화물 센서(33)에 의해 측정된 값은 설정값으로 제어되며, 상기 설정값은 SCR 촉매 컨버터들(21, 22) 상류에 배열된 질소 산화물 센서(31)와, SCR 촉매 컨버터 시스템(20)의 전체 효율로부터 계산되는 것을 특징으로 하는, SCR 촉매 컨버터 시스템의 제어 방법.6. A method according to claim 5, wherein the values measured by the nitrogen oxide sensor (33) arranged downstream of the SCR catalytic converters (21, 22) are controlled to a set value, Is calculated from the total efficiency of the NOx sensor (31) arranged upstream and the SCR catalytic converter system (20). 제5항 또는 제6항에 있어서, 질소 산화물 유동량의 모델링 시에는 SCR 촉매 컨버터들(21, 22) 사이에 배열된 암모니아 센서(40)에 의해 측정된 값이 고려되는 것을 특징으로 하는, SCR 촉매 컨버터 시스템의 제어 방법.7. Method according to claim 5 or 6, characterized in that during the modeling of the nitrogen oxide flow rate, the values measured by the ammonia sensor (40) arranged between the SCR catalytic converters (21, 22) Control method of converter system. 제1항 내지 제7항 중 어느 한 항에 따른 방법의 각각의 단계를 실행하도록 구성된 컴퓨터 프로그램.A computer program configured to execute each step of the method according to any one of claims 1 to 7. 제8항에 따른 컴퓨터 프로그램이 저장된 기계 판독 가능한 저장 매체.9. A machine-readable storage medium having stored thereon a computer program according to claim 8. 제1항 내지 제4항 중 어느 한 항에 따른 방법에 의해, 모델링된 암모니아 유동량(qNH3모델링) 및 모델링된 질소 산화물 유동량(qNOx모델링)을 보정하고 그리고/또는 제5항 내지 제7항 중 어느 한 항에 따른 방법에 의해 SCR 촉매 컨버터 시스템(20)을 제어하도록 구성된 전자 제어 장치(60).A method according to any one of claims 1 to 4, characterized by correcting the modeled ammonia flow rate (q NH3 modeling) and the modeled nitrogen oxide flow rate (q NOx modeling) and / An electronic control device (60) configured to control an SCR catalytic converter system (20) by a method according to any one of the preceding claims.
KR1020180157815A 2017-12-13 2018-12-10 Method for correcting modeled ammonia mass flow rate and modeled nitrogen oxide mass flow rate, and method for controlling scr-catalytic converter system KR20190070864A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017222582.3A DE102017222582A1 (en) 2017-12-13 2017-12-13 Method for correcting a modeled ammonia mass flow and a modeled nitrogen oxide mass flow and for controlling an SCR catalyst system
DE102017222582.3 2017-12-13

Publications (1)

Publication Number Publication Date
KR20190070864A true KR20190070864A (en) 2019-06-21

Family

ID=66629285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180157815A KR20190070864A (en) 2017-12-13 2018-12-10 Method for correcting modeled ammonia mass flow rate and modeled nitrogen oxide mass flow rate, and method for controlling scr-catalytic converter system

Country Status (3)

Country Link
KR (1) KR20190070864A (en)
CN (1) CN109915244B (en)
DE (1) DE102017222582A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4284087B2 (en) * 2003-02-18 2009-06-24 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP2011196311A (en) * 2010-03-23 2011-10-06 Mazda Motor Corp Exhaust emission purifying method and exhaust emission purifying apparatus
DE102016201602A1 (en) 2016-02-03 2017-08-03 Robert Bosch Gmbh Method for determining an ammonia mass flow
DE102016209566A1 (en) * 2016-06-01 2017-12-07 Ford Global Technologies, Llc Controlling a nitrogen oxide emission in the exhaust gas of an internal combustion engine
CN106837480B (en) * 2016-12-26 2019-02-12 潍柴动力股份有限公司 A kind of urea injecting quantity control method and post-processing control system based on model
CN106677862B (en) * 2016-12-26 2019-07-30 潍柴动力股份有限公司 A kind of twin-jet nozzle urea injecting quantity control method and post-processing control system

Also Published As

Publication number Publication date
CN109915244B (en) 2022-05-13
CN109915244A (en) 2019-06-21
DE102017222582A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
US10077700B2 (en) Method for checking the plausibility of a NOx sensor in an SCR catalytic converter system
US11313268B2 (en) Method of monitoring an SCR catalyst
AU2010334855B2 (en) Method and device for controlling an SCR catalytic converter of a vehicle
US8893475B2 (en) Control system for doser compensation in an SCR system
US20100242454A1 (en) Nh3-monitoring of an scr catalytic converter
EP2899379B1 (en) Method of controlling a multi selective catalytic reduction system
JP5155838B2 (en) Reducing agent injection control device, control method for reducing agent injection device, and exhaust purification device for internal combustion engine
CN107035489B (en) Method for determining ammonia mass flow
CN102454458A (en) Method for adapting an scr catalytic converter in an exhaust system of a motor vehicle
US20140056788A1 (en) Method for the model-based feedback control of an scr system having at least one scr catalytic converter
WO2013134539A1 (en) Method and algorithm for performing an nh3 sensor rationality diagnostic
CN105008691A (en) Apparatus, method and system for diagnosing reductant delivery performance
CN109854347B (en) Method for correcting modeled ammonia fill levels
US20200049048A1 (en) Method of monitoring an scr catalytic converter
US10940436B2 (en) Method of controlling ammonia levels in catalytic units
CN110295978A (en) Diesel SCR control system temperature sensor fault tolerant control method and its device
CN110273737B (en) Thermal failure fault-tolerant control method and device for catalyst of diesel engine aftertreatment system
CN102900502B (en) Oxygen sensor-based urea jet control device for diesel and control method for jet control device
CN110905639A (en) System and method for correcting SCR ammonia storage model
CN104619962B (en) Method and apparatus for estimating the dispensing error in selective catalytic reduction system operating
US8991154B2 (en) Methods and systems for controlling reductant levels in an SCR catalyst
KR102406226B1 (en) Method for detecting an error in an scr system by means of an ammonia slip
CN107923292B (en) Method for operating an exhaust gas aftertreatment system having an SCR catalyst
CN107975407B (en) Method for regulating an exhaust gas aftertreatment device of an internal combustion engine
Chavannavar Development and implementation of a mapless, model based SCR control system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application